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Abstract
The Fifth Generation (5G) and Beyond 5G (B5G) wireless networks are emerging
with a variety of new capabilities, focusing on Massive Machine-Type Communica-
tions (mMTC), enabling new use cases and services. With this massive increment of
mMTC along with increasing users, higher network capacity is a must for 5G and
B5G. The integration of mMTC with traditional user traffic creates a heterogeneous
network landscape. To address this challenge, future network designs must prior-
itize optimizing spectrum efficiency while meeting diverse service demands. Non-
Orthogonal Multiple Access (NOMA) stands out as a promising technology for en-
hancing both system capacity and operational efficiency in such heterogeneous net-
works. Due to its non-orthogonal resource allocation, NOMA outperforms Orthog-
onal Multiple Access (OMA) in spectral efficiency, throughput, and user capacity,
while also offering superior scalability and adaptability to network heterogeneity.
Despite its promising advantages, large-scale implementation of NOMA in cellular
systems remains elusive due to various challenges, making it a focal point of current
research in cellular network technology.

While there has been considerable progress in implementing NOMA for broad-
cast and multicast services, notably with Layer Division Multiplexing (LDM) in
next-generation digital TV, the challenges of unicast downlink transmission in NOMA
remain largely unexplored. Unicast transmission requires a highly tailored network
configuration adaptable to individual user requirements and dynamic channel con-
ditions. Clustering users under a single NOMA channel must be both efficient and
adaptive to ensure successful transmission, especially for mobile receiver. Besides,
the interplay between NOMA and other 5G technologies remains insufficiently ex-
plored, in part due to the lack of an established NOMA-5G framework. Specifically,
the collective impact of 5G physical layer technologies such as Low-Density Par-
ity Check (LDPC) coding, Multiple-Input Multiple-Output (MIMO) Beamforming,
and mmWave transmission on NOMA’s performance has not been comprehensively
studied. Furthermore, in NOMA schemes involving more than two multiplexed
users, known as Multilayer NOMA (N-NOMA), the system becomes increasingly
complex and susceptible to noise. While N-NOMA holds considerable promise for
scalability, its performance metrics are not yet fully characterized, due to challenges
ranging from resource allocation complexities to transceiver design issues. Addi-
tionally, existing analytical models for performance evaluation are developed for
orthogonal systems, are not fully applicable for assessing NOMA performance. De-
veloping new models that incorporate the impact of non-orthogonality could pro-
vide more accurate performance assessments and offer valuable insights for future
NOMA research.

Initially this thesis investigates the feasibility of LDM for unicast & multicast
downlink transmission scenarios for Internet of Things (IoT)- user pairs. The find-
ings indicate the Core Layer (CL) performance aligns with IoT requirements while
Enhance Layer (EL) layer is suitable for users. A specialized Bit Error Rate (BER)
expression is formulated to precisely predict CL performance, considering Lower
Layer (LL) interference with predefined power ratio. Subsequently, the thesis em-
ploys a novel surface mobility model and adaptive power ratio allocation to evaluate
LDM pair sustainability under various receiver mobility conditions.
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Extending the LDM-Orthogonal Frequency Division Multiplexing (OFDM) model,
this thesis presents a Third Generation Partnership Project (3GPP)-compliant 5G
transceiver incorporating N-NOMA. This design incorporates a strategically-arranged
set of NOMA functionalities and undergoes a rigorous performance evaluation. In
particular, the transceiver provides a comprehensive assessment of N-NOMA per-
formance, considering various transmission parameters such as LDPC code rate,
MIMO order, modulation schemes, and channel specifications. These considerations
not only provide new insights into non-orthogonal access technologies but also high-
light dependencies on these factors for network configuration and optimization. To
further advance this work, a one-shot N-NOMA multiplexing technique is devel-
oped and implemented, simplifying multi-layer standard sequential combiners to
reduce transmission latency and transceiver complexity. A more accurate analytical
BER expression is also formulated that considers the impact of both residual and
non-residual Successive Interference Cancellation (SIC) errors across NOMA layers.

To build upon these advancements, an adaptive Power Allocation (PA) technique
is introduced to optimize NOMA cluster sustainability and throughput. Employing
a greedy algorithmic approach, this method uses real-time transmission feedback to
dynamically allocate power across NOMA layers. In addition, a new Three Dimen-
sional (3D) mobility model has been developed, consistent with existing 3GPP stan-
dards, capturing vehicular and pedestrian movement across urban and rural macro
& micro-cell environments. When integrated with the PA technique, this model al-
lows for real-time adjustments in the NOMA power ratio, effectively adapting to
fluctuating receiver channel conditions.

Collectively, the findings from this research not only indicate significant physical
layer performance improvements but also provide new insights into the potential of
non-orthogonal access technologies. In the LDM-OFDM setup presented in Chap-
ter 3, the EL layer needs 15 dB more Signal-to-Noise Ratio (SNR) than the CL to
achieve the same BER, but allows for higher data rates. When it comes to mobil-
ity, IoT movement accounts for about 70% of link terminations in scenarios with
similar mobility patterns. The N-NOMA-5G shows significant improvement in low
SNR performance compared to existing literature. The 3 layer simulations shows
on average a 60% reduction in the SNR requirements to achieve similar BER. The
implementation of a one-shot multiplexer has demonstrated a substantial reduction
in N-NOMA multiplexing time, particularly with the growing number of NOMA
layers, as detailed in Chapter 4. Notably, the simulation outcomes spanning 2 to 10
layers of NOMA multiplexing indicate an remarkable 52% reduction in processing
time. This underscores the effectiveness of the one-shot multiplexer in enhancing
efficiency, particularly as the complexity of the NOMA setup intensifies. The devel-
oped analytical model also shows over 95% similarities with the simulation results.
The impact of dynamic PA for both static and mobile receivers demonstrates on av-
erage, over 40% improvements in link sustainability time for mobile users and for
static users, it achieves optimal PA and fast convergence within just 12 iterations, as
detailed in Chapter 5.

Keywords: NOMA, 5G, B5G, BER, SIC, LDM, PA, Link Sustainability, User Mobility.
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Chapter 1

Introduction

1.1 Background & Motivation

Mobile communication technologies have seen remarkable advancements over the

years. Starting with the foundational voice services of First Generation (1G), ad-

vancing to the text and low-speed data offerings of Second Generation (2G), the

multimedia services of Third Generation (3G), and culminating in the high-speed

data transmissions of Fourth Generation (4G), each iteration marked a pivotal leap

in technological evolution. With Fifth Generation (5G) now widely deployed, it of-

fers enhanced functionalities specifically designed for Internet of Things (IoT), aug-

mented reality, virtual reality, and an array of cloud-driven applications [1–3]. The

constraints of the 4G architecture have been surmounted, ushering in an era of ad-

vanced applications and services [4]. Parallelly, Multiple Access (MA) technologies

have matured alongside these generations, acting as a foundational element in the

evolution of cellular networks. Each generation distinctly adopts a specific MA tech-

nology, as depicted in figure 1.1.

The 5G technology in use today faces challenges in accommodating the diverse

needs of emerging services, especially given their varied requirements and the swift

addition of new users. In 2022, there was a 39% year-on-year surge in mobile net-

work traffic, culminating in a staggering 100 EB/month [5]. The swift rise of the

IoT, which includes smart cities, homes, and advanced transportation systems, com-

bined with the spread of smart devices, suggests an imminent connectivity demand

that might soon overwhelm current networks [6,7]. Projections for 2023 estimate the

global mobile devices count at 13.1 billion, with internet-enabled devices expected
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to jump from 18.4 billion in 2018 to a projected 29.3 billion [8]. This rapid growth, fu-

elled by a world still progressing towards total connectivity, hints that both 4G and

5G networks might soon be strained beyond their intended capacities. Such a situa-

tion highlights the urgent need for novel solutions to address 5G challenges and set

the stage for upcoming Sixth Generation (6G) networks [9].

The advent of 5G marks a significant leap in mobile communications. How-

ever, the full scope of its capabilities, especially concerning MA techniques, is yet

to be completely realized. This is where the role of NOMA becomes crucial. The

conventional OMA methods, which were pivotal for previous generations, are now

showing their constraints, particularly when managing a large array of devices that

demand high-speed, concurrent connections [10].

At its core, NOMA is designed to permit multiple users to utilize the same radio

resources. Such a strategy offers benefits like improved spectral efficiency, mini-

mized transmission delays and queuing, and expanded connectivity [11, 12]. De-

spite the well-established theoretical foundations of NOMA, its practical integration

within the 5G and Beyond 5G (B5G) physical layer presents intricate challenges that

are a subject of ongoing research [10, 13].

The evolution from 5G to B5G and, eventually, 6G is not merely about achieving

faster speeds or accommodating more devices. It is about architecting a network that

is intelligent, adaptive, and discerning in prioritizing diverse communication needs.

For instance, it is crucial that a remote surgery procedure gets network priority over

routine video streaming. Similarly, ensuring seamless communication for critical

IoT devices in densely populated urban areas is paramount.

In this evolving landscape, delving deep into the capabilities of NOMA within

the 5G physical layer is not just an academic pursuit but a critical necessity. As global

initiatives, such as the “6G Flagship” in Finland and Terahertz (THz) communica-

tion studies in the USA, gain momentum [9], the research and advancements in 5G

and NOMA will undoubtedly influence the future of mobile communications. The

goal is to ensure that upcoming networks are not only faster but also smarter, more

efficient, and truly prepared for the demands of an increasingly connected world.

In conclusion, the exploration of NOMA’s performance within the 5G physical

layer presents a multitude of challenges. However, addressing these challenges
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head-on will pave the way for groundbreaking innovations in cellular communi-

cations, setting the stage for a future where connectivity is seamless, efficient, and

universal.

1.2 Problem Statement

The advancement of wireless communication has positioned NOMA as a pivotal

component in shaping future wireless infrastructures. Its potential was evident

when NOMA, using Successive Interference Cancellation (SIC) for interference can-

cellation, was introduced as the future cellular radio access technology in [13]. Mul-

tiple research efforts have underlined the superiority of NOMA over OMA in terms

of spectral efficiency, throughput, and user capacity [14–17]. This prominence was

further validated when Layer Division Multiplexing (LDM), a subtype of NOMA,

was integrated into the Advanced Television Systems Committee (ATSC) 3.0 broad-

casting standard [18], setting high anticipations for its role in the evolution of 5G.

Yet, challenges arise when attempting to integrate NOMA seamlessly into the

New Radio (NR) architecture, particularly in the domain of downlink unicast trans-

mission [14–17]. Although recent studies have extensively examined the advantages

of NOMA in broadcast transmission, unicast downlink NOMA remains compara-

tively unexplored [19,20]. Due to the receiver-specific nature of unicast transmission,

two distinct challenges arise. First, unicast NOMA demands precise user grouping

to cater to diverse Quality of Service (QoS) requirements. Second, the influence of re-

ceiver mobility on NOMA performance remains unclear. In light of these challenges,

effective power distribution between NOMA layers becomes essential for depend-

able transmission. This necessitates Power Allocation (PA) methods adaptable to the

fluctuating conditions of mobile receivers.

5G introduced advanced technologies like Multiple-Input Multiple-Output (MIMO)

beamforming, mmWave transmission, Polar and Low-Density Parity Check (LDPC)

channel coding. Yet, the integration of NOMA with these technologies remains an

area yet to be thoroughly examined [12, 15]. These innovations hold the promise

to elevate NOMA performance, potentially streamlining its adoption in both uplink

and downlink transmissions, paving the way for its inclusion in forthcoming 5G and
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B5G standards. Such technologies could boost NOMA performance, paving its way

into 5G and B5G standards, especially in low-Signal-to-Noise Ratio (SNR) regions

favouring Multilayer NOMA (N-NOMA). While NOMA’s true capabilities may be

realized in N-NOMA, current studies often limit their scope to theoretical consid-

erations due to the intricate signal processing complexities and sensitivity to noise

in both transmitters and receivers. This gap in practical research on NOMA and N-

NOMA explains the absence of an official NR framework integrating NOMA. Even

though the recent Third Generation Partnership Project (3GPP) release 16 released

a study on 2-layer Upper Layer (UL) NOMA [21], an established framework for 5G

downlink transmission still remains elusive. This underscores the pressing need to

develop a comprehensive 5G physical layer transceiver that efficiently incorporates

NOMA.

1.3 Research Question

Given the rapid advancements in mobile communication technologies, particularly

the evolution from 1G to 5G, and the pivotal role of NOMA in shaping the future of

wireless infrastructures, there arises a pressing need to understand its full potential

and challenges within the 5G framework. The integration of NOMA with emerging

5G technologies, such as MIMO beamforming, mmWave transmission, Polar, and

LDPC channel coding, presents a myriad of opportunities and complexities. Fur-

thermore, the influence of receiver mobility on NOMA performance, especially in

the context of downlink unicast transmission, remains a significant area of concern.

Against this backdrop, the central research question that this study aims to ad-

dress is:

How can NOMA be effectively incorporated into the 5G physical layer downlink transceiver

architecture? What are the potential advantages, including improved spectral efficiency and

throughput, and the challenges, such as SNR-data rate trade-offs and increased multiplexing

complexity, associated with its adoption in wireless communication systems?

This research question will guide the exploration of:
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• The practical integration challenges of NOMA within the 5G and B5G physical

layer.

• The symbiotic potential of combining NOMA with advanced 5G technologies.

• The impact of receiver mobility on NOMA performance and the development

of adaptive PA methods tailored for dynamic channel conditions.

• The theoretical and practical considerations of N-NOMA extending the scope

and potential of NOMA beyond the current 2 layer approach.

By addressing this research question, the study aims to bridge the existing gaps

in the literature, provide insights into the practical challenges and solutions associ-

ated with NOMA, and set the foundation for its efficient integration in future wire-

less communication systems.

1.4 Aim & Objectives

Aim

To investigate and optimize NOMA technologies for enhancing spectrum efficiency

and operational performance in 5G and B5G networks, particularly in the context of

downlink unicast transmission.

Objectives

1. Investigate LDM-Orthogonal Frequency Division Multiplexing (OFDM) Frame-

work: To thoroughly investigate the LDM-OFDM framework for unicast and

multicast downlink transmission scenarios, with a focus on SNR and Bit Error

Rate (BER) performance across different layers.

2. Develop & Evaluate N-NOMA-5G Transceiver: To design a 3GPP-compliant

5G transceiver that incorporates all necessary NOMA functionalities. The ob-

jective also includes rigorously assessing its performance metrics under var-

ious conditions such as LDPC code rate, MIMO order, modulation schemes,

and channel specifications, and optimizing the transceiver model to reduce

multilayer challenges and complexity.
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3. Formulate Analytical Models: To develop accurate analytical models for BER,

taking into consideration the additional interference that results from non-

orthogonal resource sharing.

4. Assess Mobility Impact for Unicast Transmission: To evaluate the impact of

receiver mobility on link sustainability and link termination. This involves de-

veloping specialized mobility models that simulate urban and rural scenarios

for motorized and pedestrian movement.

5. Optimize PA: To introduce an adaptive PA technique to dynamically allo-

cate power across NOMA layers, thereby enhancing cluster sustainability and

throughput. This technique will be optimized for both dynamic and static

channel conditions.

1.5 Research Methodology

The research methodology adopted for this study is a structured and iterative ap-

proach, designed to ensure a comprehensive exploration of the research problem

and its potential solutions. The methodology is described into distinct phases, each

building upon the previous, to ensure a systematic progression towards the research

aim. The phases of the methodology are visually represented in Figure 1.2.

1.5.1 Initial Literature Review

The research commences with an exhaustive review of existing literature in the do-

main NOMA, LDM and 5G physical layer. This phase aims to understand the cur-

rent state of knowledge, identify seminal works, and discern gaps in the existing

body of literature.

1.5.2 Define Initial Research Problem

Post the literature review, the primary research problem is articulated. This problem

statement is rooted in the identified knowledge gaps and serves as the foundation

for subsequent phases.



Chapter 1. Introduction 9

Initial Literature Review

Define Initial Research Problem

Model & Test

Feedback Loop & Refinement

Iterative Development

Parallel Research Streams

Continuous Literature Review

Document Findings Regularly

Final Consolidation

FIGURE 1.2: Research methodology

1.5.3 Model & Test

Upon defining the research problem, a model representing the problem is formu-

lated. This model is then subjected to rigorous testing to validate its accuracy and

reliability. Both analytical methods and comprehensive simulations are employed

for validation.
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1.5.4 Feedback Loop & Refinement

The results from the testing phase are critically analysed, leading to feedback that

informs refinements in the model. This iterative feedback mechanism ensures that

the model evolves to be a robust representation of the research problem.

1.5.5 Iterative Development

Building upon the feedback loop, the research adopts an iterative development ap-

proach. This ensures continuous improvement and adaptation of the model in re-

sponse to new findings and insights.

1.5.6 Parallel Research Streams

As the research progresses, parallel streams of inquiry may emerge, necessitating si-

multaneous exploration. These streams, while distinct, are interconnected and con-

tribute to the holistic understanding of the research problem.

1.5.7 Continuous Literature Review

To ensure the research remains aligned with contemporary developments in the

field, a continuous literature review is conducted. This ongoing review ensures that

the research is informed by the latest findings and theories in the domain.

1.5.8 Document Findings Regularly

Throughout the research process, findings are meticulously documented. This not

only aids in maintaining clarity and direction but also facilitates the dissemination

of knowledge through academic publications.

1.5.9 Final Consolidation

The culmination of the research process is the final consolidation phase. Here, all

findings, models, and insights are synthesized to present a comprehensive solution

to the initial research problem. This phase also sets the stage for future research

directions.
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In conclusion, the adopted research methodology is a dynamic and iterative pro-

cess, ensuring a thorough exploration of the research problem and the development

of robust solutions.

1.6 Contributions to Knowledge

Throughout the course of this doctoral research, a series of pivotal advancements

have been made in the realm of wireless communication, particularly concerning the

integration of NOMA technologies. This section methodically outline the principal

contributions of this thesis.

Integration of LDM in Unicast/Multicast Transmission Framework

• Advancement of a unified framework for downlink unicast/multicast trans-

missions, aiming to cater to both human users and IoT devices across urban

and rural landscapes, thereby enhancing spectral efficiency and strengthening

coverage range.

• An analytical framework to evaluate Core Layer (CL) BER within an uncoded

OFDM transceiver framework.

• Introduction of a detailed mobility model employing a Local Coordinate Sys-

tem (LCS), which sketches out the trajectories of mobile users in varied ter-

rains—rural, urban, and highways—by leveraging random waypoint, Man-

hattan, and freeway mobility models. This model is adept at assessing path

loss and predicting change in channel conditions as users transition from their

original locations.

• Assessment of sustainable link duration for mobile LDM pairs, which lays the

foundation for optimized user pairing based on spatial positioning and mobil-

ity patterns.
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N-NOMA-5G Transceiver Design

• A novel NOMA-aided 5G NR-compliant transceiver design is developed, in-

corporating NOMA and MIMO functionalities into the NR physical layer, fa-

cilitating heterogeneous transmission by overlapping multiple NOMA layers

within a single communication channel.

• An enhancement to the N-NOMA multiplexer design is introduced, utilizing

a one-shot method that reduces both the complexity and latency relative to

conventional sequential combiners.

• A closed-form BER expression is formulated, accommodating both residual

and non-residual errors from SIC. This also incorporates the gains from MIMO,

offering a novel analytical tool for N-NOMA system assessment.

• Extensive evaluations of BER across varying modulation orders, channel cod-

ing rates, MIMO orders, and NOMA layers within diverse Clustered Delay

Line (CDL) and Tapped Delay Line (TDL) channels. These evaluations empir-

ically substantiated the practicality and efficacy of the suggested transceiver

design and analytical framework.

Adaptive PA for Downlink N-NOMA

• An adaptive PA algorithm is developed specifically designed for downlink

N-NOMA transmission. This algorithm adopts a greedy strategy, leveraging

transmission feedback for dynamic power distribution among NOMA layers.

• A comprehensive analytical model to depict Three Dimensional (3D) user move-

ment is also developed. Using the 3GPP-endorsed path loss model, it inte-

grates probabilistic selections of Line of Sight (LoS) and Non-Line of Sight

(NLoS) transmissions to compute the SNR for each user that mimic real world

implementation. This SNR then interfaces with the proposed 5G transceiver

model, providing insights into the mobile user performance in the suggested

transmission framework, both with and without the adaptive PA.



Chapter 1. Introduction 13

Research Contribution

LDM aided
unicast/multicast

transmission

Downlink N-
NOMA NR
Transceiver

framework with
a novel One-

shot Multiplexer

Extensive analyti-
cal expression for

N-NOMA BER

Dynamic PA
algorithm

3D and surface
Mobility Model

for Rural and
Urban areas

Evaluate and
enhance sustain-

able link time
of N-NOMA
user cluster

FIGURE 1.3: Research contribution

• Validated the efficacy of the proposed model via simulations, showcasing sig-

nificant improvements in link sustainability for mobile users and efficient power

optimization for static users within a few iterations.

1.7 Organisation of Thesis

The structure of this thesis is meticulously crafted to ensure an incremental under-

standing of the research theme.

Chapter 2: 5G Physical layer & NOMA: State-of-the-Art is an exploration into

existing knowledge. The chapter delves into the concept of NOMA, discusses its

various types, and describes the adaptation of LDM in the ATSC 3.0. It provides a

window into the challenges inherent to NOMA and outlines the advancements in

5G physical layer technologies. The chapter wraps up by identifying gaps in the

current literature and elaborating on the distinctive contributions.

Chapter 3: Convergence of Machine to Machine (M2M) & Mobile Communi-

cation Using LDM for Unicast/Multicast Transmission delves into the potential ap-

plications of LDM in both rural and urban future scenarios. It examines the integra-

tion of LDM with the uncoded OFDM framework, providing an in-depth analysis

of the CL BER formulations. Further, the chapter addresses the specific challenges
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associated with maintaining LDM pair sustainability for unicast service delivery.

Comprehensive PA algorithms utilising surface mobility model for mobile receiver

have been developed to extend sustainable link time, enhancing the suitability of

LDM for downlink cellular networks. The insights and findings from this chapter

have been published in [C01, B01].

Chapter 4: Design & Evaluation of N-NOMA on NR Physical Layer for 5G &

Beyond offers insights into the layered structure of the NOMA 5G transceiver model

and elaborates on the nuances of the N-NOMA 5G model. The chapter introduces

the one-shot multiplexing technique tailored for N-NOMA and presents a compre-

hensive BER model that accounts for interference from both UL and Lower Layer

(LL). The insights from this chapter have culminated in the publication [J01]."

Chapter 5: Adaptive PA to Enhance N-NOMA Link Time concentrates on the

optimization of PA for N-NOMA layers, with an emphasis on augmenting the clus-

ter link duration. Multiple algorithms are introduced with the intent to optimize

the N-NOMA PA for maximizing throughput in static receivers and sustaining link

duration for mobile receivers. User mobility is depicted using a 3D model adher-

ing to the 3GPP path loss models. The findings and insights from this chapter have

culminated in the publication [C02].

Concluding the thesis, Chapter 6: Conclusion and Future Works offers a concise

recap of the findings and insights from previous sections. It underscores how the

study meets its intended research objectives and provides suggestions for potential

future research in this area.
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Chapter 2

5G Physical layer & NOMA:

State-of-the-Art

2.1 Introduction

The rapid and continuous progression of wireless communication technologies can

be attributed to several factors. Primarily, there is an unyielding demand for ele-

vated data rates [22, 23]. Additionally, we are witnessing an exponential surge in

the number of new users and services. These users and services come with a diverse

range of QoS expectations [23–25]. As we transition into the 5G era and look beyond,

the exploration of innovative MA techniques becomes paramount to meet these de-

mands [12, 26]. Among the myriad of techniques, NOMA emerges as a frontrunner,

capturing significant attention due to its potential to increase system capacity and

spectral efficiency [27].

The efficacy of NOMA is rooted in its capacity to facilitate multiple users in con-

currently utilizing identical resources, such as time, frequency, and code. This con-

current utilization is realized by superimposing multiple signals within either the

power or code domain [28, 29]. A significant advancement for NOMA was its in-

corporation as LDM in the ATSC 3.0 standard, a protocol designed for downlink

TV broadcasting [18, 30–32]. This successful deployment of LDM has ignited global

scholarly interest, prompting investigations into the diverse applications of NOMA

in emerging wireless communication frameworks [10, 33]. The pioneering large-

scale application of a NOMA technique in a practical setting forms the foundational

inspiration for this thesis.
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The ongoing evolution of the 5G wireless network highlights a broad array of ap-

plications and forward-thinking business approaches. As we build upon the foun-

dations set by 4G Long Term Evolution (LTE) systems, there is a push for a network

with enhanced capabilities. This advancement is pivotal for next-level multimedia

services, such as Ultra-High-Definition (UHD) video, 3D visuals, augmented reality,

and immersive virtual reality experiences [34, 35]. To navigate the future challenges

of 5G and its successors, strategies include expanding to frequency bands above

6GHz, increasing the density of small cells, and integrating the newest technolo-

gies [36, 37].

NOMA is expected to play a crucial role in future 5G releases, targeting enhanced

spectrum efficiency [10, 35, 38]. The deployment of both Point-to-Point (P2P) and

Point-to-Multi Point (P2MP) transmission types is vital for delivering diverse ser-

vices under the 5G framework [39]. With NOMA leading the way, these services can

be provided more efficiently, resulting in increased network capacity. While the tra-

ditional OMA scheme has its merits, its limitations are evident [10, 40, 41]. NOMA,

with its controllable interference and non-orthogonal resource allocation, offers nu-

merous advantages over OMA [42–46].

In the following sections, a deep dive into the nuances of NOMA will be under-

taken. This exploration will encompass its diverse aspects, with a special emphasis

on LDM. Furthermore, light will be shed on the latest downlink 5G transceiver de-

sign and all the relevant technologies. This chapter is designed to lay a robust foun-

dation, facilitating a holistic understanding of the current state-of-the-art in both

NOMA and 5G domains.

2.2 Non-Orthogonal Multiple Access

NOMA represents a paradigm shift in the domain of wireless communication, of-

fering innovative solutions to address the ever-growing demand for high data rates

and system capacity. As wireless networks evolve, there is an increasing need for

techniques that can efficiently utilize the available spectrum [10]. NOMA, with its

unique multiplexing approach, stands out as a promising candidate to meet these

demands [10, 29]. This section provides an in-depth exploration of NOMA, its core
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principles, the spectrum of variants proposed in scholarly literature, and its prospec-

tive role in shaping the future of cellular networks.

2.2.1 Principle of NOMA

NOMA offers a novel approach to resource allocation for multiple users, differen-

tiating itself significantly from traditional methods like OMA. At its core, NOMA

allows for the simultaneous transmission of signals, setting them apart by varying

power levels, as opposed to OMA which allots exclusive resources for each user [47].

This paradigm shift can be visualized in Figure 2.1, wherein multiple users share

the same communication channel, with UE-X representing user X. Each user signal,

though overlapping with others, possesses a unique power level that facilitates its

identification at the receiving end.

FIGURE 2.1: Resource allocation: OMA vs. NOMA

The allure of NOMA lies in its potential to maximize spectral efficiency [48,49]. It

achieves this by permitting multiple users to coexist within the confines of the same

frequency band. As a result, the system can support a higher user density without

the need for additional bandwidth. This approach addresses the ever increasing de-

mand for data in modern communication networks, optimizing the use of available



Chapter 2. 5G Physical layer & NOMA: State-of-the-Art 18

spectral resources. The multiplexing technique of uplink and downlink NOMA are

different which is explained in the next section [50–52].

Uplink NOMA

In the uplink NOMA, multiple users concurrently transmit their data to a Base Sta-

tion (BS)/Access Point (AP) utilizing a common frequency slot. The intricacy of this

system lies not in the transmission, but in the reception and decoding. Each partic-

ipating user is not required to be aware of other users sharing the frequency [53].

This lack of awareness does not introduce complexities at the user end because the

transmitter design they employ aligns seamlessly with the conventional OMA sys-

tem [54].

FIGURE 2.2: Uplink NOMA transmission

When each user dispatches their respective signal, it is done so with an allocated

power level over the shared traffic channel. As these transmissions are synchro-

nized, by the time they reach the BS or AP, they transform into a singular, composite

signal over the channel [55]. This resultant signal, therefore, is an aggregation of

individual user data interleaved with the interference from every other user trans-

mitting over the same traffic channel as shown in Figure. 2.2.

The primary challenge, and indeed the sophistication of uplink NOMA, surfaces

at the detection phase at the BS. Given the interwoven nature of the received signal,
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it becomes imperative for the receiver to distinguish and decode each user data ac-

curately [56]. The key to this discrimination is the pre-known power levels of each

user transmission. With this knowledge, the receiver applies a sequential decoding

process.

The receiver begins by targeting the user signal with the highest power within

the composite transmission. By decoding this dominant signal first, its contribution

can be effectively isolated and then subtracted from the combined signal. This oper-

ation is defined as SIC simplifies the composite signal, making the subsequent user

signals progressively detectable. Through a series of iterative decoding and subtrac-

tions, the receiver systematically extracts and reconstructs the data from all users.

Downlink NOMA

In contrast to uplink NOMA, where multiple users send data to a singular desti-

nation using a shared traffic channel, downlink NOMA operates differently. Here,

data is transmitted from one source but is directed towards several users [57]. This

core distinction translates into a different multiplexing mechanism for NOMA. Con-

sequently, there emerges a requisite for distinct and specialized transmitter and re-

ceiver designs tailored for downlink NOMA [58].

FIGURE 2.3: Downlink NOMA transmission

Considering the transmitter in downlink NOMA, it is imperative to multiplex the

signals of all NOMA layers into a composite signal before transmission as shown
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in Figure 2.3. During this process, PA to individual NOMA layers is strategically

determined. This decision hinges on multiple factors, such as the specific channel

conditions each user faces and their corresponding QoS. Typically, the layer with

highest PA is called the UL, meant for users contending with the most challenging

channel conditions. Conversely, subsequent LL, which cater to users with compara-

tively better channel conditions, are allotted reduced power [59,60]. This configura-

tion ensures NOMA optimally capitalizes on the inherent diversity and variability

of channel conditions within its user cluster.

NOMA Multiplexing

FIGURE 2.4: NOMA multiplexing process

Figure 2.4 illustrates a 2-layer NOMA multiplexing method. In this representa-

tion, the UL employs a Quadrature Phase-Shift Keying (QPSK) modulation, which

is overlaid with a 16 Quadrature Amplitude Modulation (QAM) signal in the LL.

The power ratio between the LL and UL is −5 dB. This configuration yields a com-

bined signal with a potential of 4× 16 = 64 unique values. To begin, the LL signals
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are scaled by their power coefficients to diminish the overall power of the LL in the

merged signal. Subsequently, a symbol-wise addition is performed between the UL

and the attenuated LL symbols. The resulting signal is termed as NOMA symbols.

To extract individual user data from this NOMA signal at the destination, the

receiver employs the SIC technique, a process that is discussed in the next section.

SIC

The NOMA system stands apart due to its unique approach to interference. Instead

of avoiding interference like in OMA, NOMA uses it, but in a controlled way. SIC is

the main tool that enables this approach [13].

FIGURE 2.5: The process of SIC in NOMA

The SIC allows a receiver to decode multiple overlapping signals, starting with

the strongest one [61]. Once the strongest signal is decoded, it is subtracted from th

e total received signal. This process is then repeated for the next strongest signal,

and so on, until all signals are extracted and decoded [62]. Figure 2.5 illustrates

this for a 2-layer NOMA received signal over noisy channel. Here, the receiver first

identifies and decodes the UL data (QPSK). Following this, the reconstructed UL
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signal is subtracted from the total received NOMA signal. The remaining signal is

then adjusted using the power ratio coefficient, from which the LL signal (16 QAM)

is then detected.

For SIC to work effectively, it requires [63, 64]:

• Clear information about the power allocated to each layer set by the transmit-

ter, ensuring accurate decoding of the dominant signal.

• A strategy to decode signals in order of their power levels, beginning with the

most dominant.

• The ability to accurately subtract a decoded signal from the combined received

signal.

SIC offers several benefits when used in NOMA systems [63]:

• Efficiency: It enables more users to operate on a single frequency, leading to

higher overall system performance.

• Fairness: Allowing users with varying channel conditions to use the same fre-

quency ensures a more balanced system.

• Flexibility: SIC can be integrated with other techniques such as MIMO, LDPC,

POLAR channel coding, higher order QAM to further enhance its effectiveness

[65].

But, there are some hurdles too:

• Latency: In systems like N-NOMA, SIC can be time-consuming due to its se-

quential nature.

• SNR Demands: For NOMA users with SIC, a higher SNR is required compared

to OMA users to get the same level of performance.

Even with these obstacles, SIC remains essential for NOMA, enabling it to han-

dle multiple users simultaneously and thus maximizing both system capacity and

fairness.
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NOMA PA

PA in NOMA is like giving everyone the right volume to hear a concert perfectly

based on where they are sitting. In downlink transmissions, the BS sends a combined

signal. LL users first decode signals meant for the UL users. After successfully

decoding that, they can retrieve their own data. In contrast, UL users can directly

detect the data intended for them.

The concept of power ratio becomes central in this context. It determines how

power is distributed between different layers or users in the NOMA system [66].

However, dynamic user conditions mean this ratio can shift, potentially causing dis-

ruptions and compromised signal quality. Fine-tuning this ratio for optimal trans-

mission becomes a complex task given the variables involved.

Several studies have addressed this complexity. For example, [67] and [68] de-

vised PA strategies for two-user systems to maximize data transfer rates. Mean-

while, [69] integrated user selection with PA, drawing from user feedback to ensure

consistent data rates across varying channel condition. In a distinct approach, [70]

developed a PA strategy based on outage probability for two-layer systems and in-

troduced a method to model user locations. Further expanding on PA techniques,

[71] and [72] innovated methods aimed at energy efficiency and optimizing data

transfer in next-generation downlink transmission.

2.2.2 Types of NOMA

NOMA has seen multiple adaptations and designs to better serve various commu-

nication scenarios. Here, are some of the prevalent NOMA types:

• Power-domain NOMA: The most prevalent variant, power-domain NOMA,

allocates different power levels to users for multiplexing [73–75]. In the de-

coding process, the user with the strongest signal strength is prioritized. By

employing techniques like SIC, the receiver can then decode subsequent users

based on decreasing signal power.

• Code-domain NOMA: Here, multiplexing is achieved through the application

of distinct spreading codes for different users. It draws parallels to CDMA.
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However, the distinct feature of code-domain NOMA is the use of non-orthogonal

codes, allowing for a greater number of users to be supported compared to tra-

ditional CDMA [74, 76].

• Spatial-domain NOMA: Rooted in the principles of MIMO technology, spatial-

domain NOMA exploits the spatial domain for user multiplexing [77]. This

method harnesses the unique Channel State Information (CSI) associated with

each user, making it particularly suitable for environments with a rich scatter-

ing and diverse user distribution.

• Hybrid NOMA: As the name suggests, hybrid NOMA merges attributes from

different NOMA types [78]. The integration is done in a way to capitalize on

the strengths of each individual type, offering both versatility and improved

performance. For instance, one might combine power-domain with spatial-

domain NOMA to gain both power and spatial multiplexing benefits.

Choosing the appropriate NOMA variant hinges on various factors. These en-

compass the structure of the network, the distribution and mobility of users, the

prevailing environmental conditions, and the overarching objectives of the commu-

nication network. Some scenarios might benefit from the fine-grained power control

of power-domain NOMA, while others with diverse user distributions might find

spatial-domain NOMA more advantageous. As research in this domain progresses,

it is likely that more refined and novel variants of NOMA will emerge to cater to the

evolving needs of wireless communication.

Among the various types of NOMA, LDM distinguishes itself as a power domain

NOMA technique designed for downlink transmissions, which adopts a non-linear

PA mechanism. What sets LDM apart in the realm of real-world applicability is its

recognition and subsequent adoption by ATSC 3.0. This significant endorsement

marks LDM as the first NOMA method to be officially incorporated into the next-

generation digital TV broadcasting standards [79].

This transition to practical application by such a prominent broadcasting stan-

dard showcases the potential and viability of LDM. The acceptance of LDM by ATSC

3.0 serves as the primary catalyst for this thesis. This research navigates through the

intricacies of LDM as implemented in ATSC 3.0. The study further delves into the
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challenges, solutions, and technical considerations necessary for its effective deploy-

ment in upcoming wireless communication paradigms, notably 5G and B5G.

2.2.3 Layer Division Multiplexing

Introduced as a power-domain NOMA technology, LDM emerged in the realm of

cloud transmission, characterized by its flexible multilayer system. This system em-

ploys spectrum overlay technology, facilitating the concurrent delivery of multiple

program streams [80]. Owing to its superior flexibility and performance benefits

compared to traditional OMA methods, LDM was subsequently incorporated into

the physical layer architecture of ATSC 3.0 [32]. Within the ATSC 3.0 framework,

LDM combines services into two distinct layers, namely CL and Enhance Layer

(EL), enabling transmission over a singular traffic channel. While the CL data can

be decoded by perceiving the EL data as interference, the EL data necessitates signal

cancellation techniques for decoding [18]. Such an innovative approach underscores

the potential of LDM in augmenting the capacity of upcoming heterogeneous cellu-

lar networks.

LDM in ATSC 3.0 Architecture

The ATSC 3.0 transceiver architecture, illustrated in Figure 2.6, incorporates a two-

layer LDM [30]. Within this system, the CL is granted a higher PA than the EL, with

a logarithmic power ratio between EL to CL. Such a PA minimizes interference of

the EL on the CL. This configuration ensures that CL data remains detectable in low

SNR channels without necessitating SIC. Consequently, the power-rich CL is em-

ployed to transmit High-Definition Television (HDTV) mobile services to an array

of devices including indoor, portable, and handheld receivers. Conversely, the EL

caters to high data rate services, such as Ultra-High-Definition Television (UHDTV)

or multiple HDTV transmissions, targeting users with good channel conditions typ-

ically associated with stationary receiver. In these terminals, the operational SNR

typically remains elevated, a result of large and possibly directional receive anten-

nas [81].
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FIGURE 2.6: ATSC 3.0 transceiver framework

Since adapting LDM into ATSC 3.0 physical layer design, much work has been

done on finding LDM performance for downlink broadcast transmission. In [30],

LDM and Time Division Multiplexing (TDM) performance over Additive White

Gaussian Noise (AWGN), Rician, and Rayleigh channels are compared. Their results

show that LDM has a gain of 5.4, 5.1, and 8.4 dB average reception power, respec-

tively. As EL requires a portion of the total transmission power, the addition of EL

reduces the SNR of CL transmission. So the additional EL transmission comes at the

cost of reduced CL transmission performance. Reference [82] investigated this per-

formance trade-off between CL and EL where capacity and coverage performance of

EL at the cost of that of CL is shown for ATSC 3.0. Their work shows a better perfor-

mance of LDM compared with TDM and Frequency Division Multiplexing (FDM).

The authors in [83] proposed a Multiple Physical Layer Pipe (M-PLP) configura-

tions based on multi-layer LDM and did capacity analysis of this configuration to

determine the lower capacity bound (approximately 1 Mbps) of CL. In [84] the au-

thors showed that LDM CL provides higher channel capacity than TDM/FDM at
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low SNR, and EL can do the same at high SNR condition. In [31], the CL perfor-

mance for mobile and indoor devices shows that it can deliver Half-Duplex (HD)

program. The successful integration of LDM into ATSC 3.0 and its advantage over

OMA transmission motivated researchers to investigate the possibilities of LDM in

5G network.

LDM in 5G

The successful integration of LDM into ATSC 3.0 and its advantage over OMA trans-

mission has spurred interest in the potential of LDM for 5G. Given the notable ca-

pacity gain of LDM over TDM and FDM, it is increasingly being considered for 5G

deployment. Numerous studies have explored the feasibility of employing LDM for

P2MP and broadcast transmission within 5G wireless communication.

In the study by Zhang et al. [85], the authors evaluated the BER performance and

the necessary SNR threshold for the successful detection of an LDM P2MP trans-

mission using the LTE evolved Multimedia Broadcast Multicast Service (eMBMS)

specification. Their findings underscored a significant increase in network capacity

when compared to TDM and FDM, albeit with increased transmitter complexity. An-

other research [86] highlighted that LDM demands less power for both unicast and

broadcast transmissions compared to TDM/FDM. Additionally, it offers enhanced

robustness against imperfect CSI, which are commonly encountered in real-world

systems.

Zhang et al. [14] proposed a unicast-broadcast transmission scenario for 5G Mul-

timedia Broadcast Multicast Services (MBMS), demonstrating a substantial capacity

gain with LDM over OMA transmission. In a parallel vein, Iradier et al. [15] intro-

duced a PHY/MAC architecture for unicast-broadcast convergence using LDM, in-

tegrated with Hybrid Automatic Repeat Request (HARQ). This model surpassed the

throughput of the TDM system. Xue et al. [16] further delved into network through-

put, analysing the influence of the power ratio between EL and CL on SNR and

throughput. Collectively, these studies affirm that LDM is adept at catering to a

diverse range of devices and enhancing network capacity.
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The existing literature underscores the proficiency of LDM in serving a diverse

array of devices and augmenting network capacity. While a significant portion of

research has predominantly concentrated on leveraging LDM for broadcast multi-

media transmission, such findings have paved the way for the exploration of alter-

native applications where LDM might exhibit potential. The fusion of unicast and

multicast transmissions, considering the heterogeneity of service requirements, has

the potential to catalyze the widespread implementation of LDM/NOMA in 5G and

B5G networks. Nevertheless, there exists a discernible void in analytical models

that aptly capture the performance of LDM within the OFDM framework, which is

imperative for validating future research. Furthermore, in anticipation of a future

where the majority of receivers might exhibit varying degrees of mobility, determin-

ing the impact of user mobility on the sustainability of LDM pairings is of paramount

importance.

2.2.4 Recent Advances in NOMA Implementation

NOMA has gained significant interest from research communities in recent years,

mainly due to its potential applicability in B5G and 6G use case scenarios. As the

wireless communications landscape evolves towards more advanced and ubiqui-

tous systems, it is crucial to explore innovative approaches to maximize spectral ef-

ficiency and user connectivity. NOMA, with its ability to facilitate concurrent trans-

mission for multiple users over a single channel, presents an attractive solution to

many of the challenges foreseen in next-generation networks. In this context, sev-

eral areas have been identified where NOMA can play a transformative role, some

of which are discussed below.

NOMA-Based Unmanned Aerial Vehicle (UAV)-Aided Communications

In next-generation wireless networks, UAV-aided communications stand out due

to their mobility and adaptability [87–89]. Serving as BSs, relays, and users, UAVs

enable applications like wireless service recovery, traffic offloading, environmental

surveillance, and cargo transport. This is largely attributed to their LoS dominated
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Air-to-Ground (A2G) channel. Yet, challenges like resource optimization, interfer-

ence management, and latency persist [12].

Research such as [90] delves into multi-UAV-enabled downlink NOMA, suggest-

ing user-centric and UAV-centric strategies. Another avenue, [91], examines the po-

tential of uplink NOMA in energy-restricted UAV systems. However, it focuses only

on scenarios involving a single UAV. Further investigation is needed to assess per-

formance in scenarios with a large number of UAVs. The study in [92] presents a

cooperative NOMA method for uplink to tackle A2G interference, allowing specific

BSs to decode and relay signals from a static UAV. The authors in [93] investigate

cellular-connected UAV trajectory design, utilizing NOMA to manage interference.

Despite these recent developments, current research in this field remains largely the-

oretical. Most studies concentrate on analytical models that demonstrate potential

rather than practical implementation. Establishing a concrete NOMA transmission

framework would enable future researchers to assess performance more accurately,

paving the way for turning these theoretical models into real-world applications.

NOMA-Enhanced Robotic Communications

The rise of connected robots in wireless networks signifies a shift towards network-

based communications over isolated onboard computing, promising cost-effectiveness

but with its challenges [94]. Initiatives like [95, 96] integrate NOMA to overcome

these hurdles. Specifically, [95] emphasizes indoor robot path planning using NOMA

for communication but their approach is reliant on perfect geographic knowledge,

rendering them unsuitable for unknown or new areas. This limitation is particularly

significant in various applications, such as search and rescue missions, where the

geographic landscape may not be precisely mapped or familiar.

Massive and Critical MTC

The momentum towards digitization in domains like smart cities and Industry 4.0 in

the 6G era underscores the relevance of Machine Type Communication (MTC) [97].

While addressing the need for Massive Machine-Type Communications (mMTC),

6G also brings strict QoS demands. Approaches like Grant Free (GF) random access
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and NOMA are gaining traction, especially with power balancing in varied chan-

nels [98]. The emergence of semi-GF NOMA as seen in [99] offers a confluence of

Grant Based (GB) and GF methods, catering to the dual "massive" and "critical" KPIs

for Massive and Critical MTC (MC-MTC) [100]. These studies can be further val-

idated through an established NOMA-5G framework, which would allow for the

consideration of various practical scenarios. These include LoS/NLoS connectivity,

imperfect CSI, as well as varying channel coding and modulation orders.

Mobile Edge Computing (MEC) Networks

MEC champions decentralized computing, prioritizing high-speed data and reduced

latency [101]. Compared to OMA, NOMA enhances task transmission and result

notifications. This facilitates better resource allocation in MEC networks, enhancing

computational outcomes. Researches like [102–105] delve into the synergy between

NOMA and MEC, probing into performance metrics, resource distribution, and la-

tency reduction in MEC with NOMA. The research presented in these papers pri-

marily concentrate on 2 user NOMA which can be further extended into N-NOMA

that can provide support for more users.

2.2.5 Interplay between NOMA and Other Emerging Physical Layer Tech-

niques

Ensuring compatibility between new and existing technologies is crucial, particu-

larly as 6G is anticipated to merge a multitude of physical layer techniques. This

section delves into the fusion of NOMA with other emerging physical layer meth-

ods, offering insights from contemporary research in the domain.

Reconfigurable Intelligent Surface (RIS)-NOMA

Recent progress in metasurfaces has showcased RIS [106], often labeled as Intelli-

gent Reflecting Surfaces (IRS) [107], as central components for forthcoming wire-

less frameworks. At its core, an RIS is a custom-designed surface embedded with

numerous cost-effective, tunable components like Positive Intrinsic Negative (PIN)
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diodes, overseen by advanced mechanisms such as Field-Programmable Gate Ar-

ray (FPGA). By fine-tuning the phase and amplitude responses of these elements,

RIS can transform incoming wireless signals, leading to a radical shift in the radio

environment [108].

There is an inherent charm in fusing RIS with NOMA [109]. At its core, the su-

periority of NOMA over OMA is based in the distinct channel conditions of users.

This distinction might not always be evident. Yet, through strategic placement of

RIS and careful adjustment of their reflection coefficients, this channel diversity can

be magnified, further boosting NOMA efficacy. In addition, RIS has the capability

to metamorphose channels, advocating for an intelligent QoS-based NOMA opera-

tion. Numerous studies have looked into the promise of this synergy. For instance,

a study [110] established the superiority of centralized deployment strategies, re-

gardless of the access scheme. Building on this, another work [111] investigated the

ideal RIS deployment in multi-user downlink networks, revealing distinct advan-

tage of NOMA. Further studies delved into the duality of STAR-RIS systems [112–

114] and the computational challenges presented by RIS-assisted Multiple-Input

Single-Output (MISO) downlink NOMA networks [115–117].

Orthogonal Time Frequency Space (OTFS)-NOMA

OTFS modulation is emerging as a beacon for high-mobility users [118–120]. The

essence of OTFS lies in its ability to position high-mobility user signals in the delay-

Doppler domain, transmuting time-fluctuating channels into static ones. Yet, its per-

formance is bound to its resolution. Addressing this, a novel OTFS-NOMA system

was proposed [121], aiming to elevate spectral efficiency. Venturing into MIMO do-

mains, there is a shift towards beamforming strategies tailored for OTFS-NOMA

systems [122], maintaining QoS for high-mobility users while boosting data rates

for others.
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Full-Duplex (FD)-NOMA

FD emerges as a cornerstone for next-generation wireless networks, offering simul-

taneous downlink and uplink transmissions. Blending FD with NOMA can signifi-

cantly elevate resource efficiency, but it also invites interference challenges [123]. To

counteract these, robust resource allocation strategies are imperative. Studies have

delved into optimizing these allocations [123], evaluated the outage performance of

FD-NOMA versus its HD counterpart [124], and proposed relay selection methods

for HD relay-assisted NOMA networks [125]. The results are unanimous in under-

lining FD NOMA’s potential, especially in low SNR environments [126].

Visible Light Communications (VLC)-NOMA

For indoor environments, VLC is capturing interest due to its myriad advantages

[127]. However, its narrow modulation bandwidth calls for advanced MA tech-

niques. Here, NOMA offers an appealing solution. The authors in [128] have ven-

tured into evaluating the performance of NOMA-VLC systems, indicating a clear

edge over OMA-based systems. Another study [129] in the realm of MIMO-VLC

systems introduced the Normalized Gain Difference PA (NGDPA) method, accentu-

ating the merits of intertwining NOMA with traditional VLC setups.

2.3 5G Physical Layer

The emergence of 5G represents a significant advancement in wireless communica-

tion, offering unparalleled data rates and minimal latency relative to earlier gener-

ations. While we are yet to fully exploit the potential of 5G, numerous promising

physical layer technologies, including NOMA, VLC, and RIS, are on the horizon for

implementation. The technology’s widespread global deployment is evident [130].

The Non-Standalone (NSA) version of 5G, designed for a smooth and cost-efficient

transition from its predecessors, has been widely adopted in many countries, mak-

ing up a significant part of the 5G coverage [131]. Notably, regions like the USA

and China have initiated public 5G Standalone (SA) deployments [5]. The rise of
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local 5G networks presents an intriguing alternative to conventional Wireless Fi-

delity (Wi-Fi) for Local Area Network (LAN) applications [132]. In response to these

developments, 3GPP has released various versions of the 5G transceiver model, in-

corporating state-of-the-art technologies such as MIMO and mmWave, and cater-

ing to a range of channel, transmission, and mobility scenarios. This study delves

into the viability of NOMA for downlink unicast/multicast transmission, and subse-

quent sections will explore the contemporary 3GPP transceiver design for Downlink

Shared Channel (DL-SCH).

2.3.1 5G Downlink Transceiver Framework

Matlab has introduced a comprehensive 5G toolbox, facilitating end-to-end simu-

lations that encompass the latest 3GPP releases. In alignment with their 5G tool-

box and the 3GPP Release 16, Figure 2.7 depicts the standard downlink transceiver

model [133,134]. All the component of this 5G transceiver model is briefly described

in the following sections.

FIGURE 2.7: 5G transceiver model following 3GPP release-16

Transmitter Side Operations

• DL-SCH Encoding: The DL-SCH is tasked with transmitting user data and

control information. It utilizes sophisticated coding techniques like LDPC and
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polar coding to maintain data integrity and incorporates HARQ for error rec-

tification [135, 136].

• Physical Downlink Shared Channel (PDSCH) Encdoing: The PDSCH trans-

mits the data processed by the DL-SCH. It maps the data to the suitable phys-

ical resources. The supported modulation techniques include QPSK and (16,

64, 256) QAM [137].

• MIMO Precoding: MIMO precoding is a technique that leverages multiple

antennas at both the transmitter and receiver to improve communication per-

formance. Precoding is the process of shaping the transmitted signals in a way

that optimizes the received signal quality, taking into account the channel con-

ditions.

• OFDM Modulation: OFDM is a modulation scheme used in 5G to efficiently

transmit data over frequency-selective channels. The cyclic prefix is added to

each OFDM symbol to combat inter-symbol interference caused by multipath

propagation.

Channel Model

In wireless communication, signals often traverse multiple routes before arriving at

the receiver due to a phenomenon termed multipath propagation. This can lead to

interference and a reduction in signal quality. The 3GPP release 16 provides an ex-

tensive model for various transmission scenarios, such as Rural Macro (RMa), Urban

Macro (UMa), Urban Micro – Street Canyon (UMi), and Outdoor to Indoor (O2I), en-

compassing both LoS and NLoS communications [138].

In a typical multi-antenna scenario within a multipath channel, signals from

multiple transmitting antennas are sent at different angles and undergo multipath

propagation. Consequently, a receiver is likely to perceive multiple versions of each

transmitted signal. These versions can have varying delays and noise levels, de-

pending on the type and number of reflecting objects [139]. The accepted models

for such multipath channels are TDL for single antenna transmissions and CDL for

MIMO transmissions [140, 141].
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• TDL Channel Model: The TDL channel model, commonly referenced in 3GPP

specifications, represents a series of discrete taps in time domain, where each

tap has a certain power level associated with it. This model is particularly use-

ful for scenarios where multipath components are well-separated in the delay

domain, and thus can be distinctly identified. Different versions of the TDL

model are characterized by different numbers of taps, different delay spreads,

and different power levels for each tap. For instance, in 3GPP NR specifica-

tions, we encounter variants such as TDL-A, TDL-B, up to TDL-E, each suited

for different propagation conditions and scenarios.

• CDL Channel Model: The CDL model is another approach to represent mul-

tipath propagation channels. Unlike the TDL model which focuses on distinct

taps, the CDL model emphasizes clusters of rays. Each cluster consists of mul-

tiple rays, and each ray within a cluster can have its own delay, angle of arrival,

and angle of departure. 3GPP has also detailed multiple versions of the CDL

model, such as CDL-A, CDL-B, and so on, to cater to a variety of scenarios

from urban to rural, from LoS to NLoS conditions.

Key parameters for all TDL and CDL channel models are explained in the Table

2.1 [138].

Receiver Side Operations

• Timing Synchronization: Ensures that the receiver is synchronized with the

transmitter, allowing for accurate decoding of the received signals.

• OFDM Demodulation: Removes the cyclic prefix and demodulates the OFDM

symbols to retrieve the transmitted data.

• Channel Estimation: Estimates the channel conditions to optimize the decod-

ing process.

• PDSCH Decoding: Decodes the data from the PDSCH, retrieving the original

data and control information.

• DL-SCH Decoding: Further processes the decoded data, applying error cor-

rection and other techniques to ensure data integrity.



Chapter 2. 5G Physical layer & NOMA: State-of-the-Art 36

Model LoS/NLoS No. of Tap/Cluster Normalized delay Power in [dB]

TDL-A NLoS
1 0.0000 -13.4
10 1.5375 -15.9
20 4.7966 -18.9

TDL-B NLoS
1 0.0000 0
10 0.3697 -3
20 3.6187 -11.4

TDL-C NLoS
1 0.0000 -4.4
10 0.7935 -7.1
20 5.6077 -17.1

TDL-D LoS
1 (LoS path) 0.0000 -0.2
1 (Rayleigh) 0.0000 -13.5

10 7.937 -23.6

TDL-E LoS
1 (LoS path) 0.0000 -0.03
1 (Rayleigh) 0.0000 -22.03

10 2.6426 -22.3

CDL-A NLoS
1 0.0000 -13.4
10 1.5375 -15.9
20 4.7966 -18.3

CDL-B NLoS
1 0.0000 0
10 0.3697 -3
20 3.6187 -11.4

CDL-C NLoS
1 0.0000 -4.4
10 0.7935 -7.1
20 5.6077 -17.1

CDL-D LoS
1 (LoS path) 0.0000 -0.2
1 (Laplacian) 0.0000 -13.5

10 7.937 -23.6

CDL-E LoS
1 (LoS path) 0.0000 -0.03
1 (Laplacian) 0.0000 -22.03

10 2.6426 -22.3

TABLE 2.1: TDL & CDL channel model parameters
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The 5G downlink transceiver model is a complex system that incorporates a vari-

ety of advanced methods to ensure efficient and dependable data transmission. The

combination of these elements enables 5G to satisfy the rigorous demands of con-

temporary wireless communication, delivering superior performance at low SNR.

This also enhances the viability of NOMA deployment, as NOMA typically necessi-

tates higher SNR values compared to OMA.

2.4 Summary

The evolution of wireless communication has been marked by continuous advance-

ments and innovations, with the integration of NOMA and the development of the

5G physical layer being at the forefront of this progression. This chapter delves into

the state-of-the-art technologies and methodologies that underpin NOMA and the

5G physical layer, highlighting the pivotal role they play in shaping the future of

wireless communication.

NOMA, as a key MA technique, has garnered significant attention for its po-

tential to enhance spectral efficiency and cater to a massive number of users si-

multaneously. Its integration into the 5G framework promises to address the ever-

growing demands for higher data rates, better QoS, and more reliable communi-

cation. The chapter further explores the successful incorporation of LDM into the

ATSC 3.0 framework and its implications for 5G systems. LDM’s potential in en-

hancing downlink broadcast transmission, its performance trade-offs, and its capac-

ity gains over traditional multiplexing techniques are discussed in detail.

Furthermore, the chapter provides an in-depth analysis of the 5G physical layer

transceiver model, emphasizing its intricacies and the underlying processes that

drive its functionality. Key technological components such as MIMO systems, LDPC

codes, OFDM, and varying modulation orders are explored, shedding light on their

roles in optimizing data transmission, enhancing signal integrity, and ensuring ro-

bustness against channel imperfections.

Navigating through the chapter, it is evident that the current research landscape

is rich with innovations aimed at pushing the boundaries of wireless communica-

tion. This state-of-the-art review not only offers a comprehensive understanding of
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the current technological landscape but also sets the stage for this thesis’s contribu-

tions. By understanding the latest works and principles in the domain, this thesis

aims to carve out a niche, offering novel insights and solutions that can further the

cause of next-generation wireless systems.

While the integration of NOMA into the NR architecture presents numerous ben-

efits, current research exhibits distinct gaps in fully understanding and applying this

technology, especially in the context of downlink unicast transmission. Key obser-

vations from the literature are as follows:

1. Unicast downlink NOMA Under-researched: Despite the growing literature

on the benefits of NOMA in broadcast transmission, its application in unicast

downlink remains less scrutinized [14–17, 19, 20]. The unique challenges asso-

ciated with unicast transmissions, such as the need for precise user grouping

and understanding the impacts of receiver mobility on NOMA performance,

demand attention.

2. PA for Mobile Users: The mobile nature of receivers further complicates the

application of NOMA in downlink. Given these dynamics, the power distribu-

tion between NOMA layers requires adaptable PA techniques that can respond

to varying mobile conditions to ensure reliable transmission.

3. Integration with Advanced 5G Technologies: While 5G has brought forth

groundbreaking technologies such as MIMO beamforming and LDPC channel

coding, the synergy between these innovations and NOMA remains under-

explored [12, 15]. Harnessing these technologies may significantly enhance

NOMA performance, ensuring its broader adoption in both uplink and down-

link transmissions, making it a staple in future 5G and B5G standards.

4. Limited Practical Research on N-NOMA: The potential of NOMA might be

fully harnessed by practical implementation of N-NOMA. However, many

studies on this subject remain confined to theoretical domains due to chal-

lenges like complex signal processing and noise sensitivities in communication

equipment. This theoretical inclination contributes to the lack of a formal NR

framework that integrates NOMA.
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5. Absence of an Established 5G Framework: Even with the 3GPP release 16 ini-

tiating a study on 2-layer UL NOMA [21], the industry lacks a comprehensive

framework for 5G downlink transmission. This underscores the imminent ne-

cessity for the development of an efficient 5G physical layer transceiver with

integrated NOMA capabilities.

In the subsequent chapter, the focus shifts to a comprehensive LDM-OFDM frame-

work specifically designed for downlink unicast and multicast transmissions. This

intricate framework is complemented by an analytical model that precisely mea-

sures the CL BER performance. Further deepening the investigation, a Two Di-

mensional (2D) surface model and a strategic PA algorithm are introduced. These

advancements aim to enhance the sustainability of LDM pairs, ensuring a resilient

communication experience.
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Chapter 3

Convergence of M2M & Mobile

Communication Using LDM for

Unicast/Multicast Transmission

3.1 Introduction

Building on the insights from the previous chapter , the integration of LDM into

ATSC 3.0 marks a pivotal advancement for next-generation digital TV broadcast-

ing. Motivated by that success, many have investigated the possibility of using

LDM in P2MP and broadcasting transmission in 5G downlink wireless communi-

cation which is discussed in Section 2.2.3. Collectively, these investigations affirm

the potential of LDM in 5G and beyond in enhancing network capacity. Neverthe-

less, while the focus so far has leaned towards broadcast/multicast services, there

is a significant research gap regarding the role of LDM role in unicast transmission,

presenting a plethora of issues yet to be unravelled.

The intrinsic design of LDM is tailored for a heterogeneous group of receivers,

given its unique SNR requirements and transmission rates [142]. Therefore a suc-

cessful convergence depends on pairing devices that have heterogeneous require-

ments and without potential use-case scenarios, the proposed framework holds lit-

tle significance. Potential user groups in future wireless networks were identified,

and a unique unicast/multicast convergence was suggested between IoT devices

(utilizing CL) and human users User Equipment (UE) (employing EL). The value of
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this pairing becomes evident particularly when there is substantial downlink trans-

mission needed for IoT devices. Potential scenarios for such downlink-heavy IoT

communication in future urban and rural areas are discussed in Section 3.2.

In the next section, a framework is developed that integrates a 2-layer LDM

within OFDM for downlink transmission and is tailored to accommodate various

channel models. This simulation structure offers insights into the behaviour of LDM

across a spectrum of transmission settings. To confirm the accuracy and applicability

of this framework, there is an additional analytical model is derived to assess LDM

CL BER in Section 3.4. Constructed through a process of trial and error, this model

is anchored in the established BER expression for uncoded OFDM OMA transmis-

sion. Within this model, the additional interference from EL during the CL detection

phase are accounted. As a result, this structure stands as a valuable reference. The

results from the developed simulation and analytical model are compared and dis-

cussed in Section 3.5.

Broadcast/multicast transmissions are different from unicast transmissions, es-

pecially when using LDM [143]. The challenge with unicast transmission via LDM

is the necessity for UE pairing, which becomes more complex with mobile receivers

due to dynamic channel conditions which is explored in Section 3.6. There, a surface

mobility model has been constructed to depict UE movement within the transmis-

sion beam. This model operates under the presumption that the beam is aimed

directly at the initial position of UE. The findings indicate a strong dependency be-

tween UE mobility and the sustainable link time of LDM pair. An algorithm has been

created to address these challenges, aiming to prolong the link time. This is achieved

by adjusting the power distribution between CL and EL layers, allowing LDM to be

optimized in fluctuating channel conditions. To better accommodate the mobility of

IoT device receivers, the mobility model has been expanded to consider both types

of users. An analytical model has also been formulated to examine the correlation

between link duration and the mobility patterns of each UE type. The ramifications

of receiver mobility are elaborated upon in Section 3.7, further emphasizing the po-

tential of LDM in unicast/multicast transmission scenarios. The chapter wraps up

in Section 3.8, providing an overview of the main contributions, discoveries, and

limitations of the research detailed in this chapter.
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3.2 Downlink-Heavy IoT Communication

The development of wireless communication, particularly with the introduction of

5G, has led to a significant transformation in MTC, marked by a rapid increase in

the number of IoT devices for a diverse range of applications [144, 145]. Histori-

cally, MTC was perceived to be predominantly uplink-centric. However, emerging

applications and use cases such as cloud controlled drone, autonomous vehicular

movement, and multisensory reconfigurable IoT implementation suggest a signifi-

cant need for downlink data transmissions [146]. This section delves into potential

scenarios where downlink transmission becomes pivotal for MTC, considering both

urban and rural contexts.

3.2.1 Urban Area

FIGURE 3.1: Downlink transmission model for IoT devices in urban
areas.

Urban environments, characterized by high device density, are anticipated to be

the epicenters of advanced communication systems. As illustrated in Figure 3.1, the

urban landscape of the future is poised to witness a proliferation of autonomous
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vehicle systems and cloud-controlled drones, necessitating robust downlink com-

munication. The integration of small cells or picocells into the urban cellular in-

frastructure, especially in 5G networks, will further enhance the efficiency of these

transmissions. Existing urban fixtures, such as lamp-post-mounted radio-heads, will

play a pivotal role in facilitating this communication model [147].

Cloud-controlled drones, governed by centralized systems, will be heavily re-

liant on downlink communication for real-time control. Similarly, autonomous ve-

hicles will depend on continuous traffic updates and control directives from cloud

systems to navigate urban terrains. These applications necessitate Ultra-Reliable

Low-Latency Communication (URLLC). Moreover, managing the capacity due to

the massive device density in urban areas presents a significant challenge. LDM CL,

with its reliability and minimal latency, emerges as a viable solution to address these

challenges, enhancing system capacity.

3.2.2 Rural Area

Contrasting the urban landscape, rural areas present a unique set of IoT applications.

As depicted in Figure 3.2, the future of rural areas is poised to embrace advanced

farming and agricultural systems, heavily reliant on IoT sensors. Cloud-controlled

drones will play a pivotal role in real-time monitoring and control in agricultural

settings.

IoT sensors in rural settings will be instrumental in monitoring various agricul-

tural parameters, such as water flow rates, storage conditions, and other agriculture-

centric metrics. These multifunctional devices, capable of self-reconfiguration based

on cloud directives, underscore the importance of robust downlink communication

in rural scenarios. One notable distinction in rural network configurations is the de-

ployment of large coverage cells, enhancing the sustainability of UE-IoT pairings,

especially in mobile scenarios. The LDM CL, with its reliability in varying channel

conditions, emerges as a promising solution for these challenges in 5G downlink

communication for MTC.
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FIGURE 3.2: Downlink transmission model for IoT devices in rural
areas.

3.3 LDM-OFDM System Model

A framework for the OFDM physical layer is developed to adapt LDM for 5G and

B5G. This section elaborates on the detailed structure of the proposed framework for

the AWGN, the fading channel, and massive MIMO (mMIMO) transmission.

3.3.1 System Model (AWGN Channel)

Consider a transmission scenario where a BS provides services to users and IoT de-

vices. IoT devices, denoted as IoT-1, IoT-2, and IoT-3 in Figure 3.3, are small devices

necessitating real-time communication. These IoT devices are presumed identical in

their requirements and capacities but are situated in distinct locations, thus experi-

encing different channel conditions. All three IoT devices are assumed to need the

same information, so a single multicast channel can cater to all three devices using
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OMA transmission. In this scenario, IoT devices necessitate real-time communica-

tion and possess limited computational capacity. The detection process for these de-

vices should be fast and simple. The other device in Figure 3.3 is a UE. It is assumed

that the UE demands a high data rate transmission, such as multimedia commu-

nication, and is proximate to the transmitter, thus experiencing favorable channel

conditions (high SNR). Moreover, the UE boasts significant computational capacity,

and its requirements are more latency-tolerant, making it suitable for EL transmis-

sion. The lines in Figure 3.3 depict the LDM signal with an AWGN channel and LoS

communication. These lines originate from a single LDM data channel transmission

reaching all four devices from the BS. Hence, this scenario serves all four receivers

using a single channel, whereas an OMA transmission system might necessitate two

or more channels. As this model leverages the capabilities of a NOMA technique,

there is no need for time or frequency sharing. The communication is uninterrupted,

and all devices utilize the entire time and frequency slot of the employed traffic chan-

nel.

FIGURE 3.3: LDM aided Unicast-Multicast transmission scenario

Transmitter Framework with LDM Superposition

An OFDM system with QAM modulation is employed to evaluate the system, as

depicted in Figure 3.4. To analyze the performance of LDM in the proposed frame-

work, channel coding has been excluded. Figure 3.4 illustrates that the CL and EL
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bits are processed concurrently. The transmission bit rate of CL and EL can dif-

fer as different QAM modulation scales M can be employed for each layer. Both

data sets are converted into QAM symbols, ensuring each frame contains an iden-

tical number of QAM symbols. Upon obtaining the QAM modulation of CL and

EL data, both symbol sets are combined using LDM superposition to yield an equal

number of LDM symbols. The power of the EL symbol is reduced during the su-

perposition process to occupy a smaller power portion of the total transmit power.

The total transmission power mirrors that of any single-core transmission. Equation

(3.1) represents the LDM superposition where X(k) denotes the LDM symbol of the

kth sub-carrier, g is the power ratio between layers, and Xcl(k), Xen(k) represent the

CL and EL symbols of the kth sub-carrier, respectively.

X(k) = Xcl(k) + g Xen(k) (3.1)

FIGURE 3.4: LDM-OFDM transmission framework
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Channel Model

An AWGN channel model is considered where signals are transmitted to all re-

ceivers using a singular traffic channel. The IoT devices are presumed to be under

varying channel conditions, ranging from high to low SNR. In contrast, the UE op-

erates at high SNR as the CL is more noise-tolerant and can cater to IoT devices even

under suboptimal channel conditions. The UE, given its EL requirements, needs to

have a high SNR channel. Random noise is added to all transmitted symbols follow-

ing AWGN distribution. Perfect CSI are assumed at all receiver, ensuring receivers

possess all essential information for signal detection.

Receiver Framework for LDM Detection

The LDM signal at the receiver is expressed by

Y(k) = Xcl(k). H(k) + g Xen(k). H(k) + N0(k) (3.2)

where Y(k) is the received signal of kth sub-channel, H(k) is the channel matrix, and

N0(k) is the added noise. For a two-layer LDM, the signal detection at the receiver is

realized in two stages, as shown in Figure 3.4. Initially, CL detection is carried out.

The EL signal from (3.2) is considered as an added interference, and the detection

is as simple as a standard OMA signal detection process. Equation (3.3) shows the

total noise and interference for the CL detection. The signal at the receiver will have

the originally transmitted signal with added noise as well as channel effects and is

expressed as

Ncl(k) = g Xen(k) . H(k) + N0(k) (3.3)

One way to ensure high accuracy of CL data detection is to use Low QAM modula-

tion. CL detection does not require more computing; hence this is suitable for low
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power IoT devices. In contrast, the EL detection is done using SIC, which is more

computationally intensive. The receiver needs to detect the CL data and reconstruct

those data using the same technique used by the transmitter. The reconstructed CL

data is subtracted from the received signal. Then the remaining signal is detected

after power normalization. Equation (3.4) shows the subtracted signal for the EL

detection.

Yen(k) = Xcl(k). H(k) + g Xen(k) . H(k) + N0(k)− Xcl re(k) (3.4)

Assuming a perfect CL detection with perfect channel estimation, EL signal is ex-

pressed as

Yen(k) = g Xen(k) . H(k) + N0(k) (3.5)

The signal from (3.5) is amplified with a factor of 1/g before the detection of EL data.

In this transmission framework, successful CL detection is essential for enhancing

layer detection performance, so the CL needs to be reliable and robust in handling

noise. Moreover, EL data detection is complex, so UE devices require higher com-

putation capability.

3.3.2 System Model (Multipath Fading Channel)

The fading channel model is an extension of the AWGN channel model. It incorpo-

rates the effects of multipath fading, shadowing, and Doppler spread. The fading

channel model is more realistic and provides a comprehensive understanding of

the system performance in real-world scenarios as shown in Figure 3.5. This model

demonstrate a LDM downlink transmission in multipath fading channel scenario. In

this context, a Single-Input Single-Output (SISO) transmission model is considered,

where both the transmitter and the receiver are equipped with a single antenna.
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An LDM signal contains information for two different devices using a single traffic

channel. The following equation can express the signal transmitted from the BS to

both UE and IoT devices

x(t) = xcl(t) + g xen(t) (3.6)

Assuming an outdoor scenario with multiple paths, including a LoS path and other

reflected paths. The receivers are placed in various locations under different chan-

nel conditions. Both receivers have multiple received signals coming from different

reflecting objects around them, as shown in Figure 3.5. The number of paths for each

receiver is different, with receiver 1 having a dominant path as it has a LoS transmis-

sion. Each path has a different path length; hence there are different delay elements,

τl , l = 0, · · · , L1. Equation (3.7) represents the channel for UE where h0δ(t − τ0)

represents the channel condition for the dominant path. This channel condition is

simulated using Rician distribution as [148]

L1

∑
l=0

(hl(t) δl (t− τl) + nl) (3.7)

where L1 is the total number of paths from the BS to the UE.

IoT devices are assumed to have NLoS transmission and has an L2 number of re-

flected signals represented by (3.8). This model considers the existence of both static

and dynamic reflector. The static reflectors are from a fixed obstacle, a permanent

object such as building, trees, etc. The paths from static reflectors can be learned

via feedback channel and past transmission. Moreover, time-varying objects such

as moving vehicles can not be known or predicted as their position and behavior

change. This channel is expressed as follows assuming a Rayleigh distribution [148]
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L2

∑
l=1

(
h′l(t) δl (t− τl) + n′l

)
(3.8)

FIGURE 3.5: LDM transmission model in multi-path fading channel

The delay from different paths are assumed to be higher than the symbol dura-

tion and time-independent hence the fading experienced by UE is slow frequency

selective fading. Using (3.1) and (3.7), the received signal y1(t) is expressed by

y1(t) =
L1

∑
l=0

(xcl(t− τl) . hl(t) + g xen(t− τl) . hl(t) + nl) (3.9)

Similar to UE, the IoT device also has multiple reflected signal paths with delay ele-

ments higher than the symbol duration and unchanged over the transmission time.

Hence, receiver 2 has a slow frequency selective fading channel and the received
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signal y2(t) is expressed from (3.1) and (3.8) as

y2(t) =
L2

∑
l=1

(
xcl(t− τl) . h′l(t) + g xen(t− τl) . h′l(t) + nl

)
(3.10)

This system model describes how LDM can take advantages of the different channel

condition of UE and IoT devices. In next subsection, the impact of mMIMO mm-

wave transmission is considered to on the LDM-OFDM framework.

3.3.3 System Model (Beamspace mMIMO mmWave Channel)

FIGURE 3.6: mMIMO beamforming transmission model for LDM-
OFDM framework
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A mmWave beamspace is considered for LDM-OFDM framework, as shown in

Figure 3.6. The system consists of one BS and two types of users (UE and IoT

devices), randomly and uniformly distributed in the cellular network. The BS is

equipped with multiple antennas to generate multiple beams with the beamspace

methods. Two receivers of different service requirement (UE and IoT devices) within

the transmission area of one beam are paired for LDM transmission. Besides, to re-

duce the system complexity, inter beam interference is not considered by assuming

perfect beamforming at the BS. The UE is located near the transmission, presenting

a good channel condition, and the IoT device is at the edge of the transmission area,

highlighting a poor channel condition. Equation (3.6) is the combined LDM signal

transmitted from the transmitter. The LDM signal is transmitted into nth beamspace

where CL data are for IoT devices, and EL data are for the UE. Both small and large

scale fading are considered in this channel model due to their significance for mm-

wave transmission. Equation (3.7) shows the small scale fading and (3.11) presents

the large scale fading for mm-wave transmission assuming free space path loss [149].

L(r) = 32.4 + 20 log10( fc) + 20 log10(r) (3.11)

Here is for the nth beam where fc is the carrier frequency in GHz, and r is the dis-

tance between transmitter and receiver in meters.

As the attenuation of mmWave is high, the high gain and high directional beam

are generated by the BS to ensure high QoS. For simplicity, the antenna model are

assumed as a sectorized antenna model, which means the array gain within the half-

power beamwidth (main lobe gain) is the maximum power, and the first minor max-

imum replaces the side lobe gain. The total array gain G(n) is denoted as [150,151],

G(n) =


Ψ, for main lobe

ψ, for side lobe
(3.12)
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where Ψ = N, ψ = 1
sin2( 3π

2
√

N
)

and N is the main lobe gain.

The received signal for users is expressed as

yu1 =
hu1 G(n) xn

L(d1)
+ nu1 (3.13)

and the received signal for IoT devices is expressed as

yu2 =
hu2 G(n) xn

L(d2)
+ nu2 (3.14)

3.4 Theoretical Evaluation

The system models outlined in the previous section are analyzed to assess the per-

formance of LDM in the proposed usage model. To provide a benchmark for this

analysis and set a reference for subsequent studies, an empirical equation is formu-

lated to scrutinize the performance limit of the LDM CL. Owing to the integration of

EL data, the peak CL channel capacity is constrained by the g, as denoted in (3.23).

3.4.1 BER of LDM CL

The equation is based on the generic Symbol Error Rate (SER) expression of an un-

coded OMA-OFDM system from [152, 153], which is

SERAWGN
k = 4

(
1− 1√

M

)
Q

(√
3 ρk

M− 1

)
− 4

(
1− 1√

M

)2

Q

(√
3 ρk

M− 1

)2

(3.15)
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where

Q(x) =
1
π

∫ π
2

0
exp

(
− x2

2 sin2θ

)
dθ (3.16)

and ρk is the SNR of the kth symbol.

Gray coding is assumed for the QAM constellation, leading to a single bit error

for each symbol error. This relationship between BER and SER can be expressed as

BER =
SER
M

An analytical model for the BER of the CL is derived from the above. For this evalua-

tion, inter-symbol interference is not considered. Given that the EL has lower power

compared to the CL, the value of g is consistently negative in dB. This configuration

is applied across various QAMs. The relationship between the CL data rate and g in

an uncoded OFDM system is observed as:

g = −4 Mc (3.17)

where Mc is the QAM order for the CL. Now the CL SNR is calculated from channel

SNR as

ρkcl =
2 ρk

−g
(3.18)

Using the values of CL SNR from (3.18) in (3.15) the SER of the CL data is calculated

as
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SERAWGN
k = 4

(
1− 1√

M

)
Q

(√
6 ρk

g(1−M)

)
− 4

(
1− 1√

M

)2

Q

(√
6 ρk

g(1−M)

)2

(3.19)

3.4.2 Channel Capacity Distribution

The channel capacity of an AWGN channel is expressed in terms of bits/sec/Hz

as [154]

C = log2

(
1 +

ps

pn

)
(3.20)

where ps is the signal power and pn is the noise power. This shows the dependency

between channel SNR and capacity, and is used to calculate the channel capacity for

LDM layers as [84]

Ccl = log2

(
1 +

pcl

pel + pn

)
(3.21)

and

Cel = log2

(
1 +

pen

pn

)
(3.22)

Given the known power ratio, g, the maximum system capacity of the CL can be

assessed with a set value of g.
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Ccl = log2

(
1 +

1
g

)
(3.23)

3.5 LDM Performance Evaluation

The OFDM framework integrated with LDM is employed as depicted in the pro-

posed model. The model is created in Matlab, where it generates random data bits

based on the transmission rate. These bits are processed as per the system model,

illustrated in Figure 3.4. After transmission, BER is computed by comparing the re-

ceived data bits for each layer against the originally transmitted data bits. Relevant

parameters for this simulation can be found in Table 3.1. For the AWGN channel,

both the analytical model presented in (3.19) and the simulated values are examined.

Additionally, the channel capacity distribution among the LDM layers is assessed.

TABLE 3.1: OFDM parameters

Parameter Values
No. of carriers 64
Single frame size 96 bits
Total no of frame 1000
No. of pilot bits 4
Cyclic extension 16 bits

Figure 3.7 illustrates the BER performance of the CL derived from both the simu-

lation and the previously described analytical model. The SNR indicates the channel

condition between the transmitter and receiver for the LDM signal. The power ratio

g is adjusted based on the QAM modulation index M (comprising 16, 32, and 64) of

the CL as referenced in (3.17). Observing Figure 3.7, there is a noticeable alignment

between theoretical and simulated values, with curves from the same QAM often

coinciding or deviating slightly. A diminishing BER performance is evident as the

QAM modulation index increases, confirming the accuracy of the analytical model.
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FIGURE 3.7: Performance comparison of LDM CL between simula-
tion and analytical results for 16, 32 and 64 QAM modulation

FIGURE 3.8: BER performance of LDM CL with OMA in same un-
coded OFDM framework

Figures 3.8 and 3.9 examine the CL performance, contrasting its BER perfor-

mance with that of an OMA system. In the simulations, both models utilize 4, 8,

16, and 32 QAM constellations. At reduced SNR levels, the performances of both

OMA and LDM CL remain consistent. Yet, OMA transmission achieves same BER

at a slightly lower SNR then LDM CL. Observing a 10−4 BER standard, the LDM CL

mirrors the OMA performance but demands approximately 3 dB elevated SNR val-

ues across all QAM constellations. This differential in necessary SNR highlights the

trade-off brought about by introducing EL to the CL. Meanwhile, Figure 3.9 depicts

the influence of power ratio on the CL efficiency. The power ratio, symbolized by
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FIGURE 3.9: Impact of g on the BER of the CL transmission

g, critically affects the LDM CL function, suggesting system adjustments to g values

based on service quality needs. The findings indicate that a power ratio range of

−10 to −15 dB enables successful CL transmission.

FIGURE 3.10: BER performance of LDM EL transmission for 16, 32
and 64 QAM constellation with a fixed CL data rate

In Figure 3.10, the simulated outcomes for both layers are presented. During

this simulation, a constant power ratio g of −10 dB is employed, and the featured

SNR characterizes the cumulative channel SNR. This encompasses the entirety of

the LDM signal power paired with the channel AWGN noise power. Different data

rate combinations for the CL and EL are tested. The CL data is stabilized at 192 bits
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(16 QAM) per frame, with EL data varying between 192 bits (16 QAM), 240 bits (32

QAM), and 288 bits (64 QAM). Notably, CL performance remains consistent regard-

less of the EL data rate alteration. A BER of 10−4 is registered at an approximate 22

dB.

Reference [155] explored the CL performance for QPSK combined with robust

LDPC coding of 4/15, achieving this same BER at 7 dB. Their results for the EL per-

formance for 64 QAM stood at 20 dB. Meanwhile, in [156], Binary Phase-Shift Keying

(BPSK) was employed for the CL alongside 1/8 Turbo coding for error rectification

and QPSK for EL with 1/2 turbo coding, culminating in comparable performances

at 1 and 15 dB respectively. A parallel EL performance was observed at around 40

dB channel SNR for an uncoded OFDM system in the developed model. The de-

mands for a much higher SNR are attributed to the absence of error rectification

capacity, focusing primarily on gauging the inherent performance of LDM. There is

also a consistent requirement of roughly 15 dB higher SNR for EL as compared to

CL. Performance undergoes degradation as the data rate elevates. Figure 3.10 delin-

eates the necessary channel conditions for different receivers, signifying that the CL

receiver can withstand suboptimal transmission locales with low SNR. In contrast,

the EL receiver necessitates an optimized coverage region to ensure successful data

detection.

The BER performance of CL at lower SNR works well for small IoT devices as

they will be distributed among different places with different channel condition.

On the other hand, ELs needs higher SNR values, as seen in Figure 3.10, which is

more suitable for UE. Therefore, this framework can take advantages of different

requirements and conditions. Moreover, the theoretical BER values of CLs matches

closely with simulation values as seen in Figure 3.7.

Channel capacity distribution between the LDM data layers is evaluated using

(3.20), (3.21) and (3.22). Figure 3.11 shows the total channel capacity distribution

between the LDM layers without any loss of total channel capacity. Another key

point of this is a non-linear distribution of channel capacity between data layers.

The distribution is controlled by the power ratio of the data layers. The CL capacity

herein is higher than that in the EL. However, it gets saturated with an increase in

SNR. This distribution works well for IoT devices in the usage model as the devices
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FIGURE 3.11: Channel capacity distribution between CL and EL

are assumed to be in different locations, which can cause bad channel conditions

for some devices. Due to the robustness of the CL against the channel conditions,

it can be used to serve all IoT devices. Moreover, the CL capacity is lower, which

also fits with the IoT devices data requirements assumed in the usage model. On

the other hand, the EL has a very low capacity at lower SNR. The capacity of EL

increases significantly as the SNR values improve. EL has most of the available

channel capacity in good channel conditions. The users can be served using EL as

long as it meets both the network condition and requirement.

The LDM CL and EL data are simulated with Rayleigh fading channel expressed

in (3.8). The number of paths affects the receiver performance significantly. The

overall performance is worse in comparison to that of the AWGN channel as ex-

pected. Therefore, to achieve a better performance, transmitted data rate is lowered,

using a lower QAM constellation of 4 QAM for CL transmission and up to 16 QAM

for EL transmission.

Figure 3.12 presents the performance of CL and EL with different data rates for

EL set against a backdrop of multi-path Rayleigh fading. This simulation contem-

plates 10 multi-path signals. The performance trajectory of both LDM layers mir-

rors observations from the prior AWGN channel simulation. Specifically, the EL de-

mands a substantially elevated SNR to match the performance standards of the CL.

Yet, the disparity in SNR between the CL and EL to achieve analogous BER metrics
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FIGURE 3.12: BER performance of core and EL for Rayleigh fading
channel

is broader than in the context of the AWGN channel. Consequently, the inference

drawn is that the fading channel exerts a more pronounced effect on the EL data.

FIGURE 3.13: BER vs no. of fading paths for CL

Further insights are gleaned from Figure 3.13, which delineates the influence of

path quantity on the CL performance. A fixed BER at 15 dB SNR for 4 QAM data

transmission is utilized for this analysis. The data suggests that BER experiences

enhancement as signals from a greater number of paths are introduced, as illustrated

in Figure 3.13. Nonetheless, while initial increments in paths render a pronounced

boost in performance, subsequent additions yield diminishing returns.
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3.6 Impact of Receiver Mobility on Link Sustainability of

LDM Pair

In this section, an initial mobility model for UE is introduced, under the assump-

tion that IoT devices remain at a fixed location. An algorithm has been formulated

to modify the PA, aiming to augment the UE-IoT pairing as the channel conditions

for UE change due to mobility. Subsequently, this model is expanded to accommo-

date mobility of IoT devices. A corresponding analytical model is crafted to assess

the repercussions on the sustainability of the LDM pair, particularly when the pair

features varied mobility configurations.

3.6.1 User Mobility model

FIGURE 3.14: UE surface mobility model

The mobility of UE users (served by the EL) is taken into account, while IoT

devices (which are catered to by the CL) are assumed to maintain a fixed position.

Consequently, the channel condition for the IoT devices remains consistent, but that

of the UE varies over time. Figure 3.14 illustrates the trajectory of UE, moving from

its starting position to its endpoint, maintaining a LoS communication with the BS.

The BS is positioned at the coordinates (xb, yb). The UE’s starting point is set such

that it forms a 0-degree angle with the outgoing signal, located at (x1, y1). Given

that the UE relocates at a random velocity v over a duration t, the span d between

the initial and concluding locations of UE can be articulated as:
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d = v t (3.24)

The UE is assumed to move at a random angle ϕ to the (x2, t2) after time t. Then the

final position of UE is calculated using

x2 = x1 + d cos(ϕ) (3.25)

and

y2 = y1 + d sin(ϕ) (3.26)

The coordinates of BS and UE is now known. The distance between the initial and

final location of UE and with BS is measured by

d =
√
|(x1 − x2)|2 + |(y1 − y2)|2 (3.27)

At the final position, the angle between BS and UE is taken as θ as shown in Figure

3.14. The distance between BS and UE initial and final position is calculated using

(3.27) and from that, θ is measured as

θ = cos−1

(
l2
initial + l2

final − d2

2linitial lfinal

)
(3.28)
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Given that xt represents the power dispatched from the BS, with np denoting the

white noise power and h characterizing the channel fading. The path-loss, Lp, is

determined using (3.11), factoring in the distance between the BS and the UE. Con-

sequently, the SNR is computed as:

ρ =
xt h cos θ

np Lp
(3.29)

where h is the time selective fading coefficient.

h(t) =
L−1

∑
i=0

ai e−j 2 π fc τi ej 2 π fdt (3.30)

Given the established relationship, the channel fading parameter, h, can be deter-

mined from the carrier frequency fc and the velocity of the devices, which gives rise

to the Doppler frequency fd. It is assumed that the initial SNR for the UE is ρ1. The

data for the UE is dispatched using the EL, and the PA is derived based on both ρ1

and the network conditions of the IoT devices. As the UE begins to relocate from its

initial position, its SNR begins to fluctuate. Every t time units, the BS recalibrates

the PA based on the SNR observed at the UE. Algorithm 1 has been devised for the

BS to execute this function.

As the UE moves through space, its channel condition changes. Algorithm 1

helps the system to decide a suitable action. It adjust the PA, as shown in the al-

gorithm. If the UE’s network condition does not meet the SNR values’ minimum

requirement, the system will break the LDM pair. After dissociating the LDM pair,

the system can form a new LDM pair or use orthogonal multiplexing with a single

traffic channel to serve that UE if the UE has better transmission from another BS or

has a better channel condition. The system can then find another set of IoT devices

in the new transmission range and form a new LDM pair. However, if these are not

possible, the system will dedicate a traffic channel for users until such configuration
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Algorithm 1: Adaptive PA to improve link sustainability of LDM pair
Data: xt, hue1 (from pilot data), np, ρmin (Min required SNR for UE), ρ1 (initial

SNR of UE), BS location (xb, yb), UE trajectory from (x1, y1) to (x2, y2)

with random angle ϕ and distance d1, initial angle θ0 = 0 between BS

and UE

Result: Adaptive configuration of LDM pair

// Computations

Compute Distance using (3.27);

Compute Linitial (distance from BS to UE1 initial position);

Compute Lfinal (distance from BS to UE1 final position);

Compute d (distance from UE1 initial to UE1 final position);

Compute θ using (3.28) for UE final position;

Compute ρ2 using (3.29) for UE final position;

// Decision Process

while ρmin < ρ2 do

if ρ2 > ρ1 then

Decrease the value of g;

else if ρ2 = ρ1 then

Maintain same PA;

else

Terminate the LDM pair;
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is found.

The mobility of the UE and its effect on the SNR are critical factors in determining

how long the UE can sustainably be served by the BS using LDM EL. The param-

eter ρmin signifies the threshold, below which the quality of the link might not be

sufficient for a reliable connection.

When the UE moves along a fixed trajectory, its distance from the BS changes,

which in turn alters the SNR. Considering that the UE can move either vertically

(along the y-axis) or horizontally (along the x-axis), it is essential to evaluate how

long the SNR remains above the ρmin threshold in each scenario.

UE moves vertically: Consider a UE traveling a distance d perpendicular to the

beam direction, i.e., along the y-axis, at a constant speed v. The final position of

the UE is given by (x1, y1 + d). Given the assumption of knowledge regarding the

initial position of the UE, both Lfinal (final distance from the BS) and θfinal (angle

between the BS and the UE’s final position) can be derived using (3.27) and (3.28),

respectively, as functions of d.

By referring to the relationship outlined in (3.24) and factoring in the known ve-

locity v, both Lfinal and θfinal can be described in terms of time, t. By utilizing the

equation below for a given SNRmin, the duration t it takes for the UE to reach the

threshold condition can be determined from (3.31). This time duration t indicates

the minimum period the UE can be accommodated using LDM EL before the signal

quality becomes untenable.

cos θ

Lp
=

ρmin np

xt h
(3.31)

UE moves horizontally: Consider a UE that moves d distance along with the beam

direction (x-axis) at a fixed velocity v. Then, the final location of UE can be written as

(x1+ d, y1). As in the previous condition the L f inal and θ f inal can be calculated using

(3.27) and (3.28) as a function of time (t). With these values, similar to the minimum

time calculation, the maximum time can be measured using (3.31).
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3.6.2 IoT Mobility Model

IoT devices are assumed to be distributed randomly over the entire transmission

area. Unlike users, IoT devices can start with any random angle θ1 with transmission

direction. Moreover, the relatively lower SNR requirement of CL is important as the

IoT devices can be in a poor channel condition due to their position as well as smaller

antenna gain. Figure 3.15 shows the mobility of IoT devices from an initial position

to a final position with an LoS communication between the BS and IoT. The BS is

assumed to be located at position (xb, yb).

FIGURE 3.15: IoT surface mobility model

The initial IoT location is assumed to be at (x1, y1). Then the initial distance Linitial

can be calculated using (3.27): And θ1 is calculated as:

θ1 = cos−1

(
l2
initial + x2

1 − y2
1

2linitial x1

)
(3.32)

If the device moves at a random speed v at a random angle ϕ for a time t to reach
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its final position, then the distance between IoT’s initial and final position d and the

final coordinates can be calculated using equation (3.24), (3.25) and (3.26).

The coordinates of BS and IoT is now known. The distance between the initial

and final location of IoT and with BS can be measured using (3.27). At the final po-

sition, the angle between BS and IoT is taken as θ2 as shown in Figure 3.15 which is

calculated as:

θ2 = cos−1

(
l2
final + x2

2 − y2

2lfinal x2

)
(3.33)

The SNR at the IoT receiver can be calculated using the same (3.29) following the

same steps of UE.

The range of IoT device’s initial position

When forming an LDM pair, both UE and IoT devices must be within the coverage

area. Since the transmission is directed towards the UE, it is essential to determine

the boundary condition for the IoT device that will ensure its inclusion within the

transmission angle. For simplification, assuming the BS location as (0,0), the initial

distance between BS and IoT is described as:

Linitial =
√
(xb − x1)2 + (yb − y1)2

=
√

x2
1 + y2

1 (3.34)

Using (3.32) and (3.34), the following relation is derived:
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cos(θ1) =
L2

initial + x2
1 − y2

1
2 Linitial x1

(3.35)

=
x2

1 + y2
1 + x2

1 − y2
1

2 Linitial x1

=
2 x2

1
2 Linitial x1

=
x1

Linitial
(3.36)

For the IoT device’s initial position to be within the transmission area, the maximum

value of θ1 can be θmax = Beamwidth/2. For this θmax angle, the maximum value of

the initial y position from a given x position using (3.36) is derived below.

cos(θ1)

x1
=

1
Linitial

Linitial =
x1

cos(θ1)

x2
1 + y2

1 =
x2

1
cos2(θ1)

y2
1 =

x2
1

cos2(θ1)
− x2

1

y1 =

√
x2

1
cos2(θ1)

− x2
1 (3.37)
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Equation (3.37) gives the maximum limit on the initial y position for IoT device for

any given x value and transmission beamwidth.

3.6.3 Receiver Movement Patterns

The movement pattern of users can differ significantly depending on the area. Three

distinct UE groups are considered, each representing a unique type of mobility. This

movement is visualized on a 2D plane, where the X and Y axes mark the distance

from a reference point. To identify the most suitable model for specific situations,

various mobility models are explored. Three mobility models are evaluated for both

UE and IoT devices, with their combined positions in the transmission scenario de-

picted in Figure 3.16

FIGURE 3.16: UE-IoT mobility model

Random Waypoint Mobility Model

This mobility model represents static to low movement in urban and rural areas,

specifically tailored for non-motorized movements such as walking, running, and

cycling. The speed of users in this model is assumed to fall within the range of

0 to 10 kph, with their directional angle spanning from 0 to 360◦. The movement

pattern is random in both speed and direction, as both can change unpredictably

at any time [157]. The model assumes that devices adjust their speed after every t

time interval and modify their direction after every 100 meters, as detailed in Ap-

pendix A-1. This assumption is based on the reasonable approximation of average

distance a person covers before potentially changing direction. Choosing a shorter
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distance for direction changes in the simulation could lead to scenarios where indi-

viduals appear to change directions too often, creating patterns of movement that

seem random or without purpose. This does not align well with typical pedestrian

behaviour, which usually shows more intentional and straight-line movement. The

chosen distance of 100 meters offers a balanced approach, making sure that the sim-

ulated movement patterns are both realistic and accurately reflective of how people

typically move in urban and rural environments.

Manhattan Mobility Model

This model refers to the urban street movement for motorised vehicles [157]. The

roads are assumed to be in a grid design, and the change of direction can only be

a multiple of 90◦. The block lengths are assumed to be 200 meters for this work,

which means the receiver can change direction every 200 meters with a speed range

between 10 to 40 kph (Appendix A-2).

Freeway Mobility Model

This model represents motorised movement on the motorway. The UE speed is

assumed to be between 40 to 100 kph. Moreover, as the motorway’s vehicle does

not take turns frequently and moves freely via a single road at a higher speed, the

movement is assumed to be unidirectional for a short time frame. Therefore, a linear

movement model is considered for these devices (Appendix A-3).

3.7 Evaluation of link Sustainability for Mobile Receivers

Section 3.5 outlined the transmission prerequisites for both IoT and UE. Using these

benchmarks, the mobility model is assessed concerning sustainable link duration,

a crucial Key Performance Indicator (KPI) for the proposed framework’s effective

transmission. In unicast transmission scenarios, brief link durations can lead to no-

table degradation in transmission quality, stemming from frequent LDM pair forma-

tions and terminations.

Initially, the influence of UE mobility on link time is examined, incorporating

the PA Algorithm 1 to bolster link sustainability. Subsequent findings focus on the
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interplay between PA, transmit beamwidth, and initial UE distances. Such insights

pave the way for crafting optimal LDM pairs based on the UE mobility model and

position. Lastly, a holistic system evaluation, considering combined mobility with

a static PA, aims to discern the individual impacts of UE or IoT mobility from all

mobility groups on link time. The simulation parameters are summarised in Table

3.2.

TABLE 3.2: Mobility simulation parameters

Parameter Values

Carrier frequency, fc 6 GHz
Transmit SNR 30 dB
Min required SNR at UE 25 dB

Random Waypoint
Speed, s [0, 10] kph
Angle, ϕ [0, 360]◦

Manhattan
Speed, s [11, 40] kph
Angle, ϕ {0, 90, 270, 360}◦

Freeway
Speed, s [41, 100] kph

3.7.1 Impact of UE mobility on Link Time

FIGURE 3.17: Impact of initial UE distance on link sustainability for
random waypoint mobility model
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FIGURE 3.18: Impact of initial UE distance on link sustainability for
Manhattan mobility model

FIGURE 3.19: Impact of initial UE distance on link sustainability for
Freeway mobility model

The sustainable link time for different initial positions of UE is illustrated in Fig-

ures 3.17, 3.18, and 3.19. The results underscore the significant influence of the mo-

bility of the UE on these outcomes:

• Low Mobility: For users with limited movement, the sustainable link time can

last up to 18 minutes before necessitating the termination of the LDM pair.

• Medium Mobility (Urban Street Movement): The link time in this scenario

diminishes substantially, offering a maximum of 3 minutes.
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• High Mobility (Highway Users): For these users, the sustainable link time

dips even more drastically, affording a peak duration of 0.3 minutes.

This data highlights the suitability of LDM predominantly for users with low

mobility. Additionally, the findings suggest the feasibility of creating a predictive

model, grounded on the UE’s initial distance and mobility pattern. This model could

serve as a pivotal tool in prioritizing users during the initiation of a new LDM pair.

An intriguing pattern emerges from Figure 3.18, where there is consistent perfor-

mance across varied beamwidths when the distance between UE and BS surpasses

620 meters. This consistency implies the potential for using a narrower beamwidth

in such circumstances without compromising the sustainable link time.

Interestingly, for all three mobility categorizations, the sustainable link-time graph

manifests a wave-like trend rather than a straightforward decline. An initial increase

in sustainable link-time is observable as the UE drifts further from the BS. However,

upon reaching an optimal range, the sustainable time initiates its descent. This op-

timal range, which yields the maximum sustainable link time, consistently hovers

around an initial distance of 300-400 meters between UE and BS for all mobility

models.

Equation (3.29) shows that the performance depends on two primary parame-

ters, namely angle (θ) and path loss (lp), which depend on the UE’s final distance

from the BS. In order to find out the impact of the UE’s initial distance from BS (l)

on both these parameters, all other values are assumed to be fixed. Then from (3.25)

and (3.26), the following equation is obtained:

x2 = l + dc1 (3.38)

Assuming x1 = l, cos(ϕ)=c1 and l is the initial distance between the UE and BS y2 is

calculated as:

y2 =
d
c1

(3.39)
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Using (3.27), (3.38) and (3.39), the distance between UE’s final location and BS is ex-

pressed as

LFinal =

√
l2 +

d2

c2
1
+ d2c2

1 + 2dc1l (3.40)

The free space path loss is then derived as

Lp =

(
4πd f

c

)2

=

(
4π f

c

)2

(LFinal)
2

= k
(

l2 +
d2

c2
1
+ d2c2

1 + 2dc1l
)

(3.41)

The change in the path loss with respect to the change in l can be derived from the

derivative of (3.41) as

dLp

dl
= k(2l + 2cd) (3.42)

Equation (3.42) shows that the path loss increases as the UE’s initial distance in-

creases. So, when the users are far from the BS, the path loss plays a more dominant

role on the sustainable link time. Now, the angle between the final UE location and

BS θ can be calculated using
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θ = cos−1

(
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1
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1
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= cos−1 ( f (g)) (3.43)

where,

f (g) ≜
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c2
1
+ d2c2

1 + 2ldc1 − d2

2l
√

l2 + d2

c2
1
+ d2c2

1 + 2ldc1

(3.44)

Equation (3.45) is obtained by differentiating f (g) with respect to l.

f ′(g) =
4l + 2dc1

2l
√

l2 + d2

c2
1
+ d2c2

1 + 2dc1l
−

2l2 − d2 + d2
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1
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2l2
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c2
1
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−
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(
2l2 − d2 + d2

c2
1
+ d2c2

1 + 2dc1l
)

4l
(

l2 + d2

c2
1
+ d2c2 + 2dc1l

)3
/2

(3.45)

Finally, differentiating θ with respect to l yields

dθ

dl
=

− f ′(g)√
1− f (g)2

(3.46)
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FIGURE 3.20: Initial distance vs rate of change in θ

Equation (3.46) presents the influence of l on the variation in θ. The simulation

outcome of (3.46) is depicted in Figure 3.20. This figure indicates that the variation in

θ is inversely proportional to l. As l continues to escalate, a diminished θ is observed

for an identical user movement. Interestingly, for various displacement values, a

consistent pattern emerges. In each of the three cases presented, the results seem

to stabilize around a range of 300 − 400 meters. Such a trend implies that when

l is minimal, θ significantly impacts the UE received SNR. Conversely, as l grows,

path loss becomes the overriding determinant. This phenomenon accounts for the

wave-like performance observed in Figure 3.17, 3.18, and 3.19.

Figure 3.21, 3.22, and 3.23 illustrate the influence of transmission beamwidths on

the sustainable link time for three distinct initial UE positions. Consistent with pre-

vious results, the optimal performance is achieved at 400 meters across all mobility

groups. Furthermore, performance appears to enhance with increasing transmis-

sion beamwidth, offering an enlarged transmission area for users. Nevertheless, as

the transmission beamwidth continues to grow, the increase in sustainable link time

does not remain consistent across all scenarios. For an initial position of 200 meters,

there is a more pronounced rise in sustainable link time at larger beamwidths, as ev-

idenced by the steep ascent of the blue line after 40 degrees in Figure 3.21 and 3.22,
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FIGURE 3.21: Impact of transmit beamwidth on link sustainability for
Random waypoint mobility model

FIGURE 3.22: Impact of transmit beamwidth on link sustainability for
Manhattan mobility model

and a lesser incline in Figure 3.23. Conversely, at a 600 meters starting point, an in-

verse trend is observed: the gain in performance diminishes with further widening

of the beamwidth. This behavior results in intersections between the blue and yel-

low lines in Figure 3.21 and 3.23, while in other figures the blue line nearly matches

the performance of the red line. These observations are consistent with the patterns

identified in Figure 3.20, where minimal variation in θ is noticed beyond 400 meters,

even with increasing l. Such insights are invaluable for designing MIMO beamform-

ing for LDM transmission. Employing a broader beam transmission is more suitable

when the UE is proximal to the BS. In contrast, as the UE recedes, a more narrow
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FIGURE 3.23: Impact of transmit beamwidth on link sustainability for
Freeway mobility model

beam can be employed.

3.7.2 Impact of Singular & Combined Mobility on Link Time

The impact of both singular and combined mobility is evaluated from the developed

model. The performance of the LDM pair was assessed in terms of link sustainability

across various mobility models and transmission beamwidth combinations.

In the first scenario, the UE is assumed to remain static, while the IoT device

exhibits mobility. The x position of the IoT devices spans from 0 to 500 meters and

is selected randomly during each iteration. The range of the y position is computed

using the given transmission beamwidth, the value of x, and the (3.37).

For the second scenario, a similar simulation is executed for the movement of the

UE, under the assumption that the transmission angle is determined based on the

initial position of the UE. Additionally, in the final setup, both the IoT and UE were

concurrently moved to evaluate the sustainable link duration.

The random way-point and Manhattan models were also integrated to evaluate

the link sustainability. Such comparisons will enable the system to form LDM pairs

with greater efficiency, contingent upon the mobility category of the receivers. No-

tably, both models are indicative of urban environments, while the Freeway mobility

model caters to motorway movement.
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FIGURE 3.24: Singular and combined mobility vs link time for Ran-
dom waypoint mobility model

FIGURE 3.25: Singular and combined mobility vs link time for Ran-
dom waypoint (IoT) and Manhattan (UE) mobility models

In both Figure 3.24 and 3.25, the IoT devices move according to the random way-

point mobility model, while the mobility model for users is varied. In Figure 3.24,

both IoT and UE devices belong to the same mobility group. User mobility exerts

a minimal impact on pair sustainability since UE initial position is at the centre of

transmit beam. The IoT devices exit the transmission area more frequently. There

exist scenarios where the initial position of the IoT devices is at the network’s edge,

leading to a quicker termination of the LDM pair. The cumulative results exhibit a

trend akin to the IoT mobility, and as anticipated, the combined mobility yields a re-

duced sustainable link duration. In Figure 3.25, the UE operates on a more dynamic
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mobility model and thus performs inferiorly to the IoT. A similar pattern emerges

in this instance as well, where the combined mobility results in shorter durations

than the UE mobility. Based on these findings, it is evident that optimum pairing

would involve IoT devices and users from the same mobility group. If not, the sys-

tem would need to identify a new device for pairing once one of the paired devices

ventures out of the effective range.

FIGURE 3.26: Singular and combined mobility vs link time for Man-
hattan mobility model

FIGURE 3.27: Singular and combined mobility vs link time for Man-
hattan (IoT) and Random waypoint (UE) mobility models

In both Figure 3.26 and 3.27, the Manhattan mobility model governs the move-

ment of the IoT devices, while different mobility models dictate the motion of the
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UE. In Figure 3.26, akin to the scenario involving the random way-point mobility

model, the UE remains within the transmission area for a notably extended dura-

tion. With a 120 degree transmission angle, the UE mobility yields nearly double the

link sustainability time compared to the IoT mobility. Figure 3.27, however, presents

a similar set of outcomes with a notable exception. Contrary to the other results,

the combined mobility closely matches the IoT mobility in this case. This pattern

emerges due to the discrepancy in the link sustainability time between UE and IoT

mobility. Given that the UE mobility offers a much lengthier sustainable link du-

ration, the pairing typically needs termination owing to the IoT device’s network

constraints. Such observations can guide the BS to monitor the condition of one

device more frequently, depending on their mobility model, thereby reducing com-

putational burdens and enhancing overall efficiency.

TABLE 3.3: Summary of link sustainability for all mobility models

Mobility Model IoT User Both Ratio IoT Ratio User

Random Waypoint 4.49 9.02 3.1 0.69 0.34
Random Waypoint-Manhattan 4.49 1.58 1.09 0.24 0.68
Manhattan 0.78 1.59 0.54 0.7 0.34
Manhattan-Random Waypoint 0.77 9.05 0.76 0.98 0.08
Freeway 0.15 0.21 0.1 0.64 0.46

FIGURE 3.28: Singular and combined mobility vs link time for Free-
way mobility model

In Figure 3.28, both the IoT device and UE follow the freeway mobility model.
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With both devices moving at higher speeds, the sustainable time is significantly re-

duced compared to the urban scenarios. However, the disparity in performance

between IoT and UE devices is narrower in this context. For future work, other

technologies like beam-following might be employed to enhance performance, es-

pecially since the movement is unidirectional and predictable. Table 3.3 presents a

comparison of link sustainability at a 60 degree transmission angle across all five

transmission scenarios. When both devices belong to the same mobility group, IoT

devices tend to exit the range before the UE. The table indicates that, if the disparity

between UE and IoT sustainability becomes too vast, the gap between IoT and com-

bined mobility performance narrows. This understanding of established patterns

can guide the BS during LDM pairing, leading to the formation of more efficient

IoT-UE LDM pairs, potentially enhancing LDM performance in upcoming wireless

networks.

3.8 Summary

3.8.1 Contributions

The chapter provides a thorough analysis of the LDM-OFDM system model, demon-

strating its effectiveness for IoT and UE. Key highlights include the alignment of ana-

lytical models with simulations across different QAM orders, validating the model’s

reliability in evaluating the LDM CL’s performance. The chapter also delves into

the surface positioning model for tracking receiver movement and optimizing per-

formance based on QAM orders and SNR values. An adaptive PA algorithm is in-

troduced, enhancing unicast service delivery and enabling the BS to make informed

decisions about the LDM pair termination. The model’s adaptability is further show-

cased in capturing essential parameters for IoT mobility.

3.8.2 Limitations

Despite its strengths, the model has several limitations. The analytical model pri-

marily focuses on the CL and its interference with the LL, with a fixed PA for the LL,
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suggesting the need for a more versatile approach. The model’s current channel rep-

resentation is basic and does not include specific environments like urban or rural

settings, nor does it account for multi-antenna propagation. Additionally, the mobil-

ity model does not align with the latest 3GPP guidelines, lacking considerations for

LoS/NLoS and multipath count in various environments. The PA algorithm, mainly

centred on the EL layer channel condition, indicates a requirement for a broader ap-

proach, especially for multi-layer deployments.

3.8.3 Future Work

The subsequent chapter, Chapter 4, will address these limitations and explore en-

hancements. It will focus on developing a comprehensive N-NOMA aided 5G phys-

ical model, coupled with a more robust BER analytical model for N-NOMA that

incorporates interference from both ULs and LLs. Future investigations will also

consider advanced physical layer techniques like channel coding and MIMO pre-

coding. Moreover, the next chapter, Chapter 5, aims to integrate feedback-driven PA

and adapt the model to encompass various environmental conditions, enhancing the

model’s robustness and applicability to diverse scenarios.
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Chapter 4

Design & Evaluation of N-NOMA

on NR Physical Layer for 5G &

Beyond

4.1 Introduction

This chapter delves into the integration of N-NOMA into a 5G NR compliant transceiver

model, aiming to reveal the full potential of the NOMA technology in practical sce-

narios. An N-NOMA-aided 5G NR physical layer design is proposed, where a sim-

plified N-NOMA multiplexer with a one-shot multiplexing technique is developed

to reduce transmitter complexity and potential delay for processing the additional

NOMA layers. This design offers a new perspective for the NOMA technology to

address various challenging use cases, such as mMTC and Enhanced Mobile Broad-

band (eMBB) under low SNR regimes. Then, in order to provide a comprehensive

error performance evaluation of the proposed N-NOMA physical layer design, var-

ious system configurations, e.g., different Modulation and Coding Schemes (MCSs)

with LDPC code and different MIMO settings are taken into account. During the

evaluation of the proposed design, some key factors missing from the existing BER

analytical models in the literature is identified, e.g., the imperfect SIC. The derived

BER expressions capture the effect of the SIC errors, which is consistent in the devel-

oped analytical and simulation performance comparison. Through the simulation,

the link-level performance of the proposed physical layer design is comprehensively

evaluated and discussed.
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Over time, extensive literature [14–17, 158, 159] has developed on exploring the

intricate nature of the NOMA-based transmitter and the effect of variable channel

conditions on system performance, which motivates to consider a new transceiver

design, incorporating a series of NOMA functionalities to a 5G NR-complaint phys-

ical layer to enable heterogeneous services over a common channel. The authors of

[160] combined spatial modulation with MIMO and LDM, suggesting that increas-

ing the MIMO order could potentially enhance the delivery of broadcast/multicast

services. However, the model does not incorporate key elements such as LDPC for-

ward error correction and practical MIMO channel modelling. In [83] it suggested

that using low-rate LDPC codes in the UL improves the overall performance and

achieves higher transmission efficiency. Motivated by these research gaps, this study

consider a practically novel transceiver model, incorporating a series of NOMA

functionalities for heterogeneous services to a 5G NR-complaint physical layer, in-

cluding MIMO precoding and LDPC coding, with TDL or CDL channel model. The

proposed NOMA physical layer processing chain follows the structure of LDM, ex-

tracted from the 2 layer LDM-OFDM structure from Chapter 3. Critical NOMA

techniques for incorporation and integration is also considered, including symbol

rate synchronisation by aligning signals and optimal placement of NOMA physical

layer processing functions in the 5G transceiver chain, to reduce latency and com-

plexity.

While the two data layers LDM or NOMA structure remains limited capacity

to support services such as mMTC and eMBB with massive concurrent users, (N-

NOMA) (> 2) can play a significant role here to enhance system capacity [83]. In

recent work, Kim et al. [83] explored the potential of a time-shared 3-layer LDM

system for ATSC 3.0, and tested various multi-layer systems and investigated their

capacity enhancement potential. The time-shared 3-layer NOMA is a way to pro-

vide 3 services using a 2-layer LDM design where the LL is shared between two

services due to the performance degradation and complexity associated with ver-

tical integration. However, the integration of N-NOMA, e.g., more than 2 layers,

will introduce severe challenges to the practical system, e.g., the requirement of

high transmission power and the increased complexity of the transceiver design. As

demonstrated in [30, 82], adding more NOMA layers, while possible, the minimum
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SNR requirement increases, which is challenging in practical scenarios, particularly

if the microWave/mmWave spectrum is used. Compared to previous generations,

5G NR physical layer performance at low SNR regimes offers a higher QoS owed to

the inclusion of technical enablers such as LDPC and MIMO. It is of great interests to

see if a combination of NOMA and NR technologies can reduce the minimum SNR

requirements when adding new layers. On the other hand, the work in [12] showed

that the complexity at the transmitter side arises from data processing, NOMA mul-

tiplexing, PA, and user grouping. The main issues at the receiver side are the mul-

tiple SIC operations (n − 1) SIC operation for the nth data layer) and maintaining

the minimum SNR levels for successful signal detection [161]. Resource allocation

in N-NOMA transmission is a complex problem concerning PA and user pairing as

data layers increase [59, 162, 163].

The motivation is not only to explore the feasibility of N-NOMA in conjunction

with 5G NR technical enablers, but also potentially address some key implementa-

tion issues of the N-NOMA-aided physical layer. For example, one of the draw-

backs of including more NOMA layers in a standard sequential combiner is the

added complexity of the additional signal processing functions [83]. This chapter

presents the design of a one-shot technique that multiplexes all NOMA layers using

a single function. Another example is that, during the SIC operation, an imperfect

detection of higher layer data can add interference to the LL signal. This important

parameter has not been considered in the previous BER analytical models, leading

to an overoptimistic estimation of error. As the scale of the NOMA order increase,

the estimation becomes even more deflated with the SIC operation in the system.

An accurate BER analysis, essential for validating NOMA architectures in practice,

should incorporate the impact of SIC into the error modelling, e.g., considering both

residual and non-residual errors in case of the perfect or imperfect SIC, respectively.

In [164], a closed form BER was derived for NOMA with receiver diversity for sev-

eral modulation orders. However, the authors did not capture the impact of SIC in

their proposed solution, and they assumed a single antenna transmission which has

certain limitations in 5G. The authors in [162] derived a theoretical BER expression

for N-NOMA-QAM with equal power distribution between data layers. However,
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they did not considered OFDM or MIMO processing in their expression. Further-

more, although they explored SIC operation for the BER performance, they did not

quantify the additional interference caused by the imperfect SIC, or as defined in

this study, non residual errors. With the above in perspective, the aim is to derive

a closed-form BER analytical expression by accounting for both residual and non-

residual errors from SIC at the receiver, incorporating MIMO gain, using TDL/CDL

model and thus expanding its scope. The method used to determine the error prob-

ability is based on the Q function estimation. In this context, an uncoded OFDM

system is assumed, along with Gaussian distributed interference for both residual

and non-residual errors.

The structure of the remainder of this chapter is as follows: Section 4.2 pro-

poses a system model incorporating a 2-layer NOMA-aided 5G physical layer and a

transceiver model. This model is extended in Section 4.3 into an N-NOMA transceiver

model, allowing the transmission of over 2 data layers using a single traffic chan-

nel. This model is further simplified to reduce latency and complexity. Section 4.4

presents a closed-form BER expression to determine the maximum error for any

layer of data in N-NOMA transmission. The results of the proposed system and

analytical models are presented and evaluated in Section 4.5. Finally, Section 4.6

summarizes findings and future works.

4.2 5G Transceiver Framework Incorporating 2-Layer NOMA

A 2-layer NOMA system, demonstrating the proposed modular physical layer de-

sign, has been developed. This design integrates NOMA-aided transceiver blocks

into the standard 5G NR-compliant downlink data transmission model, as outlined

in 3GPP TR 38.901 [138]. As illustrated in Figure 4.1, besides the standardized

transceiver blocks such as LDPC-based encoding and OFDM modulation, the model

also combines NOMA multiplexing and SIC, MIMO precoding and CDL/TDL chan-

nel models, among other functions.
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FIGURE 4.1: Illustrates a 5G transceiver model integrating a 2-layer
NOMA scheme. The shaded areas denote proposed modifications for
NOMA integration, while the remaining components adhere to the

standard 3GPP 5G transceiver model.

4.2.1 Transmitter Design

5G NR downlink transmitter commonly has the data input (in binary bits) in the

physical layer intended for single-user cases. The design considers multi-user cases,

e.g., with the data streams for two users separated into two data layers (e.g., L1 and

L2) using NOMA multiplexing, which is merged with the standard data processing

chain to combine and transmit data blocks for two independent users using a single

traffic channel.

Since the processing of individual data blocks can be parallelly executed before

multiplexing, the only added latency in the transmitter side is the time required for

NOMA integration. The multiplexing can be achieved on a bit or symbol level, while

for both data layers the length of the processed bit/symbol needs to be identical to

carry out this operation. As such, the challenges of this design are: 1) synchroniz-

ing the bit/symbol rate of both layers before multiplexing and 2) determining the
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optimum position of the NOMA multiplexer in the transmitter chain.

Recall in our system description that two input sources defined as L1 data and

L2 data, which can be expressed as:

xl1 = (xl1,1, · · · , xl1,nl1) (4.1)

xl2 = (xl2,1, · · · , xl2,nl2) (4.2)

where xl1,i, xl2,i ∈ {0, 1}, ∀i, and nl1, nl2 represent the total number of L1 and L2

bits to be transmitted, respectively. To effectively synchronize the symbol rate for

transmission, nl1 and nl2 are derived based on the OFDM transmission symbol rate

ns, which is the number of data symbols in each frame, and the respective coding

rates ρl1, ρl2, and bits per modulated symbol, ml1, ml2, determined by the modulation

order (M) by m = log2 M. The bit rate of both layers is calculated using the following

expressions:

nl1 = ns · ρl1 ·ml1 (4.3)

nl2 = ns · ρl2 ·ml2 (4.4)

Both layers of data are first processed through the DL-SCH Encoding block, where

xl1 and xl2 are encoded according to the coding rates, ρl1 and ρl2. The DL-SCH block

uses LDPC error-correcting encoding, in line with 3GPP TR 38.901 Release 16 [138].

The output of the DL-SCH block can be expressed as follows:

xdl1 = (xdl1,1, · · · , xdl1,ndl1) (4.5)

xdl2 = (xdl2,1, · · · , xdl2,ndl2) (4.6)

where the size nd = (n/ρ) for both UL and LL. Next, xdl1 and xdl2 are modulated

into QPSK or QAM symbols as per PDSCH block. The output is in the following
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format:

sl1 = (sl1,1, · · · , sl1,ns) (4.7)

sl2 = (sl2,1, · · · , sl2,ns) (4.8)

where sl1,i, sl2,i ∈ {s1, s2, · · · , sM}, ∀ Ml1 and Ml2.

Data integration into the NOMA signal could occur at multiple stages within the

5G transmitter framework, leading to varying degrees of complexity and latency.

As both data layers undergo simultaneous processing until they reach the point of

multiplexing, implementing a bit-level NOMA multiplexer reduces the total count

of operational blocks within the transmitter, decreasing the overall computational

complexity. Conversely, symbol-level NOMA multiplexing allows the system to as-

sign different bit rates to each layer, where symbols are synchronized using varying

code rates ρ and modulation orders M. Furthermore, the placement of the NOMA

integration block within the transmitter also determines the location of SIC at the

receiver and the number of additional blocks required for L1 reconstruction. This

factor is crucial in determining the overall latency at the L2 signal detection.

In [15], a symbol level 2-Layer NOMA integration was implemented within a

simplified 5G transceiver model, incorporating a HARQ. Similarly, [165] designed a

low complexity LDM-enabled transceiver model for ATSC 3.0, also applying symbol

level integration. In line with these studies, the NOMA integration block is posi-

tioned after the PDSCH block, representing the earliest data symbol form in the 5G

physical layer as per 3GPP TR 38.901 [138]. This design approach offers the benefit of

individual coding rates ρ and modulation orders M to perform synchronised sym-

bol rates, enabling transmission of different bit rates for each layer while minimizing

latency. In a sense, this is the optimum position for NOMA multiplexer block.

The symbols from both layers are multiplexed together using the following rela-

tion:

sNOMA,i = sl1,i + g · sl2,i (4.9)
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sl1,i and sl2,i are ith L1, L2 QAM symbols, and sNOMA,i is the ith NOMA multiplexed

symbol. The combined data xNOMA can be expressed as:

xNOMA = (sNOMA,1, · · · , sNOMA,ns) (4.10)

Assuming the transmitter is equipped with a uniform linear array pattern of nt an-

tennas each have 0 dBi gain, and its precoding vector is in the form of:

pw = (w1, · · · , wnt) (4.11)

xNOMA is then multiplied with pw to spread the data according to the precoding

weight as:

Xpre = xT
NOMA × pw (4.12)

The matrix that represents the preceded signal from (4.12) can be expressed as fol-

lows:

Xpre =



sp,11 sp,12 . . . sp,1ns

sp,21 sp,22 . . . sp,2ns

...
...

. . .
...

sp,nt1 sp,nt2 . . . sp,ntns


(4.13)
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These signals are then mapped into the resource grid and converted to OFDM-

modulated signals using a series of signal processing blocks (e.g., IFFT, DAC), ready

for radio transmission. The OFDM symbol matrix X can be expressed as:

X =



so,11 so,12 . . . so,1no

so,21 so,22 . . . so,2no

...
...

. . .
...

so,nt1 so,nt2 . . . so,ntno


(4.14)

where the index

no =
Sampling Rate

Non-Uniform Fast Fourier Transform (NFFT) size
(4.15)

is the frequency resolution in Hz.

4.2.2 Channel Model

The most accepted 5G channel models between a transmitter and a receiver with

MIMO and mMIMO transmissions are TDL and CDL models, respectively, as set

by the ETSI TR 138 900 V14.2.0. Both of these channel models are considered in the

system model.

TDL Channel Model

The TDL channel models are defined for a total frequency range from 0.5 to 100

GHz with a maximum bandwidth of 2 GHz. TDL model is useful in MIMO systems

because it captures the effects of multipath propagation, and these channel models

are categorized into TDL-A, TDL-B, and TDL-C to represent different NLoS chan-

nel profiles and TDL-D and TDL-E for LoS channel profile. The channel impulse

response of a TDL channel, h(t, τ) ∈ C, for Ntap number of taps is given by [166]
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h(t, τ) =
Ntap

∑
k=1

ak(t) δ(τ − τk) (4.16)

where ak(t) is α(t)e(−j2π fct) with τk delay and δ(τ − τk) is the Dirac delta function

representing all signals with τk delay [166].

CDL Channel Model

The CDL models are defined for the same frequency range and maximum band-

width and are more suitable for representing MIMO transmission with beamform-

ing. Similarly, CDL-A, CDL-B and CDL-C represent the NLoS channel models,

whereas CDL-D and CDL-E are used to represent the LoS channel models. Each

CDL model can be scaled in delay and angles to achieve the desired RMS delay

spread and angle spreads. The channel impulse response of the CDL channel is de-

scribed in [167]

Hu,s(t, τ) =
N

∑
n=1

M

∑
m=1

(
au,s,n,m

√
Pn

M
δ(τ − τn)

)
(4.17)

where u is the antenna element index of the receiver, s is the antenna element index

of the transmitter, N is the number of clusters between BS and UE, and M is the

number of rays within each cluster. The gain coefficient au,s,n,m is calculated as:

au,s,n,m = fUE,u,n,m fBS,s,n,m (4.18)

where fUE,u,n,m and fBS,s,n,m denote the antenna gains of the antenna elements u and

s in the UE and BS, respectively.

The channel correlation matrix H between no transmission paths and nr received

antenna can be written as:
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H =



h11 h12 . . . h1no

h21 h22 . . . h2no

...
...

. . .
...

hnr1 hnr2 . . . hnrno


(4.19)

Each element of H combines signals of transmit antenna element using (4.16), indi-

cating how related the signals received at different antennas.

4.2.3 Receiver Design

The radio signal is received by nr antenna elements, and the linear channel model Y

can be defined as:

Y = H× X + N (4.20)

where N is the zero-mean variance-σ2 AWGN. The observation matrix Y is expressed

as

Y =



sr,11 sr,12 . . . sr,1no

sr,21 sr,22 . . . sr,2no

...
...

. . .
...

sr,nr1 sr,nr2 . . . sr,nrn0


(4.21)

The receiver first applies a path filter to the received signal Y, synchronizing the time

and mitigating the effects of varying path delays of H. Following channel equaliza-

tion, the signal then proceeds to OFDM demodulation, passing through a channel

filter to reduce noise and path gain. To extract NOMA symbols yNOMA as a vector

from Y, the received signal is processed through timing synchronization, OFDM de-

modulation, channel estimation and equalization blocks, sequentially. The output
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from the channel estimation and equalization blocks yNOMA, is given by:

yNOMA = (sr,1, · · · , sr,ns) (4.22)

The L1 and L2 data are required to be extracted from the received NOMA sym-

bols yNOMA. Unlike the transmitter chain, the receiver can not process both data

layers in parallel due to the SIC operation, which requires the L1 data to be detected

first. To perform the SIC, the L1 data is detected from yNOMA, with the L2 data being

treated as residual interference during this detection phase. Concurrently, yNOMA is

stored in a local buffer for L2 layer detection, which will subsequently be utilized for

SIC during NOMA subtraction.

For the detection of L1, the yNOMA undergoes processing via PDSCH demodula-

tion (L1 layer) and produces encoded L1 bits as:

yl1e = (yl1e,1, · · · , yl1e,ndl1) (4.23)

where yl1e,i ∈ {0, 1} ∀i. The signal is then passed through the L1-DL-SCH decoder

(ge,l1), to remove channel coding and the received L1 data bits yl1 can be expressed

as:

yl1 ← ge,l1(yl1e)

yl1 = (yl1,1, · · · , yl1,nl1)

(4.24)

The received yl1 will be processed using the same DL-SCH and PDSCH encoding

module used for L1 encoding at the transmitter. The reconstructed L1 layer symbols
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yrl1 can be expressed as:

yrl1 = (srl1,1, · · · , srl1,ns) (4.25)

At this stage, both yNOMA and yrl1 are input into the NOMA subtraction, which

executes SIC by eliminating yrl1 from yNOMA. If the reconstructed symbol srl1,i is

different from the original L1 transmit symbol, then the SIC operation adds addi-

tional interference in the L2 symbols, which is defined as non-residual interference.

The result of this SIC operation is subsequently multiplied by (1/g) to compensate

for the L2 power reduction implemented at the transmitter and given by:

yl2s =
yNOMA − yrl1

g
(4.26)

The retrieved L2 symbols can be expressed as:

yl2s = (sl21, · · · , sl2ns) (4.27)

Now, yl2s is demodulated using L2 PDSCH demodulation to extract encoded L2 bits,

as

yl2e = (yl2e,1, · · · , yl2e,ndl2) (4.28)

which will be processed by L2 DL-SCH decoder (ge,l2), to remove channel coding

bits and retrieve L2 data. The L2 received bits can be expressed as:
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yl2 ← ge,l2(yl2e)

yl2 = (yl2,1, · · · , yl2,nl2)

(4.29)

4.3 5G Transceiver Framework Incorporating Multilayer NOMA

FIGURE 4.2: An extended 5G transceiver model, incorporating an N-
NOMA scheme. The shaded areas denote the proposed modifications
for N-NOMA integration, allowing for the multiplexing of N data
layers. The remaining components adhere to the standard high-level

3GPP 5G transceiver model.

In this section, the system model is extend as shown in Figure 4.1 to incorporate

N-NOMA as shown in Figure 4.2. In this design, the N-NOMA multiplexing uses

the same sequential combiner used in [83]. The proposed system model integrates

N data layers into a single channel using NOMA multiplexing. Therefore, the total
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input for the system can be defined as a vector of size ni for the uth data layer, rep-

resented as:

xu = (xu,1, · · · , xu,nu) (4.30)

Each data layer is then processed according to its own DL-SCH and PDSCH con-

figuration, as explained in Section 4.2. The processed data symbols for the uth data

layer can be expressed as:

xsu = (su,1, . . . , su,nsu) (4.31)

Figure 4.2 shows NOMA multiplexing using a sequential combiner technique, which

multiplexes 2 lowest data layers, and then the combined signal is multiplexed with

a third data layer, and so on. An N-NOMA transmission must execute n− 1 mul-

tiplexing blocks following this technique. If the the power ratio between uth and

(u− 1)th data layer is gu, then the combined NOMA symbols xNOMA is expressed

as:

xNOMA = g1(xs1 + . . . + gn−1(xsN−1 + gnsN))

=
N

∑
i=1

[
i

∏
j=1

gj

]
xsi

(4.32)

The NOMA signal can now be processed for transmission according to the 5G phys-

ical layer as described in the previous section.

Using a one-shot multiplexing technique, data symbols from all N layers can be

seamlessly multiplexed, following (4.32). This one-shot multiplexer for N-NOMA



Chapter 4. Design & Evaluation of N-NOMA on NR Physical Layer for 5G &

Beyond
100

FIGURE 4.3: Depicts the one-shot N-NOMA integration in the 5G NR
physical layer, demonstrating the multiplexing of all data layers in a

single block

transmission is shown in Figure 4.3. To test the efficiency of this new multiplexer,

the latency of both system is evaluated and compared in Figure 4.4. These findings

indicate a substantial reduction in latency as additional data layers are incorporated

into the system. For a 2-Layer system, the latency remains the same, as the process

of 2-layer integration is identical in both systems. However, from three to higher

layer multiplexing, the latency from the one-shot multiplexer is significantly lower

than the sequential combiner multiplexer, as shown in Figure 4.4. The implemented

code for the one-shot multiplexer is available in the GitHub repository (Appendix

A-4).

From (4.32), the total power of the transmitted signal is the sum of powers from

each data layer, as:

Ptotal =
N

∑
u=1

[
Pt

u

∏
i=1

gi

]
(4.33)
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FIGURE 4.4: Latency comparison between the sequential combiner
NOMA multiplexing and one-shot NOMA multiplexing, emphasiz-
ing the efficiency of the latter approach. (Simulation device: Intel core

i7-13700K, 32 GB DDR5 (5600 MHz) RAM, NVIDIA RTX 4090 )

The data is transmitted using a single traffic channel following the transmitter model

in Figure 4.2 with the same principle of a 2-NOMA system. The received signal is

initially synchronised and then demodulated to remove the OFDM components and

corrected based on channel estimation while the NOMA symbols are as in (4.22). The

data of the first layer is detected using standard NR PD-SCH demodulation and DL-

SCH decoding blocks, as shown in Figure 4.2. During this signal detection, no prior

knowledge of NOMA data layers is required, and the sum power of all subsequent

layers is treated as noise.

Detecting any uth data layer where u > 1 requires SIC to remove u − 1 layer

symbols from the received NOMA symbols. Therefore the LN data can not be de-

tected before the LN−1 data is detected, and so on. This operation can be explained

for uth data layer using (4.26). The generalised equation for uth layer SIC is written

as:

ysu =
ys(u−1) − yr(u−1)

gu
, ∀ 2 ≤ u ≤ N (4.34)
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4.4 BER Analysis for N-NOMA

This section presents a closed-form error probability expression, incorporating MIMO

gain, using the TDL model and accounting for residual and non-residual errors from

SIC.

4.4.1 Error Probability for M-QAM Transmission

The SER expression for a QAM-OFDM system with AWGN channel can be ex-

pressed as [168]:

Prs ≤ 4 Q

[√
3 γs

M− 1

]
(4.35)

where Q[·] denotes the Gaussian Q-function, and γs represents the SNR of the trans-

mitted symbol, s. In the context of an M-QAM OFDM system over an AWGN chan-

nel with transmit power Pt, the upper bound of error probability is expressed as:

P̂rs = 4

[√
3 Pt

N0(M− 1)

]
(4.36)

where N0 denotes the noise spectral density.

4.4.2 Derivation of the Effective Channel Gain for MIMO Channel

Factoring in the effects of MIMO transmission, the effective channel gain for a phys-

ical layer MIMO system is denoted as Gu. The MIMO transmission channel uses nt

transmit antennas and nr receive antennas. The TDL channel model, as referenced in

(4.16), is employed to compute the spatial channel gain. Initially, the channel matrix

H for nt × nr transmission is formulated. Subsequently, Singular Value Decomposi-

tion (SVD) is applied to determine the total channel gain, Gtotal , at receiver ui.
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Channel Matrix Formation

The process begins with constructing a nr × nt channel matrix H, where the element

hi,j(t, τ) represents channel response at time t with delay τ, expressed as:

hi,j(t, τ) =
Ntap

∑
k=1

ai,j,k(t) e−j2π fcτk (4.37)

where fc is the carrier center frequency, and ai,j,k(t) is the complex gain of the kth tap

between the ith receive antenna and the jth transmit antenna at time t, τk is delay of

the kth tap and Ntap is the total number of taps. The channel matrix H is expressed

as:

H =



h1,1(t) h1,2(t) · · · h1,nt(t)

h2,1(t) h2,2(t) · · · h2,nt(t)
...

...
. . .

...

hnr ,1(t) hnr ,2(t) · · · hnr ,nt(t)


(4.38)

Total MIMO Channel Gain using SVD

To derive the effective channel gain from H, SVD is used to approximate the eigen-

decomposition as follows [169]:

H = U · Σ ·VH (4.39)

where U is an nr × nr unitary matrix, Σ is an nr × nt matrix with non-negative real

numbers on the diagonal, and V is an nt×nt unitary matrix. diag(Σ) = σ1, σ2, . . . , σmin(nr ,nt),
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are the singular values of H and represent the effective channel gains for each spatial

mode in the MIMO system.

The effective channel gains for all spatial modes in the MIMO system is obtained

as follows:

Gk = |σk|2, k = 1, 2, . . . , min(nr, nt) (4.40)

Assuming transmit diversity, the coefficient gains are combined as follows [170]:

Gtotal =
min(nr ,nt)

∑
k=1

Gk (4.41)

Gtotal is incorporated into (4.36) to obtain the impact of MIMO transmission with

transmit diversity as:

P̂rs = 4 Q

[√
3 Gtotal Pt

N0 (M− 1)

]
(4.42)

4.4.3 N-NOMA Interference from UL & LL

In an N-NOMA system that utilizes SIC, the total error probability for a layer is a

function of both non-residual and residual errors that arise from the SIC. Let Eu be

the decoding error event at the uth layer and Cu as the successful decoding event at

the uth layer. Using Bayes theorem, the symbol error probability for the uth layer is

therefore defined using the weighted sum of non-residual and residual error proba-

bility, which can be expressed mathematically as
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Prs;u = Pr{Eu|Cu−1}︸ ︷︷ ︸
Non-residual error

Pr{Cu−1}+ Pr{Eu|Eu−1}︸ ︷︷ ︸
Residual error

Pr{Eu−1} (4.43)

Non-Residual Error Probability

The impact of non-residual noise on NOMA layers can be measured as the condi-

tional error probability that the uth layer symbol is incorrectly decoded, given that

the previous layer, (u− 1), has been successfully decoded. The probability of a cor-

rectly decoded symbol in (u− 1) layer as
(

1− P̂rs;(u−1)

)
, and the interference from

the non-residual error as the sum power of the subsequent NOMA layer is calcu-

lated. The non-residual symbol error probability for uth layer is derived in (4.45) by

considering the transmit power of the uth layer power,

Pu = Pt

u

∏
i=1

gi (4.44)

extracted from (4.33), and the total interference (N0+ non-residual interference).

Pr{Eu|Cu−1}Pr{Cu−1} = 4 Q

√√√√ 3 GuPt ∏u
i=1 gi(

N0 + ∑N
i=u+1 Pt ∏i

j=1 gj

)
(Mu − 1)

 (1− Prs;(u−1)

)
(4.45)

When u = 1, the first layer detection does not have any dependency on the SIC

performance,
[
1− P̂rs;(u−1) = 1

]
calculates the SER for layer 1. In (4.52), interference

from other layers is accounted for in the denominator of the expression inside the

Q[·] by assuming the interference from subsequent data layers to follow a Gaussian

distribution. The interference term
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N

∑
i=u+1

Pt

i

∏
j=1

gj (4.46)

defines the cumulative interference from all other NOMA layers with an index greater

than u. This term is added to the noise spectral density N0 in the denominator, which

improves the quality of symbol error probability estimation.

Residual Error Probability

[Pr{Eu|Eu−1}] is defined as the residual error probability for uth layer ∀ u > 1 when

the (u− 1) layer symbol is decoded incorrectly. To determine the maximum im-

pact of the residual error, the maximum pair-wise distance between the transmitted

and detected (u− 1) layer QAM symbol is considered. Assuming a Square QAM

(SQAM) constellation for (u− 1) layer with transmit power Pu−1, the average sym-

bol power Pavg is expressed as:

Pavg =
2 Pt ∏u−1

i=1 gi

3 (Mu−1 − 1)
(4.47)

The minimum pairwise distance, which is the distance between two adjacent sym-

bols along the axis, denoted as dmin, is calculated from Pavg as follows:

dmin =
2
√

Pavg√
Mu−1 − 1

(4.48)

Figure 4.5 illustrates an SQAM constellation of order M. The maximum pair-

wise distance is the Euclidean distance between diagonally opposite QAM sym-

bols(as represented by points A and B in Figure 4.5). The figure also shows the

distance between two edge points on the axis, denoted as daxis, and given by daxis =
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FIGURE 4.5: Maximum and minimum pairwise distance for SQAM
constellation in Cartesian coordinates.

dmin(
√

M − 1) as there are
√

M points along each axis, and the distance between

adjacent points is dmin. Then the maximum pairwise distance, dmax is derived, as

follows:

dmax =
√

2
(√

Mu−1 − 1
)

dmin (4.49)

Then, the revised right term of (4.49) is
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2
√

2Pavg (4.50)

Substituting the value of Pavg from (4.47) in (4.50), the maximum pairwise dis-

tance for u− 1 layer symbols is derived as:

dmaxu−1 = 4

√
Pt ∏u−1

i=1 gi

3 (Mu−1 − 1)
(4.51)

dmaxu−1 in (4.51) is the interference from the residual error for the uth NOMA layer.

Assuming a Gaussian distribution for dmaxu−1 , this term is added to the denominator

with N0 and residual interference in (4.52) leading to (4.45).

Pr{Eu|Eu−1}Pr{Eu−1} = 4Q


√√√√√√

3GuPt ∏u
i=1 gi(

N0 + 4
√

Pt ∏u−1
i=1 gi

3 (Mu−1−1) + ∑N
i=u+1 Pt ∏i

j=1 gj

)
(Mu − 1)

 Prs;(u−1)

(4.52)

The symbol error probability for the uth NOMA layer is obtained from (4.43), incor-

porating both residual and non-residual error probabilities from (4.52) and (4.45),

respectively. The first NOMA layer, independent of SIC, does not exhibit residual

error. So the generalised expression for the SER for any NOMA layer in a QAM-

MIMO-OFDM transmission in an AWGN channel is derived in (4.53), enhancing

error estimation by accounting for interference from adjacent NOMA layers.
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P̂s;u =



4Q
[√

3Gu Pt ∏u
i=1 gi

(N0+∑N
i=u+1 Pt ∏i

j=1 gj)(Mu−1)

]
, if u=1

4Q

√√√√ 3GuPt ∏u
i=1 gi(

N0 + ∑N
i=u+1 Pt ∏i

j=1 gj

)
(Mu − 1)

 (1− Ps;(u−1)

)

+ 4Q


√√√√√√

3GuPt ∏u
i=1 gi(

N0 + 4
√

Pt ∏u−1
i=1 gi

3 (Mu−1−1) + ∑N
i=u+1 Pt ∏i

j=1 gj

)
(Mu − 1)

 Ps;(u−1),

otherwise

(4.53)

Assuming a Grey coding, the BER upper bound is derived from (4.53) as follows:

Pb;u =
P̂s;u

log2 Mu
(4.54)

The total probability of error from all NOMA layers is then expressed as:

PbNOMA =
N

∑
i=1

Pb;u (4.55)

4.5 Results & Analysis

The outcomes of a comprehensive analysis and link-level simulations of 2-NOMA

and N-NOMA system models using MATLAB are presented. The simulation model

uses standard 5G NR physical layer technologies, such as DL-SCH, PDSCH, LDPC,

and MIMO precoding, in line with 3GPP TR 38.901 [138]. The incorporation of 2- and

multi-layer NOMA within the standard 5G transceiver framework for end-to-end
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link-level simulation was done to obtain specific KPIs (e.g., BER and throughput).

The results of these simulations correlate the KPIs with transmission configuration

metrics such as NOMA power ratio, modulation schemes, MIMO order, and LDPC

coding rate with various code lengths. The OFDM carrier parameters are fixed as

per Table 4.1. The performance of the NOMA-MIMO-OFDM system is analyzed ac-

cording to the developed BER model in (4.54) and its performance is compared with

the simulation model, cementing the hypothesis that high-performance operation

may be achieved by 5G physical layer under low-SNR.

TABLE 4.1: Fixed carrier parameters

Carrier Information Value

Sub-carrier spacing 15 Hz
# resource blocks 52
# symbols per slots 14
# slots per frame 10
# slots per sub-frame 1

4.5.1 NOMA L1 vs OMA

FIGURE 4.6: Comparison of BER between OMA and L1 NOMA trans-
mission under QPSK and 16 QAM modulation, utilizing an [8 × 1]
MIMO order and (490/1024) LDPC code rate in a TDL-D channel

model.
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The comparison of BER performance between L1 of a 2-NOMA and OMA trans-

mission, as depicted in Figure 4.6, shows the performance degradation in L1 com-

pared to a single-user OMA transmission. At −10 dB power ratio, the performance

of L1 is almost the same as that of OMA transmission for both QPSK and 16QAM

transmission. However, allocating higher power for L2 (−5 dB) causes significant

performance degradation in L1 16QAM transmission as it achieves the same BER at

a 3 dB higher SNR channel.

Although NOMA requires a higher SNR to attain the same BER, additional data

layers can be transmitted using the same traffic channel. Figure 4.6 shows that a low

rate L1 is more robust and provides a higher degree of freedom in NOMA power

distribution without significant performance degradation. This means L1 is more

suited for low data rate PTM mMTC transmission, where the devices are distributed

over large geographical areas with low or poor signal quality.

4.5.2 NOMA Performance Analysis

This section delves into the performance of NOMA layers and the services that indi-

vidual layers can achieve. Simulations for both 2-layer and 3-layer NOMA transmis-

sions are conducted to examine the relationship between NOMA layer performance

and various configuration parameters. These parameters include the NOMA power

ratio, modulation order, MIMO, and channel coding.

Given that the complexity grows with each added NOMA layer, the focus is

primarily on evaluating the effects of power ratio, modulation, and MIMO order

for a 2-NOMA transmission. This approach helps in establishing clear relationships

observed in the results. Insights derived from these findings can be generalized to

multi-layer transmissions that follow similar foundational principles. Moreover, the

results highlight the flexibility in transceiver configuration necessary to satisfy the

specified QoS criteria.
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FIGURE 4.7: Impact of power ratio on the throughput of L1: [8× 1]
and L2: [8 × 2] transmission with (490/1024) LDPC code rate and
TDL-D channel model for two different data rate combinations (a-b)
and (c-d): (a) L1-QPSK (−10 to 0 dB) (b) L2-QPSK (−10 to 0 dB) (c)

L1-16QAM (−5 to 5 dB) (d) L2-256QAM (5 to 15 dB)

NOMA Power Ratio

Figure 4.7 compares the throughput of NOMA layers for different power ratios in

different L1 and L2 receivers’ channel conditions. The throughput is calculated ac-

cording to [171] as follows:

Throughput (%) =
NRx − NeRx

NTx
× 100 (4.56)

where NRx is the number of received bits, NeRx is the number of erroneously received

bits and NTx is the number of transmitted bits. Figure 4.7 present a surface graph

highlighting the impact of different power ratio on L1 and L2 throughput within the

channel SNR range.

The first NOMA pair, depicted in Figure 4.7(a,b), employs QPSK for both L1 and

L2 with both receivers having the same channel SNR range of −10 to 0 dB. Figure

4.7(a) demonstrates that L1 achieves the same throughput at a power ratio of −3

dB, compared to −10 dB, with nearly the same channel SNR. Specifically, L1 only

requires a 1 dB higher SNR at the−3 dB power ratio to achieve the same throughput.
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Figure 4.7 (b) shows improvement in L2 throughput as the power of L2 increases,

and in this SNR range, L2 achieves 100% throughput when the power ratio is higher

than −5 dB. The first two subplots, Figure 4.7-(a), (b), show a minimum power limit

in L2 to achieve 100% throughput on a given SNR range. This minimum power

requirement for successful data detection comes from the modulation power and

order, which determines the Euclidean distance between modulation symbols.

The second NOMA pair, depicted in Figure 4.7(c,d), employs 16 and 256 QAM

for L1 and L2 with both receivers having a different channel SNR range of −5 to 5

and 5 to 15 dB. Both L1 simulation shown in Figure 4.7 (a,c) shows that L1 achieves

higher throughput as the power of L2 is decreased in NOMA multiplexing. This is

because reducing the power ratio allocated to L2 relative to L1 improves the perfor-

mance of L1 at a given SNR value, as L1 detection is independent of L2 detection

and does not involve SIC. Figure 4.7 (c) shows that at a power ratio over −4 dB,

the L1 fails to detect its symbol even in high channel SNR. This failure to detect L1

also results in a drop in L2 throughput in the same power ratio, as shown in Figure

4.7(d). This shows the maximum power that can be allocated to L2 as L1 and L2 fails

to achieve high throughput at −3 dB power ratio. This is because if the interference

from L2 to L1 is more than the maximum noise tolerance of L1 modulation, then L1

symbols can not be detected correctly, irrespective of the user’s channel condition.

As the L2 symbol detection depends on SIC, the L2 performance decreases despite a

higher power allocated to the symbols.

Figure 4.7 demonstrates the impact of power ratio on each layer’s throughput,

emphasizing the need for local optimization that considers the specific channel con-

ditions, modulation, and MIMO order of individual NOMA layers to maximize the

overall system performance.The result also shows that at a −5 dB power ratio, both

layers achieved maximum throughput for all four different data rate combinations.

Building on this result, the −5 dB power ratio is used in the following analysis.

Channel Models

Figure 4.8 presents a comprehensive analysis of the BER performance across differ-

ent layers of NOMA under various channel conditions. Simulations utilized four
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FIGURE 4.8: BER for 3-layer NOMA in TDL and CDL channels.
Transceiver: [8× 2] MIMO, (490/1024) LDPC. Modulations: QPSK

(L1), 16QAM (L2), 64QAM (L3).

distinct TDL and CDL channel models, capturing the intricacies of both urban and

rural transmission landscapes. Delving into the technical aspects, TDL channel mod-

els emphasize their unique delay spread characteristics, enabling an effective repre-

sentation of multipath propagation. On the other hand, CDL models, with their rich

multi-dimensional spatial characteristics, leverage MIMO arrays to portray realistic

channel conditions, especially in dense urban environments.

Within this framework, a noteworthy consistency was observed: all three NOMA

layers displayed uniform BER outcomes across the evaluated channels. For instance,

the TDL-A model, with its inherent delay profile, demanded the highest SNR. In con-

trast, the spatially diverse CDL-C model emerged as the most efficient, necessitating

the lowest SNR. Overall, the CDL channels showcased superior performance at di-

minished SNR levels, underscoring their proficiency in mirroring advanced MIMO

channel dynamics.

Modulation Order of NOMA Layers

Various data rate transmissions are analyzed, including QPSK, 16, 64, and 256 QAM

for L2, and QPSK and 16QAM for L1, with MIMO configurations of [8× 1] for L1

and [8× 2] for L2. Figure 4.9 shows that the BER of L1 remains consistent for both
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FIGURE 4.9: Comparsion of BER across various data rates in a 2-
NOMA layer utilizing (490/1024) LDPC code rate, examined in a

TDL-D channel

QPSK and 16 QAM, irrespective of the L2 modulation order. Similarly, the perfor-

mance of L2 remains unaffected for QPSK and 16 QAM L1 transmissions. The per-

formance of L1 and L2 has no dependency on each other’s modulation order. This

characteristic allows leveraging any layer’s improved channel condition by provid-

ing a high data rate service, making NOMA highly resilient in fulfilling diverse user

requirements of mMTC and eMBB transmissions.

Figure 4.9-(b) also reveals that for 16 QAM L1 and QPSK L2 transmissions, L2

performs better under low-SNR conditions due to higher MIMO order and lower

data rate. The detection of L1 data SIC at L2 requires a lower SNR than at L1. This

means that even when L2 is in worse channel conditions than L1, low data rate

transmission of L2 is still feasible.

MIMO Order

Figure 4.10 showcases the influence of MIMO order on the BER performance of L1

and L2. Considering the resource limitations of mobile receivers, one receiver an-

tenna is assumed for L1 (symbolizing mMTC devices) and two receiver antennas

for L2 (representing eMBB devices). The simulation employs 1, 2, 4, and 8 transmit

antennas to represent various MIMO orders.

The findings from Figure 4.9, highlight the performance enhancement of L2 due

to an additional receive antenna. These results echo the same potential for varying
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FIGURE 4.10: Impact of MIMO configuration on BER performance of
L1 and L2 for different data rate transmission with (490/1024) LDPC

coding and -5dB NOMA power ratio

MIMO orders. In all four transmission scenarios depicted in Figure 4.10-(a,b,c,d), the

BER improves as the MIMO order increases. The BER of L1 improves by 6 dB for an

[8× 1] configuration from a [1× 1] configuration for both data rate transmissions.

Meanwhile, the BER of L2 improves by 8 dB, indicating that a higher MIMO order

can significantly enhance the performance of lower orders. The higher MIMO order

makes NOMA PTM transmission promising in downlink scenarios.

LDPC Coding Length

LDPC codes have been proven to be asymptotically optimal for wireless channels.

However, practical issues of code rates across different NOMA layers should be ex-

amined closely. To quantify the impact of LDPC channel coding on the BER perfor-

mance of NOMA, six different coding rates: (150/1024), (320/1024), (490/1024),

(680/1024), (850/1024) and (950/1024) are used. These are referred to as CR(1-6)

in Figure 4.11. The BER of NOMA layers L1, L2, and L3, altering only the coding

rate of the respective layer while maintaining the other two at CR3 is simulated. The

code length impacts the BER of all three layers significantly, but the impact is more

vivid in LLs with higher-order modulation.

Figure 4.11-(a,b,c) illustrates that the BER line follows the same curve for all code

lengths, with shorter code lengths reducing the BER at lower SNR. The findings
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FIGURE 4.11: Impact of LDPC coding rate on the BER of 3 NOMA
[8× 2] transmission with−5 dB power ratio between L1-L2 and L2-l3
using TDL-D channel: (a) L1-QPSK (b) L2-16QAM (c) L3-64QAM (d)

L2-16QAM, L3-64QAM

suggest that a shorter coding rate can enhance the noise tolerance margin, which

can be used to offset additional interference from NOMA layers.

From Figure 4.11-(b), it is noted that L2 fails to detect its signal when CR5 coding

rate is used, while both L1 and L3 successfully detect signals under all coding rates.

The inability to detect a signal even at high SNR points can be attributed to the

events when the interference residual noise surpasses the maximum noise tolerance.

In such cases, NOMA transmission of that layer and any subsequent LLs will fail.

This hypothesis is validated by simulating a different setup in (b), where the

power ratio is reduced between L2 and L3 to −10 dB. The resulting BER perfor-

mance with CR5 is 4 dB lower than with CR4 at a −5 dB NOMA power ratio. Based

on these findings, one can optimize the performance to offset the residual error’s

impact, potentially leading to a successful multi-layer NOMA configuration.

Figure 4.11-(b,c) illustrates that L3 with CR1 coding rate attains an acceptable

BER at a lower SNR compared to L2 with CR4 coding rate. This observation fa-

cilitates the exploration of the impact of SIC and a higher layer coding rate on the

performance of the LL, as highlighted in Figure 4.11-(d). In this figure, CR3 and

CR4 are employed for L2, while CR1 is used for L3. The results indicate that the

L3 receiver struggles to detect signals at a lower SNR when paired with the L2 CR4

coding rate. Under this configuration, the L3 BER line starts to descend subsequent
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to the dip of the L2 BER line. It is also evident that the necessary SNR to reach a

consistent BER increases incrementally with the rise in modulation order for each

code rate.

In the study conducted by Iradier et al. [15], a 3-layered NOMA transmission

was designed for 5G networks, accomplishing a BER of 10−4 at SNR of 11, 15, and

17 dB for layers L1, L2, and L3, respectively. The results presented in this section

show that the transceiver model presented in this chapter achieves 10−4 BER at a

lower SNR. The enhanced performance can be attributed to the inclusion of MIMO

and LDPC.

4.5.3 Theoretical BER Evaluation of N-NOMA

FIGURE 4.12: BER analysis illustrating the theoretical performance
of a 3-layer NOMA system using (4.54). The comparison is obtained
using an end-to-end simulation model of the same system. The trans-
mission layers are as follows: Layer 1 (L1) comprises an [8× 2] QPSK,
Layer 2 (L2) utilizes an [8× 4] 16QAM, and Layer 3 (L3) deploys an

[8× 8] 64QAM.

Figure 4.12 provides a comparative analysis between the BER of a 3-NOMA sys-

tem, as defined by (4.54), and results obtained from a complete end-to-end simula-

tion model, which incorporates an uncoded OFDM with MIMO AWGN channels

designed for a 3-layer NOMA transmission. In this model, QPSK, 16QAM, and

64QAM are employed for L1, L2, and L3 layers, with 2, 4, and 8 receive antenna

elements respectively. Power ratios for L2 and L3 are set at −5 dB and −10 dB.
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As demonstrated in Figure 4.12, the theoretical BER closely aligns with the sim-

ulated results, indicating the validity of the derived equation. While the simulation

results for the BER of L1 exhibit minor improvements, the BER performance of L2

and L3 show a substantial alignment between theoretical predictions and simulation

outcomes.

4.6 Summary

4.6.1 Contributions:

In the realm of wireless communications, the introduction of a novel 5G NR-compliant

NOMA design stands out as a significant milestone. This design, marked by its in-

tegration of optimally positioned NOMA-aided transceiver functions, promises to

push the boundaries of current communication standards. The intrinsic beauty of

this design is its comprehensive performance assessment, allowing for the consid-

eration of multifaceted parameters. From forward error correction to MIMO pre-

coding and from modulation schemes to coding rate, every facet has been meticu-

lously studied. Furthermore, this exploration provides a renewed vision for non-

orthogonal access technology. It shows new areas to explore, potentially leading

to future discoveries and filling current knowledge gaps. As part of this innova-

tive journey, the research has dared to replace the traditional multi-layer sequential

combiners with a more streamlined one-shot N-NOMA multiplexing method. This

critical decision stems from a need to address the nagging issues of transmission la-

tency and transceiver complexity. And to crown it all, an analytical BER expression

has been developed, one that stands out in its precision, especially in determining

the effects of residual and non-residual errors on N-NOMA layers. Validating these

findings, simulations conducted on a 5G NR-compliant link level simulator have not

only affirmed the proposed physical layer design but also highlighted N-NOMA’s

promise to cater to a broader user base.
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4.6.2 Limitations:

However, like all pioneering works, this chapter does have its constraints. The an-

alytical model, while robust, hints at areas for refinement, especially in integrat-

ing the subtleties of channel coding and fine-tuning its interaction with TDL/CDL

channels. There is also the consideration of residual interference. The model, in its

current form, leaned on the maximum residual interference to set the uppermost er-

ror threshold. Adopting a more precise model for residual error would elevate the

model’s accuracy. Additionally, while the multiplexing procedure has been reimag-

ined to reduce latency, the detection process, with its extensive nature, remains a

formidable challenge.

4.6.3 Future Work:

This chapter lays a foundation that calls for deeper investigation. At its core, the

analytical model is rooted in the Q function, encompassing an uncoded OFDM sys-

tem within an AWGN channel. The findings spotlight the alignment of the multi-

layer system with the uncoded N-NOMA-OFDM setup, emphasizing the model’s

adeptness at capturing both types of errors: residual and non-residual. Such in-

sights point towards opportunities for enhancements, particularly integrating chan-

nel coding and TDL/CDL parameters into a richer analytical model. Additionally,

the adoption of a probabilistic model for more accurate residual interference could

better align the analytical model with real-world 5G and B5G scenarios. There is

growing agreement on the importance of refining the detection process. Consider a

clustering-based method as an alternative to the traditional SIC operation, designed

to cancel ULs interference from the received NOMA signal. This strategy could dras-

tically cut down receiver complexity and latency, while also eliminating the current

buffer requirement tied to SIC.
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Chapter 5

Adaptive Power Allocation to

Enhance N-NOMA Link Time

5.1 Introduction

Building on the 2 layer LDM PA presented in Chapter 3, the idea is further devel-

oped for the N-NOMA system from Chapter 4. This chapter delves into the design

and application of an adaptive PA algorithm tailored for downlink N-NOMA trans-

mission. The model is tested based on the proposed 5G transciver model as shown

in Figure 4.2. At the heart of this exploration lies the algorithm’s greedy strategy,

which harnesses transmission feedback as a guide for the dynamic distribution of

power across NOMA layers. The overarching objective remains twofold: optimizing

the system’s overall throughput and maximise the sustainable link time for mobile

N-NOMA cluster.

The intricacies of NOMA layer detection are heightened with the addition of

each data layer. Any power designated to a particular layer inadvertently influ-

ences the performance of all NOMA layers. This intertwined relationship demands

a holistic approach to the PA process to ensure peak system performance. The sce-

nario becomes even more multifaceted when each data layer targets distinct users,

each bringing their unique channel conditions and QoS expectations. Such dynamics

highlight the need for a dynamic PA, tailored to the specifications of each N-NOMA

cluster, rather than a one-size-fits-all static PA.

Furthermore, the intricate nature of this challenge suggests that systems may not
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always realize optimal outcomes. There may be instances where continued opti-

mization endeavors yield marginal benefits. In response to these challenges, three

distinct algorithms are introduced, detailed in Section 5.2. The inaugural algorithm,

employing a greedy tactic, aims to bolster the overall system throughput, all the

while respecting the QoS benchmarks set for each receiver. The subsequent algo-

rithm is crafted to discern the pinnacle of PA efficiency, recognizing instances where

continued adjustments only cycle through redundant values. These two pioneering

algorithms provide the foundation for the third, which is adept at pinpointing the

optimal PA in static channel conditions.

In Section 5.3, the 2D mobility model from Section 3.6 is expanded to a 3D for-

mat, encompassing RMa and UMa scenarios as per 3GPP standards. This model

calculates the SNR for any receiver, adhering to the standard 3GPP approach which

includes both LoS and NLoS connections. To bolster the link sustainability for multi-

user N-NOMA clusters, an adaptive PA is introduced.

In Section 5.4, the performance of the newly introduced algorithms is evaluated,

examining its efficacy for both stationary and mobile receivers. Lastly Section 5.5

summarises chapter’s contributions and future work.

5.2 N-NOMA Dynamic PA in Static Channel

In this section, the details of dynamic PA for N-NOMA in static channel conditions

are explored. The main goals are to cut down on total error and optimize the per-

formance of the N-NOMA cluster. The first three algorithms designed to meet these

challenges are introduced and discussed.

5.2.1 Optimise PA Algorithm

The world of N-NOMA systems has its own set of hurdles when it comes to dis-

tributing power, especially when trying to keep the BER in check for every user.

Algorithm 2 lays out a flexible PA method made just for these systems. Using a

greedy method, it aims to quickly find the best way to balance power among users

(Appendix A-5). If every user achieves a successful transmission with the estab-

lished PA settings, the system will maintain the current configuration until there is
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a change in conditions. Conversely, if the system does not meet the required BER

for all users after a predetermined number of iterations, it will deem the cluster as

unsustainable and consequently disband the NOMA cluster.

Process Overview

1. Start: Begin with each user’s BER difference, the total user count, and starting

power ratios.

2. Find Users with Big BER Differences: Check if any user’s BER difference goes

beyond a set limit. If yes, pick the user with the biggest difference.

3. Change Power Based on User Spot:

• For the top user with the biggest difference, take power from the next

user.

• On the other hand, for the last user, give power to the user with the small-

est difference.

• For users in between, look at the differences of users close by and change

the power based on those differences.

4. Share New Power Ratios: After changes, share the new power ratios for ev-

eryone.

Mathematical Formulations

The deviation in BER for a user u can be represented as:

∆ϵu = ϵu − ϵmaxU (5.1)

where ϵu denotes the BER for user u and ϵmaxU signifies the upper threshold for

acceptable BER.

The recalibration in power ratio is contingent on the following conditions:
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gu =


gu − 1, if ∆ϵu > 0 and u = 1

gu + 1, if ∆ϵu > 0 and u = N

gu ± 1, predicated on deviations of neighboring users

(5.2)

Algorithm 2: PA for N-NOMA layers using a greedy approach
Require: BER Deviation for each user: ∆ϵu, Number of users: N, Power

ratios: gu.

Process: if ∆ϵu > 0 ∃ (1 ≤ u ≤ N) then
u = max(∆ϵu)

if u == 1 then
gu+1 ←− gu+1 − 1

else if u == N then
umin = min(∆ϵu)

gumin+1 ←− gumin+1 + 1

else

if ∆ϵu−1 > 0 and ∆ϵu < 0 then
gu ←− gu − 1

gu+1 ←− gu+1 + 1

else if ∆ϵu−1 < 0 and ∆ϵu > 0 then
gu ←− gu + 1

gu+1 ←− gu+1 − 1

else if ∆ϵu−1 > 0 and ∆ϵu > 0 then

if ∆ϵu+1 < 0 then
gu+1 ←− gu+1 − 1

Return gu
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5.2.2 Power Optimization Oscillation Monitoring Algorithm

In the context of N-NOMA systems, achieving optimal power distribution is paramount.

However, continual adjustments to PA can lead to oscillations, where the system

continually toggles between states without settling on an optimal configuration.

Such oscillations can be detrimental, leading to increased power consumption and

reduced system stability. To address this, an oscillation detection mechanism is in-

troduced, as illustrated in Algorithm 3. This mechanism monitors the BER history

and employs variance as a metric to ascertain if the system is oscillating.

Process Overview

1. Initialization: The algorithm is initialized with the BER history, denoted as

Hϵ, the current total BER, represented as ϵtotal , and a predefined threshold for

variance, θ.

2. Variance Computation: The variance of the BER history, Hϵ, is computed. This

variance, σ2, provides insights into the fluctuations in the BER over time.

3. Oscillation Detection: If the computed variance, σ2, is less than the threshold,

θ, the system is deemed to be oscillating. Otherwise, it is considered stable.

Mathematical Formulation

Given the BER history Hϵ with n values, the variance σ2 is computed as:

σ2 =
1
n

n

∑
i=1

(ϵi − ϵ̄)2 (5.3)

Where:

• ϵi is the BER at the ith instance.

• ϵ̄ is the mean BER, given by ϵ̄ = 1
n ∑n

i=1 ϵi.
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Algorithm 3: Oscillation detection during power optimization
Require: BER history: Hϵ, Current total BER: ϵtotal , Threshold for variance: θ.

Output: Boolean indicating if oscillation is detected.

Process: Compute the variance of Hϵ: σ2 = Variance(Hϵ).

if σ2 < θ then
Return True

else
Return False

5.2.3 PA Algorithm: Maximise Throughput

The algorithm presented in Algorithm 4 is devised to optimize the performance of

a N-NOMA cluster. By leveraging dynamic PA in a fixed channel environment,

the algorithm ensures that the system operates within optimal conditions. If the

conditions are breached, the system can either optimize the existing cluster or break

into a new cluster to maintain performance.

Process Overview

The algorithm operates in a loop while the NOMA user group is active. Within each

iteration, the algorithm:

• Computes the BER for each user and the total system.

• Checks for oscillations using the Oscillation Detection algorithm.

• If oscillations are detected, it verifies if all individual BER values are within the

maximum tolerance. If not, the current cluster is terminated, and a new cluster

is initialized by replacing the problematic user.

• Updates the BER history and invokes Algorithm 2 for power ratio optimiza-

tion.

• Checks for stability in power ratios. If stable values are observed, the loop is

terminated.
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Mathematical Formulation

Given the BER for user u, ϵu, the total BER for the system is computed as:

ϵtotal =
N

∑
u=1

ϵu (5.4)

Where N is the total number of users in the NOMA user group.

The individual BER for user u is given by:

ϵu =
1

nu

nu

∑
i=1

xui ⊕ yui (5.5)

Where xui and yui are the input and output signals, respectively, for user u at the ith

instance.

5.3 Adaptive PA for Mobile N-NOMA Clusters

In this section, the focus is on ensuring stable connections for users in N-NOMA

groups, for receivers operating under dynamic channel conditions. Recognizing the

inherent volatility of mobile environments, a 3D positioning and mobility model

tailored for the receiver is proposed. This model serves as a foundation for subse-

quent in-depth exploration of the SNR calculation model, which has been meticu-

lously designed in accordance with the 3GPP mobility framework for Pathloss (PL),

catering to both RMa and UMa scenarios. Using these basic models, this section

concludes with the introduction of a targeted algorithm. This algorithm is designed

to strengthen the stability and longevity of N-NOMA connections, ensuring they

perform at their best, even with dynamic channel conditions.
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Algorithm 4: Static PA for N-NOMA in static channel

Input: for u = 1 to N do
xu ← {x1, x2, ...xnu} | xi ∈ {0, 1},

Initial SNR values: ρu, init,

Predefined power ratio: gu ← gu;init,

Maximum BER tolerance: ϵmaxU .

Initialize: BER history: Hϵ ← empty list

Output: Optimized power ratios gu for the NOMA user group.

Procedure: while NOMA user group is active do

for u = 1 to N do
yu ← f5G(xNOMA, ρu),

ϵu ← 1
nu

∑nu
i=1 xui ⊕ yui.

Compute total BER: ϵtotal ← ∑N
u=1 ϵu

if OscillationDetection(Hϵ, ϵtotal) then

if All individual ϵu ≤ ϵmaxU then
Break

else
Terminate Current Cluster

Reinitialize with working users and replace problematic user

Continue with new cluster
Update Hϵ with ϵtotal and remove the oldest value if the length of Hϵ

exceeds a predefined threshold.

Invoke Algorithm 2 for power ratio optimization.

Return Optimized power ratios gu.
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FIGURE 5.1: Downlink mobile N-NOMA transmission in urban and
rural areas with MIMO beamforming and 3D mobility model.

5.3.1 3D User Positioning Model

As illustrated in Figure 5.1, the user transitions from the starting location to the con-

cluding location over a specified time span t. Adopting a planar model (2D) from

Section 3.6, the positions of the BS and the user at the outset are denoted as (xb, yb)

and (xu, yu), respectively. Consequently, the distance between the BS and the user’s

initial location is defined as:

ds =
√
|(xu − xb)|2 + |(yu − yb)|2 (5.6)

The starting coordinates of N users can be represented as

[(xu1, yu1), . . . , (xui, yui), . . . , (xuN , yuN), ∀ 1 ≤ i ≤ N]

Given that the LL of NOMA users necessitates superior signal conditions, assump-

tion is that the primary transmission beam targets the location of the N-th user ini-

tially;
[
b⃗f = (xuN − xb, yuN − yb)

]
. Consequently, the angle, denoted as θ, in de-

grees, between the location of the i-th user and b⃗f is articulated as:
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θ = 180
π arccos

(
(xui−xb)(xun−xb)+(yui−yb)(yun−yb)√

(xui−xb)2+(yui−yb)2
√

(xun−xb)2+(yun−yb)2

)
(5.7)

Equation (5.7) is used to determine both the starting and concluding angles of the

transmission direction for the location of the i-th user, represented as θi and θ̂i, re-

spectively. Given that the user traverses at a velocity of v over a duration of t, the

span between the user’s commencement point and the terminal location is expressed

as:

d = v t (5.8)

The user moves d distance from the position of (xu, yu) with a random angle ϕ to the

final position (x̂u, ŷu), which is expressed as:

x̂u = xu + d cos(ϕ) and (5.9)

ŷu = yu + d sin(ϕ) (5.10)

The 3D distance between the user’s current location and BS is calculated from ds

as [138]:

d3D =

√
d2

s + (ht − hu)
2 (5.11)

where ht & hu are the height of BS and user, respectively.
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5.3.2 PL & SNR

Both the RMa and the UMa, as described in the 3GPP documents [138], have been

taken into account for the PL model, and these are presented in Table 5.1. This table

illustrates a condensed PL equation, accompanied by a set of assumptions.

Subsequently, PrLOS and PL are determined utilizing the surface distance ds and

the 3D distance d3D. This involves a probabilistic random designation between LoS

and NLoS connections. The SNR, symbolized by the notation ρ, derived from PL,

xt, and np, is articulated as:

ρ =
xt ·
∣∣∣cos

(
πθ

θ3dB

)∣∣∣n
PL · np

(5.12)

where θ3dB is the half-power beamwidth and n is the beam shaping parameter.

5.3.3 Adaptive PA Algorithm: Maximise Cluster Link Time

An algorithm is developed to enhance the sustainable link time for N-NOMA cluster

for mobile receivers. This algorithm utilises both Algorithm 2, 3 to adjust the power

allocated to each NOMA layers based on the receiver feedback.

Process Overview

The Adaptive PA algorithm for N-NOMA mobile receiver cluster operates itera-

tively until the NOMA cluster is unsustainable. During each cycle of its execution,

the algorithm:

• Determines the SNR for each user and computes their respective received sig-

nals.

• Calculates the BER for each user and computes the deviation from the maxi-

mum allowed BER.
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• Checks whether each user’s BER deviation is within permissible limits. If the

BER for any user surpasses the threshold, it invokes the Algorithm 2 to opti-

mize power ratios.

• Keeps track of iterations to ensure that the algorithm does not run indefinitely,

thereby ensuring computational efficiency.

• Periodically updates each user’s position and SNR to reflect real-time mobility

and channel conditions.

• Monitors the iteration count against a pre-set threshold to determine whether

to terminate the NOMA user cluster, which acts as a fail-safe against potential

endless loops or in situations where optimal conditions can not be met.

Mathematical Formulation

The core of the algorithm revolves around the adaptive PA strategy. Three distinct

functions are employed to depict the transmission process:

1. Mobility Function:

P′u = fm(mm, t, Pu)

Where P′u is the updated position of the user, mm represents the mobility model,

t is the time, and Pu is the current position of the user. Two previous discussed

mobility models (Random Waypoint, Manhattan) are used in this chapter evaluate

the proposed algorithm.

2. SNR Function:

ρu = fρ(pt, np, Pbs, P′u)
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Where ρu is the SNR for the user, pt is the transmit power, np is the noise power, Pbs

is the BS position, and P′u is the updated position of the user.

3. BER Function:

ϵu =
1

nu

nu

∑
i=1

xui ⊕ yui

where ϵu is the BER for user u, xui is the transmitted bit, and yui is the received bit.

The algorithm aims to minimize the deviation ∆ϵu which is given by:

∆ϵu = ϵu − ϵmaxU

Where ϵmaxU is the maximum BER tolerance for user u.

The adaptive PA strategy is then applied to ensure that ∆ϵu ≤ 0 for all users,

ensuring optimal link sustainability.

5.4 Results

The results of a detailed analysis and link-level simulations for N-NOMA system

models (Appendix A-7), conducted using MATLAB, are presented. This simulation

model incorporates standard 5G NR physical layer technologies such as DL-SCH,

PDSCH, LDPC, and MIMO precoding, consistent with 3GPP TR 38.901 [138]. A mo-

bility model has been developed to determine the channel condition for each NOMA

receiver. This information is then processed by the 5G transceiver, which utilizes Al-

gorithm 4 (for static receiver) and Algorithm 5 (for mobile receiver). Abstraction of

this link level simulation shown in Figure 5.2, highlighting the iterative feedback

from both the mobility and PA blocks. Key parameters for the 5G transceiver and

mobility model are outlined in Table 5.2.
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Algorithm 5: Adaptive PA for N-NOMA mobile receiver cluster
Input: Transmit power(pt), Noise power (np), BS position(Pbs ← (xb, yb)),

QoeMaxIterationThreshold

for u = 1 to N do
User data: xu ← {x1, x2, ...xnu} | xi ∈ {0, 1},

User position: Pu ← (xu, yu),

Initial power ratio: gu,

Maximum BER tolerance: ϵmaxU .

Initialize: for u = 1 to N do
SNR: ρu ← fρ(pt, np, Pbs, Pu),

Received signal: yu ← f5G(xNOMA, ρu).

Procedure: iterationCount← 0,

while NOMA user group is active do
conditionMet← false,

for u = 1 to N do

BER for user u: ϵu ← 1
nu

∑nu
i=1 xui ⊕ yui,

BER deviation: ∆ϵu = ϵu − ϵmaxU ,

if ∆ϵu ≤ 0 then
conditionMet← true

if conditionMet then
iterationCount← 0

if ∆ϵu > 0 ∃ (1 ≤ u ≤ N) then
Invoke Algorithm 2 for power ratio optimization,

iterationCount← iterationCount + 1

for u = 1 to N do
Update user position: Pu ← fm(mm, t, Pu),

Update SNR: ρu ← fρ(pt, np, Pbs, Pu),

Receive signal: yu ← f5G(xNOMA, ρu).

if iterationCount ≥ QoeMaxIterationThreshold then
Terminate the NOMA user cluster,

Break
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FIGURE 5.2: Mobility abstraction model

TABLE 5.2: 5G simulation parameters and user mobility model

Parameter Value

Communication Parameters
Transmission frequency 2.4 GHz
Sub-carrier spacing 15 Hz
# resource blocks 52
# symbols per slots 14
# slots per frame 10
# slots per sub-frame 1
LDPC coding length 490/1024
Modulation order QPSK, 16QAM, 64QAM
MIMO configuration 8× 2
Channel model TDL-A(NLoS), TDL-D(LoS)

Mobility Parameters
Manhattan mobility model 11-40 kph
Random waypoint mobility model 0-10 kph

Height Parameters
BS height 35 m (RMa), 25 m (UMa)
Receiver height 1.5 m

The results illustrated in Figure 5.3 showcase the refined PA derived from di-

verse initial PA settings under specific static channel conditions. These outcomes

were simulated using three unique sets of channel SNRs combined with initial PA.

It becomes evident from the data that the introduced algorithm successfully attains

the optimal system throughput in a range of 6-14 iterations.

As depicted in Figure 5.3 (a, b), the optimal PA distribution appears to be influ-

enced by the user channel. This observation holds true even when all other param-

eters remain consistent, with the only variation being the channel condition. This

emphasizes the importance of localised PA based on the channel conditions of all
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FIGURE 5.3: Iterative optimum PA for 3-NOMA transmission
to achieve maximum system throughput. (L1:QPSK, L2:16QAM,

L3:64QAM)

receiver in a NOMA cluster to enhance transmission efficiency.

A comparison between Figure 5.3 (b, d) reveals the effects of varying initial PA

settings on users in identical channel conditions QoS requirement. In Figure 5.3 (b),

the system achieves its best PA (−2,−8) dB, starting from an initial PA of (−10,−10)

dB, in 11 iterations. Conversely, Figure 5.3 (d) reaches its ideal PA (−3,−6) dB from

a starting point of (−15,−5) dB in 14 iterations. These observations underscore the

proficiency of the proposed PA technique.

Additionally, Figure 5.3 (c) delves into the impact of power distribution on the

performance of individual layers. Here, the y-axis is specifically focused on a through-

put range of (90 − 100) %. In this context, the process began with a pronounced

power ratio for layers 2 (L2) and 3 (L3), leading to a diminished throughput for

layer 1 (L1) initially. To enhance throughput, the algorithm’s first step was to curtail

the power for L2, which boosted L1’s throughput but drastically reduced that of L2

and slightly affected L3. Subsequent iterations opted to decrease the power for L3

rather than augmenting L2’s power. This strategy improved the throughput for L2

and culminated in the attainment of the optimal PA within 8 iterations.

Figure 5.4 illustrates the sustainable link duration for a user cluster during a

downlink 3-NOMA transmission. Each user within the cluster adheres to either the

Manhattan (Appendix A-2) or Random Waypoint (Appendix A-1) mobility model.
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FIGURE 5.4: Comparison of downlink NOMA user pair link sustain-
ability between fixed and proposed dynamic PA in rural and urban

scenarios.

Simulations were performed considering both static and adaptive PA. All users in

the cluster begin from their preset positions, distanced at (500, 300, 200) meters for

u1, u2, u3 respectively, and move at consistent time intervals ranging from 5 to 20 sec-

onds, determined by their speed. Subsequent computations deduce both the surface

and 3D distances between each user’s location and the BS. These distances act as the

bedrock to evaluate the channel SNR under specific LoS/NLoS conditions. The LoS

assignment relies on a devised function, which is provided in the GitHub repository

linked in Appendix A-6. The data underscores a marked improvement in link sus-

tainability duration across both mobility models in urban and rural environments,

underscoring the importance of adaptive PA in accentuating the efficacy of NOMA

as a Next Generation Multiple Access (NGMA) technique.

Figure 5.5 showcases the duration of sustainable link for a 3-user NOMA cluster

across varying transmission beamwidths, spanning from 10◦ to 120◦. The beam-

forming initially targets the starting position of U3. For beamwidths between 10◦

and 20◦, the sustainable link duration is almost negligible, suggesting that such con-

stricted beamforming is not apt for mobile NOMA transmissions. From a beamwidth
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FIGURE 5.5: Impact of transmission beamwidth on link sustainability
time for 3 users NOMA cluster in RMa and UMa transmission

of 20◦ onwards, there is a noticeable increase in sustainable link time across both

mobility models and transmission zones. Predictably, the random waypoint mobil-

ity model, characterized by reduced mobility, displays an extended sustainable link

duration, aligning with the observations from Figure 5.4.

When contrasting the outcomes between rural and urban settings, both environ-

ments demonstrate comparable results up to a beamwidth of 60◦. Yet, when the

transmission beamwidth surpasses this threshold, the sustainable link duration wit-

nesses a more pronounced surge in rural settings. This phenomenon can be linked to

diminished interference, a greater probability of LoS connections, and subsequently,

reduced path loss in rural regions.

5.5 Summary

5.5.1 Contributions

This chapter has explored the significant challenges associated with maintaining

user link sustainability in 5G NOMA systems. To tackle these challenges, optimiza-

tion algorithms focusing on downlink N-NOMA transmission were developed. The

PA technique was thoroughly evaluated under both static and dynamic channel con-

ditions. Employing sophisticated mobility models within a 5G-compliant physical
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layer simulator, the results revealed substantial improvements in link sustainabil-

ity. These enhancements were evident in various deployment scenarios, and also

positively impacted other key QoS metrics, such as convergence time.

5.5.2 Limitations

The PA algorithm utilizes BER to assess the quality of transmission, and adjust

power ratio accordingly. However, BER is not typically available in real transmission

systems. The algorithm can be adjusted to work with transmission quality index or

other available parameters. Yet, the extent of potential performance loss due to the

absence of BER feedback has not been explored in this study. Future work will in-

volve substituting BER with an available feedback parameter to enable more precise

analysis.

5.5.3 Future Work

The outcome of this chapter shows considerable promise in developing comprehen-

sive resource allocation strategies for N-NOMA, taking into account pivotal network

parameters such as PA, data rate, and NOMA layer reallocation. These elements are

fundamental in fine-tuning the performance of NOMA, yet they present substan-

tial challenges, particularly under dynamic channel conditions and varying receiver

mobility. A critical aspect for further exploration is the latency issue, which cur-

rently limits the deployment of highly accurate algorithms due to their need for

prolonged optimization times. Addressing the intricate, non-convex problem of si-

multaneously meeting all receiver QoS requirements is anticipated to significantly

broaden the applicability and effectiveness of NOMA in a diverse array of service

delivery scenarios and applications.



141

Chapter 6

Conclusion and Future Research

Directions

6.1 Research Summary

This thesis delved deep into the world of wireless communication, exploring the

exciting potential of NOMA. Think of NOMA as a super-efficient way to handle

radio signals, promising to be a game-changer for our future communication sys-

tems. Many researchers, before me, had highlighted how fantastic this system could

be, especially when compared to its older sibling, OMA. Some even went a step

further, integrating a version of it into broadcast standards. But as the exploration

went deeper, some challenges were noticed, especially when trying to make it work

seamlessly with the newest 5G technologies. Despite its promise, getting NOMA to

work perfectly in real-world scenarios is not straightforward. Think of it as having

a supercar but not having the right roads to drive it on yet. The big goal? To create

a wireless system that brings out the best in NOMA while working harmoniously

with 5G’s advanced features. As this journey wraps up, it becomes clear that the

task ahead is to bridge the gap between the awesome potential of NOMA and the

practical realities of current technologies.

Chapter 3 delved into the intricacies of the LDM-OFDM system model, empha-

sizing its compatibility with IoT and UE. The consistency of the analytical models

with simulations across different QAM configurations was confirmed, though the

model uses a fixed power ratio based on QAM order. A surface positioning model
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was also introduced to monitor receiver movement, calculating key metrics like dis-

tance to the BS and the angle of transmission. This data aids in assessing the SNR

at the receiver. Based on the model evaluations, an adaptive PA was developed to

adjust the power ratio between the layers to changing UE channel conditions. This

adaptability is crucial for the EL’s sensitivity to channel variations. The model is

developed further to incorporate IoT mobility. Additionally, the derived simulation

model incorporated Random waypoint, Manhattan, and Freeway mobility pattern

for evaluation. These comparisons highlighted the benefits of varying beam widths

based on receiver positioning and provided insights for future research.

Chapter 4 presents a novel 5G NR-compliant NOMA design, which has signif-

icant implications for wireless communication research. Central to this design is

its efficient integration of N-NOMA in the transceiver framework. This configu-

ration allows for an exhaustive performance evaluation, encompassing a broad set

of parameters. The chapter undertakes a detailed analysis of various components,

including MIMO precoding, modulation schemes, and coding rates. This analysis

provides a renewed understanding of non-orthogonal access technology, clarifying

overlooked areas and addressing extant gaps in the literature. A marked depar-

ture from traditional practices is the replacement of multi-layer sequential combiners

with a more efficient one-shot N-NOMA multiplexing method. This change, neces-

sitated by the need to reduce transmission latency and to simplify the architecture of

the transceiver, represents a significant development. Furthermore, the chapter in-

troduces a refined BER expression adept at assessing both residual and non-residual

errors in N-NOMA layers. Validating these theoretical perspectives, simulations

conducted using a 5G NR-compliant link level simulator are incorporated. These

results underscore the robustness of the proposed design and demonstrate the po-

tential of N-NOMA to serve a wider user base.

Chapter 5 ventures into the intricate domain of user link sustainability in 5G

NOMA systems, spotlighting its inherent challenges. In response to these hurdles,

the chapter introduces tailored optimization algorithms with a keen emphasis on

downlink N-NOMA transmission. The potency of the PA technique is brought un-

der the lens, evaluated across both static and dynamic channel landscapes. Lever-

aging sophisticated mobility models implemented within a 5G-compliant physical
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layer simulator, the results paint a promising picture. They indicate significant ad-

vancements in link sustainability and other paramount QoS indicators, including

convergence time across diverse channel conditions. It is important to acknowledge

that these advancements require extra feedback and control data for both transmis-

sion and reception. However, the promising aspect is their capability to be smoothly

integrated within existing channels.

Throughout this research journey, the focus has been on pushing the boundaries

of wireless communication, particularly in the realm of 5G NOMA systems. From

an in-depth analysis of the LDM-OFDM system in Chapter 3, laying the foundation

for understanding the interface between IoT and UE, to the unveiling of an inno-

vative 5G NR-compliant NOMA design in Chapter 4, the narrative is one of explo-

ration and innovation. Chapter 5 then grapples with the tangible challenges of user

link sustainability, offering optimization strategies to enhance downlink N-NOMA

transmission. Collectively, this work underscores a committed quest for knowledge,

aiming to usher in advancements that could reshape the future of wireless commu-

nications.

6.2 Research Objective Achievements

The achievements regarding the research objectives mentioned in chapter 1 is as

follow:

1. Investigate LDM-OFDM Framework: This objective has been successfully

met by developing a transceiver model tailored for both IoT devices and regu-

lar users. Through rigorous testing, it was observed that the CL layer performs

efficiently in low-data-rate transmissions, requiring approximately 15 dB less

SNR. In contrast, the EL layer excels in delivering high-data-rate services. The

results affirm the feasibility of LDM for meeting diverse communication needs,

making it a promising solution for the heterogeneous requirements of future

IoT and user scenarios.

2. Develop & Evaluate N-NOMA-5G Transceiver The N-NOMA-5G transceiver

was successfully developed and evaluated, aligning with 3GPP standards. The
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optimized architecture showed a marked improvement in performance under

low SNR conditions. Specifically, it needed 60% less SNR to achieve compa-

rable BER rates with existing models. A new one-shot multiplexing technique

was implemented, reducing the processing time by 52%. This is particularly

significant as the number of NOMA layers increases, underscoring the archi-

tecture’s scalability and efficiency.

3. Formulate Analytical Models: The objective of formulating analytical models

was met by successfully deriving specialized BER expressions for both CL and

N-NOMA. In the case of CL, the model accounts for LL interference, providing

highly accurate predictions for various power ratios and receiver mobility con-

ditions. In the context of N-NOMA, the BER model considered both UL (resid-

ual) and LL (non-residual) interference effects on performance. These models

demonstrated over 90% accuracy when compared to transmission simulation

results, validating their reliability for real-world applications.

4. Assess Mobility Impact for Unicast Transmission: The objective to assess

the impact of receiver mobility on unicast transmission was successfully ad-

dressed. A novel surface mobility system was developed to evaluate the in-

fluence of mobility on IoT-user pair connectivity across different types of envi-

ronments: urban, rural, and motorway. Findings indicated that IoT movement

emerged as the primary factor, contributing to about 70% of all link termina-

tions. This underscores the need for effective mobility management strategies

for maintaining IoT connectivity. Additionally, the study went a step further

to introduce a 3D mobility model consistent with 3GPP standards. This model

provided deeper insights into the varying mobility patterns that could be en-

countered in both urban and rural scenarios, thereby broadening the scope of

our understanding of mobility impact on unicast transmissions.

5. Optimize PA: The objective to optimize PA was effectively achieved through

the development of an adaptive PA strategy. Utilizing a greedy algorithm that

operates on real-time feedback from the receiver, this strategy showed marked

improvements in NOMA cluster sustainability. For mobile users, the algo-

rithm led to an impressive 40% enhancement in link sustainability, making it
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significantly more robust against changing conditions. Furthermore, for static

users, the system was able to quickly converge to the optimal PA settings, do-

ing so within 12 iterations.

6.3 Research Limitations

This study acknowledges the following limitations regarding the developed models

and techniques:

1. The N-NOMA BER analytical model is constructed based on the assumption

that both residual and non-residual interferences adhere to a Gaussian distri-

bution. This simplification may not account for other potential interference

patterns and their impacts.

2. The current model does not factor in gains from channel coding. Such gains

could notably enhance the BER and diminish the occurrence of residual error

events. This could lead to underestimations of system performance in real-

world applications where channel coding is implemented.

3. The analytical model operates under a worst-case scenario during events of

imperfect SIC. Specifically, it assumes that the transmitted QAM symbol and

the erroneously decoded QAM symbol are diagonally opposite end. This ap-

proach is designed to capture the upper bound of interference but may not

always be representative of typical interference events.

4. While the developed PA technique adjusts the power ratio with incremental

or decremental units, a more dynamic method could be adopted. Predicting

and applying the optimal power ratio, rather than relying on gradual shifts,

could enhance system sustainability and reduce initial connection establish-

ment time.
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6.4 Future Work

Enhancing NOMA Receiver Design in the 5G Transceiver Model

While this study has significantly optimized the transmitter design, there remains

a considerable challenge in the domain of NOMA: the design complexity of low-

power, low-latency transmission receivers. This stems from the prevailing SIC tech-

nique. Current methodologies demand the lower NOMA layer receiver to sequen-

tially decode all the UL symbols, systematically eliminating the interference of suc-

cessive ULs. Consequently, this process not only is power-intensive, but also time-

consuming. Additionally, receivers must provision buffers for the incoming NOMA

signals. A more streamlined, one-shot detection technique could greatly amplify

NOMA’s potential across diverse service deliveries. In the next phase of research

following the completion of the PhD, the focus will be on delving deeper into ex-

ploring alternative interference cancellation strategies for NOMA, with particular

emphasis on varied clustering techniques.

Augmenting the Analytical Model

Another key focus of the upcoming research is the refinement of the analytical model.

The goal is to formulate a model that quantifies error reduction potential, correlating

it with the LDPC coding rate. Achieving this would facilitate its integration into the

existing analytical framework, further incorporating the impact of the coding rate.

Moreover, there is a vision to refine the model to estimate anticipated residual inter-

ference instead of the existing maximal residual interference, aiming to enhance its

precision.

Reinforcing NOMA Link Sustainability and User Fairness through Ad-

vanced Resource Allocation

The advancements made in link sustainability through the proposed method set the

stage for detailed resource allocation strategies specifically designed for N-NOMA.
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The task of enhancing NOMA’s performance regarding user fairness involves ad-

justing reconfigurable network parameters: PA, data rate (determined by modula-

tion scheme), and allocations within the NOMA layers. Crafting an optimal NOMA

setup, especially in the face of dynamic channel conditions and receiver mobility,

stands out as a significant challenge in bolstering NOMA link robustness. How-

ever, the intricate interactions among these parameters and their collective impact

on NOMA’s effectiveness are riddled with complexities. Furthermore, given the em-

phasis on minimizing latency, it is crucial to avoid algorithms that entail extended

optimization durations. Balancing all these intricacies while ensuring each receiver’s

QoS requirements are fulfilled represents a multifaceted, non-convex issue. Tackling

these challenges calls for rigorous research, and the findings might prove instrumen-

tal in shaping the future trajectory of NOMA in wireless ecosystems.
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Appendix A

GitHub Repositories

1. Random Waypoint Mobility Model: GitHub Link

2. Manhattan Mobility Model: GitHub Link

3. Freeway Mobility Model: GitHub Link

4. One-Shot NOMA Multiplexer: GitHub Link

5. Dynamic Power Allocation:GitHub Link

6. LOS Decision Simulator: GitHub Link

7. 5G N-NOMA Simulator for Mobile user: GitHub Link

https://github.com/iamsip/RandomWaypoint-Non-Motorized-Movement
https://github.com/iamsip/Manhattan-Motorized-Movement
https://github.com/iamsip/Freeway-Motorway-Movement
https://github.com/iamsip/One-Shot-NOMA-Multiplexer
https://github.com/iamsip/Dynamic-Power-Allocation-for-N-NOMA
https://github.com/iamsip/LOS-Decision-Simulator
https://github.com/iamsip/noma5gmobility
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