

A Proxy-Layer Approach to Secure Smart Contract
Deployment on Private EVM-Based PoA

Blockchains
Yonghao Wang1, Jahid Ali2, Junaid Arshad1, Yunxia Liu3
1College of Computing, Birmingham City University, UK

2MEER Labs Limited, UK
3Zhengzhou Normal University, China

yonghao.wang@bcu.ac.uk; jahid@meerlabs.com; junaid.arshad@bcu.ac.uk; liuyunxia0110@zznu.edu.cn

Abstract—Within the enterprise sector, there is a growing
trend of adopting private and consortium blockchains to
leverage the benefits of blockchain technology. Networks based
on Proof-of-Authority (PoA) and compatible with the Ethereum
Virtual Machine (EVM) are particularly advantageous in this
scenario, providing both efficiency and straightforward setup.
While private blockchains inherently enhance security by their
permissioned nature, which restricts node participation to
authorised entities only, it's crucial to recognise the ongoing
necessity for additional safeguards. These safeguards are
essential to guarantee that only verified and trustworthy smart
contracts are deployed. A key concern in this realm is
addressing particular attack vectors, such as front-running
attacks. This paper presents an innovative proxy-layer solution
designed to integrate effortlessly with any EVM-compatible
blockchain, thereby strengthening both governance and
security aspects.

Keywords—EVM, Blockchain, PoA, Proxy, Smart Contract

I. INTRODUCTION
Since the conception and implementation of the Bitcoin

blockchain in 2008 by the pseudonym Satoshi Nakamoto [1],
blockchain technology has undergone significant evolution,
particularly in terms of enhanced programmability [2]. This
evolution has spurred widespread adoption in various
industries and governmental bodies, attracted by the
technology's inherent features like data transparency and
immutability. However, these stakeholders are often cautious,
seeking to avoid the risks associated with unregulated public
blockchains, which can be susceptible to fraudulent activities
such as Ponzi schemes. An illustrative example is the Chinese
government’s use of blockchain to securely and transparently
track 'fapiao,' or certified invoices that are tax-bureau-
authorised records of commercial transactions [3], utilizing a
private blockchain system. As a result, many sectors are
exploring the potential of consortium or private blockchains
as a medium for facilitating transparent and immutable
business transactions and contracts among diverse entities.

In this context, private and consortium blockchains offer a
regulated, customised infrastructure that is conducive to
fulfilling specific organisational objectives and regulatory
compliances. These blockchains cater to a broad array of
critical domains, encompassing not only regulatory
compliance, data transparency, and asset tracking, but also
need to fulfil special performance requirements such as speed,
efficiency, enhanced security, and access control.

In this paper, we introduce a novel proxy-layer mechanism
designed to enforce permissioned smart contract deployment,

thereby augmenting the security framework of private
blockchain implementations.

II. BACKGROUND AND CHALLENGES

A. Ethical and Accessible Private Blockchain Frameworks
Within the consortium and private blockchain landscape,

two dominant architectural paradigms exist: Hyperledger
frameworks [4] and Ethereum-compatible blockchains using
Proof of Authority (PoA) consensus mechanisms under the
EIP-225 Clique specifications [5]. Hyperledger comes with
modular design and enterprise-specific features, while PoA
networks has advantages in terms of compatibility with the
existing EVM-based decentralised applications (DApps)
ecosystem and ease of setup.

Our research initiative aims to make blockchain
technology accessible and ethic to Small and Medium-sized
Enterprises (SMEs). Consequently, we have opted for
Ethereum-compatible technologies, largely due to their
mature ecosystem of pre-existing decentralised applications
(DApps). This choice offers SMEs a lower cost for software
development and maintenance, especially for those lacking
the technical expertise or financial resources for more
complex blockchain implementations. An additional
advantage of Ethereum-compatible technologies is their well-
established protocols for cross-chain operations with other
public blockchains, that could potentially facilitate value
transfer mechanisms between various types of distributed
ledgers. This offers a possible value bridge between private
and public chains when SMEs require such applications.
While Hyperledger frameworks offer high degrees of
customisation and control, they often entail intricate setup
procedures that may pose barriers to SMEs, which typically
lack the extensive resources of larger enterprises. In contrast,
private PoA (PPOA) based frameworks within the Ethereum-
compatible paradigm offer a more straightforward
deployment process. This accessibility aligns well with our
overarching objective to develop an ethical, transparent, and
readily accessible blockchain infrastructure.

B. Security Challenges and Performance Requriements
 EVM-compatible blockchains are prevalent in public
networks. Adopting Private Proof of Authority (PPOA) offers
ease of porting existing DApps but also imports public chain
security vulnerabilities. For instance, the recent surge in
Decentralized Finance (DeFi) applications has led to an
increase in Front-Running attacks associated with specific
smart contract categories, such as decentralized exchanges,
lending protocols, and liquidation mechanisms.

mailto:yonghao.wang@bcu.ac.uk
mailto:jahid@meerlabs.com
mailto:junaid.arshad@bcu.ac.uk
mailto:liuyunxia0110@zznu.edu.cn

In a Private Proof of Authority (PPOA) environment,
where nodes are generally operated by a consortium of
trustworthy business partners, risks associated with 51% [6]
and Sybil attacks [7] are mitigated. However, vulnerabilities
related to smart contracts, particularly Front-Running attacks,
persist. This issue is exacerbated by the predictability
introduced by the PoA consensus algorithms, allowing
attackers to anticipate when a node will produce the next block
[8]. To counter these vulnerabilities, one approach is to restrict
the deployment of specific types of trading-focused smart
contracts by users. Within the context of an accessible and
ethical PPOA environment, such a restriction is even
desirable.

Alongside this, we identify a set of key features that an
accessible and ethical blockchain infrastructure should
incorporate, particularly catering to SMEs, charities and
potentially NGOs.

Firstly, Gas Fees: The PPOA network should be designed
to incur low or even no gas fees. The intrinsic transaction fee
acts as a safeguard against infinite computational loops
within smart contracts. Fees should be automatically
managed by the network and DApps, obviating the need for
additional user intervention. This is aligned with the
network's role as a business utility rather than a financial
transaction platform.

Secondly, Account Security: The PPOA network should
offer mechanisms, such as rekeying [9][10] or comparable
technologies like smart contract based wallet [11], to allow
account recovery in the event of lost private keys, whilst
maintaining high security standards. This will alleviate the
single point of failure associated with blockchain-related
wallets.

Thirdly, Smart Contract Permissions: We propose a
permissioned architecture for smart contract deployment to
enhance security. An audit process for contract deployment
will mitigate risks like Front-Running attacks and other
malicious smart contracts, aligning with the network’s
objective to support internal business processes.

Fourthly, Network Bridging: A controlled bridging
mechanism should be in place to facilitate secure value
transfer between the PPOA network and public blockchains.
This feature aims to provide a method for the secure, regulated
exchange of assets without compromising the network's
internal integrity.

In this work, we address the third point by employing a
proxy to secure the smart contract deployment process.

III. RELATED WORK ON PERMISSIONED BLOCKCHAIN
TECHNOLOGIES

While permissioned smart contract features are typically
associated with Hyperledger architectures [12], EVM-based
blockchains generally function as public chains, and thus do
not inherently focus on smart contract access control and
auditing. To address this, we utilise a network proxy layer to
intercept JSON-RPC calls, which are commonly used for
smart contract interactions with blockchain nodes. Existing
projects like “ethproxy” [13] and “EthLogSpy” [14] also
employ reverse proxies for capturing JSON-RPC requests,
albeit for logging and debugging purposes. These intercepted
requests are stored in a database and can be queried more
swiftly than through a traditional blockchain explorer. In

contrast, our approach employs the proxy layer specifically for
smart contract permissioning.

IV. SYSTEM DESIGN AND ARCHITECTURE
In this section, we describe the architecture and design

principles underpinning our proxy layer approach. The
creation of a smart contract is accomplished by submitting
state-changing transactions to the blockchain. There are two
primary stateless JSON-RPC methods for this purpose:
“eth_sendTransaction” and
“eth_sendRawTransaction” (as outlined in the Ethereum
JSON-RPC documentation). The choice between these
methods depends on the location of the private key intended
for signing the transaction. Our proxy is designed to intercept
these JSON-RPC calls, check their content, and assess
whether the Externally Owned Account (EOA) is authorised
to execute this specific transaction. Access control is governed
by an on-chain smart contract containing a whitelist of
approved addresses.

Figure 1 Proxy System Architecture

V. IMPLEMENTATION AND ALGORITHMIC OVERVIEW

A. Smart Contract Creation Methods
 We focus on intercepting two EVM contract creation
methods: 1) eth_sendTransaction and 2)
eth_sendRawTransaction. The primary distinction
between them lies in the handling of private keys. In the case
of eth_sendTransaction, the node must host an open
account and the associated private key to sign the contract.
Whereas, eth_sendRawTransaction allows the client to
initiate the call, ensuring the private key is neither exposed nor
stored on the node. Within this context,
eth_sendTransaction is primarily used for testing and
development, while eth_sendRawTransaction is more
suited for production environments.

 Under typical conditions, the private key resides with the
Externally Owned Account (EOA) intending to initiate a
transaction. This transaction is constructed and locally signed
by the user before being sent to the node via the
eth_sendRawTransaction method. Unlike the prior
method, these transactions are encoded using Recursive
Length Prefix (RLP) [15]. They must first be decoded to
extract the essential parameters needed to enforce our desired
permissioned environment.

B. Smart Contract Permissioning
 To check whether an EOA is attempting to deploy a smart
contract, the 'params' section within either
eth_sendTransaction or eth_sendRawTransaction
can be examined. Specifically, the absence of a 'to' field is
indicative of a contract deployment attempt. The 'from'
address is then cross-referenced with a list of whitelisted
addresses stored in an on-chain smart contract. If whitelisted,
the transaction is permitted to pass through to the node;
otherwise, it is rejected. An on-chain smart contract is utilised
for access control during smart contract creation. This contract
includes a function that, when invoked, returns a Boolean
value (true or false) to the proxy. As the function simply reads
the state of the blockchain, a response can be returned quickly
without undergoing the usual process of including the
transaction in a block.

C. Proxy Implementation
To build our reverse proxy, we use the Python-based

Flask library, which comes with a built-in development
server. Flask was chosen for its lightweight architecture and
minimal boilerplate code requirements, streamlining the
application development process. Another significant
advantage of Flask is its extensibility, such as the Flask-
CORS library, which automatically enables CORS (Cross-
Origin Resource Sharing) without requiring modifications to
incoming requests. This feature is particularly useful when
integrating the proxy with web-based IDEs like Remix IDE.

The proxy has multiple responsibilities, including

identifying the type of JSON-RPC method invoked,
determining if a smart contract is being deployed, and
verifying whether the user initiating the contract deployment
is authorized to do so. Below is a snippet of the Python code
used to monitor the eth_sendRawTransaction method.

Table 1 Python proxy code snippet

……
def eth_sendRawTransaction(signed_tx) -> bool:
 txs = rlp.decode(hex_to_bytes(signed_tx),
Transaction)
 tx_dict = txs.to_dict()

 if tx_dict["to"] == "0x":
 deployer = tx_dict["sender"]
 print(f"Deployer: {deployer}")

 return check_address(deployer)
……

D. Permission Contract
To build our permissioned smart contract, named

'Permission.sol,' we employ the Solidity programming
language for development and Hardhat for compilation and
deployment onto an EVM-compatible test environment using
Hardhat's built-in node. The contract comprises three primary
functions: 'checkAddress,' 'addToWhitelist,' and
'removeFromWhitelist.' The 'checkAddress'
function verifies an address against a mapping called
'whiteList' and returns a Boolean value.
'addToWhitelist' allows new addresses to be added by
setting the corresponding value to 'true,' while
'removeFromWhitelist' revokes access by setting the
value to 'false.' To secure these administrative functions

against unauthorised access, we utilise the 'Ownable' smart
contract from OpenZeppelin. This contract restricts specific
functions to be callable only by the contract owner,
enforceable by appending the 'onlyOwner' modifier to the
relevant functions.

Table 2 permissioned smart contract code snippet

……
pragma solidity >=0.8.2 <0.9.0;

import
"@openzeppelin/contracts/access/Ownable.sol";

contract Permission is Ownable {

 mapping (address => bool) whitelist;

 function checkAddress(address addr) public
view returns (bool) {
 bool inWhitelist = whitelist[addr];
 return inWhitelist;
 }

 function addToWhitelist(address addr) public
onlyOwner {
 whitelist[addr] = true;
 }

 function removeWhitelist(address addr) public
onlyOwner {
 whitelist[addr] = false;
 }
}
……

In summary, this architecture primarily consists of an on-

chain permissioning smart contract and an intermediary
reverse proxy. The contract regulates the access control for
smart contract deployment, whilst the proxy performs
operational tasks to determine whether a transaction is
legitimate and permitted.

VI. EVALUATION AND RESULTS
We utilise Hardhat for smart contract compilation and

deployment on an EVM-compatible test environment.
Furthermore, the architecture is compatible with Qitmeer’s
POA network, Amana, with slight modifications to the source
code [16].

Two scenarios were evaluated: 1) An authorized user

successfully deployed a smart contract. 2) An unauthorized
user was restricted by the reverse proxy. Both scenarios
produced the expected outcomes upon testing.

In addition, the architecture was deployed on Amazon

Web Services (AWS) using the Qitmeer Amana Network to
create a three-node private blockchain network. This
involved configuration and source code modifications to
Qitmeer's next-generation network (QNG). The
implementation demonstrated the system's capability to
effectively control and audit smart contract deployments in a
production environment. The source code and instructions
can be found on the relevant GitHub website [17].

In our comprehensive latency evaluation of a private

Proof of Authority (PoA) testing network, we rigorously
compared the contract creation delay over 100 iterations, both

with and without a proxy configuration. The results revealed
a discernible difference in the network's performance in these
two scenarios. On average, the network exhibited a delay of
10.96 milliseconds when operating without a proxy and a
higher delay of 21.76 milliseconds with the proxy enabled.
Furthermore, the variability of the network delay, as indicated
by the standard deviation, was 5.86 milliseconds without a
proxy and increased to 10.84 milliseconds with a proxy.
These metrics are critical for understanding the impact of
proxy usage on network latency within PoA blockchain
environments.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this study, we introduced an intermediate proxy layer to

enhance security and auditing capabilities for smart contract
permissioning in private blockchain networks. Our proposed
architecture only requires minor code modifications and
configuration adjustments to integrate with any EVM-
compatible blockchain, whether private or consortium-based.
Our tests, conducted on the Qitmeer Next-Generation (QNG)
network hosted on Amazon Web Services (AWS), confirmed
the proxy's effectiveness in security checks.

In addition, the Python implementation of the proxy
increases the average contract creation time by about 10
milliseconds, which should not be a significant barrier for user
experience. With future optimisation, such as using a
WebSocket proxy implementation, this figure can be further
reduced.

Future work should explore securing inter-contract
communications, particularly when smart contracts are
generated by other contracts. Another avenue for investigation
is the performance and scalability of this architecture; a
thorough analysis is needed to determine its impact on block
confirmation times and latency. For deployment in production
environments, it is essential to secure the native RPC calls for
each node within the private network. This precaution ensures
the effectiveness of the auditing layer by preventing
unauthorised external access.

REFERENCES
[1] S. Nakamoto, ‘Bitcoin: A peer-to-peer electronic cash system’.
[2] V. Buterin and others, ‘A next-generation smart contract and

decentralized application platform’.
[3] N. Kshetri, ‘Blockchains with Chinese Characteristics’, Calgary:

International Telecommunications Society (ITS), 2022. Accessed:
Sep. 29, 2023. [Online]. Available:
https://www.econstor.eu/handle/10419/265646

[4] C. Cachin, ‘Architecture of the hyperledger blockchain fabric’, in
Workshop on distributed cryptocurrencies and consensus ledgers,
Chicago, IL, 2016, pp. 1–4. Accessed: Sep. 29, 2023. [Online].
Available:
https://theblockchaintest.com/uploads/resources/IBM%20Research%
20-
%20Architecture%20of%20the%20Hyperledger%20Blockchain%20
Fabric%20-%202016%20-%20July.pdf

[5] ‘EIP-225: Clique proof-of-authority consensus protocol’, Ethereum
Improvement Proposals. Accessed: Sep. 29, 2023. [Online].
Available: https://eips.ethereum.org/EIPS/eip-225

[6] C. Ye, G. Li, H. Cai, Y. Gu, and A. Fukuda, ‘Analysis of Security in
Blockchain: Case Study in 51%-Attack Detecting’, in 2018 5th
International Conference on Dependable Systems and Their
Applications (DSA), Sep. 2018, pp. 15–24. doi:
10.1109/DSA.2018.00015.

[7] T. Rajab, M. H. Manshaei, M. Dakhilalian, M. Jadliwala, and M. A.
Rahman, ‘On the Feasibility of Sybil Attacks in Shard-Based
Permissionless Blockchains’. arXiv, Feb. 16, 2020. doi:
10.48550/arXiv.2002.06531.

[8] Q. Wang, R. Li, Q. Wang, S. Chen, and Y. Xiang, ‘Exploring
Unfairness on Proof of Authority: Order Manipulation Attacks and
Remedies’, in Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, in ASIA CCS ’22. New
York, NY, USA: Association for Computing Machinery, May 2022,
pp. 123–137. doi: 10.1145/3488932.3517394.

[9] ‘Rekeying - Algorand Developer Portal’. Accessed: Nov. 09, 2023.
[Online]. Available: https://developer.algorand.org/docs/get-
details/accounts/rekey/

[10] M. Davison, K. King, and T. Miller, ‘Blockin: Multi-Chain Sign-In
Standard with Micro-Authorizations’. 2022. Accessed: Nov. 09,
2023. [Online]. Available: https://eprint.iacr.org/2022/1646

[11] ‘ERC-4337: Account Abstraction Using Alt Mempool’, Ethereum
Improvement Proposals. Accessed: Nov. 09, 2023. [Online].
Available: https://eips.ethereum.org/EIPS/eip-4337

[12] Y. Hu, M. Liyanage, A. Mansoor, K. Thilakarathna, G. Jourjon, and
A. Seneviratne, ‘Blockchain-based Smart Contracts - Applications
and Challenges’. arXiv, Jun. 08, 2019. doi:
10.48550/arXiv.1810.04699.

[13] ‘Ethereum Backend Proxy’. Ethersphere, May 25, 2023. Accessed:
Oct. 04, 2023. [Online]. Available:
https://github.com/ethersphere/ethproxy

[14] orbulo, ‘PaoloRollo/ethlogspy’. Jun. 04, 2023. Accessed: Oct. 04,
2023. [Online]. Available: https://github.com/PaoloRollo/ethlogspy

[15] A. Coglio, ‘Ethereum’s Recursive Length Prefix in ACL2’, Electron.
Proc. Theor. Comput. Sci., vol. 327, pp. 108–124, Sep. 2020, doi:
10.4204/EPTCS.327.11.

[16] ‘Deploy Private Amana Network - Qitmeer/Meerlabs Community
Documents’. Accessed: Oct. 04, 2023. [Online]. Available:
https://meerlabs.github.io/community_docs/deploy_private_amana_n
etwork/

[17] ‘Deploy Private Amana Network (AWS) - Qitmeer/Meerlabs
Community Documents’. Accessed: Oct. 04, 2023. [Online].
Available:
https://meerlabs.github.io/community_docs/AWS_deploy_amana_pri
vnet/

