
Received 1 October 2023, accepted 23 December 2023, date of publication 29 December 2023,
date of current version 10 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3348451

Addressing Behavioral Drift in Ransomware Early
Detection Through Weighted Generative
Adversarial Networks
UMARA UROOJ 1, BANDER ALI SALEH AL-RIMY 1, (Senior Member, IEEE),
ANAZIDA BINTI ZAINAL1, (Member, IEEE), FAISAL SAEED 2,
ABDELZAHIR ABDELMABOUD 3, AND WAMDA NAGMELDIN4
1Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor 81300, Malaysia
2DAAI Research Group, School of Computing and Digital Technology, College of Computing and Digital Technology, Birmingham City University, B4 7XG
Birmingham, U.K.
3Department of Information Systems, King Khalid University, Muhayil 61913, Saudi Arabia
4Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Corresponding authors: Bander Ali Saleh Al-Rimy (bander@utm.my) and Umara Urooj (umaraurooj@gmail.com)

This works funded by the Deanship of Scientific Research at King Khalid University through large group Research Project under grant
number (RGP.2/175/44).

ABSTRACT Crypto-ransomware attacks pose a significant cyber threat due to the irreversible effect of
encryption employed to deny access to the data on the victim’s device. Existing state-of-the-art solutions
are developed based on two assumptions: the availability of sufficient data to perform detection during
the pre-encryption phase, and that ransomware behavior is static and does not change over time. However,
such assumptions do not hold as data collected during the pre-encryption phase of the ransomware attack
are limited and does not contain sufficient patterns needed to identify the attack. Additionally, the evasion
techniques like polymorphism and metamorphism used by ransomware lead to behavioral drift that could
defeat those solutions. Therefore, this paper addresses these two issues by proposing a weighted Generative
Adversarial Networks (wGANs) technique. Firstly, the proposed wGAN was used to generate synthetic
data that imitate the behavior of ransomware and simulate the evolution of the attacks. Then, the mutual
information was used to estimate the significance of features for different timeframes, thereby helping the
detection model to handle the behavioral drift in emerging ransomware variants. Experimental evaluation
demonstrates that the proposedwGAN ismore robust against behavioral drift compared to the state-of-the-art
solutions. The wGAN achieved higher accuracy and lower false alarm rates of 97% and 0.0088 respectively.

INDEX TERMS Adaptive, crypto-ransomware, early detection, generative adversarial networks, metamor-
phic, polymorphic, ransomware, ransomware prediction.

I. INTRODUCTION
The concept of cryptography was employed to develop a
new type of malware named Ransomware [1], [2] which
encrypts the data on the victim’s device and demand ransom
in return. The use of an encryption mechanism makes the
ransomware attacks irreversible if the decryption key is not
available [3], [4]. Ransomware attacks target both individuals
and organizations on different platforms and systems [2].

The associate editor coordinating the review of this manuscript and
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In most cases, victims tend to pay the ransom due to fear of
losing their reputation and potential customers. An article by
BBC published on July 05, 2021, reported that 70million ran-
som was demanded due to colossal ransomware attack. The
attackers initially targeted US IT firmKaseya and then spread
through corporate networks which affected over one million
victims from supermarkets and schools [5]. The attacker
usually attacks an individual, who has little knowledge of
computer usage, and then plays with his fear of data loss
or disclosure, i.e., personal data, browser history, contacts,
and chats [6], [7], [8], [9]. The use of crypto-currency also
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fuels ransomware attacks as it offers a safe and non-traceable
method to pay the ransom [10].

Ransomware attacks have been evolving over time and new
variants will likely be generated in the future. This is because
of the availability of many ready-to-use toolkits like RaaS,
which makes it easy to generate ransomware mutants [11],
[12]. Polymorphism and metamorphism strategies adopted
by ransomware to evade detection help to increase these
attacks [13], [14]. Research byWebroot showed that ‘‘94% of
malicious executables are polymorphic’’ [12]. Polymorphism
and metamorphism are the base of behavioral drifting of
ransomware attacks. The behavioral drift is defined in terms
of the development of new attack variants with changing
behavior over time [15], [16]. Behavioral drift is the basis
for zero-day attacks [17], by changing the attack attributes
(which are also called features) [6], [14], [18].
For developing variants, changing distribution of features

changes the significance of features accordingly. Polymor-
phic and metamorphic ransomwares try to evade detection
hence should be dealt with more vigilance [19]. The poly-
morphic adversarial attacks are generated with the help of
Generative adversarial networks. This is due to the abil-
ity of GANs to generate real-like samples from reference
data [13], [20].
The problem of ransomware detection becomes more chal-

lenging when dealing with polymorphic and metamorphic
attacks [21], [22]. These attacks spread rapidly and can
encrypt the files in a very short time, hence early detection
becomes imperative. Early detection is also important as
once the ransomware encrypts the files, all the data becomes
inaccessible, even if the ransomware is detected and removed
[2], [21], [23]. An effective early detection solution for these
evolving ransomware variants could be developed by address-
ing two intertwined challenges include:

The first challenge for ransomware early detection is the
availability of enough data during the pre-encryption phase
as the attack is still in the preparation phase and the actual
attack is yet to take place. Therefore, it is important to address
such data insufficiency as sufficient patterns are required
for accurate early detection. Data augmentation is a popu-
lar method in machine learning-based solutions and has a
potential as a solution for such data insufficiency challenge
that malware and ransomware early detection solutions suffer
from. To the best of our knowledge, here is no single study
dealing with data augmentation during pre-encryption phase
of ransomware attacks.

The polymorphic nature of ransomware introduces another
challenge concerning the relevance of attack features used
by existing solutions when developing and training detec-
tion models. For instance, a ransomware attack at time t1
could display an attack pattern (features) p1 whose rele-
vance is greater than the same pattern displayed by another
ransomware variant attack at time t2 with attack pattern (fea-
tures) p2. This implies that the significance of features
could change over time for different ransomware variants.

The availability of attack patterns and their significant fea-
tures are linked to a specific timeframe (t) for different
ransomware variants. However, existing ransomware early
detection solutions assume the significance of features is
static and unchanging, leading to a behavioral drift that causes
the developed solutions to become outdated quickly, thereby
reducing the detection accuracy over time.

To this end, this paper is dedicated to addressing the two
issues mentioned above incorporating an improved Gener-
ative Adversarial Network (GAN)-based data augmentation
technique that compensates for data insufficiency during the
pre-encryption phase of the attack. The proposed technique
also re-weighs the features’ relevancy based on the behavior
progression of the new ransomware characteristics, which
addresses the behavior drift of the attack. The contribution
of this paper is three-fold as follows:

1) A TF-IDF and GAN-based pre-encryption data aug-
mentation technique is proposed to address the problem
of data insufficiency during the pre-encryption phase
by generating adequate synthetic data.

2) A weighted GAN (wGAN) technique is proposed,
which incorporates the mutual information method
into the GAN structure to estimate the significance of
features for different timeframes, thereby helping the
detection model to handle the behavioral drift seen in
emerging ransomware variants.

3) Extensive experiments were conducted to evaluate the
performance of the techniques developed in (1) and (2).

The rest of the paper is organized as follows; In section II, the
existing work was discussed. The methodology of the pro-
posed work is discussed in section III. Experimental results
are presented in section IV. In section V, the analysis and dis-
cussion of the experimental work and results were explained.
The proposed work is concluded in section VI.

II. RELATED WORKS
The early detection of an attack helps to reduce or stop the
effects of the attack in the first place. Early detection systems
detect ransomware before the encryption of data starts. These
detection systems have more worth than traditional detection
systems as they ensure the prevention of user data from
encryption attacks [24], [25].

A. EARLY DETECTION OF RANSOMWARE ATTACKS
Some of the studies are available in the literature that claimed
to provide early detection for ransomware attacks. These
early detection studies are briefly discussed here.

An early detection system was presented by [26], which
utilized the real logs from Security Operation Centers (SOC)
to perform detection. The performance of seven different
machine learning classifiers was evaluated on given data. This
detection system extracted patterns and performed detection
before the encryption process started. A ransomware pre-
ventive and early detection system was proposed by [27].
This system was able to perform detection for known and
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zero-day attacks. The system performed detection by using
two techniques. It compared the signature in one phase and
performed the dynamic analysis in the second phase. This
system showed high false alarms and hence became limited
in its implementation. Another early ransomware detection
system was proposed by [28], which utilized the system APIs
as a base to uncover the ransomware attack. This detection
system classified samples into three categories, i.e., good
ware, malware, and ransomware. The work was an extension
of its previous work, R-PackDroid, while focusing on the use
of system API packages, classes, and methods.

An alert-based ransomware detection model was proposed
by [29], which monitored the network traffic to detect ran-
somware. The system focused on the packet level inspection
to trace the maliciousness of traffic. However, the system
would generate high false alarms if an encryption operation
was initiated by a benign program. A scheme was proposed
by [19] which dealt with pre-encryption boundary definition
and feature extraction using pre-encryption APIs. A detec-
tion model was built on the features extracted from the
pre-encryption phase using the aTF-IDF technique. The study
proposed using a dynamic threshold to detect ransomware in
the early phase of the attack. PEDA was proposed by [30] as
an early detection system for ransomware attacks. The sys-
tem performed both signature-based detection and behavioral
detection. The system utilized random forest for decision-
making. The proposed system was limited to perform classi-
fication and was able to detect only the ransomware it trained
on. This system was not fully functional to detect the whole
ransomware; instead, it was developed as a supplement to the
detection system.

A study in [31] presented an early detection system for
crypto-ransomware. The early detection model was imple-
mented using the machine learning classifier Random Forest
and evaluated using six different metrics. The system con-
sists of two modules, i.e., signature-based detection and
behavioral detection, to perform pre-encryption detection.
DeepRan, an early detection system for the bare metal server
was developed in [32]. It was an anomaly-based detection
system, and a profile was built by using the logs of regular
activities on the host machines. The system was implemented
by using deep learning models. The system was limited in
working as the profile was built using the dedicated net-
work host machines. RanStop, an early ransomware detection
system, was proposed by [33] that performed detection in
2ms. This system performed detection by utilizing the hard-
ware assistance and detected the ransomware in runtime.
This system was limited in its implementation due to the
requirement to access different hardware. An early detec-
tion system for ransomware was developed in [34], which
utilized both machine and deep learning techniques. This
detection system utilized both analysis techniques to perform
the detection. Features were extracted from I/O activities
and the file entropy method. Samples were executed for
five minutes in the bare-metal sandbox. Robustness was

maintained by extracting time series data from the samples’
execution.

An early detection system CRED concept was proposed
by () [35]. This study intended to use a combination of API
and IRP to detect ransomware in its early phases. However,
this study only proposed a concept and was not implemented.
This study was also limited due to the use of a timeline to
capture I/O Request Packets. An intrusion detection honeypot
(IDH) acting as early warning was proposed in [36] to deal
with the integration problem of intrusion detection systems
and anti-viruses. This system produced early warnings for
encountered ransomware by implementing the social leop-
ard algorithm (SoLA). This IDH also utilized the SDN to
monitor suspicious communication. In another work, the use
of file access control to control the occurrence and spread
of ransomware attacks on the windows platform was pre-
sented [37]. It was an early detection system that raised early
warnings for the user to restrict the access of files to specific
resources. It was a dynamic approach to perform detection by
focusing on access to files. A ransomware detection method
was proposed in [38], which detected the ransomware by
extracting hexadecimal codes from its samples. Hexacodes
were extracted by using binary decoders. It was an early
detection system that utilized hexacodes of ransomware as
opposed to the use of opcodes.

An early detection strategy was proposed in [39] to detect
the new android ransomware families. Distinctive features of
different families were identified and used as a basis to char-
acterize ransomware samples. However, it was an empirical
study due to the use of static analysis. Minerva, a ransomware
detection approach was presented in [40] which observes
all the operation performed on a file during a specific time.
This work was limited as it can raise false alarms by focus-
ing on the encryption of files that could be encrypted by
benign programs. In [41] a decoy-based ransomware detec-
tion framework, named RTrap was developed. This work
lacks performance due to the use of decoy techniques which
can be detected by advanced ransomware attacks.

B. ADAPTIVE DETECTION FOR RANSOMWARE ATTACKS
An adaptive detection system is required to deal with devel-
oping variants of ransomware. Some studies tried to develop
adaptive models with limitations. An adaptive ransomware
detection framework was proposed by [42], which combined
the supervised and unsupervised approaches to get adaptive-
ness. It was an anti-obfuscation model that extracted features
from runtime data. This semi-supervised model was imple-
mented by using deep learning. An adaptive ransomware
detection approach was proposed in [43] which acts as a sup-
plement to the network defense system. This approach was
implemented using open-source softwares and only tested on
WannaCry and Petya ransomware. This detection approach
could suspend the network traffic for encryption performed
by benign programs. Another adaptive pre-encryption model
was proposed by [22] and considered the population drift
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concept for ransomware attacks. The study discussed the
problem of dealing with the little amount of data available
on hand before encryption. However, the implementation
of the study was not discussed in the study. The work in
[44] proposed a network-based ransomware detection scheme
named SINN-RD. This study focused on the generation of
new features from log files.

C. POPULATION DRIFT OF RANSOMWARE ATTACKS
Developing variants are another form of polymorphic and
metamorphic ransomwares. These two mechanisms keep on
developing zero-day ransomware variants hence introduc-
ing the concept of population drift for ransomware attacks.
Some of the studies discussed the development of future
ransomwares. Population drift is a concept that discussed
the change in the distribution of features and characteris-
tics of malwares and ransomwares. This concept focused
on developing new variants with time [14], [18]. A study
in [18] designed a framework for android malware that
focused on behavioral traits to detect malware. It was an
online learning detection system that dealt with the popu-
lation drift concept of malware. The system provided adap-
tiveness and context-awareness using the graph kernel and
online-learning. An analytical study was performed by [12]
to predict the future types of ransomwares, i.e., poly and
metamorphic ransomwares. Different future strains of ran-
somwares were created and run in the cuckoo to perform
the analytical analysis to make predictions. The analytical
analysis helped to analyze the behavior, attack process, and
network-level analysis of subjected ransomwares.

D. ROLE OF GAN IN RANSOMWARE DETECTION
Generative Adversarial Networks were employed to gener-
ate as well as detect malware attacks. The studies that use
GAN for attack generation and detection are briefly discussed
here. Malware detection for zero-day attacks was performed
by [45] using a transferred generative adversarial network
(tGAN). This work proposed a method of pre-train GAN
with an autoencoder to address the unstable training prob-
lem of GAN. Transfer learning was used with the GAN
generator to stabilize the GAN training and control produc-
tion of the nonsensical output of GAN. A study by [13]
produced polymorphic adversarial DDoS attacks by using
GAN to show the vulnerability of the machine learning-based
defensive system. The study aimed to make AI-based IDS
better and more effective by ripping off the advantages of
GAN. The study was limited due to the manual updating
of attack profiles. In different studies, generative adversarial
networks were used for malware detection. Initially, GANs
dealt with image data so some of the studies were trained
on image data to detect ransomware and later some of the
studies were trained on tabular data. In (MIT) Generative
adversarial networks were used to detect malware and find
another application to generate synthetic tabular data. A study
of [46] generated two versions of GANs to be operated

on the tabular data. The model worked with the generation
of samples and added fairness constraints to the generated
samples. This study proposed two GAN versions TabFair-
GAN and WassersteinGAN, to produce high quality and fair
tabular data. Another android malware detection system was
proposed by [47], which utilized the generative adversarial
network for ransomware detection. GAN was used for train-
ing, analyzing, and making predictions about malware. This
work was limited in its implementation as it performed the
static analysis, and GAN was trained on the bytecodes of
android APKs.

A summary of considered studies is presented in Table 1.
Limitation of these studies are discussed hereafter. The men-
tioned solutions to detect ransomware attacks lack perfor-
mance for developing variants. Some of the existing studies
employed decoy techniques, hence did not ensure complete
prevention from ransomware attacks due to the loss of some
fraction of data compromised. File-based detection systems
involved high false alarms due to misclassification between
benign and ransomware encrypted files. Existing solutions
did not consider the concept of continuously evolving variants
of ransomware which using sophisticated executing mecha-
nisms and evasion techniques thus result in misclassification
of benign and ransomware programs and generating high
false alarms. Existing solutions for prevention and detec-
tion did not fully address the mentioned challenges. All the
available solutions are limited in scope as they neither consid-
ered sufficiency of pre-encryption data nor adaptiveness for
developing variants depicting behavioral drift. An adaptive
solution is required to combat the problem of data insuffi-
ciency and behavioral drift adopted by developing variants of
ransomware attacks.

III. METHDOLOGY
This section explains the adopted methodology and exper-
imental setup to develop the proposed technique. Brief
descriptions of the used dataset, methods, and techniques are
presented hereafter.

A. DATASET
This work utilized the pre-encryption dataset generated
by study [19]. The dataset was generated by using both
benign and ransomware samples. The ransomware sam-
ples were downloaded from VirusShare and consisted of
39378 samples, while benign samples were downloaded from
www.informer.com and consisted of 16057 samples. The pre-
encryption dataset was generated from the runtime data of
dynamic analysis performed in the Cuckoo Sandbox on a col-
lection of ransomware and benign samples. Pre-encryption
features were extracted from the separate log files of ran-
somware and benign samples.

B. EXPERIMENTAL SETUP
To detect the polymorphic and metamorphic ransomwares,
the behavior of the discovered samples should be mon-
itored in a controlled environment to avoid obfuscation.
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TABLE 1. State-of-the-art approaches for ransomware detection.

Analysis of polymorphic and metamorphic ransomwares is
better performed with dynamic analysis [14]. The dataset
utilized here was generated by the experimental environment
built-in [19]. A Cuckoo sandbox was used to carry out the
dynamic analysis. Cuckoo provides a realistic yet isolated
environment to monitor malicious codes, i.e., malware and
ransomware. It is a widely used open-source automated mal-
ware analysis platform to get detailed reports of the runtime
behavior of the subjected files [48] so that we can generate
synthetic data. Most of the studies utilized the Cuckoo to
analyze the crypto-ransomware behavior [49]. The cuckoo
was installed in VMware to create realistic and virtualized
architecture to get the actual behavior of ransomware samples
[50]. Separate trace files were generated for each ransomware
and benign sample as both samples were executed separately.
The trace files contained all the APIs called during the under-
went analysis in Cuckoo. The extracted APIs were used to
build the synthetic data in the proposed work. An overview
of the experimental flow to give an idea about the dataset
generation is visualized in fig 1.

1) PROCESSING TOOLS
To implement the proposed work, all the analysis and results
generation was performed using the Python 3.7 libraries

FIGURE 1. The Experimental flow for the behavioral data logs generation.

Scikit-learn, Pandas, and Numpy. These libraries have built-
in high-level mathematical functions, data preparation and
extraction, and data analysis tools [51]. Keras and Tensor-
Flow frameworks were used to implement the deep learning
models, i.e., GAN. Some heavy computational tasks were
also performed with the help of GPUs.
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C. GENERATION OF THE PRE-ENCRYPTION DATASET
This section explains the whole process adopted in work
[19] by which the pre-encryption dataset was generated. The
dynamic analysis was performed on all the downloaded sam-
ples from VirusShare and informer. All the samples were
run inside the controlled environment depicted in fig 1. The
runtime data generated by each sample in the sandbox was
captured in a separate trace file, which included all the API
calls and their parameters and unnecessary data associated
with that specific sample. The guest machine hooked each
process with the help of a sandbox agent. After each sample
execution, the guest machine was reverted, so each next sam-
ple generated its own set of API calls and parameters without
any infection from the previous sample execution. All the
unnecessary data in the trace files was discarded, and the final
pre-encryption dataset contains the cryptographic API calls
along with their parameters. The extracted dataset contained
pre-encryption APIs, filtered from the encryption process by
implementation of aTF-IDF technique. The dataset contained
the data from the first cryptography API encountered until the
start of the attack execution. The dataset has a limited amount
of data as a fraction of the data was available during the pre-
encryption phase.

D. MODULE 1: PRE-ENCRYPTION DATA INSUFFICIENCY
The problem of pre-encryption data insufficiency is
addressed by this module. This module is further splits up
into two parts discussed hereafter.

1) TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY
(TF-IDF) FOR PRE-ENCRYPTION FEATURES EXTRACTION
The dataset used in this work was built in [19] by the exe-
cution of ransomware and benign samples in the cuckoo
sandbox. The JSONfiles extracted from the dynamic analysis
have textual data. The TF-IDF helps to find out the frequency
of APIs and extract features from textual data. In this work,
TF-IDF is applied to determine the frequency of each API
called during pre-encryption phase [4]. The textual format is
converted into discrete data to be fed to the GAN. The general
formula to calculate the TF-IDF value of the subjected APIs
is given in (1).

w(apijk ) = tf (apijk ). log
N

idf (apik )
(1)

In this equation, tf (apijk ) represents the frequency of an API
apik called by the instance in a subset, while idf (apik ) repre-
sents the number of instances in a subset. The total number
of instances is represented with N .

2) PRE-ENCRYPTION DATA AUGMENTATION
The pre-encryption phase of ransomware attacks generates
a little amount of data. In this section, the problem of data
limitation during the pre-encryption phase is considered and
addressed. Production of real-like data is a complementary

nature of GAN. The ability of GAN finds application in
malware generation by generating synthetic data similar in
distribution as fed samples.

The generative adversarial networks (GAN) is a data syn-
thesizer used to generate real-like synthetic data. It consists
of two neural networks G(x) and D(x) that play adver-
sarial games to generate real-like fake samples by fooling
each other. These networks produce the optimal solution by
playing a min-max game. GAN produced the same joint
probability distribution as its input has [20]. A discriminator
gets input from two different sources i.e., one from real data
and the other from a generator then it performs discrimination
between real and fake samples. The real data is referred to as
positive samples and generator’s generated data is referred to
as negative samples to the discriminator.

In the discriminator training process, a discriminator is
connected to two loss functions. The discriminator network
calculates the loss function at the end of classification. This
loss function is then backpropagated to the generator and
discriminator. The discriminator loss is used in the training
process of the discriminator. A discriminator loss penalizes
the discriminator if a real sample is classified as fake or
vice versa. At the time of training, both the generator and
discriminator trained one after another while at the time
of backpropagation both the generator and discriminator
network worked together. The generator is responsible for
generating the fake samples while the discriminator produced
labels. The loss function of both networks is different and
differs in sign. The discriminator network classifies the data
by using the binary classification and sigmoid function and
produces the output ranges from zero to one.

The generator network is intended to increase the proba-
bility of the discriminator network so that it misclassifies the
fake data. The generator is responsible for generating data
that looks real as the fed samples and cannot be detected
by the discriminator. It simulates by incorporating the peri-
odic feedback from the discriminator. The generator takes
input from the random noise which is a fixed-length random
vector and feedback from the discriminator to generate the
data instances i.e., fake samples. The generator uses noise
to produce a wide variety of meaningful output, i.e., fake
samples. These fake samples are then trained on the discrim-
inator. A separate database is set up to store the real and fake
samples. The backpropagation method helps to generate the
gradient which helps the generator to generate the weights.
This method also calculates the impact of weights on the out-
put and is responsible for the weight’s adjustment. Weights
were adjusted by both networks i.e., generator and feedback
from discriminator.

The discriminator tries to maximize the discriminator net-
workD(x) by approaching the value 1 while generator tries to
minimizeD(x) by approaching 0. The discriminator identifies
the real samples from the training set as real if D(x)=1 else
it identifies the generated samples as fake when D(x)=0. The
generator tries to generate samples that are classified as real
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and produced 1 for the discriminator [13], [52]. Discriminator
tries to maximize, and Generator tries to minimize the follow-
ing function.

V (D,G)=Ex∼Pdata(x) [logD(x)]+Ez∼Pz(z) [log(1 − D(G(z)))]

(2)

In the equation aboveG,D, and x represent Generator, Dis-
criminator, and data respectively. Ex represents the expected
value over all the real samples.D(x) represents the Probability
Estimation that the real sample is real. The expected value
over all random inputs to the generator or expected value over
all the generated fake samples is represented by Ez.G(z) is the
Generator network, Generator output is generated over Noise
(z) input whileD(x) is the Discriminator network, Probability
Estimation that fake sample is fake. D(G(z)) is discriminator
estimation that fake sample is real.

[logD(x)] (3)

[log(1 − D(G(z)))] (4)

[logD(x) + log(1 − D(G(z)))] (5)

Discriminator recognizes the real data and fake data by
using the functions of (3) and (4) respectively. The genera-
tor has no access to logD(x) hence cannot affect it directly
instead it affects the term log(1-D(G(z))) by minimizing it
or maximizing logD(G(z)). Discriminator assigns probability
P(x) = 0 to real samples and P(x) = 1 to fake samples.
Equation (5) combines both (3) and (4) and represents the
working of generator and discriminator. Generator tried to
minimize the function of (4) while discriminator tries to
maximize the function of (5).

By using the complementary nature of GAN, the first
module addedmore pre-encrypted synthetic data to overcome
the problem of data limitation in the early phases of ran-
somware attacks. The potential pre-encryption synthetic data
was generated by ripping off the advantages of using GAN.
After applying TF-IDF on pre-encryption data, it was fed into
the GAN. It generated real-like pre-encrypted patterns to deal
with the data limitation problem of the pre-encryption phase.
This module acts as a supplement to the pre-encryption data.

E. MODULE 2: SIGNIFICANCE OF FEATURES
The problem of significance of features to detect the poly-
morphic and metamorphic ransomware is addressed by this
module. This module is further divided into two parts dis-
cussed hereafter.

1) THE SIGNIFICANCE ESTIMATOR
To make a model adaptive to the behavioral drift of polymor-
phic and metamorphic ransomwares, it should be trained on
changing features. The behavioral drift concept is tied to deal
with significant features for different timeframes. The signifi-
cance of a feature can have a lower value at a given time t1, but
it can be significant at a different timeframe t2 in the future.
The significance of the features keeps on changing for the
evolving variants of ransomware. To deal with the behavioral

drift of different variants of ransomware developing in differ-
ent timeframes (t1, t2, t3, . . . ) we must consider the set of all
significant features at a time (t). A mechanism is required to
determine the significance of the features while considering
all the features at a time. Hence, to estimate the significance
of a feature it should be assigned weight accordingly. The
significance estimator emphasizes the significance of each
feature and helps to reduce the uncertainty. The significance
of each feature x1, x2, x3, x4, etc. with target y1, y2, y3, y4
etc. is calculated according to (6). It is a mutual relationship
of a feature with its target of being ransomware and benign.
It describes the dependency between two random variables
i.e., feature and target.

u = I (X;Y ) = H (X ) − H (X |Y )

=

∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)
p(x)p(y)

(6)

The u is the mutual information of each feature with target.
The terms p(x) and p(y) represent the marginal distributions,
while p(x,y) represents the joint distribution. X and Y will be
independent if they produce a mutual information value of
zero. This relationship is expressed in expression (7).

I (X;Y ) = 0 (7)

The term I (X;Y ) is a non-negative number and represents
the values about relationship of two random variables. The
entropy H(X) is calculated using (8).

H (X ) = −

∑
xi∈X

p(xi) log(p(xi)) (8)

The conditional entropy H(X|Y) is calculated using (9).

H (X |Y ) = −

∑
yj∈Y

p(yj)
∑
xi∈X

p(xi|yj) log(p(xi|yj)) (9)

The general formula for the linear combinations of Shannon
information terms is represented by [53], [54] and expressed
in (10).

J (Xk ) = I (Xk ;Y ) − β
∑
Xj∈S

I (Xj;Xk ) + γ
∑
Xj∈S

I (Xj;Xk |Y )

(10)

This equation is composed of a relevancy term and a
redundancy term, represented by expressions (11) and (12),
respectively. The redundancy term represented in (12), is sum
of marginal redundancy shown in expression (13) and con-
ditional redundancy shown in expression (14), both being
weighed by parameters β and γ with values between 0 and 1.

I (Xk ;Y ) (11)

β
∑
Xj∈S

I (Xj;Xk ) + γ
∑
Xj∈S

I (Xj;Xk |Y ) (12)

β
∑
Xj∈S

I (Xj;Xk ) (13)
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γ
∑
Xj∈S

I (Xj;Xk |Y ) (14)

Themutual information between the candidate feature Xk and
the class label Y is expressed by I (Xk ;Y ), while the condi-
tional mutual information between Xk and other features Xj
in the selected set S given the class label Y is expressed by
I (Xj;Xk ¦Y). The marginal redundancy is expressed by mutual
information between feature of selected set S and feature of
candidate set as I (Xj;Xk ).

2) weightedGAN (wGAN)
In this study, the proposed work consists of two modules
addressing both challenges. The first module discussed ear-
lier calculated the TF-IDF value from the pre-encryption data
available in the form of JSON files. The pre-encryption phase
has a small amount of data as data is extracted in little time
before the encryption happens. To overcome the problem
of data insufficiency, GAN was used. GAN was applied
on TF-IDF of ransomware and benign samples to generate
synthetic data with a similar distribution. A new dataset was
generated consisting of original and synthetic features. How-
ever, dealing with patterns limitation problem does not justify
which feature is more significant for the detection of ran-
somware attacks. The second module addressed the problem
of data insignificance to perform detection of ransomware
attacks. The significance of features was calculated in the
significance estimator unit. Thismodule calculated the signif-
icance of the features that are most useful for the development
of behavioral drift-based ransomware detection technique. It
assigned the weights (w) to the more significant features. The
architecture of the proposedmodel weightedGAN (wGAN) is
described in fig 2.

FIGURE 2. The architecture of weightedGAN technique.

The synthetic features of the pre-encryption data were
generated using the GAN that helped to imitate the poly-
morphic and metamorphic ransomwares for the development
of an adaptive detection model. The first module acts as
a pre-training module to generate data for training. In the
second module, the significance of each feature is estimated
by calculating the weight of each feature by using (15).

wij = Xij.uj (15)

Here wij represents a significant feature containing non-null
values. Features are represented byXij, which gains worth due
to the significance estimator uj. Here i and j belong to the set
of whole numbers 0, 1, 2, 3, . . . and represent an entry in the

weighted set to be fed to the GAN. The weights are used to
estimate the significance of the features. The mathematical
form of weightedGAN is presented in (16).

wV (D,G)

= wEx∼Pdata(x) [logD(x)] + wEz∼Pz(z)[log(1 − D(G(z)))]

(16)

A flowchart of the process of generation of significant fea-
tures imitating polymorphic and metamorphic ransomwares,
displaying behavioral drift by using the proposed weight-
edGAN technique is explained in fig 3.

FIGURE 3. The flowchart of generation of significant features displaying
behavioral drift ransomwares using weightedGAN.

The pre-encryption dataset Datap contains both benign and
ransomware samples. TF-IDF values are calculated for both
types of samples i.e., benign and ransomware. The samples of
both ransomware and benign are fed in the GAN to generate
synthetic features of pre-encryption patterns. A combination
of synthetic and pre-encryption patterns was fed to weight-
edGAN. The weightedGAN generated significant features
carrying patterns that display behavioral drift.

F. EXPERIMENTAL CONSIDERATIONS
The detection of threats and attacks becomes effortless and
time efficient by ripping off the advantages of the latest
technologies, i.e., deep learning, due to their high tendency
of pattern understanding. Therefore, this work also utilized
deep-learning algorithms to perform ransomware classifica-
tion for emerging attacks depicting behavioral drift [55], [56].
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FIGURE 4. The pseudo-code of the proposed technique weightedGAN
(wGAN).

The results are generated and analyzed by using deep
learning models. The deep learning models can learn the
underlying patterns quickly. All the models were trained
on the same considered datasets to compare the resulting
efficiency for the considered models. Deep learning models
included in this work are Convolutional Neural Networks
(CNN), Deep Neural Networks (DNN), Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM), and
Multilayer Perceptron (MLP).

The model’s validity is expressed by the predictions made
by the model it is supposed to predict i.e., representing

the behavior of a model [57]. There are different validation
techniques, i.e., re-substitution, hold-out, bootstrapping etc.
[58]. We used hold-out validation, a widely used validation
technique, to randomly split the dataset into training and
testing subsets. This data division is performed to avoid the
model overfitting issues. If the data splitting is not performed,
the model is evaluated on the same data used in the training
set which ultimately causes model overfitting [59]. In each
experiment, the dataset was divided into training and testing
data in a ratio of 80-20 respectively. The training dataset was
further split up into training and validation datasets in a ratio
of 60-20 respectively during the model fitting process. The
testing dataset was used to measure the performance of the
trained model.

G. EVALUATION PARAMETERS
The detection models are evaluated by considering a set
of metrics. Different machine and deep learning studies in
literature considered a different set of performance indicators
for the model evaluation. In this work, the obtained results are
evaluated by using the performance metrics for classification
problems, including accuracy, precision, recall, and F1-score
[60]. These evaluation metrics are calculated using the TP,
TN, FP, and FN values. Other performance indicators include
FPR and DR. A brief description of each term and their
relationship with each other is shown in Table 2.

IV. EXPERIMENTAL RESULTS
In this work, a ransomware detection technique was intro-
duced that can adapt according to the developing variants
of ransomware. This technique performed detection before
the encryption process starts for the ransomware variants
displaying behavioral drift concept. The technique consists
of two modules each of which addressed a different problem.
The first module addressed the problem of data limitation in
the pre-encryption phase. This problem is solved by using
synthetic data, similar in distribution to pre-encryption data.
The second module addressed the significance problem for
developing polymorphic and metamorphic ransomwares to
deal with the behavioral drift concept.

This section presents the performance of the proposed
behavioral model against the available relevant studies [19],
[42]. The results validation is performed by comparing the
results of the proposed work with related work. The datasets
of related works are generated by implementation of the
study. To check the efficacy of the proposed work, a compar-
ison is drawn using the performance depicted by considered
datasets trained on five deep learning models CNN, DNN,
RNN, MLP, and LSTM. The performance of each model is
different when trained on different datasets. Evaluation met-
rics involved in the comparison included accuracy, precision,
recall, and F1-score. False Positive Rate (FPR) and Detection
Rate (DR) are also used to elaborate on the potency of the
proposed work. To comprehend the proposed work, result
analysis and discussion are also presented in the next section.
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TABLE 2. Evaluation parameters. TABLE 2. Evaluation parameters.

Here the data from the proposed work is referred to as
dataset proposed (DSPr) contains 2125 records, Sharmeen
[42] is referred to as dataset 1 (DS1) contains 1063 records,
and Al-rimy [19] is referred to as dataset 2 (DS2) contains
1063 records. The dataset DSPr has almost doubled in records
as it is a combination of the original pre-encryption data and
synthetic data of the pre-encryption values to compensate the
problem of data limitation in pre-encryption phase.

The performance of the detection model is presented by
using performance graphs drawn against evaluation metrics.
A performance graph visualizes the performance of a model
against different considered aspects. The performance of
each model represents its suitability for the proposed work.
The comparison of the proposed work and related datasets
is visualized in figures 5, 6, 7, and 8 reflecting accuracy,
precision, recall, and F1-score metrics respectively. In all the
performance graphs, the measurement metrics value for the
proposed work and related works is plotted on the y-axis
while adopted deep learning models were represented on the
x-axis.

Accuracy represents the correctly identified samples. It is
a ratio of correct predictions over total predictions. Accuracy
is calculated according to (19). The bigger the numerator
produced the higher accuracy. It is usually calculated in
points that range between 0 to 1 and it is presented in
the percentage. However, relying only on accuracy is not
good practice. That’s why other measures are also used to
explain the effectiveness of the proposed work. The proposed
work outperformed the classification performance in terms of
accuracy. The accuracy of the proposed work stands highest
against considered related studies for all the deep learning
models. The highest accuracy of the proposed work was
0.9765 achieved by the RNN model and the lowest accuracy
of 0.9247 was achieved by the CNN model.

Precision is the positive predictive value and represents the
correctly predicted samples. It is a ratio of True Positive with
all the positive predictions; hence, visualize the reliability.
It is a measure of quality i.e., predictions made. Precision
is calculated according to (20). The precision results for
the deep learning models range between 0 to 1. The higher
precision value represents the more relevant results hence,
good performance of the model. Precision value is affected
by FP value i.e., lower or zero, FP value will generate higher
precision results. The precision values of the proposed work
are highest only for the LSTM model. The precision value
of the proposed technique varies among different trained
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FIGURE 5. Classification Accuracy of the proposed technique with
available state-of-art techniques.

DL models. On average, the precision of DSPr outperformed
the other two comparison studies. The precision results
stand highest at 0.9891 for the LSTM model and lowest at
0.8615 for the CNN model.

FIGURE 6. Classification Precision of the proposed technique with
available state-of-art techniques.

The recall represents specific samples hence also called
Sensitivity or True Positive Rate. It represents the number
of times a specific sample is detected. It is a measure of
quantity i.e., detection made. The recall is calculated accord-
ing to (21). The recall results of the deep learning models
range between 0 to 1. A higher recall value represents a
higher detection value of the model. The proposed work out-
performed the classification performance in terms of recall.
Recall of the proposed work is highest against considered
studies for the model CNN, DNN, and MLP by achieving
the value of 1. In the case of RNN and LSTM models the
proposed work still performed better than the considered
work.

The F1-score represents the unbiasedness in the detection
results of a model. F1-score considers both measures i.e., pre-
cision and recall which describe relevance. F1-score is 1 only
when both precision and recall are 1. F1-score is calculated
according to (22). F1-score represents the weighted average.
It is a harmonic mean of precision and recall and a better

FIGURE 7. Classification Recall of the proposed technique with available
state-of-art techniques.

measure than accuracy. The F1-score results for the deep
learning models range between 0 and 1. High precision and
recall produce a high value of F1-score and represent good
results. The proposed work outperformed classification per-
formance in terms of the F1-score. F1-score ranges between
the lowest value of 0.9256 for CNN and the highest value of
0.975 for the RNN model.

FIGURE 8. Classification F1-score of the proposed technique with
available state-of-art techniques.

The summary of achieved results of the proposed work
with different deep learningmodels andmeasurement metrics
is summarized in Table 3.

TABLE 3. Comparison results of the proposed work with different deep
learning models.

In addition to the considered metrics, a comparison of
the False Positive Rate and Detection rate for the proposed
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work is also used to represent the efficacy of the proposed
technique. A False Positive Rate (FPR) also known as Fall-
Out is the measurement of accuracy and calculated with (17).
False Positive Rate is defined as a ratio of false positive with
a sum of false positive and true negative. A ratio of benign
samples predicted as ransomware with the total number of
ground truth negatives. In Table 4, the FPR of each model
trained on different datasets is given. The proposed work
depicted the lowest FPR for LSTMwith a value of 0.0088 and
the highest FPR for CNN with a value of 0.1415. Hence,
displayed better classification performance for LSTM and
the lowest performance for CNN. The proposed work also
displayed the lowest False Positive Rate against comparison
studies. FPR of the proposed work along with considered
work is also drawn in fig 9.

FIGURE 9. False positive Rate (FPR) of the proposed technique with
available state-of-art techniques.

A detection rate is a ratio between the correctly detected
ransomware samples and the sum of total ransomware and
benign samples [65]. It is calculated according to (18). In
Table 5, a comparison of the related studies and the proposed
work is presented based on the detection rate. The detection
rate of the proposed technique is highest for all the DLmodels
as compared to related techniques. The highest detection rate
of 0.9765 was accomplished for RNN and the lowest value
of 0.9247 was for the CNN model. A pictorial representa-
tion of the Detection rate is presented in fig 10. It shows that
the proposed technique presented the highest detection rate
against all the considered comparison studies.

Table 6 and 7 show the significance results of the p-test and
t-test for the proposed technique against considered studies of
datasets DS1 and DS2 by using previously mentioned perfor-
mancemeasures include accuracy, precision, recall, F1-score,
False Positive Rate, and Detection rate. The tables show that
the proposed technique is significant against both comparison
work.

V. DISCUSSION
Ransomware detection solutions in the literature assume that
sufficient data is available during pre-encryption phase and
field of ransomware is stationary and does not evolve over

FIGURE 10. Detection Rate (DR) of the proposed technique with available
state-of-art techniques.

time. In this work we performed early detection for devel-
oping variants of ransomware attacks in the presence of
behavioral drift concept. The proposed technique presented
an adaptive solution to deal with developing polymorphic
and metamorphic crypto-ransomware attacks while consider-
ing the behavioral drift concept in different timespans. This
work also coped with data limitations problem during pre-
encryption phase.

The proposed work has the highest performance metrics as
the problem of data limitation is properly addressed and the
significance of features is adequately estimated. Discovered
ransomware variants act like historical data i.e., data on hand
for model training. However, a model performance could
be degraded if it is only trained on historical data which
might not generalize the drift in the behavior of developing
variants over different timeline. Existing solutions performed
detection by looking into historical data, whichmight not help
to develop the behavioral drift detection model. To develop
an adaptive detection model, we tried to predict the signifi-
cance of potential attacks that can be developed in the future.
Future behavior will be displayed by discovering the potential
patterns of future variants. A model should be trained on
historical and potential patterns to deal with emerging attacks.
The problem of behavior changing was addressed by training
the model with the potential patterns of existing and future
ransomwares. In addition to addressing the behavioral drift
problem, the problem of data limitation during pre-encryption
phase is also solved.

According to figures 5 and 6 representing accuracy and
precision respectively, the wGAN technique correctly iden-
tified and detected the ransomware samples. The original
samples and generated synthetic data represented the true
nature of ransomware attacks. The significance of features for
discovered and developing variants is appropriately estimated
which helped to achieve the highest performance metrics.
For the proposed technique, the highest accuracy represents
reliance, the highest precision represents reliability, and the
highest recall represents the quantity of correctly predicted
ransomwares. The correctly predicted ransomware samples
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TABLE 4. Comparison of FPR of the proposed work with other state-of-the-art approaches.

TABLE 5. Comparison of Detection rate (DR) of the proposed work with other state-of-the-art approaches.

TABLE 6. Significance test (t-test) of the proposed work with considered
state-of-art study (DS1).

TABLE 7. Significance test (t-test) of the proposed work with considered
state-of-art study (DS2).

produced the highest value of F1-score. The proposed tech-
nique displayed the highest detection rate and lowest FPR
as the model is already trained on the developing variants of
ransomware. Recall, f1-score, DR, and FPR are represented
in figures 7, 8, 9, and 10 respectively. This pre-training on
potential features not only increased the detection rate, but it
also increased the response time which ultimately safeguards
the timely detection before occurrence of ransomware attack.
Each feature is considered to deal with the complementary
nature of all instances to make this work more reliable. The
early training on all the features of developing variants will
minimize the occurrence of ransomware attacks variants and

make it suitable to be a part of malicious software detection.
The pre-encryption and early training of the model will make
it suitable for ransomware detection in the real world with
maximum efficiency. The proposed work outperformed for
all the considered performance metrics. These better results
are also supported by performing significance test. Table 6
and 7 presented the significance of the obtained results after
the application of the proposed work. It shows for both
comparison studies, the p-value is less than 0.05 for all the
cases. This implied that the performance of the proposed
work is statistically significant. The results also emphasize
that wGAN generated cryptographic APIs i.e., significant
features are relevant and substantially weighted to determine
the ransomware attacks. The generated polymorphic and
metamorphic ransomwares reflected the same behavior as
ransomwares do.

The proposed work can detect the ransomware’s new vari-
ants by analyzing data from the detected and developing
ransomwares due to polymorphism and metamorphism of
ransomware signatures. The most of existing solution might
lack in performance as they only learn from discovered
ransomware attacks. By assessing the developing variant of
ransomware, the proposed detection architecture presented
time efficient and robust solution to behavioral drifting. If
behavioral drifting is not considered properly, a system will
misclassify future ransomware variants as benign program.
The prediction model will result in sudden spikes of false
negative, whenever a new variant emerges. The proposed
technique is time efficient and detect ransomware in real-time
with less time complexity as the future variants are already
predicted and the model is trained before the attacks occur.
Results after wGAN implementation emphasized that the
generated data from the features of synthetic data are closely
related to the original pre-encryption data. The improvement
observed after applying the proposed work is summarized in
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table 3. This reflects that the wGAN technique was able to
better represent the detection of the behavioral drift concept.
The comparison results indicated that theweightedGAN tech-
nique can detect the crypto-ransomware before the encryption
process starts and the adaptive model can detect the new vari-
ants of ransomware that incorporate the behavioral drift over
time. The availability of pre-encryption behavioral informa-
tion before the attacks occur makes this technique adaptive.
Our approach presented lowest false alarms as compared
to previously published methods for developing variants
depicting future behavior. The higher results of performance
metrics represent the suitability of the proposed technique for
the development of an adaptive model.

VI. CONCLUSION
Ransomware attacks, fueled by the evolution of cyber threats,
pose a significant issue due to their irreversible encryption
mechanisms. This paper introduced an innovative approach
to these evolving challenges, proposing a weighted Genera-
tive Adversarial Network (wGAN) to augment data during
the pre-encryption phase of an attack and re-evaluate the
significance of features as per the changing behavior of
new ransomware variants. The wGAN technique demon-
strated robust performance against the behavioral drift of
ransomware attacks, effectively predicting new variants by
generating synthetic data mimicking existing and potential
ransomware patterns. Extensive experimentation revealed the
superior accuracy, precision, and detection rate of the wGAN,
along with a low false positive rate. The results were statis-
tically significant, underscoring the wGAN’s potential as an
adaptive, reliable, and efficient model for the early detection
of ransomware attacks and indicating a promising direction
for future research in the field.
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