
Optimized Model of Ledger Database

Management to handle Vehicle

Registration

Neha Gaonkar

School of Computing and Digital
Technology

 Birmingham City University Birmingham,

B4 7XG, UK

neha.gaonkar@mail.bcu.ac.uk

Luke Porter
Ld8a Ltd, https://ld8a.com

Greater London luke@ld8a.com

Parnia Samimi

School of Computing and Digital
Technology

 Birmingham City University

Birmingham, B4 7XG, UK

parnia.samimi@ bcu.ac.uk

Rob Squire

Ltd, https://ld8a.com

Greater London

rob@ld8a.com

Jagdev Bhogal

School of Computing and Digital

Technology

 Birmingham City University

Birmingham, B4 7XG, UK

jagdev.bhogal@bcu.ac.uk

Abstract— In recent years, versioning of business data has
become increasingly important in enterprise solutions. In the
context of big data, where the 5Vs (Volume, Velocity, Variety,
Value, and Veracity) play a pivotal role, the management of

data versioning gains even greater significance. As enterprises
grapple with massive volumes of data generated at varying
velocities and exhibiting diverse formats, ensuring the
accuracy, completeness, and consistency of data throughout its
lifecycle becomes paramount. System of record solutions,
which cover most enterprise solutions, require the

management of data life history in both system and business
time. This means that information must be stored in a way that
covers past, present, and future states, such as a contract with
a start date in the past and an end date in the future that may
require correction at any point during its lifetime. While some

systems offer transaction time rollback features, they do not
address the business life history dimension of a contract or
asset, which requires the developer to code the business rules
of the requirements. The relational data model is unable to
inherently use relational constraints where a business time
dimension of the data is required, as it is a "current view" and

not designed for this purpose. Therefore, there is a need for
better autonomous capabilities for version control of data,
which will bring new functionality and cost reduction in
application development and maintenance, reduce coding
complexity, and increase productivity. This paper presents an
approach to relational data management that relieves the

developer from the need to code the business rules for
versioning. The framework, called Ld8a, works with a
standard Oracle database that keeps the developer in the
"current view" paradigm but allows them to specify the point
in time that logical insert, update, and delete events take place
with the infrastructure autonomously maintaining relational

correctness of the dataset across time. The Ld8a framework
has been used to address the vehicle registration scenario used
by AWS in presenting the capabilities of the Quantum Ledger
Database product. This approach offers a solution that
maintains referential integrity by the infrastructure across
time, making version control of data easier and more efficient

for developers.

Keywords—LD8a framework (Ledger Data framework),
Amazon Quantum Ledger Database model (QLDB), Vehicle

Registration, Relational database management systems

(RDBMSs)

 I. INTRODUCTION

Vehicle sales transactions are increasing globally,
hence, new techniques are being created to change the
current model of vehicle ownership transfer systems. The

fact that all vehicles in the market are sold and resold, it
becomes a cumbersome task to maintain a legitimate
record of the history of each vehicle and make it available

when needed. Also, to prevent various types of fraud, the
integrity of the data in this type of operation must be
given the highest priority. Researchers have worked hard
over the years to develop new techniques for effectively

managing data [1]. However, the current vehicle
registration process stores all the registration-related
information in a central relational database [2].
Relational database management systems (RDBMSs) are

extremely successful, but they face challenges when
most data description is not in their current state.
However, the properties of objects and states change over
time - vehicle ownership or a customer address can

change, and vehicles can also be modified and updated

[3].

When the data changes, it is important to ensure its
corresponding description is up to date. Though all these

things have a history, and many of them will have a future,
information about the vehicle’s past or future is often useful
[4]. Restoring and collecting historical information is
usually possible with enough time and effort. However, as

vehicle registrations have increased, businesses are
recognizing the value of having access to both past and
future ownership of the vehicle without the associated
delays and costs. To address this issue, we propose a ledger

database system for vehicle registration, an information
management system distinguished by decentralization,
security, and information transparency. A ledger database
has a time dimension and stores time-varying data, as

opposed to a conventional database, which only stores
current data [5]. It maintains a sequenced record of all the
changes to the data, which cannot be modified or deleted,
giving the ability to query and analyze the full history of the

vehicle and its corresponding owner [6]. It also offers
exceptional technology for centralized immutable data
management [7]. In terms of time, data values have various
aspects. The time when a data value becomes effective is

referred to as valid time. On the other hand, the time at
which a data value is recorded in the database is referred to

as transaction time. When a data model supports both times,

it is referred to as bitemporal [8].

However, the main reason for the need for a ledger
database provided by the LD8a framework is to overcome
the limitations of a relational database by eliminating the
need for “DATE” fields in table design and the complex

coding involved in retrieving the past, present, and future
data which requires additional cost. The knowledge base for
this research is the Amazon QLDB. A centrally trusted
authority owns the transaction log in the fully managed

ledger database known as Amazon QLDB. In Amazon
QLDB, since the data is stored in the form of JSON and
appended one below the other in the form of journals,
incorrect or invalid data can be added to these journals [6].

This challenge has been addressed with the ledger database.
It ensures that invalid data is not added to the database. The
rest of this paper is organized as follows: Section II briefly
highlights the related work on the ledger database. Section
III discusses the relational management database system.

Section IV describes the enhancements of the database. In
Section V, the overview of Amazon QLDB is discussed.
Section VI describes the proposed ledger database model.
In this section, the architecture of the proposed model is

also discussed. Finally, in Section VII, we conclude by

briefing the contributions of this paper.

 II. RELATED WORK
 In recent years, we have seen an increase in several

new ledger technologies. Several time-varying database
extensions have been proposed and implemented by
extending relational data models. Few previous works

examined some modern ledger data models.

Vehicle registration has always been a complex
process. There are several parties involved in this lengthy
process, and there is a chance that information will be
manipulated, data will be duplicated, and various errors

will occur. In this case, critical information may be
susceptible to fraud or data deception, or it may even be
trackable. Many of these flaws can be easily addressed
by incorporating the power of distributed ledger

technology, also known as the blockchain, and moving
the entire process of registering a vehicle onto a

blockchain [9].

Jiang and Sun in 2021 [10], proposed a blockchain
architecture to record the information on vehicle
condition. Due to blockchain's transparency and
tamperproofing capabilities, customers can use the

system suggested in this paper to check the actual vehicle
condition without worrying about being misinformed by
used car dealers. A secure distributed ledger with a
variety of quality information, asset information, logistic
information, and transaction information is provided by

blockchain technology. The evaluation result of the
suggested system demonstrates that the throughput of

transactions is adequate for daily transactions.

In 2010, Snodgrass, R.T. [11] proposed a method for
implementing a time-varying application in SQL. The
research focused on three concepts: temporal data types,
different types of time, and temporal statements. Each of

these components is made up of three orthogonal

paradigms. The three primary temporal data types are
instant, interval, and period. An instant is defined as
something that happened at a specific moment in time (an

anchored duration of time). Furthermore, there are three
fundamental types of time: user-defined time (a time
value that cannot be interpreted), valid time (when a fact
is true in reality), and transaction time (when an event

was recorded in the database). A table may relate to none,
one, two, or even all three different types of time. Finally,
there are three different categories of temporal
statements: current, sequenced (at every point in time),

and nonsequential (ignoring time). The distinction holds
true for queries, modification statements, views, and

integrity constraints.

The prominent feature to consider when designing time
variant databases is the time dimension as proposed by
Galante et al., in 2005 [12]. There are three different times:
application or valid time, system or transaction time, and
bitemporal. Kvet, Matiaško, and Kvet [3] proposed

temporal data modeling (mostly modeled using
unitemporal and bi-temporal tables) in comparison with
conventional tables that can process and retain the
information in the past. Transformation of the conventional

table to a temporal model is not a trivial problem and needs
special structures and resources. In addition, the
requirement of the users is to provide compatibility and
easy manipulation. The temporal database concept offers

new opportunities by adding additional time attributes
limiting the validity of the object. Two different states of
the object cannot be valid at the same time; the correct
attribute values can sometimes be undefined. The aim of

temporal database management discussed in this paper was
to have information about the whole life cycle of the object,
even after logical deletion. Thus, it offers the opportunity to

create prognoses and analyses.

The valid time includes future instances, the system
time is restricted to the records' most recent and earlier
instances [13]. There are two ways to add a timestamp to a
relation: tuple time stamping, which utilizes relations of the

first normal form and attributes time stamping, which
utilizes relations of the non-first normal form. While the
valid time includes future instances as well, the system time
is restricted to the records' most recent and earlier instances.

Appending a timestamp to a relationship can be done in two
ways: tuple time stamping (first normal form relations) and
attributes time stamping (non-first normal form relations).
The time stamps for the start and end of the time-varying

records must be inserted by the database user. To ensure the
accuracy and efficiency of temporal data, integrity

constraints are imposed [13].

Teradata Database versions 13 and 14 include

numerous enhancements for SQL features specifically
designed for temporal support. Teradata supports all three
time zones: valid, transaction, and bitemporal dimensions.
The “transaction time” and “valid time” are contained in

bitemporal tables [14]. Teradata does not support data
coalescing for missing information [13]. Coalescing is the
process of joining two overlapping or adjacent
valueequivalent tuples to maintain the integrity constraint.

It is necessary because when the UPDATE statement is

executed, the non-temporal variables of tuples are the same,

also overlapping, or sequential timestamps.

Columns are inevitably added and removed from tables
over time (a process known as "schema mutation"), but
most database implementations only keep the most recent
state of the schema. Historical data "breaks" when schemas

change as explained by Renwick. A whole class of
problems involving time intervals is simply unreasonably
complicated in databases. To figure out the logic behind
"Did person A and person B work for the company at any

point?" (Did the time intervals they worked overlap). Ld8a
technology is a solution that is built on Oracle technology
using the “roots of Codd” which has made time “a first-
class citizen” is fully compatible with

immutable/blockchain tables and fully supports the

meaning of “time travel”.

 III. RELATIONAL DATABASE

MANAGEMENT SYSTEM

A relational database management system

(RDBMS) is a database management system (DBMS)
that stores data in a row-based table structure that
connects related data elements as shown in Fig.1. The
RDBMS's built-in functions ensure the security,

accuracy, integrity, and consistency of data. The
CRUD (creating, reading, updating, and deleting)
operations are collectively referred to as the most
fundamental RDBMS functions. They provide the
framework for a well-structured system that

encourages uniform data handling. ACID (atomicity,
consistency, isolation, and durability) transactions are

also supported by RDBMS.

Fig.1. RDBMS current view [15]

A. RDBMS Operations

 Fig.2 shows the primary high-level built-in

operational features of a traditional RDBMS.

Fig.2. RDBMS CRUD (create, read, update, delete) operations.

B. RDBMS Database Date Limitations

 Relational database theory is in a current view.
Time is a prominent aspect of the real world. Events
have a time of occurrence or a period of effect.

Therefore, the current view of relational theory is

compromised, and the development requires coping
mechanisms. However, to track the events, it is
decided to add a “DATE” column in one of the tables,

recording when the row is valid. During testing, it is
discovered that the primary key is no longer
sufficient, hence, a “DATE” column is added to the
primary key. The referential integrity check does not

work hence a “DATE” column is added to another

table when the row was no longer valid [11].

 There are numerous off-on-bugs that have been

encountered, in some cases, less-than comparisons
should have been made, and in other cases, the code
should have "+1 DAY" added. The database
modification code becomes complicated. Every

modification since then must take the "DATE"
columns into account. It has been observed that it is
unclear how to approach such changes in a systematic
manner. The “DATE” columns do not allow the
creation of reliable and accurate business keys to

undermine data integrity. Designing, querying, and
modifying time-varying tables effectively requires a
different set of approaches and techniques than

conventional ones [11].

 IV. ENHANCEMENTS OF DATABASE

Database technologies take information and store, and
process it in a way that enables users to go back easily and

intuitively and find the details they are searching for.

A. Conventional table

The conventional database system is currently the most
popular. It is made up of tables that only store actual data
as depicted in Fig.3. As a result, each actual existing object

is represented by a single row in the table. Because the
database does not reflect attribute changes, it is impossible
to predict when (or if) the data will be changed, or the object
deleted [4]. As a result, the user has no knowledge of the

existence of an object in the database following a deletion
request. Monitoring archives can only solve part of the

problem [8].

Fig. 3. Conventional database model [3]

B. Versioned table

A versioned database is an enhancement of a
conventional database. The advantages of the standard

approach are used in the versioned table, but the problems
with the objects' time validity is eliminated. It not only
allows for change monitoring, but it also allows for the
creation of future forecasts. In a conventional database, one

row represents each state of an object over time. However,
a versioned table uses a different number of rows for each
object throughout its life cycle. The most basic versioning
solution for a versioned table is to add a beginning date to

the composite primary key [3].

C. Ledger Database

The ledger is a key component of blockchain

technology and is a database that, unlike standard
databases, keeps a complete history of past transactions in

memory as in a notarial archive for the benefit of any future
test [7]. The database ledger incrementally captures the
state of a database as it evolves over time, while ledger

tables are updated. A ledger database can store the current
and historical value of a company's data. Ledger databases

are a

simple solution for applications that require the
integrity of all data to be protected for the duration of the
database's life when a row in the database is updated, its
previous value is saved and protected in a history table.

Fig.4 shows the ledger database overview.

Fig.4. Ledger Database Overview [7]

 V. OVERVIEW OF AMAZON QLDB

 A new database called Amazon QLDB eliminates the
need for complicated development work to create

ledgerlike applications. In Amazon QLDB, the data's
revision history is immutable—it cannot be altered,
changed, or deleted. In addition, cryptography makes it
effortless to confirm that no unauthorized changes to the

application's data have taken place. An immutable
transactional log called a journal is used by QLDB. The
append-only journal is composed of blocks that have been
hash-chained together and contain 16 committed data [6].
The vehicle registration model is implemented in Amazon

QLDB which tracks the complete historical information

of the vehicle data.

A. Journal First

 The journal is the database's core in Amazon
QLDB. The journal is an immutable, append-only data
structure that is like a transaction log and is used to store

application data and its corresponding metadata. The
journal maintains a record of each write operation,
including updates and deletions [6]. By materializing the
ledger data into query-able, user-defined tables, the

journal is used by QLDB to determine the current state of
the ledger data. These tables also include a history of all
transactional information, including metadata and
document revisions as shown in Fig.5. Concurrency,

sequencing, cryptographic assurance, and ledger data
accessibility are other issues that the journal addresses
[16]. Journal blocks, like blockchains, are sequenced and
chained together using cryptographic hashing techniques.

The journal can provide transactional data integrity using

this feature's cryptographic verification technique.

Fig.5. Amazon QLDB journal architecture [6]

B. Immutable

A complete record of all data changes is kept in the
append-only QLDB journal, which is immutable and
cannot be altered, modified, or overwritten. Any
committed data that is already present cannot be changed

using APIs or any other methods. It is possible to view
and search the entire history of the ledger. The journal is
updated once by QLDB during a transaction. The
documents that are added, changed, and removed as well

as the statements used to commit the documents are
represented by entry objects in each block. These blocks
are sequenced, and hash chained to ensure data integrity

[6].

C. SQL-like and document-friendly

PartiQL is Amazon QLDB's query language, and

Amazon Ion is its document-oriented data model [6]. Ion
compatibility has been added to PartiQL, an open-source
SQL-compatible query language. PartiQL enables the
use of well-known SQL operators for data management,

insertion, and querying. The syntax for SQL queries on
relational tables and queries on flat documents is the

same.

D.Verifiable cryptographically

Using cryptographic hashing methods, journal blocks
are chained together in a similar manner to blockchains.

This feature enables the journal to deliver transactional data
integrity using a cryptographic verification method. Using
a digest (a hash value that represents a journal's full hash
chain as of a particular point in time) and a Merkle audit
proof, to confirm that there haven't been any unintended

changes to the data at any time (a mechanism that proves

the validity of any node within a binary hash tree) [6].

E. Amazon QLDB Limitations

The QLDB journal is append-only, as a result, it
maintains an extensive record of all data changes that
cannot be altered, modified, or data should be corrected in

the present or future to ensure that invalid data is not added
to the database, overwritten [6]. In QLDB, the data is
appended one after the other, hence, incorrect, or invalid
data can be added to the journal. For instance, if a license

plate number for a vehicle is valid from the year 2013 and
is related to a VIN, and the vehicle corresponding to the
VIN is manufactured in the year 2019. Amazon QLDB does
not provide the referential integrity concept as the majority

of data is not stored or accessed in the current view. The
append-only concept does not allow for logical insertion,

updating, or deletion, and it also does not preserve

referential integrity.

The combination of a database and a document file
system known as Amazon QLDB is ineffective and further
restricts the range of potential functionality. System errors
or failures may result in data inconsistencies between the

database and the journal file system, which is one of two
sources of truth for Amazon QLDB. Additional checks and
maintenance are required when there are multiple sources
of truth. For example, the QLDB database was updated, but

the journal entry was incomplete due to system issues. The
data in QLDB is stored as Amazon ION, a superset of JSON
that is document-based [6]. Hence the concept of referential

integrity is not supported to maintain data integrity.

 VI. PROPOSED MODEL
 LD8a technology offers “time travel” relational

database solutions and makes complex requirements much

easier to handle by simplifying the development process.
Ld8a additionally provides ACID compliance by utilizing
the power of the relational database management system
[17]. LD8a framework is a new kind of database that is built

upon the concept of table versioning and eliminates the
need to undertake the complex development effort of
creating ledger-like applications. In a single relational
database, the Ld8a framework keeps track of all application

data changes and maintains a complete and sequential
history of changes over time. Ledger Database
implemented using the Ld8a framework combines the
business advantages of ledger database capabilities and

relational data management into a single solution that
significantly eases application development, introducing a
new class of relational database functionality that directly
challenges the limitations of Amazon QLDB. [17]. It also

provides a cryptographic audit for all attributes in the tables
in a fully relational database system. It delivers a new level

of functionality and productivity.

 LD8a provides full relational and referential

capabilities by default, resulting in a significantly
simplified approach to application development.
Appending data that is cryptographically locked is used
to create and amend database records. As a result, all

data in Ld8a is certain to be immutable, hence, it cannot
be altered or deleted, making it easy to ascertain
whether application data has undergone unintentional
changes. Ld8a uses the physical append-only concept,

which ensures that all application data operations
including inserts, deletes, updates, and corrections to all
these database actions are never lost and are easily
retrievable. The Ld8a framework maintains referential

integrity and importantly keeps the developer in the
current view paradigm which is how the relational
database is designed to function. The framework is a
great way of ensuring that designers or developers learn

to model relational data solutions correctly and have the
framework do the heavy lifting of ensuring referential

integrity is maintained across time.

Fig.6. Ledger Database

A. Important LD8a Framework Concepts The following
are the most important concepts of the LD8a framework

which need to be examined:

• A table is a collection of related data stored in table
format in a database. Tables are like spreadsheets,
logically organizing data in a row-and-column format.

Each row represents a separate record, and each
column is a record field. The LD8a framework
includes tables with full relational capabilities [17].
The RDBMS environment is fully accessible to tables,

enabling the database to be tuned using conventional
relational database techniques. All application data
changes are recorded in the tables as an immutable data

history.

• Structured Query Language (SQL) is a database
communication language. It is the standard language
for relational database management systems,

according to ANSI (American National Standards
Institute). SQL statements are used to perform tasks
such as updating or retrieving data from a database.
Standard SQL and unrestricted SQL are both used by

Ld8a. This indicates that all SQL functions and
procedures are supported, and the environment is
similar to a conventional relational database. The
relational database environment that SQL is designed

for is exclusively used by Ld8a technology [17]. It
enables full data manipulation and querying via SQL

and SQL-like commands.

• A collection of records that have been
cryptographically related together to form a journal can
be used to verify changes. A crucial task of Ledger DB
is its ability to interpret logical INSERT, UPDATE, and

DELETE events (and their corrections) into physical
INSERT journal entries. Ledger DB allows users to
navigate to any journal entry point in the database and
view the complete state of the cryptographically locked

relationally consistent database. The select statement
can be utilized to execute for any point in the journal
entry time and effective time without the use of

complicated "where" clauses.

• An immutable, transparent, and cryptographically
verifiable transaction log that is owned by a central

authority is provided by a ledger database, which can
be either a SQL or a NoSQL database. Ledgers are
typically used to monitor an organization's financial
and economic activity [7]. Many businesses develop
programs that include ledger-like functionality to

maintain an accurate history of the data in their

applications. Ld8a’s relational database tables, which
serve as the system's core for application and journal

entry records, provide the system's data structure.

• Ld8a framework enables developers to create and use
a standard, current-view relational data model. As a

result, the modeling process is made simpler because
audit tables are not necessary. The Ld8a environment

by default offers complete system audit trails [17].

• In ledger databases, the dimension is the most
important concept. There are three types of time: valid
time, transaction time, and bitemporal time. Valid time
is defined as the time when a row accurately reflects

reality by the database user [18]. Transaction time
refers to the instant when a row is saved to the
database. Bitemporal is the union of valid and
transaction time. Most ledger data models only support

valid time [13]. All three dimensions are supported by
the Ledger Database proposed in this project. An
essential part of the modeled reality is the data
maintained in databases. Various structures known as

entities serve as representations for the minifacilities
worlds. Valid time records the changing states of the
modeled reality. Each entity can be assigned a valid
time. A fact's valid time indicates when it is true in the

real world, which makes it important. Transaction time
refers to the moment at which a fact becomes actual. It
describes the period over which a database fact is or
was stored in the database and is consequently

connected to a database entity. It exhibits the evolution

of the database's state over time [3].

• In ledger databases, there are three kinds of key
constraints: one for the primary key, one for referential
integrity, and unique key constraint. Different values
for the primary key are used depending on the time

dimension that the database uses. If the time dimension
is a valid time, the ledger database primary

key, in addition to the relational primary key, must
include the temporal attribute where the timestamps
are attached to the attribute or apply to a table

considering the timestamp as just another column
named as non-sequence integrity constraint [14].
When it comes to transaction time, however, the
ledger primary key is the same as the relational

primary key [3]. The integrity of the data must be
confirmed before it is created. Entity, domain,
referential, and user-defined integrity are a few of the
specific tests used to ensure data integrity. A primary

key ensures that no rows in the table are duplicated at
different points in time whereas a Unique key ensures
no duplication at the same time. Domain integrity
makes sure that information is entered into the table

in accordance with predetermined criteria, such as
file format or value range. Due to referential integrity
depending on the different dimensions of time, any
row that has been re-linked to a different table cannot

be deleted. Finally, user-defined integrity ensures that

the table meets all user-defined criteria [19].

B. A database solution based on LD8a Technology

 The main purpose of Ld8a technology is to provide a
database solution [17]. With the help of Ld8a technology,

all data is stored in a database and data manipulation also
occurs. For instance, all logical inserts, updates, and
deletes are recorded within database table records, which

are protected by cryptographically locking all records in
the database. The database can be fully encrypted because
all insert, update, and delete operations result in records
being appended to the database (depending on the needs

of the enterprise system, cryptographic data locking is an
option). Ld8a framework technology is an exceptional
option as a ledger database, providing unprecedented

benefits

for meeting modern enterprise requirements.

 Ld8a framework employs a physical append-only
concept, which ensures that all application data inserts,
deletes, updates, and corrections to all these database
actions are never lost and are easily retrievable. In

relational database systems, history and audit tables are
frequently created and managed to capture the past and
future states of business data; Ld8a, however, simplifies
the task for developers by moving the complexity of

design and development into the database infrastructure.
Due to the centralized environment of Ld8a, transactions
can be carried out without the need for multi-party
consensus. The full range of referential rules controlling

real-time data updates and corrections are supported. Data
in Ld8a is accessible to third-party tools like Power BI or
Excel reporting because it is organized in a "timefriendly"

and relationally structured pattern.

C. Date Effectivity Management in Ledger Database

The provision of Effective Date management is the
primary central technical benefit of Ledger DB. Ledger

DB provides Autonomous Date Effectivity Management
(ADEM) by eliminating the need for “DATE” fields in
table designs during the data modeling design process. It
allows the application to be set in a "current view"

perspective, with all database’s referential integrity
enabled and the Ld8a framework handling the time
dimensions of the data without complex coding thus
overcoming the limitations of relational database. The
operating system allows for simple data input, update,

and deletion as well as corrections to the data, even
though the fact that none of the tables contain a date or
time field. This is what is meant by Autonomous Date

Effectivity Management (ADEM) [17].

D. The Architecture of the Model

This section includes a thorough overview of the
architecture and implementation of the project. Since the
primary goal of this dissertation is to analyze the data model
and data of vehicle registration provided by Amazon QLDB

and implement it using the Ledger DB, there is a
requirement of the system that enables the setup of Ledger
DB which is implemented in the LD8A framework. Fig.7

shows the overall architecture of the Ledger DB.

 Fig.7. Database design using the Ld8a framework

E. Database Design using the Ld8a framework

The first step in the database design process is data
modeling. There are four layers in data modeling: the

conceptual data model, the logical data model, the current

view model, and the physical data model.

1) Defining entities, their attributes, and their
relationships is the goal of creating a conceptual data
model. There is not much information available about

the actual database structure at this level of data

modeling.

2) The structure and relationships of data elements are
specified using the logical data model. The logical data

model also provides additional information to the
conceptual data model elements. The benefit of using
a logical data model is that it serves as a foundation for

the physical model.

3) A database-specific application of the data model is

described in the physical data model. It facilitates the
creation of the schema and provides database
abstraction. The physical data model replicates
database column keys, constraints, indexes, triggers,

and other RDBMS features to aid in visualizing

database structure.

In Ledger DB, the physical model starts with the source

schema (REF_SRC) which is the current view physical
model. In LD8a, the current view model does not hold any
data. However, it is used as an input to the “exec gen”. The
generator creates all the code and creates views for all the

tables in SQL developer which simplifies the development
and management of the Oracle database. The “exec gen”
determines the shape of the model from the Oracle Data
Dictionary and generates another physical model

underneath which is held in the TPL layer (REF_TPL) and
is the underlying ledger physical model. The user schema
(REF_USR) stores the LD8a-generated views and
application code e.g., ref_pkg, types, scripts, and API, etc.

The “exec gen” command also checks if there is any
attribute added or the design is changed in the SRC schema
and accordingly resets all the information from the TPL
schema and generates a new physical model. The diagram

in Fig. 8 is sourced from Amazon Web Services and

consists of five tables in the model.

 Fig.8. Schema design for vehicle database

F. Database Implementation using LD8A Framework

The tables about vehicles, their owners, and vehicle
registration information along with attributes are created
in the “carprj_src” schema. The creation of the following

different entities can be done with a basic “CREATE
TABLE” statement. A primary key constraint specifies
two guidelines for the related table. First, none of the key
columns in any row may have a null value for their

respective values. Second, no two rows can have the
same values in the key columns. Every time a change is
made, a primary key constraint with ledger support is
independently applied. When a row with that key value

exists in the referenced table at a specific valid time in
the referenced table, the key in the ledger database is a
foreign key. The ramifications of ensuring the uniqueness
and referential integrity of a current modification impact

the period from “now” to “forever”.

Events always have a time of happening or a

period of effect. Time is a continuum that extends

from the past to the future. Data is inserted at a specific
point and exists indefinitely until it is acted upon by
another event. Data may be updated at one or more points

in time with no overlaps, that is, only one

version of the truth at any given time. At some point
in time, data is optionally deleted with no gaps, that is,
does not reincarnate. The current actions affect the future
state. Inserting data in the ledger database using the

LD8a framework is always in the given context of time.
When a row of data is first added to a table, it remains
there indefinitely or only for a predetermined amount of
time before being automatically deleted. The time can be

changed by the package DBMS, as a result, the database
time context can move forward in time or back in time.
The DBMS “get valid time” and “set valid time” refers
to getting and setting the database time respectively. To

ensure that the database and the framework time are
synced. A persistent component of the framework is the
ability to retrieve the time from it to check the current
time context. However, DBMS provides the granularity
of the transaction time, whereas the user specifies the

granularity of the valid time. An update is logically a
delete followed by an insert. The value for the validity
period has been updated from "now" to "forever," per the
most recent update. The update must occur after the

insertion. LD8a framework creates the following

different views in the “carprj_tpl” schema for all the

tables.

• Vehicle_Registration – stores the information of the

vehicle registration in the current transaction time.

• Vehicle_Registration _L – stores all the rows’ last

known state before updating.

• Vehicle_Registration_Z – stores the current

information about vehicle registration with additional

metadata and gives a vertical cut of the row.

• Vehicle_Registration _Y – stores the horizontal cut of

the versions of the vehicle registration row.

• Vehicle_Registration _X – stores the transaction time

history of the vehicle registration model.

• Vehicle_Registration _E – stores all the event (insert,
update, delete) history of the vehicle registration

model.

• Vehicle_Registration _A – stores all the history of the
row and its corresponding values changed over a

period for the vehicle registration model.

The start of existence (SOE) is when that vehicle
registration row was created, the start of valid (SOV) is the
beginning of the time that each of these different versions
was created and the end of existence (EOE) is when the

vehicle registration is deleted. If the end of existence is null,

the row lasts forever in the database.

G. CORRECTIONS IN LD8A FRAMEWORK

A correction is defined as going back to the history
of the row in valid time and updating the row which will
affect the entire future value of the row. Correction is like

an update that happens in the middle of the history of the
row. When a correction is made, it is persistent to ask the

system the following:

• How it needs to cope with all the future values?

• Does it last forever or update only until the next

change?

• Does it update until the end of existence or does it

update to a specified time?

An update rule needs to be set while making a

correction. For example, if the owner of the vehicle was
updated on 14th Jan 2020 instead of 12th Feb 2020, the valid
time should be set to perform the update and inform the
system if the owner should last till the end of the existence

of the row or until the next owner.

 VII. CONCLUSION

The primary aim of this project was to explore, design,

and implement a solution to address the limitations of
incorporating "Date" columns into a relational database.
Additionally, it involved an analysis of different aspects of
the Ld8a framework and Amazon QLDB. The project delved

into the constraints related to QLDB within vehicle
registration models and explored potential solutions for
these challenges. To pinpoint the most effective features
aligning with the intended outcome, an extensive evaluation

of currently available tools and methods was initially
conducted. This led to the creation of a solution using the
Ld8a framework, which has the capability to extract
historical data. Furthermore, this endeavor manages

inaccurate data across various time instances while

preserving data integrity.

In the context of big data and the 5Vs (Volume,
Velocity, Variety, Veracity, and Value), this project
highlights the need for managing time-varying data within
a relational database, emphasizing the significance of the

"Variety" aspect of big data. The utilization of the Ld8a
framework and Amazon QLDB demonstrates how these
technologies can handle the complexities of data changes
over time, thereby addressing the "Veracity" aspect by

ensuring accurate and trustworthy data records. The
project's focus on historical data extraction and
preservation aligns with the "Value" aspect of big data, as
it enables the creation of analyses, reports, auditing, and

other purposes for vehicle registration data, contributing

to the overall value derived from the data.

The inherent capabilities of relational database
systems must be expanded to align with the business's

need for data management within the business timeline.
The approach offered by the Ld8a framework deserves
deeper examination from researchers who are focused on
devising solutions for handling data that evolves over

time. The following list outlines potential avenues for
further investigation: (1) The creation of API using Oracle
Rest Data Services (ORDS) and Procedural language for
SQL (PL/SQL) to manage ledger resources and

nontransactional operations to create, delete, describe, list,
and update the data (2) Verify data cryptographically and
to run data transactions on the ledger (3) Creating indexes
to optimize highperformance queries on data retrieval

operations (4) The extension of use into JSON document
database handling methodologies. For instance, the
compatibility with Oracle’s recent release of JSON

Relational duality.

 References
[1] Künzner, F. and D. Petković. A comparison of different forms

of temporal data management. in Beyond Databases,

Architectures and Structures: 11th International Conference,

BDAS 2015, Ustroń, Poland, May 26-29, 2015, Proceedings

11. 2015. Springer.
[2] Hossain, M.P., et al. Vehicle registration and information

management using blockchain based distributed ledger from

bangladesh perspective. in 2020 IEEE region 10 symposium

(TENSYMP). 2020. IEEE.
[3] Kvet, M., K. Matiaško, and M. Kvet, Complex time

management in databases. Central European Journal of

Computer Science, 2014. 4: p. 269-284.
[4] Johnston, T. and R. Weis, Managing time in relational

databases: how to design, update and query temporal data .
2010: Morgan Kaufmann.

[5] Tansel, A.U., On handling time-varying data in the relational

data model. Information and Software Technology, 2004.

46(2): p. 119-126.
[6] Amazon Web Services, Amazon QLDB. . [cited 2023 6 January

]; Available from: https://aws.amazon.com/qldb.
[7] Ledger overview. 2023; Available from:

https://learn.microsoft.com/enus/sql/relationaldatabases/secur

ity/ledger/ledgeroverview?view=sql-serverver16.
[8] Jensen, C.S. and R.T. Snodgrass, Temporal data management.

IEEE Transactions on knowledge and data engineering, 1999.
11(1): p. 36-44.

[9] Gupta, K.D., Recent Advances in IoT and Blockchain

Technology. 2022.

[10] Jiang, Y.-T. and H.-M. Sun, A blockchain-based vehicle

condition recording system for second-hand vehicle market.
Wireless Communications and Mobile Computing, 2021. 2021:

p. 1-10.
[11] Snodgrass, R.T., Developing time-oriented database

applications in SQL. 1999: Morgan Kaufmann Publishers Inc.
[12] de Matos Galante, R., et al., Temporal and versioning model

for schema evolution in object-oriented databases. Data &

Knowledge Engineering, 2005. 53(2): p. 99-128.
[13] Kumar, S., Study of Time-varying Data Models.
[14] Petkovic, D. Temporal data in relational database systems: A

comparison. in New advances in information systems and

technologies. 2016. Springer.
[15] Kovačević, A. What Is a Relational Database? 2021;

Available from: https://phoenixnap.com/kb/what-is-a-

relational-database.
[16] Fekete, D.L. and A. Kiss, A survey of ledger technology-based

databases. Future Internet, 2021. 13(8): p. 197.
[17] Ltd., L.a. Product overview. Available from:

https://ld8a.com/product-overview/.
[18] Kulkarni, K. and J.-E. Michels, Temporal features in SQL:

2011. ACM Sigmod Record, 2012. 41(3): p. 34-43.
[19] Brush, K. RDBMS (relational database management system).

2019; Available from:
https://www.techtarget.com/searchdatamanagement/definition/R

DBMS-relational-database-management-system.

