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A B S T R A C T

Existing AI-based medicine prediction systems require substantial training time, computing resources, and
extensive labeled data, yet they often lack scalability. To bridge these gaps, this study introduces a novel MED-
Prompt framework that employs pretrained models such as BERT, BioBERT, and ClinicalBERT. The core of our
framework lies in developing specialized prompts, which act as guiding instructions for the models during the
prediction process. MED-Prompt develops prompts that help models interpret and extract medical information
from clinical corpus. The clinical text was derived from the widely known MIMIC-III 1 dataset. The study
performs a comparative analysis and evaluates the performance of Manual-Prompt and GPT-Prompts. Further,
a fine-tuned approach is developed within MED-Prompt, leveraging transfer learning to achieve prompt-guided
medicine predictions. The proposed method achieved a maximum F1-score of 96.8%, which is more than 40%
F1-score higher than the pretrained model. In addition, the fine-tuned also showed an average of 2.38 times
better processing performance. These results revealed that MED-Prompt is scalable regarding the number of
training records and input prompts. These results not only demonstrate the proficiency and effectiveness of
the framework but also significantly reduce computational requirements. This also indicates that the proposed
approach has the potential to significantly improve patient care, reduce resource requirements, and increase
the overall effectiveness of AI-driven medical prediction systems.
. Introduction

Accurate medicine prediction holds immense importance. In recent
ears, the healthcare domain has experienced a notable surge in the
doption of applied artificial intelligence applications (Feng et al.,
022; Javaid et al., 2022). Among these applications, medicine pre-
iction is a pivotal aspect of developing healthcare decision support
ystems (Ahmad et al., 2022; Fernandes et al., 2020; Ahmed et al.,
023; Sylolypavan et al., 2023; Sajde et al., 2022). The emergence
f applied AI in healthcare has introduced a new dimension to the
ield, with AI-based diagnosis systems gaining prominence (Gupta and
umar, 2023; Ali et al., 2023). Clinicians now aspire to have their
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1 https://physionet.org/content/mimiciii/1.4/

customized intelligent healthcare diagnosis systems to aid decision-
making and expand the scope of services provided to society (Rasheed
et al., 2022).

Accurate, effective, and precise medicine prediction outcomes are
crucial to ensure the delivery of optimal healthcare decisions and
treatments. Notably, AI-enabled models have the potential to antici-
pate patient outcomes, optimize treatment plans, and enhance over-
all healthcare quality. By harnessing the power of AI, these predic-
tion models offer valuable insights that can revolutionize healthcare
decision-making (Pandey et al., 2022; Karthikeyan et al., 2023; Firouzi
et al., 2021; Zhang et al., 2023). However, conventional, AI-driven
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healthcare systems based on machine learning and deep learning de-
mand significant training time, computing resources, large amounts of
labeled data, and scalability issues.

To address the aforementioned challenges, the current study takes
advantage of recent technology of Large Language Models (LLMs)
regarding domain-specific factual knowledge. This study harnesses the
capabilities of pretrained models designed for transfer learning (TL),
also known as fine-tuning approaches. The proliferation of language
models such as GPT (Radford et al., 2018), BERT (Devlin et al., 2018),
XLNet (Yang et al., 2019), and Google BARD (Chang et al., 2023)
has demonstrated remarkable efficacy across diverse applications, span-
ning language generation, machine translation, question answering,
sentiment analysis, and text classification in various domains like so-
cial media, e-commerce, customer support, gaming, and healthcare.
However, within healthcare, specifically in processing clinical notes
authored by medical experts, the utilization of language models en-
counters inherent hurdles. Notably, most existing models lack training
on medical domain-specific data, limiting their capacity to provide ac-
curate and domain-specific information (Thirunavukarasu et al., 2023).
This limitation regarding factual knowledge within LLMs remains a
critical concern in extracting precise domain-specific insights from
medical text. This study acknowledges this challenge and aims to
explore methodologies that mitigate this gap, seeking ways to enhance
the precision and relevance of LLMs in medical contexts.

When designing MED-Prompt framework and preparing this
manuscript, we conducted a comprehensive literature review to iden-
tify relevant studies on medicine prediction using the prompts tech-
nique. However, to our knowledge, we did not find any recent stud-
ies specifically addressing resource-intensive, precise, and accurate
medicine prediction. We have undertaken the following challenges to
propose a state-of-the-art medicine prediction system to achieve the
core objectives of why a prompt-based medicine prediction system is
needed.

• Time and resource-intensive solutions
• Reliance on training-based techniques
• Extensive labeled data is needed
• Domain-specific challenges due to the evolving nature of

medicine

This study introduces MED-Prompt, a novel prompt engineering
ramework for an accurate and precise medicine prediction framework.

‘‘prompt’’ is considered an additional contextual natural language
entence or phrase fed to an AI model, which helps to activate models
nd provoke certain responses to the tasks (Ding et al., 2022). Prompts
ould play a crucial role in healthcare and help extract contextual
uidance and explicit instructions to AI models, aiding in the accurate
xtraction of medical information and improving prediction precision.

The preliminary objective of the MED-Prompt framework is to
everage pretrained language models such as BERT, BioBERT, and
linicalBERT to address issues associated with conventional machine

earning classification-based methods. The main innovation is the de-
elopment of specific prompts to guide models during prediction. The
pecifically designed prompts guide pretrained or fine-tuned models to
nderstand and help the framework extract medical information from
linical text data. The MED-Prompt architecture utilizes pretrained
odels, indicating that they are not specifically retrained on medical
ata. Conversely, these models are meticulously adjusted and directed
y specific prompts to accommodate medicine predictions. To further
mphasize prompt engineering techniques adopted by humans and
achines. We developed and evaluated our framework on two prompts:
anual-designed and GPT-generated. Additionally, the study aims to

ptimize results through fine-tuning (transfer learning) approaches to
nhance the predictive capabilities of the models. To evaluate the
2

ffectiveness of the proposed MED-Prompt framework, we derived a
subset of data from MIMIC-III2 dataset clinical text. By conducting
multiple experiments that test different medicine predictions, including
sets of medicines (m30, m50, m70, and mOrignal), the research aims
to assess the framework’s performance across various medical scenarios
comprehensively. A core objective of this study is to develop a resource-
efficient and scalable approach to overcome the challenges associated
with medicine prediction from free-text clinical notes.

In summary, the main contributions of this work are as follows:

• MED-Prompt Framework: The study presents the development
of the MED-Prompt framework, a novel approach to medicine
prediction. This framework utilizes pretrained natural language
processing models, incorporating the core architecture of trans-
formers. By leveraging transfer learning techniques, MED-Prompt
achieves accurate and efficient medicine prediction. The detailed
design of the MED-Prompt framework is illustrated in Fig. 1.

• Harnessed Pretrained Models: The study harnesses the poten-
tial of large transformer-based pretrained models. By utilizing
pretrained models, the framework benefits from their learned
linguistic patterns, contextual linkages, and semantic represen-
tations, enhancing the accuracy and effectiveness of medicine
prediction.

• Experimentation and Evaluation: The framework carries out
multiple experiments using different combinations of dimensions,
such as the set of medicines, prompts, and records. This rigor-
ous experimentation evaluates the framework’s performance and
sheds light on the impact of different factors on the prediction
results.

The rest of the paper is structured as follows. The next subsequent
Section 2 highlights the related work, followed by the research method-
ology in Section 3, and Section 4 details the experimental setup. At the
same time, the comparative and ablation experiments are presented in
Section 5. Additionally, Section 6 briefly discusses the limitations and
future work. The study concludes this work in Section 7.

2. Related work

The research landscape in text-based healthcare classification, par-
ticularly concerning prompt-based techniques for medicine prediction,
remains relatively limited. However, the emergence of advanced lan-
guage models has brought increased attention and progress to the
medical domain in this regard. Significant works have contributed
to effective medicine prediction frameworks. This study provides a
comparative literature overview in Table 1, focusing on prompt-based
methodologies to highlight MED-Prompt’s potential. This detailed in-
vestigation identifies the research gap that MED-Prompt aims to address
by understanding the strengths and limitations of existing approaches,
emphasizing MED-Prompt’s contributions to medicine prediction with
prompt-based techniques and pretrained language models.

• Advancements in Text-based Healthcare: The BEHRT frame-
work by Li et al. (2020) marks an early milestone in text-based
healthcare. This framework harnesses the capabilities of lan-
guage models to make accurate healthcare predictions efficiently.
BEHRT, a deep neural sequence transduction model, was intro-
duced for the simultaneous prediction of multiple diseases using
electronic health records (EHR) data. Their experiments were
conducted using the Clinical Practice Research Datalink (Herrett
et al., 2015), a substantial public dataset. Impressively, their
methodology achieved an 80% accuracy, setting a state-of-the-art
benchmark at the time of publication. Building on this foun-
dation, Luo et al. (2020) introduced the HiTANet framework,
further elevating text-based healthcare classification. HiTANet is

2 https://physionet.org/content/mimiciii/1.4/.

https://physionet.org/content/mimiciii/1.4/
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Table 1
A comprehensive list of related literature to prompt engineering in healthcare.

Ref. Contribution Shortcoming Disadvantage Research gap Scope/Domains Performance

MedKPL (Lu
et al., 2023)

This study aims to fill the
existing research gap by
proposing medical
knowledge-enhanced
diagnoses based on
integrating different
sources of prompt

Noise propagation, Poor
extensibility, and No
relationship between
diseases

Need to manually
design the knowledge
text format whenever
applicable

Future plan is to design
more templates and
conduct integration
learning of templates to
evaluate methodology

Chinese EHR
disease
classification (6
diseases),
Pediatric Patient
EHR (PP-EHR)

82.53% accuracy.

AFKF (Li et al.,
2023)

A novel ALBERT-based
fusion Kalman, namely the
AFKF model, was
presented. Core concepts
were based on a sliding
window scheme and a
fusion Kalman-filter model
to deal with the coupling
relationships of large
sequences

There is no reduction
in the differences
between downstream
and pre-training tasks.
Also, the study lacks
extensibility and huge
resource consumption.

Lack of multi-granular
information

Authors aims to fuse
medical text features to
work on
multi-granularity visual
feature representation

Surgical
recommendation
support system

The study recorded
(76.6%, 81.4%,
75.6%, and 78.0%)
accuracy, recall,
precision, and F1
respectively.

CTC (Kambar
et al., 2022)

The study focuses on
implementing machine
learning methods to
analyze the mechanism of
action of Alzheimer’s drugs
in COVID-19.

Cannot fully maintain
sentence-level
information and
context.

Sensitive to
hyperparameters.
Exploration of different
SVM kernels. Also, the
dataset is limited in
size and lacks
generalization.

Authors intend to apply
ensemble learning or
other ways of
combining models to
improve results.

Clinical Text
Classification of
Alzheimer’s
Drugs

95% accuracy,
100% recall, and
92.0% F1-score.

Gao et al. (2021) The key application
presented by this study is
an extension of the length
limitation of transformer
applications in medical
NLP. Additionally, the
authors introduce
techniques such as
hierarchical or multi-head
attention mechanisms
proposed to handle longer,
better clinical texts and
capture context effectively.

The study lacks implicit
knowledge and high
resource consumption

Splitting a long input
sequence into several
segments and feeding
them into the model
together.

Using word pieces
tokenization method
defined in general
corpora and has not
been adjusted or
expanded to clinical
terminology corpora.

EHRs disease
classification (6
diseases).
MIMIC-III and
SEER cancer
pathology report

76.15% accuracy.

TCM (Yao et al.,
2019a)

Using a pretrained
language model for disease
classification based on
Traditional Chinese
Medicine clinical records

There is no reduction
in the differences
between downstream
and pre-training tasks,
and the study lacks
extensibility.

They directly fine-tuned
the model based on the
pretrained model
without reducing
pretrained model base
tasks, which resulted in
resource consumption
and extensive training
time

The BERT model
achieves state-of-the-art
results, and they aim to
improve by fine-tuning
unlabeled clinical
corpora. Further, the
fine-tuning approach
can also be enhanced
by adding
knowledge-based
objectives.

TCM clinical
records based
disease
classification (5
diseases), TCM
clinical records
data set

89.39% accuracy,
88.67% Marco F1,
and 89.39% Micro
F1.

CTC (Yao et al.,
2019b)

The study employs
rule-based features and
knowledge-guided CNNs to
classify clinical content.
The authors suggest a CNN
model with
domain-specific knowledge
characteristics to boost
classification performance.

Lacks pre-training on
huge datasets. Poor
grasping of complicated
clinical text data
linkages and nuances

CNN-based structure
failed to capture the
long dependency and
had difficulty in long
text sequences and
difficult text.
Framework needs to
define the knowledge
organization rules well.
Lack of pretrained
knowledge

They plan to design
more principled
methods and evaluate
their methods on more
clinical text datasets.

Clinical text
classification

Disease-wise,
(80.14%, 97.60%)
F1 macro and micro
scores, respectively.
Category-wise,
(67.64%, 96.18%)
F1 macro and micro
scores, respectively.

HiSANs (Gao
et al., 2019)

This study introduces
HiSANs architecture to
classify cancer pathology
reports with hierarchical
self-attention networks.
Further, it extended the
length limitation of CNN
applications in medical
NLP.

Their approach faces
difficulties in classifying
reports belonging to
tumor IDs associated
with multiple reports.
Lacking implicit
knowledge

Ground truth
granularity at the
tumor level rather than
the report level
(multi-site problem).

HiSANs aim to enhance
performance on
challenging tasks like
histology, exploring
uncertainty
quantification, and
leveraging contextual
tumor information for
improved prediction

Cancer
pathology
reports
classification-
based
information
extraction (site,
laterality,
behavior,
histology, and
grade)

Site (75.16%
accuracy and
62.52% marco F1),
Histology (70.41%
accuracy and
27.71% marco F1)

(continued on next page)
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Table 1 (continued).
Ref. Contribution Shortcoming Disadvantage Research gap Scope/Domains Performance

Hughes et al.
(2017)

This study proposed novel
sentence-level document
classification on medical
records using deep
convolutional neural
networks to represent
complex features.

The proposed
framework cannot
capture linguistic
patterns beyond a small
window, usually 3–5
words, and lacks
implicit knowledge.

No pretrained
knowledge enhanced
and CNN-based
structure

Their future direction
includes scaling the
proposed network to
handle more data and
finer clinical
classifications, further
exploring medical and
online resources to
gather more data, and
applying domain
adaptation techniques
and convolutional
neural network features
for high-level patient
representations.

Sentence level
clinical text
classification
with 26 medical
categories and
4000 sentences

68% accuracy.
Fig. 1. Proposed framework with an in-depth representation of the interconnected modules and stages.
designed to capture temporal patterns and dependencies within
EHR data. It incorporates patient- and visit-level attention mech-
anisms, enabling time-aware attention focusing on critical time
points and capturing long-term dependencies in EHR sequen-
tial data. This attention-based technique emphasizes significant
events while disregarding irrelevant ones in EHR data’s temporal
characteristics, ultimately facilitating risk prediction using EHR
data.

• Prompt-based Techniques in Medicine Prediction: In Gururangan
et al. (2020), authors stress the versatility of pretrained language
models in various domains, setting a standard across computer
science publications, news, reviews, and biomedical data. They
fine-tune the ROBERTA-base model for eight classification tasks,
comparing its performance in high-end and low-resource settings
on various domain tasks. This study underscores the importance
of domain adaptation and task-specific fine-tuning for improved
pretrained model performance, providing a foundation for their
application in specific contexts. Rasmy et al. (2021) introduce
Med-BERT, tailored for the medical field, emphasizing its effec-
tiveness in medicine prediction using pretrained language models.
4

They assess Med-BERT on two diverse EHR datasets (Truven (Tru-
ven, 2023) and Cerner (CernerHealthFacts, 2023)), demonstrating
its applicability in healthcare and superior performance over
baseline models like BEHRT (Li et al., 2020) and G-BERT (Shang
et al., 2019). In Sivarajkumar and Wang (2022), HealthPrompt
is introduced, leveraging prompt-based techniques in healthcare
classification. Zero-shot learning and task-specific templates are
used, and the framework is evaluated with the MIMIC-III dataset,
providing a competitive reference for the MED-Prompt frame-
work. Lu et al. (2023) present the MedKPL framework in 2023,
offering fresh insights and methodologies to enhance medicine
prediction using language models. The study in Lee et al. (2023)
assesses the effectiveness of an automated prompt system in
electronic medical records, aiming to boost the response rate
of patients with metabolic conditions. They achieve a 27% im-
provement and suggest the need for further research in this area,
marking the first study of its kind for increasing screenings in
obese children with metabolic conditions.

• Pretrained Model’s Application Oriented work: The authors of
Huang et al. (2019) introduced ClinicalBERT, the first model tai-
lored specifically for clinical data. ClinicalBERT was designed to
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Table 2
Set of positive and negative prompts for [GPT and manual] designed for MED-Prompt framework.

Prompt text Predicted [MASK] Type of prompt

Taking {medicine} has been [MASK] for your health Important, Appropriate gpt_prompt1p
The effectiveness of {medicine} as a treatment has been widely [MASK] Maintained, Limited gpt_prompt2p
Using {medicine} can [MASK] your recovery process Help, Improve gpt_prompt3p
Using {medicine} can expedite your recovery process and [MASK] you regain your health faster Help, Should gpt_prompt4p
Taking {medicine} at the recommended dosage can [MASK] your symptoms Control, Improve gpt_prompt5p
Research studies have shown that {medicine} is [MASK] in reducing pain Effective, Interested gpt_prompt6p

Taking {medicine} has been not [MASK] for your health Important, Sufficient gpt_prompt1n
The effectiveness of {medicine} as a treatment has not been widely [MASK] Changed, Maintained gpt_prompt2n
Using {medicine} cannot [MASK] your recovery process Help, Improve gpt_prompt3n
Using {medicine} can expedite your recovery process and not [MASK] you regain your health faster Help, Until gpt_prompt4n
Taking {medicine} at the recommended dosage cannot [MASK] your symptoms Improve, Control gpt_prompt5n
Research studies have shown that {medicine} is not [MASK] in reducing pain Interested, Effective gpt_prompt6n

The medicine you are taking is [MASK] for you Good, Relevant manual_prompt1p
You have been using medicine for a long and it [MASK] your disease and reduces the risk Helps, Controls manual_prompt2p
The medicine you have been prescribed has [MASK] your health Changed, Improved manual_prompt3p
The medicine has [MASK] your health Changed, Helped manual_prompt4p

The medicine you are taking is not [MASK] for you Tested, Taking manual_prompt1n
You have been using medicine for a long, and it is [MASK] your disease and reducing the risk Concerning, Causing manual_prompt2n
The medicine you have been prescribed has [MASK] your health Changed, Improved manual_prompt3n
The medicine has not [MASK] your health Changed, Affected manual_prompt4n
leverage the advantages of BERT, originally trained on extensive
Wikipedia and Book-Corpus data. This development marked a
significant advancement in applying BERT to the medical field,
enhancing the analysis of clinical text data. Another noteworthy
study by Müller et al. (2023) focuses on COVID-19 analysis
using a pretrained BERT model applied to Twitter content. This
work explores various tasks, including classification, question-
answering, and chatbot-related tasks, all centered around COVID-
19. The COVID-19-BERT study is relevant to our research, as
it also examines the use of pretrained models like BERT for
specific healthcare tasks specifically related to COVID-19 analysis
on social media.

. Research methodology

This section discusses the components within the methodology to
evelop the MED-Prompt framework for medicine prediction using
retrained language models and fine-tuned approach. Additionally, key
omponents of the proposed study are visually depicted in Fig. 1,
urther (Algorithms 1, 2) elucidate structure and functioning.

.1. Data preparation

This study involves extracting a pertinent subset from the MIMIC-
II dataset, particularly the NOTEEVENTS file, through meticulous data
ngineering techniques. Adhering to official guidelines, we selected this
ataset while fulfilling all legal prerequisites. It is imperative to abide
y the no-distribution mandate and uphold ethical considerations fol-
owing HIPAA regulations. We performed several preprocessing steps,
ncompassing:

(i) Reading NOTEEVENTS file: This file contains approximately 2.1M
Rows and 11 columns of clinical notes in free-text format.

(ii) Feature selection: Relevant features were extracted from one of
the elaborate columns carrying a total of 14 keywords (includ-
ing demographics of patients [Admission, Discharge, Date of
Birth, and Gender]. Another set of keywords includes Services
provided to patients, Allergies, Major Complaints of the pa-
tient, Patient history, medication at admission and discharge and
discharge notes, etc.).

(iii) Keyword filtering: After a rigorous review of technicalities and
to achieve the objectives of this study, we finalized the four
keywords including [‘‘Chief Complaint’’, ‘‘Medications on Ad-
mission’’, ‘‘Discharge Medications’’, and ‘‘History OF Present
5

Illness’’].
Table 3
Medicine list and their matched percentage employed in this manuscript.

Medicine list Match percentage

m30 and m50 56.00%
m30 and m70 19.28%
m30 and mOriginal 0.00%
m50 and m70 43.37%
m50 and mOriginal 0.00%
m70 and mOriginal 0.00%

(iv) Data filtering: The raw text was converted to dictionary keys, and
records were filtered to retain only those containing predefined
keywords, resulting in 36 000 records.

(v) Summarization: Summaries of the ‘‘History OF Present Illness’’
feature was generated using the T5 pretrained model.

(vi) Classical experiment: Before delving with the designed MED-
Prompt framework, separate data was maintained to conduct
machine learning experiments as the preliminary study.

(vii) Prompt generation: Prompt preparation steps remained under
consideration during experiments.

(viii) Template design: Template design is a crucial step in the pipeline,
comprising multiple factors as shown in Eq. (2).

3.2. Dataset and medicine cohorts

Following rigorous preprocessing efforts as discussed in Section 3.1,
a subset of data was prepared from an extensive clinical text dataset
consisting of raw text, summarized patient history, chief complaint,
medication on admission, discharge medications, and discharge diag-
nosis and condition at discharge. To facilitate the analysis, distinct
medicine cohorts were strategically selected and organized into several
subsets, such as a collection of 30 medicines as m30, for a group
of 50 medicines as m50 cohort, followed by m70 for a set of 70
medicines, and lastly, a set of 100 medicines termed as mOrignal.
Table 3 highlights the different sets of medicines and their match
percentage concerning each other. Selecting a representative medicine
cohort is a key component, allowing us to explore various medicine
cohorts and their predictive outcomes thoroughly, and the impact of
different sets of cohorts is also used to measure the scalability of the

MED-Prompt framework.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101933A. Ahmed et al.
3.3. Prompt engineering

Prompt Engineering is always challenging, and manually designing
prompts for models is even more complex. It requires deep knowledge
of the problem and a better understanding of the scientific problem for
which the prompts are being designed (Wang et al., 2023). Working
within the medical domain poses additional challenges due to the
limited research. Consequently, researchers encounter difficulties in
locating relevant examples. We took help from related HuggingFace3

respective model for manually designed prompts. We tested before
feeding to the model for real-time experiments and optimized the
prompts wherever required. Table 2 records and presents the exact
number of prompts. The table records prompt text while maintaining
the top two [MASK] generated by the model. Table only records
results generated from ClinicalBERT, but all models were tested ac-
cordingly. The final column represents the prompt type, such as ‘‘man-
ual_generated_prompt’’ or ‘‘gpt_generated_prompt’’.

The prompt engineering step is crucial because prompt structure
plays an important role. Several considerations may be taken, and a
few are listed below. It is also suggested when using a language model
for tasks like summarization, question answering, or text production.
It might be helpful to provide the model with a well-prepared prompt
to help it produce answers that are more accurate and relevant to the
task. The following instructions should not be considered the final list
as they may vary from task to task, but this study utilized the following
suggestions for prompt engineering.

• Clear and specific task instructions
• Prompts contextual text
• Concise use of formatting and placeholders
• Length and grammatical structure of a sentence
• Multiple variations of prompts

3.4. Prompt design

Prompt design is a meticulous task focused on crafting concise,
clear, informative, and task-specific prompts. The objective is to input
the model with adequate information to generate the desired output
without being overall specific or general. The essence of prompt design
lies in enabling the model to exhibit creativity and produce text that
transcends mere replication of the prompt.

Both prompt design and prompt engineering are integral and im-
portant modules within prompt-based predictions. The substantial dif-
ference between them lies in their respective focuses and scopes, each
tailored to the specific domain and task.

3.5. Prompt-guided predictions - MED-Prompt

Prompt-guided predictions are robust tools to generate text for var-
ious tasks such as code generation, script writing, completing musical
pieces, email and letter samples, etc. Further, they can also be used for
tasks such as question answering and summarization (Liu et al., 2023).

This study investigates prompt-guided predictions as a distinctive
approach for improving medical text classification on clinical notes.
The study presents an in-depth approach that optimizes deep learning-
based pretrained models for medicine prediction on free-text clinical
notes through prompt engineering. We carefully design prompts to
aid the model in interpreting and extracting medical information from
the clinical corpus. This includes incorporating domain-specific ter-
minology and context-specific information and ensuring the accuracy
and precision of the predictions, which are crucial in medical data
analysis. Prompt-guided prediction is a key component of MED-Prompt
framework, which takes a prompt input template as a prompt query

3 https://huggingface.co/.
6

Fig. 2. MED-Prompt template.

and forwards it to the model. Within MED-Prompt, the prompts are
designed to help reduce the overhead of training and prediction time
and computational resources. Eq. (1) generalizes the overall concept
of medicine prediction using a prompt. Further, Eq. (2) defines the
construction of input sequences for positive and negative prompts,
denoted as 𝑁_𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡 and 𝑃 _𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡, respectively.

Prediction(𝑀,𝑃 ) = Model(𝑚, 𝑝) ∀(𝑚 ∈ 𝑀,𝑝 ∈ 𝑃 ) (1)

In this equation, ‘‘Prediction’’ represents the predicted outcome or
probability of medicine 𝑚 from a set of medicines 𝑀 based on a given
prompt 𝑝. The function ‘‘Model’’ represents the employed pretrained
model, which takes the selected medicine 𝑚 and prompt 𝑝 as inputs
to generate the prediction. The symbol ∀ denotes that the prediction is
computed for every medicine 𝑚 in the set of medicines 𝑀 .

𝑁_𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡 =
𝑛
∑

𝑖=1
𝑐𝑜𝑚𝑝𝑙𝑛𝑡𝑖 + 𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑖

+ 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒𝑖 + 𝑝𝑟𝑜𝑚𝑝𝑡_𝑙𝑖𝑠𝑡_𝑛_[𝑘]

𝑃 _𝑖𝑛𝑝𝑢𝑡_𝑡𝑒𝑥𝑡 =
𝑛
∑

𝑖=1
𝑐𝑜𝑚𝑝𝑙𝑛𝑡𝑖 + 𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑖

+ 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒𝑖 + 𝑝𝑟𝑜𝑚𝑝𝑡_𝑙𝑖𝑠𝑡_𝑝_[𝑘] (2)

For both sub-equations, 𝑖 represents the index of the input sequence
(ranging from 1 to n). 𝑐𝑜𝑚𝑝𝑙𝑛𝑡𝑖 and 𝑠𝑢𝑚𝑚𝑎𝑟𝑦𝑖 is the patient’s complaint
and history text for 𝑖th input sequence, respectively. Further, 𝑚𝑒𝑑𝑖𝑐𝑖𝑛𝑒𝑖
presents the medicine information in the current input sequence. Lastly,
𝑝𝑟𝑜𝑚𝑝𝑡_𝑙𝑖𝑠𝑡_[𝑘] shows the current prompt query being processed within
MED-Prompt, whether positive or negative prompt text. The selection
of prompt type depends on the specific query processed.

MED-Prompt: The core idea of MED-Prompt framework as pre-
sented in Fig. 1 lies in developing the specialized prompts, which act as
guiding instructions for the models during the prediction process such
that the first component of MED-Prompt is an input set of prompts.
Prompts guide the generation of text or responses from a language
model. In this context, prompts can be designed before or after prompt
templates, which are used as input for baseline algorithms. Further,
the patient’s subset of data, such as medical history and current med-
ications, is chosen and seamlessly integrated into designed prompts.
This ensures contextually relevant information is fed to the model to
interpret, as shown in the model architecture diagram within a gray-
colored rectangle box, further detailed in Fig. 2. Feature extraction,
involving identifying pertinent details from input data, is conducted
based on positive and negative input prompts. Further, the ‘‘func =
pre-trained-model’’ component integrates the pre-trained model, which
generates a vector of predictions to which we compare the actual
existence of medicines’ names to finalize the output.

The Fig. 2 illustrates the prompt template within the MED-Prompt.
The template has two main components: positive prompts (prompt_p)

https://huggingface.co/
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and negative prompts (prompt_n). Each prompt follows a corresponding
input query (input_query_p for positive and input_query_n for negative
prompts). The positive prompts are designed to elicit contextual infor-
mation that supports the prediction of a specific medicine. For instance,
a positive prompt might ask, ‘‘What is the most likely medicine for a
patient with a headache?’’ In contrast, negative prompts are designed
to provide information that contradicts the prediction of a specific
medicine. For example, a negative prompt might ask, ‘‘What is the least
likely medicine for a patient with a headache?’’ Combining positive and
negative prompts helps the model learn to distinguish between relevant
and irrelevant information, improving its ability to predict medicines
accurately. The number of prompts and input queries used during train-
ing determines the overall size and complexity of the prompt template.
A larger prompt template can capture more contextual information
and improve model performance. Overall, the prompt template plays a
crucial role for both approaches of the proposed MED-Prompt, enabling
it to effectively learn from both positive and negative examples and
make accurate medicine predictions. One of the key strengths of the
framework is its ability to handle any number of prompts, making it
highly versatile and offering scalability. This independence is achieved
through the framework’s core design, which allows for the seamless
integration of any number of positive and negative prompts as long
as they maintain an equal balance. The framework is flexible to cope
with various datasets. Further, it allows seamless integration with
various pretrained models, leveraging their pre-existing knowledge and
capabilities to enhance performance and reduce training time.

Further, the key details of with and without fine-tuned approaches
are presented in Algorithms 1 and 2, which are responsible for com-
puting predictions for provided sets of medicine cohorts m30, m50,
m70, and mOrignal. Further, it depends on the number of records to
be fed, the pretrained model, and the tokenizer type. We modified
these algorithms per the need for different experiments conducted
throughout the study.

In conclusion, Algorithm 1 presents the overall architecture in a
high-level presentation, and we aim that future researchers can adopt it
easily. Then, a modified version of our previous algorithm is shown in
Algorithm 2. We have adopted the changes in this version and resumed
the pretrained approach to leverage pretrained models for achieving a
fine-tuned approach. By utilizing pretrained models, we aim to improve
the performance of our algorithm, particularly in scenarios where the
available training data is limited.

3.6. Classical model analysis and MED-Prompt architecture

Before delving into the MED-Prompt results, this study initially eval-
uated the classical machine learning methods for medicine prediction
to highlight their inherent challenges, such as requiring substantial
training time and computing resources, extensively labeled data, and
lacking scalability. Table 4 presents the experimental results that un-
derpin these challenges. The best performer among classical models,
XGBClassifier (m30), exhibited the highest accuracy of 93.9% and an
F1-score of 91.8%; however, time taken by this model recorded as
3150 s, approximately 52 min, which is underpinning the challenges,
highlighting the urgent need for a system capable of addressing these
issues effectively.

4. Experimental setup

This section describes the experimental setup and provides an
overview of the baseline pretrained models and evaluation metrics used
in the study.

4.1. System parameters

The study leveraged an NVIDIA TITAN RTX GPU for computational
operations, equipped with driver version 470.161.03 and CUDA version
11.4. The PyTorch deep learning framework was employed to leverage
the GPU’s capabilities. During model training, a total of 24 217 MiB
7

memory was utilized.
Table 4
Classical machine learning model evaluation results.

Model mcount Performance metrics

Acc Pre Rec F1

XGBC
m30 0.939 0.875 0.965 0.918
m50 0.900 0.820 0.951 0.880
m70 0.900 0.820 0.951 0.880

MLPC
m30 0.899 0.882 0.820 0.850
m50 0.719 0.881 0.114 0.202
m70 0.724 0.837 0.126 0.219

RC
m30 0.906 0.859 0.869 0.864
m50 0.774 0.864 0.391 0.538
m70 0.774 0.864 0.391 0.538

RFC
m30 0.739 0.943 0.059 0.111
m50 0.742 0.889 0.123 0.216
m70 0.749 0.845 0.185 0.303

kNNC
m30 0.710 0.436 0.131 0.201
m50 0.686 0.432 0.108 0.172
m70 0.686 0.432 0.108 0.172

DTC
m30 0.906 0.856 0.867 0.861
m50 0.875 0.814 0.837 0.825
m70 0.868 0.812 0.837 0.824

Algorithm 1: MED-Prompt High-Level Algorithm - Using
pretrained

input : modeltype, token, medicine_count, DATA_NUM
output: Vectors of Predicted and Actual Values
Initialize empty lists: results_list, matched_medicines, actual_result, predictions
for 𝑖 ← 1 to 𝐷𝐴𝑇𝐴_𝑁𝑈𝑀 do

Get inputs:
chief complaint (complaint)
medications (medications)
summary for the current sample
Concatenate inputs
Clear the matched_medicines list
for each medicine in medicine_count do

if medicine.lower() is in medications.lower() then
Append medicine to matched_medicines

end
end
Join the elements of matched_medicines with ‘—’ and assign it to matched_medicines_pattern
Initialize lists:
prompt_list_pos and prompt_list_neg
for each medicine in medicine_count do

for each prompt in prompt_list_pos and prompt_list_neg do
Construct the input_text as in Equation (2)
Initialize res_a and res_b
Used the model to predict the masked token
Compare the scores to determine the prediction
if res_a > res_b then

Set prediction to 1 (Positive)
end
else

Set prediction to 0 (Negative)
end

end
end
Append a dictionary to results_list containing the ‘Predicted Values’ and ‘Actual Values’ lists

end
return Output Vectors

4.2. Baseline pretrained models

The baseline models used in this manuscript include BERT (Devlin
et al., 2018), BioBERT (Lee et al., 2020) and ClinicalBERT (Alsentzer
et al., 2019; Huang et al., 2019). These models were selected after
rigorous considerations as these models have been utilized for similar
tasks in literature (Lu et al., 2023; Yao et al., 2019b). We aim to use
them as a baseline for our proposed MED-Prompt framework and to
evaluate the effectiveness and utilization of such models for medicine
prediction tasks using prompt engineering. The BERT is the base model
for both ClinicalBERT and BioBERT. The former two models were
designed on top of BERT using core architecture.

4.2.1. BERT
BERT is a transformer-based model used for various general natural

language-based tasks such as language generation, machine translation,
Question Answering, sentiment analysis, named entity recognition,

summarization, text classification, etc. It is pretrained on the large
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Algorithm 2: MED-Prompt High-Level Algorithm -Transfer
earning

input : modeltype, token, medicine_count, DATA_NUM, Epoch_NUM
output: Vectors of Predicted and Actual Values
Initialize empty lists: results_list, matched_medicines, actual_result, predictions
for 𝑖 ← 1 to 𝐸𝑝𝑜𝑐ℎ_𝑁𝑈𝑀 do

for 𝑖 ← 1 to 𝐷𝐴𝑇𝐴_𝑁𝑈𝑀 do
Get inputs:
chief complaint (complaint)
medications (medications)
summary for the current sample (summary)
Concatenate inputs
Clear the matched_medicines list
for each medicine in medicine_count do

if medicine.lower() is in medications.lower() then
Append medicine to matched_medicines

end
end
Join the elements of matched_medicines with ‘—’ and assign it to
matched_medicines_pattern

for each medicine in medicine_count do
Initialize lists:
prompt_list_pos and prompt_list_neg ;
for each prompt in prompt_list_pos and prompt_list_neg do

Feed the input_text (pos and neg) separately to the Model for training
Calculate Score using verbalize_score()
Compare the scores to determine the prediction
Calculate Loss using procedure loss()
Adjusting train loss
loss.backward()
optim.step()
if score_pos > score_neg then

Set prediction to 1 (Positive);
end
else

Set prediction to 0 (Negative);
end
actual_result ;

end
end
Append a dictionary to results_list containing the ‘Predicted Values’ and ‘Actual

Values’ lists
end

end
return Output Vectors;

corpus of English language data with case and uncased versions. Orig-
inally, this model was released in case and uncased variation with the
English language. Further, this model has been pretrained with several
large data corpora, including multilingual data. This study employed
the ‘‘BERT Base Uncased’’ version of the model. At the time of writing,
24 versions have been released, including TinyBERT, MediumBERT,
SmallBERT, MiniBERT, etc. (Devlin et al., 2018).

4.2.2. BioBERT
BioBERT is a specialized language representation model based on

the BERT architecture, specifically designed for the biomedical domain.
It is pretrained on a massive corpus of biomedical text data, including
PubMed abstracts and full-text articles (Lee et al., 2020). It addresses
the limitations of BERT by dealing with complexities of biomedical
language specialized terminology, domain-specific abbreviations, and
intricate relationships between entities.

4.2.3. ClinicalBERT
ClinicalBERT, another specialized language model based on BERT, is

designed for the clinical domain. ClinicalBERT is pretrained on a mas-
sive corpus of clinical notes, electronic health records, and discharge
summaries (Alsentzer et al., 2019). This pre-training allows Clinical-
BERT to acquire a deep understanding and interpret clinical language,
including medical terminologies, abbreviations, and relationships in the
clinical context.

The experimental results show that the proposed MED-Prompt per-
formed better with the ClinicalBERT model because it is pretrained on
relevant data. This study performed several experiments on a subset
of data extracted from the MIMIC-III dataset and then conducted var-
ious experiments to evaluate the proposed framework. MED-Prompt
leverages pretrained natural language processing models based on deep
learning architectures, including BERT, BioBERT, and ClinicalBERT, as
baseline algorithms for experiments.

The models briefly discussed above are transformer-based, and their
architecture consists of 12 encoder layers. The dimensionality of the
hidden states is 768. Each transformer encoder block has two main
8

Fig. 3. Comparative analysis of evaluation matrices on BERT, BioBERT, and
ClinicalBERT with Manual Prompt Set 1 with 100 and 500 records respectively.

components - a self-attention layer and a feed-forward network. This
architecture ensures the model can process long text sequences and
capture long-range dependencies specific to the task. As discussed
above, BERT is a general-purpose model, while BioBERT and Clini-
calBERT are designed for specific tasks. However, both models can
be fine-tuned for domain-specific tasks, but the current study focuses
on ClinicalBERT due to its wider application for clinical purposes. It
is designed to capture specific domain knowledge and is suitable for
healthcare tasks such as MED-Prompt fine-tuned for prompt guided
medicine predictions. Further, additional technical details of individual
models are beyond the scope of this study and are not discussed.

Furthermore, additional experiments were conducted on different
medicine cohorts for comparative analysis for a fine-tuned approach.
The subsequent subsections present a comprehensive series of experi-
ments to assess the effectiveness and efficiency of the proposed MED-
Prompt framework. Additionally, Table 14 is prepared to summarize
the key results obtained from these individual experiments.

4.3. Evaluation metrics

This study employs various metrics, including accuracy, precision,
recall, and 𝐹1 score as shown in (4), to evaluate the pretrained and
fine-tuned models under different experimental setups. Amongst, 𝐹1 is
crucial to evaluate and compare the performance with existing studies.
Achieving a higher 𝐹1 indicates that the model minimizes false positives
and negatives, showcasing a balanced predictive capability.

tp =
∑

((pred_res==1)&(test_actual_res==1)) (3a)

fp =
∑

((pred_res==1)&(test_actual_res==0)) (3b)

n =
∑

((pred_res==0)&(test_actual_res==1)) (3c)

tn =
∑

((pred_res==0)&(test_actual_res==0)) (3d)

From Eq. (3), (tp, fp, fn, tn) are variables that help the model to
evaluate predicted (true, false) and actual (true, false) and their combi-
nations. Further, these four are used to calculate performance metrics
of Eq. (4).

Accuracy =
tp + tn

tp + tn + fp + fn

Precision =
tp

tp + fp

Recall = tp
tp + fn (4)

F1 = 2 ∗
precision ∗ recall
precision + recall
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Table 5
Comparative results of manual vs. GPT prompts; The bold values are regarded as optimal results.

mCount Model Accuracy Precision Recall 𝐹1

Three pairs of (Positive and Negative) GPT prompts experiment with 500 records

m30
BERT 0.626 0.501 0.502 0.462
ClinicalBERT 0.697 0.494 0.488 0.476
BioBERT 0.524 0.506 0.514 0.424

m50
BERT 0.639 0.502 0.504 0.448
ClinicalBERT 0.751 0.501 0.501 0.482
BioBERT 0.545 0.506 0.519 0.413

m70
BERT 0.649 0.500 0.501 0.431
ClinicalBERT 0.790 0.501 0.502 0.478
BioBERT 0.558 0.502 0.506 0.395

Three pair of (Positive and Negative) manual prompts experiment with 500 records

m30
BERT 0.752 0.498 0.496 0.489
ClinicalBERT 0.716 0.501 0.504 0.484
BioBERT 0.263 0.508 0.514 0.255

m50
BERT 0.770 0.500 0.499 0.482
ClinicalBERT 0.731 0.505 0.516 0.478
BioBERT 0.255 0.506 0.517 0.238

m70
BERT 0.787 0.502 0.511 0.473
ClinicalBERT 0.741 0.503 0.519 0.461
BioBERT 0.245 0.502 0.509 0.217
Table 6
Comparative performance metrics for BERT_Large.

Prompt type mCount Accuracy Precision Recall 𝐹1

Manual Set1
m30 0.854 0.427 0.500 0.461
m50 0.904 0.452 0.500 0.475
m70 0.960 0.480 0.500 0.490

GPT Set1
m30 0.853 0.426 0.500 0.460
m50 0.902 0.452 0.498 0.474
m70 0.956 0.478 0.498 0.488

Manual ensemble
m30 0.527 0.478 0.457 0.425
m50 0.516 0.484 0.453 0.398
m70 0.525 0.499 0.492 0.376

GPT ensemble
m30 0.358 0.498 0.497 0.342
m50 0.338 0.499 0.497 0.309
m70 0.320 0.503 0.517 0.270

Fig. 4. Comparative analysis of evaluation matrices on BERT, BioBERT, and Clinical-
BERT with Manual Prompt Set 1 with 100 and 500 records respectively (Radar plot
analysis).
9

5. Results and discussion

This section provides a comprehensive analysis of the results ob-
tained from the investigations undertaken to evaluate the effectiveness
and efficiency of the MED-Prompt framework. Furthermore, this section
provides detailed information about the exact outcomes achieved in
each experiment and concludes with a summary of the noteworthy
findings, accompanied by an analysis of their implications.

5.1. Comparative analysis

With this comparative analysis experimental setting, this study aims
to record and analyze the performance of MED-Prompt framework with
the baseline algorithms including but not limited to BERT, BioBERT,
and ClinicalBERT using different experiments, such as Table 5 present-
ing comparative results between three sets of positive and negative
prompts for Manual and GPT. Table 7 presents the comparative eval-
uations between 100 and 500 records set using all GPT prompts.
Additionally, Table 9 shows an analysis between Manual Prompt Set
1 and 2 using 100 versus 500 records. Then, the study also presents
detailed insights using a line plot analysis as shown in Fig. 5.

Table 5 presents the evaluations between the manually designed
prompts set and GPT generated as listed in Table 2. We took three sets
from each and experienced their performance with respective medicine
counts starting from m30, m50, and m70. This is one of the most
important experiments conducted as it highlights the performance of all
pretrained models incorporated within MED-Prompt framework with a
maximum number of records (500 records set as a selective cohort)
and with no further deletion or addition to experimental settings. In
this experiment, it is noticeable that MED-Prompt framework is highly
dependent on the medicine set passed to the model as it achieved
the maximum performance with a small medicine cohort (m30) ir-
respective of Manual or GPT prompts set. Further, it is also visible
that Manual designed prompts are more effective in terms of medicine
prediction tasks in MED-Prompt as we recorded a maximum score set
of F1 (48.9%, 48.2%, and 47.3%) for all three medicine cohorts m30,
m50, and m70 respectively with BERT remain the high achiever model
in all cases. While with the GPT-Prompts set, BERT remains the top
performer among the three models with an F1-score set of (46.2%,
44.8%, and 43.0%) for m30, m50, and m70, respectively.

Table 7 presents the individual evaluations of all GPT prompts as
listed in Table 2. We fed each prompt as input to the model to compute
ensemble results of medicine predictions using both 100 and 500
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Table 7
Comparative results of GPT prompts (100 vs. 500 records); The bold values are regarded as optimal results.

Model mCount 100 records 500 records

Accuracy Precision Recall 𝐹1 Accuracy Precision Recall 𝐹1

BERT
m30 0.641 0.498 0.497 0.465 0.883 0.510 0.503 0.495
m50 0.655 0.500 0.500 0.452 0.914 0.511 0.504 0.502
m70 0.666 0.500 0.498 0.435 0.941 0.506 0.504 0.504

BioBERT
m30 0.632 0.502 0.506 0.465 0.839 0.495 0.496 0.495
m50 0.665 0.505 0.515 0.461 0.850 0.654 0.536 0.534
m70 0.678 0.500 0.500 0.440 0.558 0.501 0.506 0.395

ClinicalBERT
m30 0.634 0.501 0.500 0.465 0.833 0.516 0.516 0.516
m50 0.665 0.501 0.505 0.457 0.869 0.514 0.517 0.514
m70 0.694 0.501 0.500 0.446 0.865 0.511 0.513 0.514
Fig. 5. Comparative analysis of evaluation matrices on BERT, BioBERT, and ClinicalBERT with Manual Prompt Set 1 with 100 and 500 records respectively (Line plot analysis).
Table 8
Comparative results of Manual vs. GPT prompts with mOrignal (Imbalance prompts);
(Six pair of (Positive and Negative) GPT prompts experiment with 100 records) (Four
pair of (Positive and Negative) manual prompts experiment with 100 records). The
bold values are regarded as optimal results.

Model Accuracy Precision Recall 𝐹1

BERT_Large 0.519 0.501 0.502 0.423
BERT 0.573 0.501 0.502 0.446
ClinicalBERT 0.641 0.495 0.490 0.465
BioBERT 0.639 0.501 0.500 0.471

BERT_Large 0.588 0.504 0.510 0.455
BERT 0.708 0.508 0.513 0.493
ClinicalBERT 0.638 0.502 0.504 0.472
BioBERT 0.331 0.500 0.500 0.313

records in each medicine cohort. The results indicate that more records
improve performance across all evaluation metrics, including accuracy,
precision, recall, and F1-score. In this experiment, the BioBERT model
achieved the maximum scores (65.0%, 53.0%, and 53.0%) for preci-
sion, recall, and F1-score, respectively. While other models also achieve
reasonable results compared to the previous experiment in Table 5.
This evaluation analyzes the effectiveness of combining the maximum
10
number of available prompts. As expected, this experiment achieved a
high performance among all conducted experiments. This success can
be attributed to the careful design of prompts. Despite being designed
by GPT, we dedicated efforts to enhance their clarity and conciseness
specifically tailored for medicine prediction tasks. Key findings/results
are highlighted in bold.

In conclusion, the comparative experiment analysis setting inves-
tigated prompt-guided medicine prediction using several pretrained
models and clinical note cohorts; further study assessed the effective-
ness of medication counts m30, m50, and m70 with various prompt
settings, as shown from Table 5 to 9. The evaluation results reveal the
effectiveness of the proposed MED-Prompt framework, as demonstrated
in Figs. 3 and 4. The analysis here supports the results.

5.2. Performance on key parameters

In this particular experimental setting, the study aims to observe
the importance of key parameters of the framework, such as medicine
count (mCount), the choice of the pretrained models, and the influence
of varying numbers of data records. Through systematic evaluations,
We observed and recorded all experiment outcomes. The experimental
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Table 9
Comparative performance metrics for Manual Prompt Set 1 (manual_prompt1p and manual_prompt1n) and Set 2 (manual_prompt2p and
manual_prompt2n) for 100 and 500 records, respectively; the bold values are recorded as optimal results.

Model mCount 100 records 500 records

Accuracy Precision Recall 𝐹1 Accuracy Precision Recall 𝐹1

BERT

Set1
m30 0.649 0.509 0.522 0.478 0.639 0.503 0.507 0.472
m50 0.621 0.498 0.493 0.438 0.620 0.495 0.485 0.437
m70 0.592 0.498 0.492 0.406 0.609 0.498 0.493 0.423

Set2
m30 0.850 0.466 0.484 0.472 0.655 0.505 0.512 0.470
m50 0.878 0.475 0.482 0.478 0.630 0.497 0.489 0.435
m70 0.901 0.492 0.489 0.490 0.605 0.501 0.507 0.409

BioBERT

Set1
m30 0.610 0.510 0.503 0.464 0.640 0.504 0.507 0.472
m50 0.621 0.498 0.493 0.438 0.620 0.495 0.485 0.437
m70 0.591 0.498 0.492 0.406 0.609 0.498 0.492 0.423

Set2
m30 0.610 0.509 0.523 0.464 0.593 0.514 0.540 0.455
m50 0.657 0.512 0.538 0.465 0.629 0.513 0.551 0.451
m70 0.692 0.505 0.529 0.452 0.657 0.504 0.528 0.432

ClinicalBERT

Set1
m30 0.783 0.505 0.505 0.503 0.760 0.493 0.491 0.491
m50 0.788 0.511 0.523 0.503 0.761 0.501 0.503 0.487
m70 0.776 0.503 0.514 0.476 0.750 0.496 0.488 0.468

Set2
m30 0.783 0.504 0.506 0.503 0.774 0.495 0.492 0.489
m50 0.788 0.511 0.523 0.504 0.771 0.501 0.504 0.484
m70 0.776 0.504 0.514 0.476 0.762 0.502 0.505 0.465
Table 10
Comparative analysis of ablation evaluation results between GPT and manual prompts.

mCount Model Accuracy Precision Recall 𝐹1 Ablation setting

GPT ablation with 100 records

m30
BERT 0.879 0.502 0.500 0.484

GPT_AS1ClinicalBERT 0.225 0.517 0.521 0.225
BioBERT 0.688 0.499 0.499 0.480

m30
BERT 0.249 0.504 0.506 0.245

GPT_AS2ClinicalBERT 0.884 0.446 0.495 0.469
BioBERT 0.755 0.524 0.539 0.522

m30
BERT 0.893 0.446 0.500 0.472

GPT_AS3ClinicalBERT 0.582 0.506 0.516 0.451
BioBERT 0.892 0.446 0.499 0.471

m50
BERT 0.209 0.498 0.496 0.203

GPT_AS2ClinicalBERT 0.922 0.463 0.497 0.480
BioBERT 0.795 0.520 0.541 0.516

m70
BERT 0.957 0.478 0.500 0.489

GPT_AS3ClinicalBERT 0.564 0.497 0.485 0.394
BioBERT 0.956 0.478 0.500 0.489

Manual ablation with 100 records

m30
BERT 0.690 0.509 0.517 0.490

Manual_AS1ClinicalBERT 0.803 0.500 0.500 0.500
BioBERT 0.358 0.512 0.526 0.332

m30
BERT 0.735 0.473 0.459 0.463

Manual_AS2ClinicalBERT 0.511 0.502 0.505 0.415
BioBERT 0.230 0.507 0.510 0.228

m30
BERT 0.686 0.501 0.502 0.481

Manual_AS3ClinicalBERT 0.373 0.494 0.487 0.336
BioBERT 0.469 0.499 0.497 0.393

m50
BERT 0.879 0.488 0.492 0.489

Manual_AS2ClinicalBERT 0.475 0.504 0.516 0.379
BioBERT 0.105 0.498 0.499 0.104

m70
BERT 0.725 0.502 0.508 0.458

Manual_AS3ClinicalBERT 0.306 0.495 0.472 0.260
BioBERT 0.451 0.502 0.509 0.346
results from Tables 5 to 11 demonstrate the significance and impor-
tance of key components and further emphasize their impact. Ad-
ditionally, the study presents a concise overview in the following
manner.

Impacts of mCount: The variation in the predicted medicines
as analyzed in the mCount experiment. Four medicine cohorts were
mployed, such as m30, m50, m70 and mOriginal. There are various
xperiments to highlight the influence of mCount on MED-Prompt.
11

ike, with the pretrained approach, BERT outperformed other models,
especially achieving F1 scores of (48.9%, 48.2%, and 47.3%) for m30,
m50, and m70, respectively, with ensemble prompt experiment as
recorded in Table 5. Further, in this experiment, GPT-Prompts per-
formed slightly lower, with F1-scores of (46.2%, 44.8%, and 43.1%) for
m30, m50, and m70, respectively. The results highlight the dependency
of MED-Prompt on specific medicine cohorts passed as input. Pretrained
BERT consistently performed better, indicating its suitability for small
medicine cohorts. The choice of medicines significantly influenced

model performance.
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Table 11
Comparative analysis between Normal setting vs. Ablation setting using Manual Prompt
Set 3 and 4 with 100 records.

Model mcount Accuracy Precision Recall 𝐹1 Ablation setting

Prompt Set 3 with Normal setting

BERT m30 0.722 0.487 0.488 0.475
NormalBioBERT m50 0.479 0.508 0.532 0.385

ClinicalBERT m70 0.956 0.478 0.500 0.488

Prompt Set 3 with Ablation setting

BERT m30 0.482 0.462 0.401 0.372
Manual_AS2*BioBERT m50 0.103 0.505 0.502 0.102

ClinicalBERT m70 0.957 0.479 0.501 0.488

Prompt Set 4 with Normal setting

BERT m30 0.578 0.527 0.571 0.466
NormalBioBERT m50 0.545 0.508 0.532 0.416

ClinicalBERT m70 0.459 0.495 0.475 0.345

Prompt Set 4 with Ablation setting

BERT m30 0.577 0.466 0.417 0.412
Manual_AS2**BioBERT m50 0.310 0.502 0.506 0.281

ClinicalBERT m70 0.626 0.504 0.521 0.426

Impacts of pretrained model: The choice of the pretrained model
ignificantly influences the performance of the proposed MED-Prompt
ramework. There are several experiments to discuss the influence of
odel selection as results presented from Tables 5 to 9. To present

ample results to evaluate the influence of different pretrained models,
his study kept the medicine count m50 cohort constant and train-
ng records constant. From Table 5, ClinicalBERT demonstrated the
est performance, followed by BERT and BioBERT with F1-scores of
48.2%, 44.8%, and 41.3%). This model’s advantage likely stems from
ts specialized training with clinical notes, allowing it to grasp med-
cal nuances and contextual intricacies crucial for accurate medicine
rediction. The model’s architecture, training dataset, and domain
nowledge help it to analyze and handle text data. ClinicalBERT is the
ost effective pretrained model in the MED-Prompt framework since

t aligns with the clinical domain and extracts valuable insights from
atient records. This emphasizes the necessity of choosing a task and
omain-specific pretrained model.
Impacts of the number of training records: Lastly, to show the

ignificance of data records for initiating any experiment, from the
esults, it is concluded that increasing the number of records for train-
ng significantly influences the model outcome. As evidenced by the
xperimental results, increasing the number of training records from
00 to 500 significantly improved model performance. However, it is
ssential to acknowledge that larger data size enhances performance
nd comes with trade-offs. Larger data sizes demand more training
ime and computational resources. The presented results emphasize
he importance of the number of records for refining MED-Prompt
ramework predictions and achieving optimal performance.

.3. Ablation study

The ablation experiments evaluated the effectiveness of particular
ore components or sub-modules within the MED-Prompt framework.
elow are listed distinct settings designed for GPT and manually de-
igned prompt ablations. All results are recorded in Tables 10 and
1.

• GPT_AS1: Tested only with P1 & P3 and deleted Major Complaint
• GPT_AS2: Tested only with P2 & P4 and deleted summary in

existing architecture
• GPT_AS3: Tested only with P5 & P6 and deleted summary, but

added modified MOD in existing architecture
• Manual_AS1: Tested only with P1 & P3 and deleted Major Com-
12

plaint
• Manual_AS2: Tested only with P2 & P4 and deleted summary in
existing architecture

• Manual_AS2*: Tested only with P3 and deleted summary in exist-
ing architecture

• Manual_AS2**: Tested only with P4 and deleted summary in
existing architecture

• Manual_AS3:Tested only with P1 & P4 and deleted summary +
but added modified MOD in existing architecture

Initially, three experiments were conducted by keeping the medicine
count constant to m30 for the set of (AS1, AS2, and AS3) for GPT
and Manual, respectively, as recorded in Table 10. Subsequently, we
extended the experiments with AS2 and AS3 with medicine counts
m50 and m70, respectively. Although several ablation experiments can
be designed, we deliberately prioritized a limited number due to time
constraints.

In the case of GPT_AS1, there was a notable decrease in the per-
formance of the ClinicalBERT Model. This decline is attributed to the
altered prompt text, which plays a significant role in the [MASK]
prediction task. Additionally, deleting the Major_Complaint feature
from the input has contributed to this decrease in results, alongside
the limitation imposed by the medicine count. However, in subsequent
ablation studies, ClinicalBERT exhibited improved performance com-
pared to other models. On the other hand, both BERT and BioBERT
showed consistent performance, with minimal differences observed in
their results with and without ablation. Interestingly, in Manual_AS1,
ClinicalBERT continued to perform well among the pretrained models
with manual prompts. This indicates that the specific text used in the
prompts played a role in the improved performance, whereas BioBERT’s
performance appeared to be considerably hindered.

In the case of GPT_AS2 and Manual_AS2, experiments were lim-
ited to prompt pair two and prompt pair four as listed in Table 2
and deleted the summary component to evaluate its impact. With
GPT_AS2, it was noticed that the performance (except accuracy) re-
mains approximately the same. From evaluations, it was observed that
prompt text (gpt_prompt_2p and gpt_prompt_2n) and (gpt_prompt_4p
and gpt_prompt_4n) were identified as the most effective among the
six pairs of prompts. They possess the high potential to predict the
most relevant mask [MASK]. Further, simultaneously with Manual_AS2,
we noticed a significant drop in the F1-score for the BioBERT model,
but precision and recall were approximately the same for all other
pretrained models as per our expectations. Additionally, Table 10 de-
tails the comparative analysis between m30 and m50 for GPT_AS2 and
Manual_AS2. In the GPT_AS2 setting, BioBERT achieved an F1-Score
of 52.2% for m30 and 51.6% for m50. Meanwhile, with Manual_AS2,
BERT achieved an F1-Score of 46.3% for m30 and outperformed the
other two models with an F1-score of 48.9% for m50.

The GPT_AS3 ablation setting aimed to compare and assess the
influence of prompt pairs P5 and P6. We intentionally excluded the
summary feature, but Medication_On_Discharge was added in this ab-
lation setting. Further, medicine count m70 was selected since medicine
counts m30 and m50 were previously analyzed with GPT_AS1 and
GPT_AS2, respectively. The results of GPT_AS3 showed that the BERT
and BioBERT models achieved the same F1-score of 48.9%, indicating
consistent performance with the GPT_AS3 ablation setting. However,
the ClinicalBERT model exhibited the lowest performance among the
evaluated models. This analysis sheds light on the effectiveness of
prompt pairs P5 and P6 in medicine prediction for a larger cohort
(m70). By comparing GPT_AS3 with GPT_AS2, we can further un-
derstand the influence of different prompt engineering strategies and
features on the prediction performance of the MED-Prompt framework.
At last, with Manual_AS3, prompt P1 and P4 pair were evaluated. In
this ablation setting, we noticed BERT achieved high performance in
terms of an F1-score of 45.8%, and at the same time, results remained
compromised for both ClinicalBERT and BioBERT.
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Table 12
Performance evaluation of individual medicines using a ClinicalBERT-based fine-tuned
approach results. The results are shown for each medicine, with minimum, maximum,
and mean values across the test set.

Medicine Accuracy Precision Recall 𝐹1 Avg epoch time

Aspirin
0.800 0.800 1 0.888

1.980.800 0.800 1 0.888
0.800 0.800 1 0.888

Lisinopril
0 0 0 0

1.681 1 1 1
0.990 0.910 0.920 0.910

Atenolol
0.683 0.822 0.790 0.806

1.760.816 0.848 0.950 0.986
0.793 0.844 0.922 0.881

Spironolactone
0.600 0.750 0.750 0.750

2.480.929 1 0.911 0.953
0.729 0.911 0.732 0.812

Flowmax
0.167 0.167 1 0.286

1.921 1 1 1
0.583 0.583 1 0.737

Nitroglycerin
0.600 0.758 0.718 0.738

1.850.743 0.801 0.895 0.845
0.615 0.763 0.738 0.750

Levothyroxine
0.915 0.938 0.968 0.955

1.210.938 0.946 1 0.968
0.926 0.940 0.983 0.961

Average (Min) 0.532 0.542 0.684 0.604 N/A
Average (Max) 0.812 0.835 0.971 0.879 N/A
Average (Mean) 0.722 0.779 0.895 0.822 N/A

In continuation of the previous ablation evaluation, as in Table 10,
e further present the comparative analysis between Normal experi-
ental settings versus Ablation experimental settings to evaluate the

ffectiveness of our proposed model more specifically. This evaluation
imits experiments to modified Manual_AS2* and Manual_AS2**. The
hoice of Manual_AS2 was due to its substantial influence on the overall
esults.

Table 11 presents a comparative analysis of normal and ablation
ests performed using Prompt Sets 3 and 4. These particular prompts
ere not assessed in previous investigations. BioBERT displayed very
oor outcomes. As a result, we were motivated to reassess our experi-
ental methodology, which led us to discover that the prompt’s design

ubstantially impacted the model’s prediction. When we switched to
he modified Manual_AS2*, we saw that BioBERT had better F1 scores,
hilst BERT’s performance declined. The performance of ClinicalBERT
as consistent across both the normal and modified Manual_AS2*
blation settings. With Manual_AS2**, the performance of BERT and
ioBERT models was negatively affected, whereas there was little

mprovement observed in the case of the ClinicalBERT model.
In this ablations experimental setting, the analysis focuses on the

ffects of removing major components from the framework, pairing
ifferent prompt sets. Systematically modifying specific components
llows for comparing the performance with the complete framework,
evealing key factors influencing its performance. These findings can
uide future improvements and optimizations in the MED-Prompt
ramework for enhanced medicine prediction in clinical notes.

.4. Fine-tuned ClinicalBERT results discussion

For this particular experiment, the study evaluates a mOrignal set
f medicines to highlight the strength of the proposed MED-Prompt
ramework. Experimenting with an original set of medicines illustrates
nd validates the effectiveness in actual data. The plots, illustrated
n Figs. 6 and 7, depict the training, test, and validation results for
rediction of a selected set of medicines using novel MED-Prompt
ine-tuned ClinicalBERT as shown in Algorithm 2. The presented plots
13

lso represent training and testing values recorded in Tables 12 and
Table 13
Performance evaluation of individual medicines using a ClinicalBERT-based fine-tuned
approach results. The results are shown for each medicine, with minimum values across
the train set.

Medicine Accuracy Precision Recall 𝐹1

Aspirin 0.957 0.960 0.984 0.978
Lisinopril 0.875 0.750 0.750 0.750
Atenolol 0.850 0.906 0.906 0.918
Spironolactone 0.879 0.911 0.961 0.935
Flowmax 0.583 0.583 1 0.737
Nitroglycerin 0.830 0.878 0.939 0.907
Levothyroxine 0.922 0.928 0.988 0.959

13. Wherein we maintain the record of training (minimum score) in
Table 13 and for the testing portion, we present (minimum, maximum,
and average) results respectively in Table 12.

Given the numerous experiments conducted on various individu-
als and medicine combinations, we showcase selective plots for their
significance here. The plots, shown in Figs. 6 and 7, reveal promising
training, validations, and testing patterns. The results demonstrate that
the fine-tuned approach achieved an average F1 score of 87.9%, also
recorded (60.4%, 87.9%, and 82.2%) for minimum average, maxi-
mum average, and average of average scores, respectively. These plots
portray predictions of individual medicines (Aspirin, Lisinopril, and
Metoprolol) and small sets of medicines, including combinations of
medicines_sets (1–5, 25–31, and 65–69). In Fig. 6, a well-balanced train
and validation loss for individual medicine experiments and the group
of medicines. Further, the study also conducted experiments with a
larger medicine group, such as a set of initial 15, random 15 medicines
as well as the last 15 medicines, a further set of 30 medicines followed
by a set of 50 medicines, and a set of 90 medicines as shown in Fig. 8.
Extensive experimentation shows that the MED-Prompt improves with
a large set of medicines. This suggests that adding more medicines
improves the model’s prediction power and efficacy. A bigger range
of medicines gives the algorithm additional context and knowledge to
make accurate predictions.

In conclusion, the find-tuned experiments were conducted with (500
records for the train set, 100 for validation, and 100 for the test set)
using 50 epochs. After several attempts to select proportions for the
training, validation, and testing sets, the allocation was optimal. The
reason behind this allocation was determined based on a combination
of scientific assumptions, resource constraints, and statistical consid-
erations to ensure the robustness and generalizability of our study’s
findings. Experiments have shown that our MED-Prompt fine-tuned
approach can achieve high performance even with fewer records. These
experiments suggest that the model learns from the data effectively and
generalizes well to new examples.

5.5. Summary of MED-Prompts Result

This study conducted a series of experiments utilizing the MED-
Prompts framework. The experiments were structured into distinct
categories, encompassing evaluating classical machine learning models,
comparative results of Manual vs. GPT prompts, comparative perfor-
mance metrics for GPT prompts with varying record numbers and
medicine set, and the same with the rest of the nature of experiments.

The initial examination was conducted to evaluate the classical
method for medicine prediction, and the results in Table 4 indicate
that XGBClassifier (m30) performed the best among classical machine
learning models with an accuracy of 93.9% and an F1-score of 91.8%.
The total experiment time was recorded as 3150 s, approximately
52 min. ClinicalBERT (m50-GPT Prompt) and BERT (m30-Manual
Prompt) showed approximately similar accuracy of 75.1% and 75.2%,
respectively. Both had lower F1 scores of 48.2% and 48.8%. Using
BioBERT, we examined how record count affects GPT prompts. Further,
ClinicalBERT compared manual prompt sets 1 and 2 with 100 records.
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Fig. 6. Train, test, and validation plots of various individual medicines using fine-tuned ClinicalBERT.
Fig. 7. Train, test, and validation plots of various small sets of medicines using fine-tuned ClinicalBERT.
Fig. 8. Train, test, and validation plots of various large sets of medicines using fine-tuned ClinicalBERT.
Both sets had 78.8% accuracy and 50.3% F1 scores. BioBERT and
ClinicalBERT compared GPT and manual ablation results. BioBERT
(m30-GPT_AS2) scored 75.5% and ClinicalBERT (m30-Manual_AS1)
80.3%. Manual prompt sets 3 and 4, comprising 100 records each,
were compared against standard and ablation configurations. In the
case of ClinicalBERT (m70-Manual_AS2*-Set3), the achieved perfor-
mance metric was 95.7%, whereas, for BERT (m30-Normal-Set4), the
corresponding metric was 57.8%.

The experiment, as shown in Table 6, was conducted to evaluate the
comparative performance of BERT_Large with different sets of prompts.
The study also examined the consequences of an imbalance in prompts,
especially assessing the implications of having an unbalanced number
of ensemble prompts. The experiment utilized a BERT-large including
three other pretrained models to evaluate ensembles of four and six
prompt sets, as specified in Table 8. Notably, BioBERT exhibited su-
perior performance. This also entails a pretrained model’s relationship
14

and efficacy in handling individual and ensemble prompts.
Table 14 provides a comprehensive summary of the MED-Prompts
results across various experiments. It also records time metrics, illus-
trating comparative results of time evaluations between the proposed
framework’s approaches. For pretrained experiments, Time1 metric
results are recorded as the average time taken by each record. Then,
the Time2 metric is recorded by multiplying the number of records.
For the fine-tuned approach, time is calculated as time taken by each
epoch multiplied by the number of epochs. The pretrained models
yielded a minimum average time of 2.89 s. In contrast, the proposed
framework achieved an average time per epoch recorded at 1.21 s,
which concluded that the MED-Prompt fine-tuned approach achieves
2.38% times better performance than the initial baseline approach.

To conclude, fine-tuned ClinicalBERT reached 93.8% accuracy and
96.8% F1-score. Further, it was noticed that the performance of GPT-
Prompts and Manual-Prompts remain parallel, but Manual-Prompts
achieves better results. This suggests that carefully designed prompts

help the framework to achieve higher results.
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Table 14
Summary of MED-Prompt results concerning nature of experiments — Score selected from the respected table is based on Max F1-Score and for details about each experiment
refer to the Tables 4 to 13. Time1 is the average time of Epoch/Record, and Time2 is the total experiment time. Both time metrics are in seconds.

Nature of the experiment Model Accuracy Precision Recall 𝐹1 Time1 Time2

Classical machine learning model evaluation results XGBClassifier (m30) 0.939 0.875 0.965 0.918 N/A 3150

Comparative results of set of three manual vs. GPT
prompts

ClinicalBERT (m50-GPT Prompt) 0.751 0.500 0.501 0.482 5.15 2575

BERT (m30-Manual prompt) 0.752 0.498 0.496 0.488 3.23 1615

Comparative results of GPT prompts (100 vs. 500
records)

BioBERT (m30-100records) 0.632 0.502 0.506 0.465 3.03 303

BioBERT(m50-500records) 0.850 0.654 0.536 0.534 4.58 2290

Comparative performance metrics for Manual
Prompt Set 1 and Set 2 for 100 and 500 records

ClinicalBERT (m50-Set1-100records) 0.788 0.511 0.523 0.503 2.89 289

ClinicalBERT (m50-Set2-100records) 0.788 0.511 0.523 0.504 3.12 312

Comparative analysis of ablation evaluation results
between GPT and manual prompts

BioBERT (m30-GPT_AS2) 0.755 0.524 0.539 0.522 2.94 294

ClinicalBERT (m30-Manual_AS1) 0.803 0.500 0.500 0.500 3.17 317

Comparative analysis between Normal setting vs.
Ablation setting using Manual Prompt Set 3 & 4
with 100 records

ClinicalBERT (m70-Manual_AS2*-Set3) 0.957 0.479 0.501 0.488 6.52 652

BERT (m30-Normal-Set4) 0.578 0.527 0.571 0.466 2.95 295

Performance metrics for BERT_Large (m70-Manual-Set 1) 0.960 0.480 0.500 0.490 7.27 727
(m30-Manual-Ensemble of manual four sets) 0.527 0.478 0.457 0.425 4.19 419

Performance metrics for mOrignal BERT (mOriginal) 0.708 0.508 0.513 0.493 7.39 3695
Performance metrics for transfer learning ClinicalBERT (Levothyroxine) 0.938 0.946 1 0.968 1.21 60.5
s
u
o

The experimental results suggest the following conclusions for var-
ous parameters:

• Medicines Count: The number of medicines in the prediction
task significantly influences the model’s performance as each sub-
figure of Fig. 8 shows the influence of medicine count on the pro-
posed model and their performance metrics. Experimental studies
have shown that the prediction performance can vary greatly
depending on the specific medicines being predicted (Kirchmair
et al., 2015). Some drugs may exhibit easier relations, making
them simpler to anticipate, while others might present more
complex relationships and challenges for the model (Shehab et al.,
2022). The medicine count is a critical factor to consider when
evaluating the performance of the MED-Prompt’s framework.
However, it is essential to recognize that medicine count is not
the sole determinant of optimized or improved results. Other
key factors, such as the prompt engineering strategy, pretrained
model selection, and dataset characteristics, also considerably
impact the overall performance. Medicine prediction depends on
the pretrained model (Clavié et al., 2023). Different models have
different strengths and disadvantages, which affect accuracy,
precision, memory, and F1 scores. Choose a pretrained model
based on task requirements and compatibility for best results.

• Set of Prompts: The MED-Prompts framework’s number of
prompts can affect its capacity to extract meaningful clinical con-
tent. More prompts may improve the model’s medicine prediction
task capture and bring noise and redundant information. Accurate
and efficient forecasts require a significant number of prompts.

• Ablation Setting: Ablation settings play a crucial role in under-
standing the contributions of different components in the MED-
Prompt framework. Ablation experiments in the MED-Prompt
elucidate the impact of modifying or removing specific model
components. These analyses reveal prompt engineering’s pivotal
in enhancing model performance by assessing each prompt’s sig-
nificance. By isolating components, these experiments unveil in-
fluential prompts and offer insights for refining and optimizing
the framework, guiding improvements for optimal results.

In summary, pretrained models and transfer learning make the
ED-Prompts system flexible for medicine prediction. Medicines, mod-

ls, prompts, ensemble tactics, and ablation settings affect framework
15

d

performance. To find the best prediction configurations, careful exper-
imentation and analysis are needed. The study also shows that trans-
fer learning improves medication prediction accuracy and F1 scores,
suggesting future research in healthcare applications. MED-Prompt ele-
vates accuracy through domain-specific prompts, minimizing training
time and enhancing computational efficiency, offering improved re-
source utilization and reduced costs for large-scale medical text clas-
sification.

6. Limitations and future works

Acknowledging the study’s limitations is essential to ensure validity
and transparency. Three major limitations are identified that warrant
consideration for future work.

Generalization to different datasets: This work only uses MIMIC-
III to evaluate the proposed model, which hinders comprehension of
scenarios where symptoms associated with multiple other symptoms
and diseases might arise as complications of various other conditions.
However, exploring and evaluating models using other clinical note
datasets would be valuable to assess their robustness and generaliz-
ability across different healthcare datasets. To address it, it is possible
to access many clinical text datasets containing such information or
necessitate modifications to the current framework, particularly prompt
guided prediction component setting.

Domain-specific pretrained models: Another limitation lies in
using domain-specific models. This study has experienced three models
(BERT, BioBERT, and ClinicalBERT) among several available options.
The selected models effectively handle the challenges and nuances
clinical notes present. Considering limited model utilization, we rec-
ommend further exploitation of domain-specific pretrained models.
Employing and validating several other models will enhance the credi-
bility of the proposed MED-Prompt framework. Moreover, the transfer
learning approach relied solely on ClinicalBERT, indicating a poten-
tial limitation. Future directions include comparative studies involving
other models to enhance the proposed approach.

Generalization of prompt engineering techniques: The current
tudy concentrated on prompt engineering for medicine prediction
sing pretrained models. Exploring additional techniques like zero-shot
r few-shot learning would broaden the scope.

The landscape for future directions in prompt-based medicine pre-

ictions presents several noteworthy challenges that warrant attention
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from researchers. The above discussed are a few from directly presented
work. At the same time, some of the additional challenges include (i)
multilingual medicine prediction by integrating multilingual datasets,
(ii) achieving interpretability and reliability in medicine predictions,
and (iii) integrating prompts with Medical Imaging. Addressing these
challenges significantly enhances prompt-based medicine predictions,
transforming healthcare facilities and improving patient outcomes and
experiences.

7. Conclusion

In conclusion, this study introduces the MED-Prompt, a fine-tuned
prompt-guided framework for medicine prediction in healthcare. The
study utilized the MIMIC-III dataset and employed data engineering
techniques to create a subset of relevant clinical text. Comparative
experiments assessed baseline pretrained models like BERT, BioBERT,
and ClinicalBERT, along with fine-tuned ClinicalBERT, introducing and
analyzing Manual Prompts and GPT Prompts. The significant progress
from 53% to 96% in terms of 𝐹1 Score indeed demonstrates the ef-
fectiveness of the proposed MED-Prompt framework. Detailed investi-
gations showed that the performance of ‘‘GPT Prompts’’ and ‘‘Manual
Prompts’’ remained parallel for several experiments, but with certain
scenarios, Manual-Prompts outperformed. This suggests that carefully
designed prompts help the framework to achieve higher results. Im-
portantly, MED-Prompt achieved substantial progress while utilizing
fewer computational resources and time, showcasing robustness and
efficiency. These findings hold implications for optimizing personalized
care and improving healthcare outcomes, emphasizing the significance
of prompt techniques in medicine prediction. Further exploration and
refinement of this framework can lead to even greater healthcare
decision-making and patient care.
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