
Citation: Mohammad, R.; Saeed, F.;

Almazroi, A.A.; Alsubaei, F.S.;

Almazroi, A.A. Enhancing Intrusion

Detection Systems Using a Deep

Learning and Data Augmentation

Approach. Systems 2024, 12, 79.

https://doi.org/10.3390/

systems12030079

Academic Editors: Fernando De la

Prieta Pintado, Nuno Lopes and

Joaquim Gonçalves

Received: 5 December 2023

Revised: 4 February 2024

Accepted: 15 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Enhancing Intrusion Detection Systems Using a Deep Learning
and Data Augmentation Approach
Rasheed Mohammad 1 , Faisal Saeed 1,* , Abdulwahab Ali Almazroi 2 , Faisal S. Alsubaei 3,*
and Abdulaleem Ali Almazroi 4

1 College of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK;
rasheed.mohammad@bcu.ac.uk

2 Department of Information Technology, College of Computer Science and Engineering, University of Jeddah,
Jeddah 23218, Saudi Arabia; aalmazroi@uj.edu.sa

3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah,
Jeddah 23218, Saudi Arabia

4 Department of Information Technology, Faculty of Computing and Information Technology in Rabigh,
King Abdulaziz University, Rabigh 21911, Saudi Arabia; aaealmazrouy@kau.edu.sa

* Correspondence: faisal.saeed@bcu.ac.uk (F.S.); fsalsubaei@uj.edu.sa (F.S.A.)

Abstract: Cybersecurity relies heavily on the effectiveness of intrusion detection systems (IDSs) in
securing business communication because they play a pivotal role as the first line of defense against
malicious activities. Despite the wide application of machine learning methods for intrusion detection,
they have certain limitations that might be effectively addressed by leveraging different deep learning
architectures. Furthermore, the evaluation of the proposed models is often hindered by imbalanced
datasets, limiting a comprehensive assessment of model efficacy. Hence, this study aims to address
these challenges by employing data augmentation methods on four prominent datasets, the UNSW-
NB15, 5G-NIDD, FLNET2023, and CIC-IDS-2017, to enhance the performance of several deep learning
architectures for intrusion detection systems. The experimental results underscored the capability of
a simple CNN-based architecture to achieve highly accurate network attack detection, while more
complex architectures showed only marginal improvements in performance. The findings highlight
how the proposed methods of deep learning-based intrusion detection can be seamlessly integrated
into cybersecurity frameworks, enhancing the ability to detect and mitigate sophisticated network
attacks. The outcomes of this study have shown that the intrusion detection models have achieved
high accuracy (up to 91% for the augmented CIC-IDS-2017 dataset) and are strongly influenced by
the quality and quantity of the dataset used.

Keywords: data augmentation; deep learning; cyber-attack; intrusion detection; machine learning

1. Introduction

Many firms rely heavily on online computing systems to run businesses and thus
become targets for cyber-attacks, so they prioritize artificial intelligence-based intrusion
detection systems (IDSs) among their network security procedures [1–3]. According to
Markevych and Dawson [4], the high complexity of modern cyber-attacks requires more
innovations when proposing and applying robust IDSs to protect critical assets and network
data by identifying and classifying network traffic and detecting anomalous behavior. With
the rapid increase in the amount of available online data, the possibility of being hacked by
different intrusion attacks also increases [5]. The application of deep learning and machine
learning architectures in IDSs showed interesting results in the accuracy and efficiency of
detecting diverse cyber threats in network environments by learning from patterns and
anomalies in network traffic.

Intelligent network protection systems have become vital for robust defense against
malicious threats [1,6]. Models that predict based on time-series data are classically used

Systems 2024, 12, 79. https://doi.org/10.3390/systems12030079 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems12030079
https://doi.org/10.3390/systems12030079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-0800-428X
https://orcid.org/0000-0002-2822-1708
https://orcid.org/0000-0001-7181-2100
https://orcid.org/0000-0001-7332-3773
https://doi.org/10.3390/systems12030079
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems12030079?type=check_update&version=1

Systems 2024, 12, 79 2 of 18

for network intrusion detection [3]. However, data featured by time (time series) are known
to be comprised of non-linear features due to numerous data entries changing over time as
a result of irregular variations [3]. On the other hand, many machine learning methods, for
example, k-nearest neighbors, support naïve Bayes, and vector machines, are utilized for
network-based intrusion detection systems (NIDS) [3,6]. However, these machine learning
methods commonly utilize feature engineering, which makes them less suitable candidates
for real-time usage, with a low detection rate [3,6]. Recently, there has been a prevalent
utilization of deep learning methods, for instance, convolutional neural networks (CNNs)
and recurrent neural networks together with NIDS (Vigneswaran et al., 2018). However,
deep learning-based models are still under investigation for practical utilization as a result
of several issues, including high false-positive rates [3].

Different datasets have been assessed in several models; for instance, Vigneswaran et al. [6]
used the KDDCup-’99′ dataset with a deep learning model and used the UNSW-NB15
dataset, released by Nour and Slay [7], for evaluating the proposed models in their work.
This dataset is known to overcome the shortcomings of the KDD98 and KDD99 datasets [8].

This work, which assesses various deep learning models, mainly relies on a convolu-
tional neural network (CNN) to combine temporal and spatial features. The architecture
is designed to effectively capture and process the inherent sequential patterns within the
input data. A prediction was first made for binary classification (whether there is an attack
or not), and then the category of the attack was given as the second prediction. For multi-
category attack prediction, 10 categories were utilized (related to the UNSW-NB15 dataset)
as follows: normal, denial of service, exploits, reconnaissance, generic, worms, analysis,
shellcode, backdoor, and fuzzers, while there are 15 classes in the CIC-IDS-2017 dataset.

It was noticed that the number of entries of attacks was quite low compared to the
normal network flows; accordingly, the accuracies reported related to attack class prediction
were also quite low. This work aims to apply data augmentation in order to fairly assess the
performance of intrusion detection using several deep learning-based methods. Moreover,
many other studies have used a part of the CIC-IDS-2017 dataset, whereas this work
used the whole CIC-IDS-2017 dataset. Therefore, the key contributions of this work are
the utilization of four datasets, UNSW-NB15, CIC-IDS-2017, 5G-NIDD, and FLNET2023,
for intrusion detection systems, applying an oversampling technique to emphasize that
every class (particularly attack classes) has an equivalent number of entries, applying
data augmentation to fairly evaluate the performance of the models developed, and finally
applying five deep learning architectures with augmented versions of the used datasets.

The rest of the paper is organized as follows: Section 2 discusses the related works
on several intrusion detection systems for cybersecurity applications. Section 3 highlights
the Materials and Methods of this study, while the Results and Discussion are presented in
Sections 4 and 5, respectively. The paper is concluded in Section 6.

2. Related Works

Intrusion detection systems can be categorized into pattern-matching or artificial
intelligence (AI) anomaly detection approaches [2,3,9]. However, both approaches have
some weaknesses. For instance, pattern matching usually demonstrates high false-positive
rates, while AI-based solutions rely on specifying features to foresee the likelihood of an
attack [3]. Furthermore, machine learning methods, such as support vector machine (SVM)
and KNN, suffer from an inadequate group of features and accuracy, as well as higher
false-positive rates, as reported in [2,3]. However, the work of Rodríguez et al. [2] with
the CIC-IDS-2017 dataset and machine learning methods (multilayer perceptron, naïve
Bayes, logistic, sequential minimal optimization, adaptive boosting, k-nearest neighbors,
J48, PART, OneR, and random forest) reported high accuracy. Similarly, the work of
Vigneswaran et al. [6] reported the high accuracy of the machine learning methods tested
with the UNSW-NB15 dataset. In contrast, machine learning methods with NIDS suffer
from overfitting in addition to low accuracy when predicting attack categories, and a
smaller proportion of the data is available for consideration as compared to the satisfactory

Systems 2024, 12, 79 3 of 18

quantities required in the categories [3]. The classic machine learning solutions prioritize
feature availability, dimensionality reduction, and learning feature importance techniques
for the sake of finding the optimum correlation between the data points that influence
the final outcomes while entirely focusing on the significance of the association between
the data features and paying attention to the time-steps for the sake of highly accurate
prediction. Accordingly, deep learning-based solutions have been adopted to overcome the
deficiencies of the proposed machine learning methods.

Vinayakumar et al. [10] used recurrent neural networks (RNNs) with the datasets
NSL-KDD and UNSW-NB15 because they include time-step data, which conveniently
justifies the utilization of RNNs—a logical choice—as RNN is classically employed to
analyze data characterized as a time series to acquire a long-range temporal feature set [3,11].
However, RNNs are exposed to a vanishing gradient issue in which the feature set learned
at the beginning of the model ends up having minimum impact on the end result of the
model [3,12]. To overcome this issue, long short-term memory (LSTM) [13] was used.
Vinayakumar et al. [10] used various CNN and GRU architectures for the multi-class
prediction of NIDS with the UNSW-NB15 dataset; the achieved accuracy was 64.8% and
67.5% by GRU and LSTM, respectively. The work of Ieracitano et al. [1] used statistical
analysis to prioritize the features that should be fed into a deep autoencoder (AE) for
potential threat detection. The model recorded an 87% accuracy with NSL-KDD.

Khan et al. [14] reported that the 1D-CNN (3 layers) has the possibility to deliver
better learning features if the TCP/IP packets are serialized in a specific range (of time)
for operative classification. The experiment with the UNSW-NB15 database achieved a
91% accuracy. The prediction was binary classification. Wang et al. [15] used CNNs and
RNNs, where CNNs were employed to process the learning of spatial features, while the
RNN processed the temporal features existing in the long-range time-series data. The
model designed by Wang et al. [15] was hierarchical and comprised of several CNN layers
tailed by two LSTM layers. The model of Wang et al. [15] was evaluated with DARPA and
ISCX2012 datasets (versions of KDD99, where attacks are recategorized into five classes),
and accuracies of 50% and 97%, respectively, were achieved.

Su et al. [9] and Yang [16] built models based on BiLSTM, where Su et al. [9] used
BiLSTM with an attention layer to filter the minimal-impact features. The model was built
with various convolutional layers incorporating the attention and fully connected dense
layer, BiLSTM, and tested on an NSL-KDD dataset (which has five network attack classes),
where the accuracy was within the range of 82–84%. Yang [16] proposed a two-Bi-LSTM-
layered architecture and tested it on the UNSW-NB15 dataset; the results showed 0.86 as
the average F1 score. Finally, Ayantayo et al. [17] proposed three varied deep learning
models, referred to as late fusion, early fusion, and late ensemble learning models, which
incorporated feature fusion within fully connected deep networks. These models were
evaluated using the NSL-KDD and UNSW-NB15 datasets, considering significant tuning
parameters during the assessment. The accuracy of the best performance with UNSW-NB15
was approximately 84%.

Overall, deep learning and machine learning are both valuable approaches for time-
series analysis, which can be applied to intrusion detection systems, but their relative
effectiveness depends on several factors, including the complexity of the problem, the
amount of data available, and the quality of feature engineering. Deep learning methods,
specifically their variants, such as long short-term memory (LSTM) networks and recurrent
neural networks (RNNs), have gained significant attention regarding time-series analysis,
including network flow packets, due to their ability to capture complex temporal patterns
automatically. However, they are not always superior to traditional machine learning meth-
ods, such as random forests, decision trees, or gradient boosting, which may outperform
deep learning when dealing with time-series data characterized by simpler patterns or
when the dataset is small. Feature engineering and domain knowledge play a vital role in
this context, as they enable machine learning models to extract relevant information effec-
tively [18]. Moreover, machine learning methods can be computationally less demanding,

Systems 2024, 12, 79 4 of 18

making them suitable for real-time or resource-constrained applications [19]. The choice
between deep learning and machine learning for time-series analysis should be driven by
the specific problem and available resources, and a hybrid approach that combines the
strengths of both methods may often be the most effective [20].

3. Materials and Methods

The initial proposed model consists of the following key components: the input
layer that accepts sequences of data, each comprising 196 data points along a single
dimension, and then two successive 1D convolutional layers were utilized to extract the
relevant features from the input sequences. The first convolutional layer utilized 128 filters
with a kernel size of 5, tailed by a rectified linear activation function (ReLU). A max-
pooling layer with a pool size of 2 was applied to minimize the spatial dimensions of the
feature maps. The second convolutional layer, with 64 filters and the same kernel size
and activation function, further refined the learned features. Another max-pooling layer
was employed to down-sample the feature maps. The flattened layer, the outcome of the
convolutional and pooling layers, was flattened into a one-dimensional vector, enabling
seamless integration with the subsequent fully connected layers. The fully connected layers
comprised a series of densely connected layers that followed the flattening process; the
first fully connected layer comprised 128 neurons with a ReLU. To mitigate overfitting,
a dropout layer with a rate of 0.5 was introduced, aiding the network’s robustness. A
second fully connected layer with 64 neurons and dropout was included, ensuring feature
abstraction and generalization. The final layer, comprising 10 neurons, employed a SoftMax
activation function to produce probability distributions over the classes. A custom learning
rate scheduler was incorporated to dynamically adjust the learning rate during training.
This allowed for efficient convergence and improved generalization. The model utilized
the Adam optimizer with an initial learning rate of 0.001. During training, the model was
subjected to the learning rate scheduler, which applied a decreasing factor to the learning
rate after the initial epochs. The above model was modified to create other models with
different deep learning architectures to measure the performances of those architectures on
four large datasets. The other models tested the intrusion detection when more complicated
CNN architecture was applied; for instance, GRU was combined with a CNN, and LSTM
was combined with a CNN.

3.1. Datasets

We used four benchmark datasets that were used previously in several studies. The
first dataset, UNSW-NB15, was developed and released by the University of New South
Wales in 2015 and has been widely used since [3,21]. The UNSW-NB15′s entries comprise
a wider diversity of attack types, feature quantity, and distinct IP addresses intended for
recreation and data collection [7,8,22]. This dataset consists of a mixture of the real recent
normal and current synthesized attack events of the traffic in the computer network [3,22],
and this dataset is balanced [22]. Although UNSW-NB15 is smaller in size, it has less
redundancy and is adequate to train models with high accuracy [22]. UNSW-NB15 has
10 categories: one is a normal network flow, and nine are attack-based flows (as shown in
Table 1).

The second dataset is CIC-IDS-2017 [23], which was published by the Canadian Insti-
tute of Cybersecurity to support researchers with an alternative dataset that includes rich
variations compared to the various shortcomings of the existing datasets [21]. It comprises
bidirectional traffic flows (and thus captures the entire traffic) [2] and more than 2.3 mil-
lion records, encompassing normal traffic, infiltration, DoS, web attacks, brute force, and
scanning attacks [2,21], as shown in Table 1. While the CIC-IDS-2017 dataset provides a
valuable resource for intrusion detection research, it is essential to consider its advantages
and limitations when applying deep learning models. Accordingly, preprocessing methods
to address class imbalance and other issues were conducted to harness the dataset’s po-

Systems 2024, 12, 79 5 of 18

tential effectively. Class imbalance was found to significantly influence the accuracy and
performance of the deep learning models [24].

Table 1. A list of features in the datasets.

Category (UNSW-NB15) Quantity (UNSW-NB15) Category (CIC-IDS-2017) Quantity (CIC-IDS-2017)

Normal
Analysis
Fuzzers

Backdoor
DoS

Generic
Exploit

Reconnaissance
Shellcode

Worms

93,000
2677

24,246
2329

16,353
58,871
44,525
13,987
1511
174

Heartbleed
Infiltration
DoS Hulk

Web Attack—XSS
Benign

DoS GoldenEye
PortScan

Web Attack—SQL Injection
Bot

DDoS
FTP-Patator

Web Attack—Brute Force
SSH-Patator

DoS Slowhttptest
DoS Slowloris

11
36

231,072
652

2,359,087
10,293
158,930

21
1966

41,835
7938
1507
5897
5499
5796

Overall 257,673 2,830,540

In order to not miss the important features, all were used due to the fact that different
identification patterns, when there are different network attacks corresponding to a set of
activities, can lead to network security hazards if left undetected [2].

For the aim of finding a generalizable perspective about employing deep learn-
ing models intended for intrusion detection, the applied deep learning architectures
have been tested with two recent network intrusion datasets, namely 5G-NIDD [25] and
FLNET2023 [26].

3.2. Data Preprocessing and Augmentation

To prepare the datasets for deep learning-based intrusion detection, two primary
data preprocessing steps were undertaken as follows: normalization of numeric columns
and one-hot encoding of the categorical features. The numeric columns were subject to
min–max normalization to rescale the data within a domain of (0, 1). This normalization
minimizes redundancy and reduces the training time for the models. For the categorical
features, one-hot encoding was preferred over label encoding to avoid misinterpretation of
the numerical values as ordinal, which could adversely impact classification [3].

The datasets initially presented a significant challenge due to the class imbalance,
particularly in categories such as worms, analysis, infiltration, SQL injection, and shellcode.
Such an imbalance negatively impacts the predictive accuracy of deep learning models
for intrusion detection. To address this, oversampling techniques were employed. Over-
sampling ensures that each class, especially the minority attack classes, has an equivalent
number of entries, enhancing the balancing of the dataset [3].

Intriguingly, the challenge of class imbalance extended to the testing phase. It was
observed that the accuracy of predicting minority attack types was markedly low, nearly
approaching zero. To counter this and to ensure a fair assessment of the model performance,
data augmentation was applied to the testing portion of the dataset.

A key technique employed in this context was the synthetic minority oversampling
technique (SMOTE) [27,28]. SMOTE is a sophisticated method for generating synthetic
instances to balance datasets. It works by identifying instances of the minority class and
synthesizing new and similar instances. This approach effectively mitigates the issue of
class skewness, ensuring that minority classes are adequately represented [27,28]. The
oversampling process of SMOTE involves creating synthetic samples that are a combi-
nation of the feature space similarities of existing minority instances. This allows for a

Systems 2024, 12, 79 6 of 18

more nuanced and representative sample of the minority class, avoiding the pitfalls of
simple duplication. Although SMOTE has been criticized for lower performance in high-
dimensional datasets [28], in this study, where the number of features in the two datasets
was not considerably high, the performance of SMOTE was sufficient. By applying SMOTE,
the augmented dataset attained a more balanced class distribution, which significantly
contributed to enhancing the robustness and generalization capability of the developed
models. This was particularly evident in the improved performance in detecting under-
represented attack types, demonstrating the efficacy of SMOTE in handling imbalanced
intrusion detection datasets.

The transformed and augmented datasets that were prepared by these preprocessing
and data augmentation techniques established a solid foundation for the subsequent devel-
opment and training of deep learning models for effective and accurate intrusion detection.

3.3. Deep Learning Architectures

Several deep learning architectures were applied in this study, including variations of
convolutional neural networks (CNNs) combined with long short-term memory (LSTM)
and gated recurrent unit (GRU) layers. These architectures were designed to address the
specific challenges posed by the CIC-IDS-2017 dataset. Below, Tables 2–6 detail these
architectures, highlighting their layer compositions and parameter configurations. Each
table provides a detailed breakdown of the layers used in the respective architectures, along
with their functions and importance in the context of intrusion detection. The inclusion
of GRU and LSTM layers, particularly in a bidirectional configuration, is crucial for their
ability to effectively process and learn from sequential data, a key aspect of network traffic
patterns in intrusion detection systems.

Table 2. Layers and parameters of CNN Architecture 1.

Layer Type Output Shape Parameters Explanation

Conv1D (192, 128) 768 Convolutional layer processing 1D input with 128 filters.
MaxPooling1D (96, 128) 0 Reduces dimensionality for computational efficiency.

Conv1D (92, 64) 41,024 Second Conv1D layer with 64 filters for feature extraction.
MaxPooling1D (46, 64) 0 Further dimensionality reduction.

Flatten (2944) 0 Flattens input for the dense layer.
Dense (64) 188,480 Fully connected layer for classification.

Dropout (64) 0 Prevents overfitting by randomly dropping units.
Dense (10) 650 Output layer with 10 units for class prediction.

Table 3. Layers and parameters of CNN Architecture 2.

Layer Type Output Shape Parameters Explanation

Conv1D (192, 128) 768 Convolutional layer for feature extraction with 128 filters
MaxPooling1D (96, 128) 0 Reduces the spatial dimensions for efficiency.

Conv1D (92, 64) 41,024 Second convolutional layer with 64 filters for deeper feature extraction.
MaxPooling1D (46, 64) 0 Further reduces dimensions and helps prevent overfitting.

Flatten (2944) 0 Flattens the 2D feature maps into a 1D vector for the dense layer.
Dense (128) 376,960 Fully connected layer to learn non-linear combinations of features.

Dropout (128) 0 Drops out units randomly to prevent overfitting.
Dense (64) 8256 Another dense layer for further processing of features.

Dropout (64) 0 Additional dropout layer for regularization.
Dense (10) 650 Final output layer with 10 units for class prediction.

The output layer of this architecture was adapted for the CIC-IDS-2017 dataset to have
15 nodes, corresponding to 15 possible outcomes.

For the CIC-IDS-2017 dataset, the output layer was adapted to have 15 nodes, corre-
sponding to 15 potential outcomes.

Systems 2024, 12, 79 7 of 18

Table 4. Layers and parameters of CNN and GRU Architecture 3.

Layer Type Output Shape Parameters Explanation

Conv1D (196, 64) 4160 Initial convolutional layer with 64 filters for feature extraction.
MaxPooling1D (19, 64) 0 Reduces dimensionality for computational efficiency.

BatchNormalization (19, 64) 256 Normalizes the output of the previous layer to speed up training.
GRU (64) 24,960 GRU layer for processing temporal sequence data.

Reshape (64, 1) 0 Reshapes the output for compatibility with subsequent layers.
MaxPooling1D (6, 1) 0 Further reduces sequence length for efficiency.

BatchNormalization (6, 1) 4 Further normalization to stabilize learning.
GRU (128) 50,304 Second GRU layer for more complex sequence modeling.

Dropout (128) 0 Prevents overfitting by randomly omitting units.
Dense (10) 0 Output layer for class prediction with 10 units.

Table 5. Layers and parameters of CNN, GRU, and LSTM Architecture 4.

Layer Type Output Shape Parameters Explanation

Conv1D. (196, 64) 4160 Convolutional layer for initial feature extraction.
MaxPooling1D (19, 64) 0 Dimensionality reduction.

BatchNormalization (19, 64) 256 Normalizes layer inputs to accelerate training.
GRU (64) 24,960 GRU layer for temporal data processing.

Reshape (64, 1) 0 Prepares data for subsequent bidirectional layer.
MaxPooling1D (6, 1) 0 Reduces sequence length for computational efficiency.

BatchNormalization (6, 1) 4 Further normalization.

Bidirectional (256) 133,120 LSTM layer wrapped in a bidirectional layer for enhanced temporal
feature extraction.

Dropout (256) 0 Mitigates overfitting.
Dense (10) 2570 Output layer for classification.

Activation (10) 0 Output layer activation function.

Table 6. Layers and parameters of CNN and LSTM Architecture 5 with early dropout architecture.

Layer Type Output Shape Parameters Explanation

Conv1D (76, 64) 2112 Initial convolutional layer with 64 filters for extracting basic features from
the input.

MaxPooling1D (15, 64) 0 Reduces the dimensionality of the features, which helps in computational
efficiency and mitigating overfitting.

BatchNormalization (15, 64) 256 Normalizes the activations from the previous layer, stabilizing the
learning process.

Bidirectional (128) 66,048 LSTM layer wrapped in a bidirectional layer to process the sequential data in
both forward and reverse directions for enhanced temporal understanding.

Reshape (128, 1) 0 Reshapes the output for compatibility with subsequent layers.

MaxPooling1D (25, 1) 0 Further reduces the length of the sequence, focusing on the most
significant features.

BatchNormalization (25, 1) 4 Additional normalization to ensure smooth training.
Bidirectional (256) 133,120 Second bidirectional LSTM layer for deep and complex sequence modeling.

Dropout (256) 0 Implemented early in the network to prevent overfitting by randomly
dropping units.

Dense (4) 1028 Dense layer for processing the extracted features before the final classification.
Activation (10) 0 Applies the output layer activation function for final class prediction.

For the CIC-IDS-2017 dataset, modifications were made to the output layer, increasing
it to 15 nodes for a comprehensive outcome classification.

Bidirectional, here, refers to a bidirectional wrapper applied to an LSTM layer, enhanc-
ing its ability to process the sequential data in both the forward and reverse directions. For
the CIC-IDS-2017 dataset, the output layer was modified to have 15 nodes.

Systems 2024, 12, 79 8 of 18

In this architecture, the bidirectional LSTM layers are key to processing time-series
data effectively, capturing patterns from both the past and future contexts. For the
CIC-IDS-2017 dataset, the output layer was modified to have 15 nodes to accommodate
the various types of outcomes required for accurate intrusion detection.

3.4. Model Training

Stratified K-cross-fold validation was conducted to rearrange the data to emphasize
that each fold was a good representation of all of the attack classes. Stratified K-cross-
fold validation divides the dataset records into K sets, and the models use K-1 folds for
training and are validated on the Kth fold. This process continues until all the folds
have been employed to validate the model only once [3]. This drives parameter fine-
tuning and supports models in categorizing the attacks effectively. Finally, the K-cross-fold
method was selected, as it performs better than other methods in terms of computational
power [3]. Additionally, when K-cross-fold validation was replaced by other split methods,
insignificant changes were noticed with levels of accuracy.

4. Results

This section delves into the performance evaluation of various deep learning ar-
chitectures on the following four datasets: UNSW-NB15, CIC-IDS-2017, 5G-NIDD, and
FLNET2023, focusing on both binary and multiple classifications.

4.1. Binary Classification

For binary classification (attack vs. no attack), the simple CNN Architecture 1 (Table 2)
exhibited high accuracy, achieving approximately 95% on the UNSW-NB15 dataset. This
indicates the model’s strong capability to distinguish between normal and anomalous
network behaviors. Similarly, in binary classification (post-augmentation) for the CIC-IDS-
2017 dataset, the accuracy was remarkably high at approximately 96%, suggesting that the
models were more accurate at binary classification (where we have a generalized attack vs.
no attack scenario) than the multi-class classifications.

4.2. Multiple Classifications

The results presented in Table 7 are the results of CNN Architecture 1 of all the folds
before augmentation. In a more complex scenario involving multiple classes, the accuracy
of CNN Architecture 1 on the UNSW-NB15 dataset without augmentation stood at 82% (as
shown in Table 7). This drop in accuracy reflects the increased difficulty in distinguishing
between multiple types of attacks compared to a binary classification.

Table 7. CNN Architecture 1 classification performance using UNSW-NB15 dataset before
data augmentation.

Classes Precision Recall F1 Score

Analysis 0.79 0.03 0.05
Backdoor 0.65 0.09 0.16

DoS 0.62 0.05 0.09
Exploits 0.60 0.05 0.09
Fuzzers 0.73 0.48 0.58
Generic 1.00 0.98 0.99
Normal 0.88 0.95 0.92

Reconnaissance 0.87 0.75 0.57
Shellcode 0.61 0.53 0.57

Worms 0.29 0.63 0.40
Accuracy 0.82

However, for the UNSW-NB15 dataset, the data augmentation led to a decrease in
the overall accuracy of CNN Architecture 1 to 74% (as shown in Table 8). However, the

Systems 2024, 12, 79 9 of 18

precisions of many minor classes (such as worms, shellcode, reconnaissance, fuzzers,
and exploits) were enhanced, and the values of recall and the F1 score were improved
considerably. This outcome could be attributed to the augmented dataset presenting a
more challenging and varied set of samples, thus making classification more complex.
It underscores the need for more sophisticated or tailored models to handle augmented
datasets effectively. The other deep learning architectures showed a similar performance to
the simple CNN architecture on this dataset, i.e., enhancing the classification performance
for minor classes in terms of precision, recall, and the F1 score.

Table 8. CNN Architecture 1 classification performance using UNSW-NB15 dataset after
data augmentation.

Classes Precision Recall F1 Score

Analysis 0.65 0.30 0.41
Backdoor 0.40 0.75 0.52

DoS 0.44 0.53 0.48
Exploits 0.79 0.50 0.61
Fuzzers 0.77 0.80 0.79
Generic 1.00 0.97 0.99
Normal 0.93 0.76 0.84

Reconnaissance 0.88 0.81 0.85
Shellcode 0.90 0.97 0.93

Worms 0.98 0.99 0.99
Accuracy 0.74

The deep learning models faced challenges with the CIC-IDS-2017 dataset, especially in
accurately identifying the attacks with minority classes. As shown in Table 9, the precision
values notably fell under 50% for a few classes, highlighting the difficulty in detecting these
minority attack types. Similarly, Table 9 shows the low values of recall and the F1 score of
minor classes (bot, heartbleed, infiltration, attack brute force, attack XSS, and attack SQL
injection) before the data augmentations. A similar situation with more complicated deep
learning architectures before data augmentation is shown in Table 10, which presents the
results of deep learning Architecture 5. However, when the data augmentation took place
on this dataset, the performance of the different deep learning architectures improved.
For instance, CNN Architecture 1 (as shown in Table 11) scored 85% in terms of accuracy,
while the lowest precision—scored with ‘Web Attack_XSS’—was 53%, and the lowest recall
and F1-score values, which were scored by ‘Web Attack Brute Force’, were 15% and 25%,
respectively. This means there is an overall improvement in precision, recall, and the F1
score of minor classes (the bold values in Table 11). Similar results occurred with other
architectures, and their results were almost identical (as shown in Table 12 for the results of
Architecture 5 after data augmentation). Therefore, we have obtained more improvements
in recognizing intrusion attacks that existed in the available dataset.

Testing the various deep learning architectures of 2–5 (Tables 3–6) on UNSW-NB15
revealed that none of them outperformed the accuracy achieved by the simple CNN model
(Table 2). This observation suggests that increasing the model’s complexity does not neces-
sarily lead to a better performance in intrusion detection tasks on this dataset. The more
intricate models might be overfitting or not capturing the nuances of network intrusion
data as effectively as the simpler model. However, the advanced architectures (Tables 3–6)
performed better than the simple CNN model on the CIC-IDS-2017 dataset (as shown in
Table 12). On the other hand, this performance comes at the cost of time, computation
power, and space. A closer examination of class-specific performance (Table 11) showed
significant variations. For instance, the precision was only 56% and 53% in identifying SQL
injection and XSS attacks, while the identification of other attacks had over 80% precision.
This disparity indicates the need for class-specific optimizations or tailored approaches for
certain types of attacks.

Systems 2024, 12, 79 10 of 18

The ROC curves (Figures 1 and 2) demonstrated high recall/sensitivity for almost
all classes using deep learning architectures on both datasets (the average values of all
architectures were taken), indicating the model’s ability to correctly classify the true-positive
rates across different attack types. However, the F1 scores (Figures 3 and 4) were high only
for a few classes (analysis, backdoor, and DoS in the UNSW-NB15 dataset), suggesting a
variance in precision and recall balance across different classes.

Table 9. CNN Architecture 1 classification performance using CIC-IDS-2017 dataset before
data augmentation.

Classes Precision Recall F1 Score

BENIGN 1.00 0.98 0.99
Bot 0.25 0.27 0.24

DDoS 1.00 0.99 0.99
DoS GoldenEye 0.98 0.98 0.98

DoS Hulk 0.94 1.00 0.97
DoS Slowhttptest 0.87 0.98 0.92

DoS slowloris 0.98 0.95 0.97
FTP-Patator 0.99 0.99 0.99
Heartbleed 0.15 0.13 0.16
Infiltration 0.19 0.21 0.21
PortScan 0.88 0.97 0.92

SSH-Patator 0.88 0.98 0.93
Attack_Brute Force 0.36 0.40 0.45
Attack_Sql Injection 0.24 0.28 0.32

Attack_XSS 0.56 0.59 0.60
Accuracy 0.98

Table 10. Deep learning Architecture 5 classification performance using CIC-IDS-2017 dataset before
data augmentation.

Classes Precision Recall F1 Score

BENIGN 0.99 0.99 0.99
Bot 0.99 0.34 0.51

DDoS 1.00 0.99 0.99
DoS GoldenEye 0.98 0.98 0.98

DoS Hulk 0.97 0.98 0.97
DoS Slowhttptest 0.89 0.99 0.94

DoS slowloris 0.98 0.99 0.98
FTP-Patator 1.00 0.64 0.78
Heartbleed 0.15 0.17 0.15
Infiltration 0.13 0.12 0.15
PortScan 0.90 0.95 0.92

SSH-Patator 1.00 0.49 0.66
Attack_Brute Force 0.91 0.05 0.09
Attack_Sql Injection 0.11 0.13 0.10

Attack_XSS 0.09 0.08 0.12
Accuracy 0.98

Table 11. CNN Architecture 1 classification performance using CIC-IDS-2017 dataset after
data augmentation.

Classes Precision Recall F1 Score

BENIGN 0.67 0.91 0.77
Bot 0.97 0.99 0.98

DDoS 0.99 1.00 1.00
DoS GoldenEye 0.84 0.99 0.91

DoS Hulk 0.98 1.00 0.99

Systems 2024, 12, 79 11 of 18

Table 11. Cont.

Classes Precision Recall F1 Score

DoS Slowhttptest 0.99 0.99 0.99
DoS slowloris 0.99 0.99 0.99
FTP-Patator 1.00 0.99 0.99
Heartbleed 1.00 0.80 0.89
Infiltration 0.99 0.79 0.88
PortScan 0.99 1.00 0.99

SSH-Patator 0.91 0.49 0.64
Attack_Brute Force 0.90 0.15 0.25
Attack_Sql Injection 0.56 0.72 0.63

Attack_XSS 0.53 0.97 0.69
Accuracy 0.85

Table 12. CNN Architecture 5 classification performance using CIC-IDS-2017 dataset after
data augmentation.

Classes Precision Recall F1 Score

BENIGN 0.85 0.96 0.90
Bot 0.99 1.00 0.99

DDoS 1.00 1.00 1.00
DoS GoldenEye 0.80 0.99 0.89

DoS Hulk 0.99 1.00 1.00
DoS Slowhttptest 0.99 0.99 0.99

DoS slowloris 0.99 0.99 0.99
FTP-Patator 1.00 1.00 1.00
Heartbleed 1.00 1.00 1.00
Infiltration 1.00 1.00 0.99
PortScan 0.99 1.00 0.99

SSH-Patator 0.94 1.00 0.97
Attack_Brute Force 0.66 0.50 0.57
Attack_Sql Injection 0.99 0.59 0.74

Attack_XSS 0.63 0.75 0.68
Accuracy 0.92

Systems 2024, 12, x FOR PEER REVIEW 12 of 19

Attack_XSS 0.63 0.75 0.68
Accuracy 0.92

The ROC curves (Figures 1 and 2) demonstrated high recall/sensitivity for almost all
classes using deep learning architectures on both datasets (the average values of all archi-
tectures were taken), indicating the model’s ability to correctly classify the true-positive
rates across different attack types. However, the F1 scores (Figures 3 and 4) were high
only for a few classes (analysis, backdoor, and DoS in the UNSW-NB15 dataset), suggest-
ing a variance in precision and recall balance across different classes.

Figure 1. ROC with UNSW-NB15 dataset (after augmentation). Figure 1. ROC with UNSW-NB15 dataset (after augmentation).

Systems 2024, 12, 79 12 of 18Systems 2024, 12, x FOR PEER REVIEW 13 of 19

Figure 2. ROC with CIC-IDS-2017 (after augmentation).

Figure 3. F1-score average for UNSW-NB-15 by all architectures (after augmentation).

Figure 2. ROC with CIC-IDS-2017 (after augmentation).

Systems 2024, 12, x FOR PEER REVIEW 13 of 19

Figure 2. ROC with CIC-IDS-2017 (after augmentation).

Figure 3. F1-score average for UNSW-NB-15 by all architectures (after augmentation). Figure 3. F1-score average for UNSW-NB-15 by all architectures (after augmentation).

The performance of the proposed deep learning architectures on the 5G-NIDD and
FLNET2023 datasets are shown in Tables 13–16. Amarakoon et al. [25] reported high
performances of the machine learning methods (KNN, random forest, and decision tree) on
the 5G-NIDD dataset with all types of attacks. It was noticed that there are a reasonable
number of entries for every class of attacks (except ICMPFLOOD, i.e., 366 entries), and
this might be due to the fact that this dataset was generated experimentally in the lab.
The above-mentioned architectures (1–5) were examined on the 5G-NIDD dataset (before
and after augmentation) and showed similar results to those reported in [25]. As shown
in Tables 13–16, it was found that the simple CNN Architecture 1 (Table 2) achieved

Systems 2024, 12, 79 13 of 18

high performances in both cases (before and after augmentation), which is similar to
architectures 2–5 (Tables 3–6). This is due to the fact that both datasets (5G-NIDD and
FLNET2023) have a good number of entries for minor classes of attack, which gives the
deep learning methods sufficient data to identify patterns that feature those classes of
attacks. Augmentation helps more in terms of improving the F1-score and recall values.

Systems 2024, 12, x FOR PEER REVIEW 14 of 19

Figure 4. Average F1 score for CIC-IDS-2017 by all architectures (after augmentation).

The performance of the proposed deep learning architectures on the 5G-NIDD and
FLNET2023 datasets are shown in Tables 13–16. Amarakoon et al. [25] reported high per-
formances of the machine learning methods (KNN, random forest, and decision tree) on
the 5G-NIDD dataset with all types of attacks. It was noticed that there are a reasonable
number of entries for every class of attacks (except ICMPFLOOD, i.e., 366 entries), and
this might be due to the fact that this dataset was generated experimentally in the lab. The
above-mentioned architectures (1–5) were examined on the 5G-NIDD dataset (before and
after augmentation) and showed similar results to those reported in [25]. As shown in
Tables 13–16, it was found that the simple CNN Architecture 1 (Table 2) achieved high
performances in both cases (before and after augmentation), which is similar to architec-
tures 2–5 (Tables 3–6). This is due to the fact that both datasets (5G-NIDD and FLNET2023)
have a good number of entries for minor classes of attack, which gives the deep learning
methods sufficient data to identify patterns that feature those classes of attacks. Augmen-
tation helps more in terms of improving the F1-score and recall values.

Table 13. CNN Architecture 1 classification performance using 5G-NIDD dataset after data augmen-
tation.

Classes Precision Recall F1 Score
BENIGN 0.99 0.95 0.97

UDPFlood 0.95 0.99 0.97
HTTPFlood 0.99 1.00 0.99

SlowrateDoS 0.99 0.98 0.99
TCPConnectScan 1.00 0.99 1.00

SYNScan 1.00 1.00 1.00
UDPScan 1.00 1.00 1.00
SYNFlood 1.00 0.99 0.99

ICMPFlood 0.99 1.00 1.00

Figure 4. Average F1 score for CIC-IDS-2017 by all architectures (after augmentation).

Table 13. CNN Architecture 1 classification performance using 5G-NIDD dataset after data augmentation.

Classes Precision Recall F1 Score

BENIGN 0.99 0.95 0.97
UDPFlood 0.95 0.99 0.97

HTTPFlood 0.99 1.00 0.99
SlowrateDoS 0.99 0.98 0.99

TCPConnectScan 1.00 0.99 1.00
SYNScan 1.00 1.00 1.00
UDPScan 1.00 1.00 1.00
SYNFlood 1.00 0.99 0.99

ICMPFlood 0.99 1.00 1.00
Accuracy 0.97

Systems 2024, 12, 79 14 of 18

Table 14. CNN Architecture 5 classification performance using 5G-NIDD dataset by architecture after
data augmentation.

Classes Precision Recall F1 Score

BENIGN 0.99 0.95 0.97
UDPFlood 0.95 0.99 0.97

HTTPFlood 0.99 1.00 1.00
SlowrateDoS 1.00 0.99 0.99

TCPConnectScan 1.00 1.00 1.00
SYNScan 1.00 1.00 1.00
UDPScan 1.00 1.00 1.00
SYNFlood 1.00 1.00 1.00

ICMPFlood 0.99 1.00 1.00
Accuracy 0.98

Table 15. CNN Architecture 1 classification performance using FLNET2023 dataset after
data augmentation.

Classes Precision Recall F1 Score

DDoS-bot 1.00 0.99 0.99
DDoS-dyn 0.99 1.00 1.00

DDoS-stomp 1.00 1.00 1.00
DDos-tcp 1.00 1.00 1.00

DDoS-hulk 1.00 1.00 1.00
DoS-slowhttp 0.99 1.00 1.00

Infiltration-mitm 1.00 1.00 1.00
Normal 1.00 1.00 1.00

Web-command-injection 0.96 0.98 0.97
Web-sql-injection 1.00 0.89 0.94

Web-xss 0.99 1.00 0.99
Accuracy 1.00

Table 16. CNN Architecture 5 classification performance using FLNET2023 dataset after data augmentation.

Classes Precision Recall F1 Score

DDoS-bot 1.00 0.99 0.99
DDoS-dyn 0.99 1.00 1.00

DDoS-stomp 1.00 1.00 1.00
DDos-tcp 1.00 1.00 1.00

DDoS-hulk 1.00 1.00 1.00
DoS-slowhttp 0.99 1.00 1.00

Infiltration-mitm 1.00 1.00 1.00
Normal 1.00 1.00 1.00

Web-command-injection 0.97 0.99 0.98
Web-sql-injection 1.00 0.91 0.96

Web-xss 0.99 1.00 0.99
Accuracy 1.00

5. Discussion

In contrast to the work of Sinha and Manollas [3], which incorporated bidirectional
LSTM with CNN, this study tried to rely on CNN, mainly because it can perform better in
terms of memory and CPU cycles. The results of [3] and this study are similar, but this work
demonstrates that the combination of convolutional and fully connected layers, along with
the learning rate scheduler, can provide an equally effective alternative for CNN+BiLSTM
architecture. The reason for the preference for the combination of convolutional and fully
connected layers is that it is generally less memory-intensive and computationally lighter
compared to the LSTM layers. Therefore, for limited resources and a shorter time of training,

Systems 2024, 12, 79 15 of 18

this combination is preferable, particularly as it delivers results with the same accuracy as
CNN+BiLSTM, at least with the UNSW-NB15 and CIC-IDS-2017 datasets or similar. This is
in line with the conclusion arrived at by Vigneswaran et al. [4], although they tested their
model with a small dataset (KDDCup-′99′).

On the other hand, Rodríguez et al. [2] reported high accuracy when machine learning
methods were applied with intrusion detection; however, the dataset imbalance was not
processed, and the extreme feature selection procedures (it considered 5 out of 77 features)
to obtain high performance potentially underestimate important features. This study
employed data augmentation to balance the dataset and assess the performances of deep
learning methods in prediction intrusions. Moreover, all features were included except
those related to IDs or those that were constants. As discussed in the literature, this enables
the detection of intrusion that could be characterized by small changes in a very limited
number of features, therefore including all features to ensure considering all possibilities.
The conclusion drawn is that while more advanced models may offer slightly higher
accuracy, a simple or shallow CNN-based model also remains capable of achieving high
detection accuracy. This conclusion is drawn from the findings of this study and the research
conducted by Ayantayo et al. [17], which indicated that, despite exploring numerous
architectures and techniques to maintain feature quality, model accuracy did not surpass
85%. Hence, it is likely that accuracy is significantly influenced by the quality of the dataset
rather than by being solely reliant on the depth of the deep learning architectures. This
conclusion came from the findings of this study, where high-quality datasets (FLNET2023
and 5G-NIDD) were assessed, and the results of the simple deep learning model (in this
study) and machine learning methods by Amarakoon et al. [25] delivered high accuracy
with data augmentation.

Overall, the fact that several networks were assessed with four datasets and have
delivered the same level of accuracy suggests that the datasets might have certain char-
acteristics that make them conducive to deep learning models and that these models are
effectively capturing the patterns within the data. This can be interpreted in several ways as
follows: (1) Complexity of data, where deep learning models, particularly neural networks
with multiple layers, excel at capturing intricate and hierarchical patterns within data.
When different deep learning architectures yield similar accuracies, it indicates that the
dataset may possess complex and non-linear relationships that deep models are adept at
uncovering [29]. (2) High-dimensional data, where deep learning models are well-suited
for highly dimensional data, such as images, audio, or text. The CIC-IDS-2017, 5G-NIDD,
and FLNET2023 datasets contain a large number of features; accordingly, deep learning
methods may have an advantage in extracting meaningful representations, leading to
comparable accuracies across different architectures [30]. (3) Rich feature representations,
where deep learning models can automatically learn rich feature representations from raw
data. When multiple deep learning methods perform similarly, it suggests that the dataset
contains sufficient information for these models to derive meaningful features without
extensive manual feature engineering [31]. (4) Data variability, where if the dataset is di-
verse and exhibits variability in its patterns, deep learning models can adapt and generalize
effectively. The fact that different architectures yield similar accuracies indicates that these
models are robust to variations within the dataset [32]. (5) Data size, where deep learning
models often involve large amounts of data to accomplish their best. If multiple deep
learning methods achieve the same accuracy, it implies that the dataset may be sufficiently
large enough to support the training of deep models without overfitting [33], which is the
case with this work. A small number of entries of attack classes could cause researchers to
consider a further preprocessing step, which is ensuring all attack classes are represented in
the training and testing portions of the datasets, which makes augmentation a good choice
to overcome the small number of entries of a specific group of attacks.

In conclusion, the provision of an increased volume of data, both in terms of features
and entries, typically leads to a higher accuracy in outcomes, even when employing rela-
tively simple deep learning architectures. However, this expectation does not consistently

Systems 2024, 12, 79 16 of 18

align with the reality of many publicly available datasets. Such datasets often face criticism
on several fronts, including their representation of real intrusion attacks, as well as concerns
regarding their quality and size. Conversely, datasets such as FLNET2023 and 5G-NIDD,
which are generated in simulated environments, tend to yield typical results with both
machine learning and deep learning techniques. Nevertheless, this raises critical questions
regarding the extent to which the data from these datasets accurately mirror real-world
intrusion scenarios and the feasibility of having all the represented features (columns)
available during actual intrusion incidents.

6. Conclusions

The datasets UNSW-NB15 and CIC-IDS-2017 were selected for analysis due to their
prevalent usage in recent scholarly publications. However, it is vital to note that both
datasets exhibit a disproportionality, featuring a smaller number of attack entries in com-
parison to normal network flow entries. This characteristic was also observed in the
FLNET2023 and 5G-NIDD datasets. Despite this, their content has been substantially
enhanced relative to other datasets in the field of intrusion detection. To ensure a compre-
hensive assessment of the performance of several deep learning methods, five distinct archi-
tectures were evaluated using augmented versions of all datasets. The empirical findings
suggest that for effective intrusion detection, complex and resource-intensive architectures
may not be necessary. Instead, simple CNN-based architectures with data augmentation
are capable of achieving high accuracy. This observation was further substantiated when
these architectures were applied to the FLNET2023 and 5G-NIDD datasets. In summary,
when multiple deep learning methods exhibit comparable levels of accuracy on a dataset, it
is indicative of the dataset’s complexity, high dimensionality, and richly informative nature,
which align well with the strengths of deep learning architectures. This also implies that
deep learning models are proficient in extracting and utilizing the relevant features for
predictive purposes, demonstrating their versatility and ability to manage diverse and
challenging datasets. Future research should explore the efficacy of other deep learning ar-
chitectures across a broader spectrum of datasets, with the aim of advancing the capabilities
of intrusion detection systems.

Author Contributions: Conceptualization, R.M. and F.S.; methodology, R.M. and F.S.; software,
R.M.; validation, A.A.A. (Abdulwahab Ali Almazroi), F.S.A. and A.A.A. (Abdulaleem Ali Almazroi);
formal analysis, R.M. and F.S.; investigation, A.A.A. (Abdulwahab Ali Almazroi), F.S.A. and A.A.A.
(Abdulaleem Ali Almazroi); resources, A.A.A. (Abdulwahab Ali Almazroi), F.S.A. and A.A.A. (Ab-
dulaleem Ali Almazroi); data curation, R.M.; writing—original draft preparation, R.M. and F.S.;
writing—review and editing, R.M., F.S., A.A.A. (Abdulwahab Ali Almazroi), F.S.A. and A.A.A.
(Abdulaleem Ali Almazroi); visualization, R.M.; project administration, F.S. and F.S.A.; funding
acquisition, A.A.A. (Abdulwahab Ali Almazroi), F.S.A. and A.A.A. (Abdulaleem Ali Almazroi). All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant
No. UJ-23-DR-212. Therefore, the authors thank the University of Jeddah for its technical and finan-
cial support.

Data Availability Statement: The datasets are available online upon request.

Acknowledgments: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under
grant No. UJ-23-DR-212. Therefore, the authors thank the University of Jeddah for its technical and
financial support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ieracitano, C.; Adeel, A.; Gogate, M.; Dashtipour, K.; Morabito, C.F.; Larijani, H.; Raza, A.; Hussain, A. Statistical analysis driven

optimized deep learning system for intrusion detection. In Advances in Brain Inspired Cognitive Systems; Springer Nature: Cham,
Switzerland, 2018; Volume 10989, pp. 759–769. [CrossRef]

https://doi.org/10.1007/978-3-030-00563-4_74

Systems 2024, 12, 79 17 of 18

2. Rodríguez, M.; Alesanco, Á.; Mehavilla, L.; García, J. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion
Detection. Sensors 2022, 22, 9326. [CrossRef] [PubMed]

3. Sinha, J.; Manollas, M. Efficient Deep CNN-BiLSTM Model for Network Intrusion Detection the 2020. In Proceedings of the 3rd
International Conference on Artificial Intelligence and Pattern Recognition, Xiamen, China, 26–28 June 2020.

4. Markevych, M.; Dawson, M. A review of enhancing intrusion detection systems for cybersecurity using artificial intelligence (ai).
In Proceedings of the International Conference Knowledge-Based Organization, Sibiu, Romania, 19 July 2023; Volume 29, pp.
30–37.

5. Dini, P.; Elhanashi, A.; Begni, A.; Saponara, S.; Zheng, Q.; Gasmi, K. Overview on Intrusion Detection Systems Design Exploiting
Machine Learning for Networking Cybersecurity. Appl. Sci. 2023, 13, 7507. [CrossRef]

6. Vigneswaran, R.K.; Vinayakumar, R.; Soman, K.P.; Poornachandran, P. Evaluating Shallow and Deep Neural Networks for
Network Intrusion Detection Systems in Cyber Security. In Proceedings of the 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018.

7. Nour, M.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 dataset and the
comparison with the KDD99 dataset. Inf. Secur. J. A Glob. Perspect. 2016, 25, 18–31.

8. Nour, M.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data
set). In Proceedings of the Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia,
10–12 November 2015.

9. Su, T.; Huazhi, S.; Zhu, J.; Want, S.; Li, Y. BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset.
IEEE Access 2020, 8, 29575–29585. [CrossRef]

10. Vinayakumar, R.; Soman, K.; Poornachandran, P. Evaluation of recurrent neural network and its variants for intrusion detection
system (IDS). Int. J. Inf. Syst. Model. Des. Clin. Res. 2017, 8, 43–63. [CrossRef]

11. Balakrishnan, V.; Shi, Z.; Law, C.; Lim, R.; Teh, L.; Fan, Y. A deep learning approach in predicting products’ sentiment ratings: A
comparative analysis. J. Supercomput. 2022, 78, 7206–7226. [CrossRef] [PubMed]

12. Zheng, B.; Liu, B. A Scalable Purchase Intention Prediction System Using Extreme Gradient Boosting Machines with Browsing
Content Entropy. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
12–14 January 2018.

13. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
14. Khan, R.U.; Zhang, X.; Alazab, M.; Kumar, R. An improved convolutional neural network model for intrusion detection in

networks. In Proceedings of the Cybersecurity and Cyberforensics Conference (CCC), Melbourne, VIC, Australia, 8–9 May 2019.
15. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning hierarchical spatial-temporal features

using deep neural networks to improve intrusion detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]
16. Yang, S. Research on network behavior anomaly analysis based on bidirectional LSTM IEEE 3rd Information Technology,

Networking. In Proceedings of the Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019.
17. Ayantayo, A.; Kaur, A.; Kour, A.; Schmoor, X.; Shah, F.; Vickers, I.; Kearney, P.; Abdelsamea, M.M. Network intrusion detection

using feature fusion with deep learning. J. Big Data 2023, 10, 167. [CrossRef]
18. Pratap, P.C.; Pandey, P. Time Series Forecasting Using Machine Learning Models: A Survey. In Proceedings of the 9th International

Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India, 10–12 July 2018.
19. Zhao, Z.; Chen, H.R.; Liu, R. Deep Learning in Time-Series Analysis: A Survey. In Proceedings of the AAAI Conference on

Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019.
20. Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019, 86,

83–106. [CrossRef]
21. Bachl, M.; Hartl, A.; Fabini, J.; Zseby, T. Walling up Backdoors in Intrusion Detection Systems. In Proceedings of the the 3rd ACM

CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication Networks, Orlando, FL,
USA, 9 December 2019.

22. Sharma, N.; Yadav, N.; Singh; Sharma, S. Classification of UNSW-NB15 dataset using Exploratory Data Analysis using Ensemble
Learning. Trans. Ind. Netw. Intell. Syst. 2021, 8, e4. [CrossRef]

23. Sharafaldin, I.; Lashkari, A.; Habibi; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic.
In Proceedings of the Characterization the 4th International Conference on Information Systems Security and Privacy, Funchal,
Portugal, 22–24 January 2018.

24. Duan, L.; Xue, W.; Huang, J.; Zheng, X. Joint Sample Position Based Noise Filtering and Mean Shift Clustering for Imbalanced
Classification Learning. Tsinghua Sci. Technol. 2024, 29, 216–231. [CrossRef]

25. Samarakoon, S.; Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Chang, S.; Kim, J.; Kim, J.; Ylianttila, M. 5G-NIDD: A Comprehen-
sive Network Intrusion Detection Dataset Generated over 5G Wireless Network. IEEE Dataport 2022. [CrossRef]

26. Kumar, P.; Liu, J.; Tayeen, A.S.M.; Misra, S.; Cao, H.; Harikumar, J.; Perez, O. FLNET2023: Realistic Network Intrusion Detection
Dataset for Federated Learning. In Proceedings of the MILCOM 2023–2023 IEEE Military Communications Conference (MILCOM),
Boston, MA, USA, 30 October–3 November 2023; pp. 345–350.

27. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

https://doi.org/10.3390/s22239326
https://www.ncbi.nlm.nih.gov/pubmed/36502028
https://doi.org/10.3390/app13137507
https://doi.org/10.1109/ACCESS.2020.2972627
https://doi.org/10.4018/IJISMD.2017070103
https://doi.org/10.1007/s11227-021-04169-6
https://www.ncbi.nlm.nih.gov/pubmed/34754140
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1109/ACCESS.2017.2780250
https://doi.org/10.1186/s40537-023-00834-0
https://doi.org/10.1016/j.engappai.2019.08.018
https://doi.org/10.4108/eai.13-10-2021.171319
https://doi.org/10.26599/TST.2023.9010006
https://doi.org/10.21227/xtep-hv36
https://doi.org/10.1613/jair.953

Systems 2024, 12, 79 18 of 18

28. Elreedy, D.; Atiya, A.F. A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class
imbalance. Inf. Sci. 2019, 505, 32–64. [CrossRef]

29. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Bengio, Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
32. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
33. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv

2017, arXiv:1611.03530. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ins.2019.07.070
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1561/2200000006
https://doi.org/10.1145/3446776

	Introduction
	Related Works
	Materials and Methods
	Datasets
	Data Preprocessing and Augmentation
	Deep Learning Architectures
	Model Training

	Results
	Binary Classification
	Multiple Classifications

	Discussion
	Conclusions
	References

