
Forecasting Tourist Arrivals using a Combination of 

Long Short-Term Memory and Fourier Series  

Ani Shabri1, Ruhaidah Samsudin2, Faisal Saeed3 and Mohammed Al-Sarem4  

1Department of Mathematical Sciences, Faculty of Science, 

Universiti Teknologi Malaysia, 81300, Johor, Malaysia. 
2School Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, 

Johor, Malaysia. 
3DAAI Research Group, Department of Computing and Data Science, School of Computing and 

Digital Technology, Birmingham City University, Birmingham B4 7XG, UK. 
4College of Computers and Engineering, Taibah University, Medina, Saudi Arabia. 

ani@utm.my,ruhaidah@utm.my,faisal.saeed@bcu.ac.uk, msarem@tai-

bahu.edu.sa 

 

Abstract. The sector that contributes most to the nation's economy nowadays is 

tourism. Policymakers, decision-makers, and organisations involved in the tour-

ist sector can use tourism demand forecasting to gather important information for 

planning and making important decisions. However, it is difficult to produce an 

accurate forecast because tourism data is critical, especially when a periodic pat-

tern, such as seasonality, trends, and non-linearity, is present in a dataset. In this 

research, we present a hybrid modelling approach for modelling tourist arrivals 

time series data that combines the long short-term memory (LSTM) with the Fou-

rier series method. This method is proposed to capture the components of sea-

sonality and trend in the data set. Various single models, such as ARIMA and 

LSTM, as well as a modified ARIMA model based on Fourier series, are evalu-

ated to confirm the suggested model's accuracy. The efficiency of the proposed 

model is compared using monthly tourism arrivals data from Langkawi Island, 

which has a notable pattern and seasonality. The findings reveal that the proposed 

model is more reliable than the other models in forecasting tourist arrivals series. 

Keywords: Fourier series, artificial neural network, long short-term memory,  

ARIMA, tourist arrival. 

1 Introduction 

Tourism is a major source of economic activity, employment, and income generation. 

Accurate visitor arrivals forecasting is essential for stakeholders and researchers to 

make operational decisions such as providing appropriate operational funds, investing, 

money planning, and predicting future risks. 

For tourist forecasting, various statistical time series prediction approaches have been 

proposed in the past, including autoregressive integrated-moving average (ARIMA) [1-

9], exponential smoothing [1-5], Nave [1-3] and moving average (MA) [4-5]. Because 
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of its high predicted precision and flexibility in representing a wide range of time series, 

the ARIMA model is one of the most widely used statistical models. However, due to 

its linearity, the ARIMA model is insufficient for modelling complex real-world time 

series with significant seasonality [10]. 

Artificial intelligence (AI) methods including support vector machines [1,11,12], fuzzy 

time series [14] and artificial neural networks (ANN) [1,3,5,6,8,13] have been more 

popular in tourist arrival forecasting during the recent year. These AI-based models are 

capable of explaining non-linear data. Finding the best network model and training al-

gorithms for ANN apps, on the other hand, remains a challenge [15]. In addition, more 

parameters must be created in order to develop the ANN model, which can lead to over-

fitting and consequently bad predicting abilities. [16].   

 Lately, it was discovered that Recurrent Neural Network (RNN) designs are better 

suited to coping with the intricacy of time series than ANN [17]. However, because to 

the issue of vanishing gradients in RNN training, new RNN variants, such as long short-

term memory (LSTM), have been proposed. Because of this property, the LSTM model 

has been used to solve forecasting problems [18-20]. 

Despite the obvious advantages of ARIMA, ANN, and LSTM models, it is not always 

adequate to use any single model to identify time series data with complexities and 

seasonal fluctuations. Several previous research have recommended combining several 

prediction models to improve the performance of an single statistical model or artificial 

intelligence model. The combined model's main goal is to overcome the inadequacies 

of single models and establish a predictive synergy. Several studies have also shown 

that combining prediction models is an excellent approach in time series analysis, such 

as combining the SVR-ANN [2], ARIMA-ANN [1,9,21], ARIMA-regression [22], 

ARIMA-deep learning model [23], ANN-Grey–Markov [24], ARIMA-GARCH [21], 

Grey-Fourier series [25,26] and ARIMA-Fourier series [27,28].  

As a result, the primary goal of this research is to assess the efficacy of a combined 

prediction model based on the LSTM and Fourier series in terms of improving predic-

tion accuracy. A sample of monthly tourism arrivals on Malaysia's Langkawi Island 

was chosen for a data analysis study to assess the efficacy of the proposed approach. 

 

 

2     Forecasting Models 

This section describes forecasting models such as ARIMA, LSTM, and proposed 

combining models. 

 

2.1 Arima Model  

The ARIMA model was among the most commonly used time series models [29]. The 
structures of ARIMA(p, d, q)(P, D, Q)s for non-seasonal and seasonal compounds are 
as follows: 

 𝜙𝑝(𝐵)Φ𝑃(𝐵
𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑥𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵

𝑠)𝑎𝑡        (1) 

 

where d and D denote the degree of non-seasonal and seasonal differentiation, 



3 

respectively, s is the season's length and 
t

a is the errors. )(B
p
 and )(B

q
 are the order 

p and q parameters of the autoregressive and moving average, respectively.; )( s

P
B  

and )( s

Q
B  are the order P and Q parameters of the seasonal autoregressive and mov-

ing average, respectively; The ARIMA was developed in four stages, according to ref-

erence [29]: identification, estimating parameter, diagnostic procedures, and forecast-

ing. 

The ARIMA models in this study were discovered with R software, which was built on 

the Forecast package [30]. The seasonal unit root test and the Osborn-Chui-Smith-

Birchenhall test [31] are used to determine the number of d and D. The Akaike Infor-

mation Criterion (AIC) is used to determine the order values of p, q, P, and Q. The best 

ARIMA model for modelling is the one with the lowest AIC value.  

 

2.2 LSTM Model 

Hochreiter and Schmidhuber introduced the LSTM model [32] and has been used to 

achieve well-known results for many sequential data problems. LSTMs learn long-term 

dependencies using a mechanism known as gates. These gates can decide which data 

in a sequence should be kept and which should be disposed. An LSTM's three gates are 

input, forget, and output. The construction of an LSTM cell is shown in Figure 1[33]. 

The cell state is the horizontal line between 𝐶𝑡−1 and 𝐶𝑡. The heart of the LSTM model, 

where data is added and deleted from memory via pointwise addition and multiplica-

tion. The LSTM block's input and forget gates, as well as the output "tanh" activation 

function, are used to conduct these tasks. The following are the computations inside the 

LSTM neurons: 

 

Forget gate:   𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)           (2)  

Input gate:    𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)            (3)  

Process input:  𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)          (4)  

Cell update:   𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡)            (5) 

Output gate:   𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)            (6)  

Output:     ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡)              (7) 

 

 

where 𝑏𝑓, 𝑏𝑜, 𝑏𝑖and 𝑊𝑓, 𝑊𝑜,𝑊𝑖  are the bias and weight matrices of the forget, output 

and input gates, respectively. 𝑏𝐶  and 𝑊𝐶 are the bias and weights of the cell state. ℎ𝑡 
calculates the final outputs 𝜎 is sigmoid function, the previous cell state's output is ℎ𝑡−1, 

the current cell state's input is 𝑥𝑡 and 𝑜𝑡 determines whether part of the cell state should 

be exported. 

The forget gates are formed by combining the present time step input with the prior 

time step's hidden state, as shown in Eq. 2. Eq. 3 is an input gate that directs cell state 

adjustments to all neural net cells. Eq. 4 and 5 upgrade the cell states by transferring 

fresh information and the previous cell state from Eq. 2 and 3. to Eq. 5. Eq. 6 and 7 are 
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being used to generate the current time step's hidden state by combining the hidden and 

updated cell states from the previous time step from Eq. 5. 

 
Fig.1. Structure of LSTM model 

 

 

The loss function was mean squared error, and the "Adam" optimization technique 

[33] has been used to identify the best weight values for the networks. The data was 

normalised to a 0 to 1 scale. The function used to normalise the dataset in this investi-

gation is described by Eq. (8): 

                       𝑦𝑡 =
𝑥𝑡

𝑥𝑚𝑎𝑥
 (8) 

 

where 𝑥𝑡  is the actual value, 𝑦𝑡  is the normalized time series, and 𝑥𝑚𝑎𝑥  is the max-

imum actual value.  

2.3 The Fourier LSTM Model 

Fourier series have been applied to improve forecast model precision by modifying 

forecast model residuals.  The methodology for developing a modified forecasting met-

hod known as the Fourier LSTM (FLSTM) model is as follows: 

Step 1:  Fit the LSTM model to a data set
t

y . 

Step 2:  Create the residual series,-- 𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡 based on the LSTM predicted va-

lues 𝑦̂𝑡 .  
Step 3: Fit the Fourier series to a residual 𝑒𝑡  as shown below.  

         𝑒𝑡 =
𝑎0

2
+ ∑ 𝑎𝑡𝑐𝑜𝑠 (

2𝑡𝑘𝜋

𝑛−1
) + 𝑏𝑡𝑠𝑖𝑛 (

2𝑡𝑘𝜋

𝑛−1
)              𝑀

𝑡=1     (9) 

 

where 𝑀 =
𝑛−2

2
− 1, 𝑒 = 𝐴𝐵,  

𝐴 = (0.5    𝑃1   … 𝑃𝑘 … 𝑃𝐹), 
𝐵 = (𝑎0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, … , 𝑎𝑀, 𝑏𝑀)

𝑇 

 

𝐴𝑘 =

(

  
 

𝑐𝑜𝑠 (
2×2𝜋𝑘

𝑛−1
)

𝑐𝑜𝑠 (
3×2𝜋𝑘

𝑛−1
)

⋮

𝑐𝑜𝑠 (
𝑛×2𝜋𝑘

𝑛−1
)

𝑠𝑖𝑛 (
2×2𝜋𝑘

𝑛−1
)

𝑠𝑖𝑛 (
3×2𝜋𝑘

𝑛−1
)

⋮

𝑠𝑖𝑛 (
𝑛×2𝜋𝑘

𝑛−1
))

  
 

   (10) 
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The ordinary least squares (OLS) method is used to estimate the parameters 

B.  

 

 𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇𝑒𝑇   (11) 

    

The estimated residual by the Fourier series can be calculated using the 

following equation. 

 

  𝑒̂𝑡 =
𝑎0

2
+ ∑ 𝑎𝑡𝑐𝑜𝑠 (

2𝑡𝑘𝜋

𝑛−1
) + 𝑏𝑡𝑠𝑖𝑛 (

2𝑡𝑘𝜋

𝑛−1
)              𝑀

𝑡=1   (12) 

 

Step 4:  Finally, the predicted values of the FLSTM model can be calculated by adding 

the predicted values of the LSTM model to the estimated residual from the 

Fourier series. 

𝑦̃𝑡 = 𝑦̂𝑡 + 𝑒̂𝑡  (13) 

 

 

3. Examining The Performance 

The proposed model's efficiency was measured using the mean absolute percentage 

error (MAPE) and root mean square error (RMSE). 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

 

where 𝑦𝑖, 𝑦̂𝑖 and n denote the actual, predicted, and overall amount of datasets, res-

pectively. The best forecasting model is the one with the lsmallest MAPE and RMSE 

values. 

 

3.1 Analysis Data 

 

This paper analysed tourist numbers arrivals to Langkawi Island in Malaysia, as re-

ported on the Langkawi Development Authority (LADA) Malaysia website. This study 

focuses on examining the monthly tourism arrivals from January 2002 to December 

2016. The training data covers the period from January 2002 to December 2015, 

whereas the testing data covers the period from January 2016 to December 2016. Figure 

3 shows the monthly tourism arrivals to Langkawi Island (January 2002-December 

2016). The monthly tourism arrivals curve, as seen in Fig. 3, has a trend, is non-station-

ary, and has a seasonal pattern. 
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Fig. 2  Monthly visitor arrivals on Malaysia's Langkawi Island from 2002 to 2016. 

 

ARIMA, LSTM, and FARIMA models were used in this study to evaluate the efficacy 

of the proposed model. 

3.2 The ARIMA model fit to the data 

The ARIMA model was identified and optimised using R Forecast package [37]. By 

default, this package specifies the maximum order for d, P and Q to 2, D to 1 and p and 

q to 5. The ARIMA model parameters were estimated using the maximum likelihood 

estimate (MLE) and the Ljung-Box (LB) test was used to confirm that the model selec-

ted was suitable for the data.  The AIC is used to choose values for p, P, q, and Q, while 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) is applied to choose values for d and 

D.    

The AIC and p-value of the Ljung Box test for numerous ARIMA models are sum-

marised in Table 1. The five models considered were found to be acceptable by the 

Ljung-Box test, with ARIMA(1,0,2)(0,1,1)12 having the smallest AIC values. The 

model can be expressed as follows: 

 

𝑥𝑡 = 941.745 + 𝑥𝑡−12 + 0.771𝑥𝑡−1 − 0.771𝑥𝑡−13 + (1 − 0.810𝐵 + 0.287𝐵
2)(1

− 0.330𝐵12)𝑎𝑡 
 

The ARIMA model's AR term is as follows: 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−12, 𝑥𝑡−13) 
 

 

 

 
Table 1: AIC and p-values of Ljung-Box test for ARIMA models 

 
 

No 
ARIMA p-value of LB Test  

(p,d,q)(P,D,Q)12 lag=12 lag=24 lag= 36 AIC 

1 (2,0,2)(0,1,1)12 0.977 0.996 0.219 3406.7 

1 (2,0,3)(0,1,1)12 0.999 0.999 0.281 3405.6 

2 (1,0,2)(0,1,2)12 0.997 0.996 0.226 3406.4 
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4 (1,0,2)(0,1,1)12 0.997 0.996 0.226 3404.3 

5 (1,0,3)(0,1,1)12 0.997 0.996 0.207 3406.4 

Bold values indicate the smallest AIC 

 

I. Input Time Lag Selection 

The selection of significant input variables is one of the most critical processes in the 

LSTM model generation process. The input variables were determined using three 

ways in this investigation. 
i. Packard et al. [34] suggested in the selection of the input variables, the number of 

nodes in the input layer equals the number of lag variables. The 𝑦𝑡 output is given 
as 

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑝) 

 where p is a the number of period for seasonal. 
ii. The lagged variables of the ARIMA model are the most significant variables to use 

as input variables for AI models [35]. The AR term from the ARIMA model is 
defined in Table 2 as 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−12, 𝑥𝑡−13) 
 
iii. Prastyo et al. [36] suggested PACF in determination input variables of AI models. 

Fig. 4 and 5 show the decomposition plot and PACF graph. Through observing Fig. 4, 

it is obvious that the data has a seasonal pattern with seasonal period is 12. Fig. 5 

shows that the PACF significance at lags 1, 2, 3, 6, and 11 to 15. 

 

 

 
Fig.3: The decomposition plot (Original data (top) and its three additive components (bot-

tom)). 
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Fig.4: PACF of original data 

 

As a result of the decomposition plot, PACF and AR terms, the LSTM model input 

may be expressed as shown in Table 2. 

 
Table 2: Input variables for LSTM model 

Model Method Input 

LSTM1 
LSTM2 

 

LSTM3 

Period 12 
AR 

 

PACF 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−12) 
 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−12, 𝑥𝑡−13) 
 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3, 𝑥𝑡−6, 𝑥𝑡−11, 
𝑥𝑡−12, 𝑥𝑡−13, 𝑥𝑡−14,𝑥𝑡−15) 

 

3.3 LSTM model fit to the data 

During the training phase of this study, we examined all possible combinations to find 

the best parameters for LSTM1, LSTM2, and LSTM3. The number of epochs is 300, 

the batch size is 4, and the Adam optimization algorithm [37] with a default-learning 

rate of 0.01 is used throughout this study. The mean square error is used as the loss 

function.  

The testing dataset gave RMSEs of 44367.33, 61411.02, and 55492.73 for the 

LSTM1, LSTM2, and LSTM3 models, respectively. LSTM1, LSTM2, and LSTM3 

have MAPEs of 11.462, 19.407, and 16.549, respectively. The LSTM2 model has the 

lowest RMSE and MAPE values and show performs better in forecasting. 

 

3.4 The LSTM and Fourier Series Fit to the Data 

 

The residual series from the best ARIMA and LSTM models were then combined with 

Fourier series to form the Fourier-ARIMA (FARIMA) and Fourier-LSTM (FLSTM) 

models, respectively.  Table 3 demonstrates the RMSE and MAPE performance of the 

ARIMA and LSTM models, as well as their Fourier series. In Table 3, the ARIMA, 

LSTM, FARIMA, and FLSTM models had RMSEs of 49319.52, 44367.35, 34113.20, 

and 29148.60, respectively. ARIMA, LSTM, FARIMA, and FLSTM models had 

MAPEs of 14.64%, 11.46%, 10.92%, and 9.28%, respectively.  

The forecasting accuracy of the single ARIMA and LSTM models improved when 

the Fourier residual estimation was used, as shown in Table 3. The FLSTM model had 

the best overall testing phase performance (RMSE = 29148.60 and MAPE = 9.28%). 
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This shows that the FLSTM model has fewer errors than single ARIMA and LSTM 

models, as well as a combination model, the FARIMA model. According to the RMSE 

and MAPE criteria, the FLSTM model has a strong forecasting ability. According to 

the findings above, the FLSTM model received the highest ranking of all the models 

considered. 

 

Table 3  Model performance for monthly tourism arrivals data 

 

Model RMSE   MAPE (%) 

ARIMA 49319.52  14.64 

LSTM 44367.35  11.46 

FARIMA 34113.20  10.92 

FLSTM 29148.60  9.28 

 

The real data versus the ARIMA, FARIMA, LSTM, and FLSTM models' fore-
casted values are presented in Fig. 5. In comparison to other approaches, the 
FLSTM model performed excellently and closely followed the true data. The 
findings suggest that the FLSTM models can accurately anticipate the amount 
of tourists arrivals. The empirical findings indicate that the FLSTM model may be 

successful in improving model forecasting accuracy in a series of seasonal monthly 

tourist arrival to Langkawi Island. 

 

 

  Fig.5  Actual tourism arrivals versus forecasted values 

 

4  Conclusion 

 
In this study, we set out to forecast the number of visitors to the Langkawi region using 

two traditional methods. To solve the shortcomings of each method, we then combined 

the two methods in hybrid models utilising Fourier series. The results demonstrated that 

the LSTM performed better than the ARIMA technique, which produced substantial 

output values and accurately represented the pattern of the actual data. The hybrid 

model that combined LSTM and Fourier series was consistently better accurate when 
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compared to other combination technique and the traditional techniques. These findings 

show that the ARIMA or LSTM model alone cannot be used to forecast visitor arrivals. 

However, as each technique captures a certain characteristic of the data, researchers 

should combine different techniques for results with high significance in order to over-

come each technique's limitations. More study might examine additional hybrid mod-

els, such as those that employ alternative weighting techniques when combining more 

than two models in an ensemble learning technique. Other research might compare var-

ious ensemble learning methodologies when employing mixed-frequency data, which 

has emerged as the new standard in forecasting tourist demand. 
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