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Abstract—Within the enterprise sector, there is a growing 
trend of adopting private and consortium blockchains to 
leverage the benefits of blockchain technology. Networks based 
on Proof-of-Authority (PoA) and compatible with the Ethereum 
Virtual Machine (EVM) are particularly advantageous in this 
scenario, providing both efficiency and straightforward setup. 
While private blockchains inherently enhance security by their 
permissioned nature, which restricts node participation to 
authorised entities only, it's crucial to recognise the ongoing 
necessity for additional safeguards. These safeguards are 
essential to guarantee that only verified and trustworthy smart 
contracts are deployed. A key concern in this realm is 
addressing particular attack vectors, such as front-running 
attacks. This paper presents an innovative proxy-layer solution 
designed to integrate effortlessly with any EVM-compatible 
blockchain, thereby strengthening both governance and 
security aspects. 
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I. INTRODUCTION 
Since the conception and implementation of the Bitcoin 

blockchain in 2008 by the pseudonym Satoshi Nakamoto [1], 
blockchain technology has undergone significant evolution, 
particularly in terms of enhanced programmability [2]. This 
evolution has spurred widespread adoption in various 
industries and governmental bodies, attracted by the 
technology's inherent features like data transparency and 
immutability. However, these stakeholders are often cautious, 
seeking to avoid the risks associated with unregulated public 
blockchains, which can be susceptible to fraudulent activities 
such as Ponzi schemes. An illustrative example is the Chinese 
government’s use of blockchain to securely and transparently 
track 'fapiao,' or certified invoices that are tax-bureau-
authorised records of commercial transactions [3], utilizing a 
private blockchain system. As a result, many sectors are 
exploring the potential of consortium or private blockchains 
as a medium for facilitating transparent and immutable 
business transactions and contracts among diverse entities. 

In this context, private and consortium blockchains offer a 
regulated, customised infrastructure that is conducive to 
fulfilling specific organisational objectives and regulatory 
compliances. These blockchains cater to a broad array of 
critical domains, encompassing not only regulatory 
compliance, data transparency, and asset tracking, but also 
need to fulfil special performance requirements such as speed, 
efficiency, enhanced security, and access control.  

In this paper, we introduce a novel proxy-layer mechanism 
designed to enforce permissioned smart contract deployment, 

thereby augmenting the security framework of private 
blockchain implementations. 

II. BACKGROUND AND CHALLENGES 

A. Ethical and Accessible Private Blockchain Frameworks 
Within the consortium and private blockchain landscape, 

two dominant architectural paradigms exist: Hyperledger 
frameworks [4] and Ethereum-compatible blockchains using 
Proof of Authority (PoA) consensus mechanisms under the 
EIP-225 Clique specifications [5]. Hyperledger comes with 
modular design and enterprise-specific features, while PoA 
networks has advantages in terms of compatibility with the 
existing EVM-based decentralised applications (DApps) 
ecosystem and ease of setup. 

Our research initiative aims to make blockchain 
technology accessible and ethic to Small and Medium-sized 
Enterprises (SMEs). Consequently, we have opted for 
Ethereum-compatible technologies, largely due to their 
mature ecosystem of pre-existing decentralised applications 
(DApps). This choice offers SMEs a lower cost for software 
development and maintenance, especially for those lacking 
the technical expertise or financial resources for more 
complex blockchain implementations. An additional 
advantage of Ethereum-compatible technologies is their well-
established protocols for cross-chain operations with other 
public blockchains, that could potentially facilitate value 
transfer mechanisms between various types of distributed 
ledgers. This offers a possible value bridge between private 
and public chains when SMEs require such applications. 
While Hyperledger frameworks offer high degrees of 
customisation and control, they often entail intricate setup 
procedures that may pose barriers to SMEs, which typically 
lack the extensive resources of larger enterprises. In contrast, 
private PoA (PPOA) based frameworks within the Ethereum-
compatible paradigm offer a more straightforward 
deployment process. This accessibility aligns well with our 
overarching objective to develop an ethical, transparent, and 
readily accessible blockchain infrastructure. 

B. Security Challenges and Performance Requriements 
 EVM-compatible blockchains are prevalent in public 
networks. Adopting Private Proof of Authority (PPOA) offers 
ease of porting existing DApps but also imports public chain 
security vulnerabilities. For instance, the recent surge in 
Decentralized Finance (DeFi) applications has led to an 
increase in Front-Running attacks associated with specific 
smart contract categories, such as decentralized exchanges, 
lending protocols, and liquidation mechanisms. 
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In a Private Proof of Authority (PPOA) environment, 
where nodes are generally operated by a consortium of 
trustworthy business partners, risks associated with 51% [6] 
and Sybil attacks [7]  are mitigated. However, vulnerabilities 
related to smart contracts, particularly Front-Running attacks, 
persist. This issue is exacerbated by the predictability 
introduced by the PoA consensus algorithms, allowing 
attackers to anticipate when a node will produce the next block 
[8]. To counter these vulnerabilities, one approach is to restrict 
the deployment of specific types of trading-focused smart 
contracts by users. Within the context of an accessible and 
ethical PPOA environment, such a restriction is even 
desirable. 

Alongside this, we identify a set of key features that an 
accessible and ethical blockchain infrastructure should 
incorporate, particularly catering to SMEs, charities and 
potentially NGOs. 

Firstly, Gas Fees: The PPOA network should be designed 
to incur low or even no gas fees. The intrinsic transaction fee 
acts as a safeguard against infinite computational loops 
within smart contracts. Fees should be automatically 
managed by the network and DApps, obviating the need for 
additional user intervention. This is aligned with the 
network's role as a business utility rather than a financial 
transaction platform. 

Secondly, Account Security: The PPOA network should 
offer mechanisms, such as rekeying [9][10] or comparable 
technologies like smart contract based wallet [11], to allow 
account recovery in the event of lost private keys, whilst 
maintaining high security standards. This will alleviate the 
single point of failure associated with blockchain-related 
wallets. 

Thirdly, Smart Contract Permissions: We propose a 
permissioned architecture for smart contract deployment to 
enhance security. An audit process for contract deployment 
will mitigate risks like Front-Running attacks and other 
malicious smart contracts, aligning with the network’s 
objective to support internal business processes. 

Fourthly, Network Bridging: A controlled bridging 
mechanism should be in place to facilitate secure value 
transfer between the PPOA network and public blockchains. 
This feature aims to provide a method for the secure, regulated 
exchange of assets without compromising the network's 
internal integrity. 

In this work, we address the third point by employing a 
proxy to secure the smart contract deployment process.  

III. RELATED WORK ON PERMISSIONED BLOCKCHAIN 
TECHNOLOGIES 

While permissioned smart contract features are typically 
associated with Hyperledger architectures [12], EVM-based 
blockchains generally function as public chains, and thus do 
not inherently focus on smart contract access control and 
auditing. To address this, we utilise a network proxy layer to 
intercept JSON-RPC calls, which are commonly used for 
smart contract interactions with blockchain nodes. Existing 
projects like “ethproxy” [13] and “EthLogSpy” [14] also 
employ reverse proxies for capturing JSON-RPC requests, 
albeit for logging and debugging purposes. These intercepted 
requests are stored in a database and can be queried more 
swiftly than through a traditional blockchain explorer. In 

contrast, our approach employs the proxy layer specifically for 
smart contract permissioning. 

IV. SYSTEM DESIGN AND ARCHITECTURE 
In this section, we describe the architecture and design 

principles underpinning our proxy layer approach. The 
creation of a smart contract is accomplished by submitting 
state-changing transactions to the blockchain. There are two 
primary stateless JSON-RPC methods for this purpose: 
“eth_sendTransaction” and 
“eth_sendRawTransaction” (as outlined in the Ethereum 
JSON-RPC documentation). The choice between these 
methods depends on the location of the private key intended 
for signing the transaction. Our proxy is designed to intercept 
these JSON-RPC calls, check their content, and assess 
whether the Externally Owned Account (EOA) is authorised 
to execute this specific transaction. Access control is governed 
by an on-chain smart contract containing a whitelist of 
approved addresses. 

 
Figure 1 Proxy System Architecture 

V. IMPLEMENTATION AND ALGORITHMIC OVERVIEW 

A. Smart Contract Creation Methods 
 We focus on intercepting two EVM contract creation 
methods: 1) eth_sendTransaction and 2) 
eth_sendRawTransaction. The primary distinction 
between them lies in the handling of private keys. In the case 
of eth_sendTransaction, the node must host an open 
account and the associated private key to sign the contract. 
Whereas, eth_sendRawTransaction allows the client to 
initiate the call, ensuring the private key is neither exposed nor 
stored on the node. Within this context, 
eth_sendTransaction is primarily used for testing and 
development, while eth_sendRawTransaction is more 
suited for production environments. 

 Under typical conditions, the private key resides with the 
Externally Owned Account (EOA) intending to initiate a 
transaction. This transaction is constructed and locally signed 
by the user before being sent to the node via the 
eth_sendRawTransaction method. Unlike the prior 
method, these transactions are encoded using Recursive 
Length Prefix (RLP) [15]. They must first be decoded to 
extract the essential parameters needed to enforce our desired 
permissioned environment.  



B. Smart Contract Permissioning  
     To check whether an EOA is attempting to deploy a smart 
contract, the 'params' section within either 
eth_sendTransaction or eth_sendRawTransaction 
can be examined. Specifically, the absence of a 'to' field is 
indicative of a contract deployment attempt. The 'from' 
address is then cross-referenced with a list of whitelisted 
addresses stored in an on-chain smart contract. If whitelisted, 
the transaction is permitted to pass through to the node; 
otherwise, it is rejected. An on-chain smart contract is utilised 
for access control during smart contract creation. This contract 
includes a function that, when invoked, returns a Boolean 
value (true or false) to the proxy. As the function simply reads 
the state of the blockchain, a response can be returned quickly 
without undergoing the usual process of including the 
transaction in a block. 

C. Proxy Implementation 
To build our reverse proxy, we use the Python-based 

Flask library, which comes with a built-in development 
server. Flask was chosen for its lightweight architecture and 
minimal boilerplate code requirements, streamlining the 
application development process. Another significant 
advantage of Flask is its extensibility, such as the Flask-
CORS library, which automatically enables CORS (Cross-
Origin Resource Sharing) without requiring modifications to 
incoming requests. This feature is particularly useful when 
integrating the proxy with web-based IDEs like Remix IDE. 

 
The proxy has multiple responsibilities, including 

identifying the type of JSON-RPC method invoked, 
determining if a smart contract is being deployed, and 
verifying whether the user initiating the contract deployment 
is authorized to do so. Below is a snippet of the Python code 
used to monitor the eth_sendRawTransaction method. 
 

Table 1 Python proxy code snippet 

…… 
def eth_sendRawTransaction(signed_tx) -> bool:  
    txs = rlp.decode(hex_to_bytes(signed_tx), 
Transaction)  
    tx_dict = txs.to_dict()  
  
    if tx_dict["to"] == "0x":  
        deployer = tx_dict["sender"]  
        print(f"Deployer: {deployer}")  
  
        return check_address(deployer)  
…… 

D. Permission Contract 
To build our permissioned smart contract, named 

'Permission.sol,' we employ the Solidity programming 
language for development and Hardhat for compilation and 
deployment onto an EVM-compatible test environment using 
Hardhat's built-in node. The contract comprises three primary 
functions: 'checkAddress,' 'addToWhitelist,' and 
'removeFromWhitelist.' The 'checkAddress' 
function verifies an address against a mapping called 
'whiteList' and returns a Boolean value. 
'addToWhitelist' allows new addresses to be added by 
setting the corresponding value to 'true,' while 
'removeFromWhitelist' revokes access by setting the 
value to 'false.' To secure these administrative functions 

against unauthorised access, we utilise the 'Ownable' smart 
contract from OpenZeppelin. This contract restricts specific 
functions to be callable only by the contract owner, 
enforceable by appending the 'onlyOwner' modifier to the 
relevant functions. 

 
Table 2 permissioned smart contract code snippet 

…… 
pragma solidity >=0.8.2 <0.9.0;  
  
import 
"@openzeppelin/contracts/access/Ownable.sol";  
  
contract Permission is Ownable {  
  
    mapping (address => bool) whitelist;  
  
    function checkAddress(address addr) public 
view returns (bool) {  
        bool inWhitelist = whitelist[addr];  
        return inWhitelist;  
    }  
  
    function addToWhitelist(address addr) public 
onlyOwner {  
        whitelist[addr] = true;  
    }  
  
    function removeWhitelist(address addr) public 
onlyOwner {  
        whitelist[addr] = false;  
    }  
}  
…… 

 
In summary, this architecture primarily consists of an on-

chain permissioning smart contract and an intermediary 
reverse proxy. The contract regulates the access control for 
smart contract deployment, whilst the proxy performs 
operational tasks to determine whether a transaction is 
legitimate and permitted. 
 

VI. EVALUATION AND RESULTS 
We utilise Hardhat for smart contract compilation and 

deployment on an EVM-compatible test environment. 
Furthermore, the architecture is compatible with Qitmeer’s 
POA network, Amana, with slight modifications to the source 
code [16]. 

 
Two scenarios were evaluated: 1) An authorized user 

successfully deployed a smart contract. 2) An unauthorized 
user was restricted by the reverse proxy. Both scenarios 
produced the expected outcomes upon testing. 

 
In addition, the architecture was deployed on Amazon 

Web Services (AWS) using the Qitmeer Amana Network to 
create a three-node private blockchain network. This 
involved configuration and source code modifications to 
Qitmeer's next-generation network (QNG). The 
implementation demonstrated the system's capability to 
effectively control and audit smart contract deployments in a 
production environment. The source code and instructions 
can be found on the relevant GitHub website [17]. 

 
In our comprehensive latency evaluation of a private 

Proof of Authority (PoA) testing network, we rigorously 
compared the contract creation delay over 100 iterations, both 



with and without a proxy configuration. The results revealed 
a discernible difference in the network's performance in these 
two scenarios. On average, the network exhibited a delay of 
10.96 milliseconds when operating without a proxy and a 
higher delay of 21.76 milliseconds with the proxy enabled. 
Furthermore, the variability of the network delay, as indicated 
by the standard deviation, was 5.86 milliseconds without a 
proxy and increased to 10.84 milliseconds with a proxy. 
These metrics are critical for understanding the impact of 
proxy usage on network latency within PoA blockchain 
environments. 
 

VII. CONCLUSION AND FUTURE DIRECTIONS 
In this study, we introduced an intermediate proxy layer to 

enhance security and auditing capabilities for smart contract 
permissioning in private blockchain networks. Our proposed 
architecture only requires minor code modifications and 
configuration adjustments to integrate with any EVM-
compatible blockchain, whether private or consortium-based. 
Our tests, conducted on the Qitmeer Next-Generation (QNG) 
network hosted on Amazon Web Services (AWS), confirmed 
the proxy's effectiveness in security checks.  

In addition, the Python implementation of the proxy 
increases the average contract creation time by about 10 
milliseconds, which should not be a significant barrier for user 
experience. With future optimisation, such as using a 
WebSocket proxy implementation, this figure can be further 
reduced.  

Future work should explore securing inter-contract 
communications, particularly when smart contracts are 
generated by other contracts. Another avenue for investigation 
is the performance and scalability of this architecture; a 
thorough analysis is needed to determine its impact on block 
confirmation times and latency. For deployment in production 
environments, it is essential to secure the native RPC calls for 
each node within the private network. This precaution ensures 
the effectiveness of the auditing layer by preventing 
unauthorised external access. 
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