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Abstract: The rapid proliferation of new technologies such as Internet of Things (IoT), cloud comput-
ing, virtualization, and smart devices has led to a massive annual production of over 400 zettabytes
of network traffic data. As a result, it is crucial for companies to implement robust cybersecurity
measures to safeguard sensitive data from intrusion, which can lead to significant financial losses.
Existing intrusion detection systems (IDS) require further enhancements to reduce false positives as
well as enhance overall accuracy. To minimize security risks, data analytics and machine learning
can be utilized to create data-driven recommendations and decisions based on the input data. This
study focuses on developing machine learning models that can identify cyber-attacks and enhance
IDS system performance. This paper employed logistic regression, support vector machine, decision
tree, and random forest algorithms on the UNSW-NB15 network traffic dataset, utilizing in-depth
exploratory data analysis, and feature selection using correlation analysis and random sampling to
compare model accuracy and effectiveness. The performance and confusion matrix results indicate
that the Random Forest model is the best option for identifying cyber-attacks, with a remarkable F1
score of 97.80%, accuracy of 98.63%, and low false alarm rate of 1.36%, and thus should be considered
to improve IDS system security.

Keywords: machine learning in cyber security; UNSW-NB15 dataset; logistic regression; support
vector machine; decision tree; random forest

1. Introduction

With the rapid increase in cyber traffic and the emergence of highly sophisticated
intrusion attacks, there is a critical need for an adaptive and real-time intrusion detection
system. Cyber-attack can take many forms including malware infections, phishing attempts,
and unauthorized access to sensitive data, which can result in severe consequences such as
financial loss, reputational damage, and compromise of sensitive information [1,2]. It is
essential to remain vigilant and take proactive measures to protect individuals, businesses,
and industries from these types of cyber threats. An adaptive and real-time intrusion
detection system continuously monitors, detects, and responds to emerging threats, en-
abling organizations to defend against cyber-attacks proactively and reduce the impact of
successful breaches [3,4].

Existing intrusion detection methods are inadequate in addressing the dynamic and
complex nature of modern cyber threats. This is because of the need to improve the
number of false positives and accuracy in general. The details about the existing studies
are investigated in Section 2. However, machine learning has introduced a new approach,
where algorithms can be trained with real-time datasets to identify specific patterns and
anomalies in network traffic [5]. This approach is especially useful in the era of the Internet
of Things (IoT), where there is an overwhelming amount of network traffic. Data analytics
has become a crucial aspect of cybersecurity research, offering a way to collect, store and
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process cybersecurity information beyond the analysis of logs and alerts generated by
firewalls, intrusion detection systems (IDS), web application firewalls (WAF), and other
security systems [6]. It encompasses communication data, such as social networking
activity, voice, email, and user data, and logs of web applications and files for advanced
analytics, which can help identify user behavior. Incorporating configuration information
of assets and business process data can also aid in risk assessments [7,8]. The poor accuracy
in these systems is because of the high number of false positives mainly because of the high
correlation between data as well as data imbalanced problems as the number of abnormal
data is usually higher than the normal data.

Hence, this paper examines the analysis and prediction of cyber-attacks by utilizing
supervised machine learning algorithms as well as in-depth exploratory data analysis and
feature selection to support network intrusion detection systems (IDS). Through machine
learning methods, the paper aims to comprehend the patterns and features of attacks,
which will enable organizations to detect potential threats early and implement preventive
measures using robust intrusion detection systems (IDS). Hence, collecting, and preprocess-
ing UNSW_NB15 network traffic data will be the core focus which will consist of selecting
an appropriate model and hyperparameters, conducting model training and performance
evaluation, and analyzing, and comparing the results. This paper is organized as follows.
Section 2 reviews the related works. Section 3 proposes the architecture. Section 4 discusses
the dataset and develops the pre-processing methodology. Section 5 presents and discusses
the results. Section 6 concludes the work and addresses the future work.

2. Related Work

The book ‘Big Data Analytics in Cyber Security’, written by [9] emphasizes the signifi-
cance of data analytics in leveraging cyber security. The authors suggest that by analyzing
vast amounts of network data, Big Data is creating new opportunities for cyber security,
such as building models and configuring network infrastructure for organizations. Rajwat’s
study demonstrates how the efficiency of machine learning algorithms in the Internet of
Things (IoT) industry can improve network security by maintaining the reliability, security,
availability, and survivability of security assets. Deep learning is recommended to enhance
the performance of network building in smart cities and IoT devices [10]. Note that machine
learning and IoT are becoming an integral part of modern life, with around 25 billion
IoT-connected devices generating significant amounts of data that require analysis for im-
proving performance. Machine learning algorithms, such as decision trees, neural networks
and Bayesian networks, enable devices to identify patterns in datasets and make decisions
based on their analysis. According to [11], the increasing frequency of cyber-attacks on
physical systems is the biggest concern for industrial control systems (ICS). A multilayer
cyber-attack detection system can be utilized for detecting cyber-attacks and establishing
additional security within the network to prevent physical impacts and consequences.
The research group in [12] presents a survey on the impact of security analytics, which
concluded that analytics could assist network managers and IT security teams in real-time
monitoring and surveillance of network activity. Machine learning can also help in de-
tecting real-time malicious and suspicious patterns, making security analytics a crucial
solution for cyber security in the near future. According to [13], deep learning can detect
cyber-attacks and should be considered in building IoT devices and smart cities. The paper
represented by [5] talks about a new intrusion detection system that can detect five different
types of threats in a network, including Exploit, DOS, Probe, Generic, and Normal. The
system is based on the UNSW-NB15 dataset and uses an integrated classification-based
model to detect malicious activity. The proposed model is evaluated and found to have a
considerably higher accuracy of 83.8% on a real-time data set generated at NIT Patna CSE
lab. According to [6], machine learning-based intrusion detection systems are effective in
identifying network attacks. However, these systems are challenged by high-dimensional
data and imbalanced datasets, resulting in lower accuracy and higher false positive rates.
A filter-based feature reduction method utilizing the XGBoost algorithm is presented by
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the author [6] along with an analysis of the UNSW-NB15 intrusion detection dataset. The
study implemented various machine learning approaches, such as Support Vector Ma-
chine (SVM), k-Nearest-Neighbors (KNN), Logistic Regression (LR), Neural Network (NN),
and Decision Tree (DT), using the reduced feature space. According to the findings, the
XGBoost-based feature selection approach enables techniques like the DT to raise the test
accuracy of the binary classification scheme from 88.13% to 90.85%.

The authors in [14] discussed the importance of Network Intrusion Detection Systems
(NIDS) in the context of internet security issues in the IoT environment. According to this
study, the UNSW-NB15 dataset is more appropriate for evaluating NIDS. The experimental
results show that the SVM method outperforms other methods, achieving an accuracy of
85.99% for binary-classification and 75.77% for multi-classification. The study represented
by [15] discusses the problem of classifying network intrusions and how ordinary machine
learning algorithms are not efficient due to the large amount of data. According to this
research, deep Learning is suggested as a more effective solution due to its ability to classify
with high dimensionality and complex features. The deep learning model using a feed-
forward neural network shows an accuracy of 99% with a lower false alarm rate. As per
the study presented by [16], traditional defense systems such as firewalls and IDSs suffer
continuous database updates to detect threats. To create more reliable systems with better
detection rates and fewer false alarms, intrusion detection systems need to take a new
approach that makes use of machine learning models. This study solved the imbalanced
class problem with 99% accuracy by using the synthetic minority oversampling technique.
Classification algorithms play an essential part in assisting IDS in identifying various
types of attacks, as demonstrated by a comparative analysis of the UNSW_NB15 dataset
conducted by [17]. As per this study, the Random Forest classification model is more
credible as compared to other classification problems with an accuracy of 97.49%. In [18],
the performance of various classification machine learning models has been implemented
using Apache Spark and compared with related research based on the UNSW_NB15 dataset.
This study states the Random Forest model is more accurate and provides the highest
accuracy compared to the Decision Tree and Naïve Bayes. The experiment conducted
by [19] discusses the importance of network intrusion detection systems in identifying
cyber threats, and the various approaches used to develop such systems, including classical,
hybrid, and ensemble methods. To attempt to increase the IDS system’s accuracy, this study
has proposed stacking machine learning models with Mutual Information Gain and Extra
Tree Classifier feature selection techniques. Tested on the UNSW-NB15 dataset, this model
yields an accuracy of 96.24% and performs better than any other recent competing model.
The classification and regression trees (CART) model analysis by [20] shows the hybrid
model performs well using effective feature selection with the help of the Random Forest
algorithm to find the most important features combined with CART for the classification
of different attack classes and shows the accuracy of 95.37%. In [21], the comparative
analysis of the UNSW_NB15 dataset and CICIDS2017 has been carried out. This research
work concludes the SVM model with the naïve Bayes feature embedding method gives an
accuracy of 98.92% on the UNSW_NB15 dataset.

It has been demonstrated that the highest accuracy of the IDS on the UNSW_NB15
dataset is 98.92%. This accuracy needs more enhancement to reduce the probability of false
detection which affects the overall accuracy of the system. Hence, this paper is trying to
enhance the system performance to exceed that threshold of accuracy by using in-depth
EDA, feature selection and supervised learning models.

3. Proposed Research Methodology

In the following we describe four algorithms that are considered for the analysis as part
of IDS enhancement. These algorithms have been selected for various reasons, including its
wider applications for binary classification and existing applications in machine learning-
enabled IDS. The details are explained below.
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3.1. Logistic Regression

For binary classification issues, supervised machine learning methods are typically
employed [22]. With the use of one or more predictor variables, it is frequently employed
to predict a binary result (True/False). The logistic function, sometimes referred to as the
sigmoid function, is used by the algorithm to define the relationship between the predictor
variables and the binary output variable. Any input value is translated by the sigmoid
function to a number between 0 and 1, which is the likelihood that the binary result will
be 1. Within the regression family, a logistic regression has specifically been applied to
perform classification, specifically binary classification. Therefore, it is relatively common
to use this method when constructing machine learning for binary classification tasks.

By employing optimization strategies like gradient descent to minimize a cost function,
such as the cross-entropy loss, the logistic regression model gains knowledge from the
training set [23]. Based on the values of the predictor variables, the model can be trained to
predict the binary outcome for new occurrences. The following is the main characteristic of
logistic regression:

• Logit function: The logistic regression model determines the likelihood that the de-
pendent variable will take a particular value using the logit function.

p =
1

1 + e−z (1)

where p is the predicted binary probability. The predictor variables are combined linearly
into z and e is the natural logarithm’s base.

z = β0 + B1x1 + β2x2 . . . Bkxk (2)

• S-shaped curve: The logistic regression model generates an S-shaped curve that shows
the likelihood that, for a given value of the independent variables, the dependent
variable will take the value of 1.

• Maximum Likelihood Estimation: The logistic regression model estimates the model
parameters using maximum likelihood estimation.

We included logistic regression because it is a well-established and widely used algo-
rithm for binary classification tasks, making it a standard classifier in the field. Moreover,
it is a simple and efficient classifier, making logistic regression a good benchmark for
evaluating binary classification problems.

3.2. Decision Tree

Commonly employed for both classification and regression applications, decision trees
are a type of machine-learning technique. Using the training set of data, the algorithm
creates a tree-like model of decisions and their outcomes [24]. The tree structure helps to
visualize and interpret the decision-making process.

The key features of a Decision Tree algorithm include:

• Simple to comprehend and interpret since they provide a visualizable, tree-like frame-
work for the decision-making process.

• Their ability to handle both categorical and numerical data makes them useful for a
wide range of applications.

• Non-parametric meaning they do not make any assumptions about the distribution of
the data.

• Can handle missing values in the data by using different techniques such as surrogate
splits or imputation.

Decision trees provide a tree-like model that is easy to interpret, offering insights
into feature importance. The tree-based approach is suitable for capturing non-linear
relationships. In the context of IDS, decision trees have been used as part of several IDS
constructions (see, e.g., [25,26]), particularly on finding relevant features for classification.
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3.3. Random Forest

The Random Forest approach reduces overfitting and increases prediction accuracy
by combining numerous decision trees [27]. Random Forest is frequently applied to
classification and regression issues. The basic idea is to build a forest of decision trees,
allow each tree to grow and produce a forecast on its own, and then aggregate all of the
trees’ predictions to produce the final prediction. With this being said, the key features of
Random Forest are:

• Random sampling of the training data: a random subset of the training data is used to
train each tree in the forest.

• Random feature selection: a random collection of features is taken into consideration
for splitting at each decision tree split.

• Prediction aggregation: the ultimate forecast is derived from the sum of the forecasts
made by each tree within the forest.

The main advantage of Random Forest is that, in comparison to a single decision
tree, it is less prone to overfitting, as indicated by the previously mentioned points [28].
This is due to the fact that every tree in the forest is trained using a distinct subset of the
data and only takes a portion of the features into account when it splits. Therefore, the
final prediction is less likely to be biased towards the idiosyncrasies of the training data.
Additionally, Random Forest can handle a large number of input variables and can provide
a measure of the importance of each input variable in the prediction.

Random Forest is an ensemble of decision trees that combines multiple models for
robust performance. The collective strength of multiple models achieves robust and accu-
rate performance in identifying cyber-attacks within the network traffic dataset. Whilst
considering evaluation of decision trees, it is intuitive to compare the performance with
Random Forest.

3.4. Support Vector Machine

Regression analysis and classification are two applications for the Support Vector
Machine (SVM) technique. The method uses labeled data as input and searches for the
optimum hyperplane to maximize the margin—the distance between the hyperplane and
the closest data points from each class—while separating the various classes [29].

SVM can handle complex datasets very well since it can determine the decision
boundary that maximizes the separation between distinct classes. Additionally capable of
handling high-dimensional data, SVM may separate data that is not linearly separable in
the original space by transforming the input data into a higher-dimensional space using a
variety of kernel functions. The following are SVM’s primary features:

• Maximum margin: SVM seeks to identify the hyperplane with the greatest margin be-
tween classes. The gap between each class’s nearest data points and the hyperplane is
known as the margin. Through margin maximization, SVM may minimize overfitting
and improve generalization performance.

• Kernel trick: To separate data that is not linearly separable in the original space,
SVM can apply various kernel functions to transform the input data into a higher-
dimensional space. SVM can handle complex datasets thanks to a technique called the
kernel trick.

• Robustness against outliers: Because SVM only takes into account data points that are
closest to the decision border, it is less susceptible to outliers than other classification
methods.

• Binary classification: SVM is limited to classifying data into two groups because it is
a binary classification system. It can, however, be expanded to address multi-class
classification issues by utilizing strategies like one-vs-all or one-vs-one.

SVM is known for its versatility and effectiveness in handling complex decision
boundaries. This can enhance the accuracy of the detection of a complex data pattern. The
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attractive characteristics of SVM have been demonstrated in the number of IDS develop-
ments [25,26], particularly those using the intrusion detection’s AWID dataset [30].

4. Dataset Description and Properties

In this work, we consider enhancement of IDS based on analysis of the UNSW-NB15
dataset [31]. Herein this dataset is utilized due to its recency and its wide applications to
the general-purpose IDS development in the literature. This is in contrast to other similar
datasets such as AWID [30] where its utilization is mainly intended for intrusion detection
in wireless data traffic.

The UNSW-NB15 dataset was created by researchers at the Australian Centre for
Cyber Security (ACCS) lab at the University of New South Wales (UNSW), using the
Perfect-Storm tool [31]. This dataset contains raw network traffic data of 100 GB monitored
by TCP-Dump tool containing 2,540,044 realistic records. The dataset includes a wide
variety of different types of network traffic, such as TCP, UDP, ICMP, and HTTP, and it also
includes information about the source and destination of the traffic, as well as the time
and duration of each packet [32]. The total number of training and testing normal data are
56,000 and 37,000, respectively.

According to [32], the dataset UNSW-NB15 contains information regarding nine
instances of cyber-attacks with the following explanation.

• Fuzzers: These cyberattacks overwhelm and crash servers and network systems by
using a large amount of randomized data, or “fuzz”. This has 18,184 and 6062 instances
for training and testing, respectively.

• Backdoors: These are exploits that employ reputable system gateways to obtain
unauthorized access and install malicious software that gives attackers remote access
to a system to facilitate an exploit. This has 1746 and 583 instances for training and
testing, respectively.

• Analysis: This attack also known as Active Reconnaissance, uses various methods such
as port scans, vulnerability scans, spam files and foot printing to gather information
about a network without exploiting it. This has 2000 and 677 instances for training
and testing, respectively.

• Exploits: The target of this attack is to know vulnerabilities in operating systems to
gain unauthorized access and control. Exploit software can be used to automate these
attacks once a potential vulnerability is detected. This has 33,393 and 11,132 instances
for training and testing, respectively.

• Denial of service (DoS): When too many unauthorized connections are made to a net-
work, resources are either momentarily or permanently blocked from being accessed
by authorized users. Although it can be challenging to spot these attacks, several
obvious indications can be offered. This has 12,264 and 4089 instances for training and
testing, respectively.

• Generic: A generic attack is a type of cryptographic attack that targets the secret key
used in encryption. This type of attack can be used against various types of ciphers
such as block ciphers, stream ciphers, and message authentication code ciphers, and
is frequently mentioned as a “birthday attack” due to the vulnerability of ciphers to
collisions, which occur more frequently with random attack attempts. This has 40,000
and 18,871 instances for training and testing, respectively.

• Reconnaissance: This involves discovering as much as possible about a target host
or public network. By utilizing the information acquired, exploit techniques are
employed to gain access to the target host or network. This kind of reconnaissance
includes social media searches in addition to using publicly accessible information
like Whois, ARIN records, and Shodan. This has 10,491 and 3496 instances for training
and testing, respectively.

• Shellcode: An exploit attack that makes uses a payload (small piece of code), to
gain unauthorized access to a target’s computer. The payload is inserted into an
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active application, giving the attacker control over the compromised device through a
command shell. This has 1133 and 378 instances for training and testing, respectively.

• Worms: A worm is a type of cyberattack that rapidly spreads through a network by
infecting multiple systems. It infects the individual computers and leverages them
as controlled devices, known as “zombies” or “bots”, which can then be used in
coordinated attacks as part of a larger network of infected devices, called a “botnet”.
This has 130 and 44 instances for training and testing, respectively.

4.1. Dataset Features

As shown in Table 1, further explanations of the important features, its description and
data are highlighted. Proto, service and state are the only categorical features present in the
UNSW_NB15 dataset. sbytes and dbytes attributes are used to create a new feature called
network_byte. For more details on the dataset description, please refer to [31]. The dataset
has 49 attributes in total, which are split into three different data types: binary, nominal, and
categorical. The attributes are a combination of both Packet-based and Flow-based features.
Furthermore, the dataset consists of nine different attacks in addition to the normal class.

Table 1. UNSW-NB15 Features.

Feature Name Data Type Description

proto nominal Transaction protocol

state nominal Represents the state

service nominal Indicates the used services such as http, ftp,
smtp, ssh, dns, ftp-data, irc and none (-)

sbytes Integer Number of bytes used from source to destination

dbytes Integer Number of bytes from destination to source

attack_cat nominal Attack types

label binary Indicates to normal (0) or attack (1) records

The dataset is available in 4 CSV files, below are the details:
Figure 1 illustrates the step-by-step process used to build a robust machine learning

model for detecting cyber-attacks. The following steps were carried out.
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• Data collection and cleaning: The dataset was collected from the four files listed in
Table 2. Target features were identified, null values were checked, and numerical and
categorical features were identified.
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Table 2. UNSW-NB15 data file details.

File Name File Size Record Count Number of Features

UNSWNB15_1.csv 161.2 MB 700,000 49
UNSWNB15_2.csv 157.6 MB 700,000 49
UNSWNB15_3.csv 147.4 MB 700,000 49
UNSWNB15_4.csv 91.3 MB 440,044 49

• Exploratory Data Analysis: A heatmap was used to identify and remove highly
correlated values.

• Feature Engineering and Data Preparation: New features were added, and the data
was standardized using the standard scalar and Onehotencode functions.

• Train and Test Data Split: A training set (70%) and a testing set (30%) were generated
from the dataset.

• Training and Testing of the Models: On the training set, methods for logistic regression,
decision trees, random forests, and linear SVM were applied; on the testing set, their
efficacy was assessed.

4.2. Data Pre-Processing

Data pre-processing enhances efficiency and minimizes prediction errors in software
cost estimation. It is imperative to meticulously choose machine learning methods and
datasets based on their respective characteristics [33]. The data pre-processing has been
performed on the UNSW_NB15 dataset by combining data from all four CSV files. The
imbalanced dataset has more categorical data points than the attack category. The training
dataset has 83.77% of class 0 and 12.66% of class 1. The null values from the attributes
ct_flw_http_mthd, is_ftp_login, attack_cat have been removed for this study to attain
further accuracies. Hence, the dataset has a total of 9 columns with datatype object:
namely, ‘state’, ‘service’, ‘ct_ftp_cmd’, ‘attack_cat’, ‘srcip’, ‘sport’, ‘dstip’, ‘dsport’ and
‘proto’. According to [17], the ‘ct_ftp_cmd’ column is supposed to be of numeric type.
However, upon closer examination, it was found that this column contained blank entries
which have been replaced by ‘0’ to aid the learning process and the data type was changed
from object to int. ‘is_ftp_login’ is a binary attribute having values except 1 and 0 are
replaced by 0. The ‘attack_cat’ attribute has been found with few non-unique values like
‘backdoors’ and is replaced by the correct value ‘backdoor’.

4.3. Exploratory Data Analysis

Exploratory data analysis helps to understand the distribution, relationships, and
patterns in the data and enables the selection and preprocessing of appropriate features to
improve the accuracy of the machine learning model [34]. In this experiment, the correlation
between the features has been calculated with two perspectives, one correlation between
features without class labels using Pearson’s Correlation Coefficient (PCC) and a second
correlation between two tables with class labels using the Gain Ration method. Table 3
presents the correlation value between the two variables.

For better accuracy, it is important to drop highly correlated features and keep features
with low correlation with each other. Hence, Sloss, ct_srv_dst, ct_src_dport_ltm, dpkts,
ltime, dloss, ct_dst_src_ltm features have been removed from the dataset.

Table 3. Correlation Value between two variables.

Variable 1 Variable 2 Correlation Value

stime Ltime 1
swin Dwin 0.997174708
dloss Dpkts 0.992128631
dbytes Dloss 0.991376462



Algorithms 2024, 17, 64 9 of 16

Table 3. Cont.

Variable 1 Variable 2 Correlation Value

dbytes Dpkts 0.970803704
ct_dst_ltm ct_src_dport_ltm 0.960191873
ct_srv_src ct_srv_dst 0.956759024
sbytes Sloss 0.954961115
ct_srv_dst ct_dst_src_ltm 0.951066477
ct_src_ltm ct_src_dport_ltm 0.945315205
ct_srv_src ct_dst_src_ltm 0.942174265
ct_dst_ltm ct_src_ltm 0.938506142
tcprtt Synack 0.932940833
ct_src_dport_ltm ct_dst_sport_ltm 0.921432623
tcprtt Ackdat 0.921293044
ct_src_dport_ltm ct_dst_src_ltm 0.910904101
Sttl ct_state_ttl 0.905564623
Sttl Label 0.904224554

4.4. Feature Engineering and Data Preparing

To provide a collection of input features that will be utilized to train a machine learning
model, feature engineering is the process of choosing, altering, and extracting features
from raw data. Based on network analysis, a new feature called “network_bytes” has been
built to represent the transmitted bytes over the network [35]. Network bytes are total
bytes transferred by sbytes (source to destination bytes) and dbytes (destination to source
bytes). In the context of improving the performance of the machine learning model, it is
important to standardize the data for the numerical data standard scalar method. This
helps in streamlining numerical data by transforming variables so that they are on the
same scale, that aims to enhance the efficiency of the used machine learning algorithms
and make the variables more interpretable [36]. One hot encoding process has been used to
process categorical data. This is a process which transforms the categorical variables into a
format that is suitable for modelling. Categorical variables are variables that take on values
that are drawn from a limited set of categories. In this experiment, Onehot encoding has
been applied to proto, service and state columns. After applying the one-hot function, the
encoded data had 197 columns.

5. Results and Discussion

The experiments presented in this work are conducted on standard libraries of Python
3.11.1 developed with Jupiter Notebook 6.5.2. Hardware details include Microsoft Windows
11 x64-based-pc, Intel Core i5 processor and 16 GB RAM. The ML models are built, tested,
and evaluated on the Scikit Learn ML Python framework.

5.1. Performance Matrix

While there are numerous metrics available for evaluating machine learning-based
intrusion detection systems (IDS), this research focuses on maximizing the accuracy of
predictions, for instance in the test dataset. The main metric of interest is the Accuracy (AC),
which is calculated using True Positive (TP) for correctly identified attacks, True Negative
(TN) for legitimate traffic correctly classified as legitimate, False Positive (FP) for legitimate
traffic classified as attacks, and FN for legitimate traffic classified as intrusions [37,38].
Precision may be defined as the model’s total number of positive predictions divided by
the number of genuine positive predictions. The model’s recall is calculated by dividing the
total number of genuine positive predictions by the number of real positive cases found in
the data [39,40]. Additionally, the research considers other metrics such as F1score, which is
determined by taking the harmonic mean of the recall and accuracy of the model, and False
Alarm Rate (FAR), which measures the number of false positives relative to all negatives
and is a common metric for assessing a model’s accuracy. A false positive occurs when a
model predicts something incorrectly, whereas a correct prediction generates a negative.
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Evaluating a model’s accuracy often involves considering its false alarm rate and a lower
rate is indicative of a higher level of accuracy [41,42].

5.2. AUC and ROC

The Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) are
common assessment metrics for binary classification problems. The performance of a
binary classifier at various classification thresholds is shown graphically via the ROC
curve. Plotting the true positive rate (TPR) vs the false positive rate (FPR) at different
threshold levels is how it is made. A helpful tool for assessing the effectiveness of various
classifiers is the ROC curve. Higher AUC scores indicate better separation of the two
classes, making them superior classifiers. The area under the ROC curve is represented by
a single-value statistic called AUC, on the other hand. Higher values correspond to greater
classifier performance; the range is 0 to 1. An overall indicator of the classifier’s capacity to
distinguish between positive and negative classes across all potential thresholds is provided
by the AUC. Both AUC and ROC are useful metrics for evaluating the performance of a
binary classifier, especially when the two classes have imbalanced data distribution.

5.3. Experiment Analysis

Our research involves experimenting with seven machine learning models on the
dataset. These models include logistic regression, SVM, decision tree, Random Forest,
decision tree-xgb classifier, decision tree with feature selection, and Random Forest with
feature selection.

5.4. Hyper-Parameter Tuning

After defining the performance matrix, the initial experiment focuses on Logistic Re-
gression. Table 4 details the step-by-step implementation of Logistic regression, considering
hyperparameters such as penalty and alpha. Hyperparameter tuning is conducted using
the grid search method. Subsequently, the linear support vector classifier is explored, utiliz-
ing the same hyperparameters (penalty and alpha) for tuning. Following the assessment of
logistic regression and linear support vector machine models, attention shifts to the decision
tree model. Despite obtaining a lower AUC compared to the linear support vector model,
efforts are made to enhance the decision tree model’s accuracy. Three hyperparameters,
namely “min_sample_leaf”, “min_sample_split”, and “max_depth”, are considered for
tuning. Optimal values for “min_sample_split” and “max_depth” are determined to be 6
and 10, respectively. Hyperparameter tuning for “min_sample_leaf” reveals its optimal
value as 9.

Table 4. Logistic regression—steps-by-step implementation.

Logistic Regression

Step 1: Import the sklearn libraries
Step 2: Define the hyperparameter tuning function to select the best hyperparameters by
implementing the grid search method
Step 3: Define a function to evaluate the performance of the model in terms of Accuracy, F1-Score,
and False Alarm Rate
Step 4: Create an instance of SGDC classifier with logistic regression loss function and L2
regularization
Step 5: Define a dictionary of hyperparameters to be tuned during hyperparameter tuning
Step 6: Create a final LR model with the best hyperparameters. Step 7: Evaluate the performance
of the best logistic model on training and testing data

After evaluating the Decision Tree model, the subsequent experiment involves im-
plementing the Random Forest model. Through a train and cross-validation (CV) ap-
proach, optimal hyperparameters are identified as criterion = “gini”, Max_depth = 22,
min_sample_split = 6, n_estimators = 300, and n_jobs = −1. The Gradient Boosted Decision
Tree model requires adjustment of several hyperparameters, including “learning_rate”,
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“max_depth”, “colsample_bylevel”, “subsample”, and “n_estimators”. Experimentation
with various parameter combinations reveals the significant influence of ‘learning_rate’,
and to a lesser extent, ‘max_depth’ and ‘n_estimators’, while the impact of the other
two parameters is minimal. The best hyperparameters for the model are determined as
‘n_estimators’: 400, ‘max_depth’: 12, ‘learning_rate’: 0.1, ‘colsample_bylevel’: 0.5, and
‘subsample’: 0.1.

5.5. Models with Important Features

The process of choosing a subset of suitable features from a larger collection of charac-
teristics to enhance a machine learning model’s performance is known as feature selection.
The dataset contains 197 features, but not all of them hold equal importance. Therefore, to
identify the important features, the XBGClassifier feature importance method was utilized.
This method revealed 55 significant features, as illustrated in Figure 2. Subsequently, we
retrained the decision tree and Random Forest models using these important features.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 16 
 

Table 4. Logistic regression—steps-by-step implementation. 

Logistic Regression  
Step 1: Import the sklearn libraries 
Step 2: Define the hyperparameter tuning function to select the best hyperparameters by imple-
menting the grid search method 
Step 3: Define a function to evaluate the performance of the model in terms of Accuracy, F1-Score, 
and False Alarm Rate 
Step 4: Create an instance of SGDC classifier with logistic regression loss function and L2 regulari-
zation 
Step 5: Define a dictionary of hyperparameters to be tuned during hyperparameter tuning 
Step 6: Create a final LR model with the best hyperparameters.  
Step 7: Evaluate the performance of the best logistic model on training and testing data 

5.5. Models with Important Features 
The process of choosing a subset of suitable features from a larger collection of char-

acteristics to enhance a machine learning model’s performance is known as feature selec-
tion. The dataset contains 197 features, but not all of them hold equal importance. There-
fore, to identify the important features, the XBGClassifier feature importance method was 
utilized. This method revealed 55 significant features, as illustrated in Figure 2. Subse-
quently, we retrained the decision tree and Random Forest models using these important 
features. 

 
Figure 2. Plot of importance of Features. 

Once all the crucial features were identified, we retrained the decision tree model 
with consistent parameters (min_sample_split = 6, max_depth = 1, min_sample_leaf = 9). 
Similarly, the Random Forest model was assessed using the identified important features, 
maintaining the same hyperparameters (criterion = ‘gini’, max_depth = 22, min_sam-
ples_split = 6, n_estimators = 300, n_jobs = −1). The inclusion of significant characteristics 
resulted in improved performance for the Random Forest model, yielding the highest f1-
score among all models. Tables 5 and 6 present AUC values and confusion matrices for 
training and testing across all algorithms. The logistic regression model achieved a bal-
anced AUC of 0.98 on both datasets, with a corresponding confusion matrix indicating 

Figure 2. Plot of importance of Features.

Once all the crucial features were identified, we retrained the decision tree model with
consistent parameters (min_sample_split = 6, max_depth = 1, min_sample_leaf = 9). Simi-
larly, the Random Forest model was assessed using the identified important features, main-
taining the same hyperparameters (criterion = ‘gini’, max_depth = 22, min_samples_split = 6,
n_estimators = 300, n_jobs = −1). The inclusion of significant characteristics resulted in
improved performance for the Random Forest model, yielding the highest f1-score among
all models. Tables 5 and 6 present AUC values and confusion matrices for training and
testing across all algorithms. The logistic regression model achieved a balanced AUC of
0.98 on both datasets, with a corresponding confusion matrix indicating strong overall
performance, though with a higher count of false negatives. The linear SVM surpassed
logistic regression, attaining 99.17% accuracy on the training set and 99.16% on the test set,
showcasing minimal overfitting. The confusion matrix revealed increased true positives
and true negatives.
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Table 5. AUC results for training and test datasets for all ML algorithms.

Algorithm Train Test

LR 0.983171129855572 0.982896428268793
Linear SVM 0.99171621060382 0.991621576012526
DT 0.987964953232175 0.987722200601008
f 0.992686447486772 0.985617231685103
GBDT 0.99545734190109 0.986483043307548
DT with FS 0.987717151251344 0.987328334371178
RF with FS 0.994109889715638 0.986345597491184

Table 6. Confusion matrix of all ML models.

Train Test

Algorithm TP FP FN TN TP FP FN TN

LR 1,539,416 13,446 5629 219,541 660,174 5728 2461 93,652
Linear SVM 1,532,183 20,679 732 224,438 657,023 8879 329 95,784
DT 1,539,546 13,316 3489 221,681 660,123 5779 1526 94,587
RF 1,241,042 1241 2455 177,687 663,950 1952 2483 93,630
GBDT 1,240,920 1363 1439 178,703 663,662 2240 2275 93,838
DT with FS 1,231,647 10,636 2883 1,777,259 660,125 5777 1602 94,511
RF with FS 1,241,434 849 1999 178,143 664,054 1848 2358 93,755

The decision tree model demonstrated an AUC of 98.79% on training data and 98.77%
on the test data, with a balanced performance and an improved f1-score of 96.28%. The
confusion matrix indicated a reduction in false positives. The Random Forest model exhib-
ited AUC values of 99.26% and 98.56% on the training and testing datasets, respectively,
suggesting slight overfitting. Notably, false positives were significantly reduced in this
model, as depicted in the confusion matrix. The gradient-boosted decision tree (GBDT)
using Xgboost showed a small gap between training and testing scores, hinting at potential
overfitting. The confusion matrix revealed nearly equal numbers of false negatives and
false positives. Comparing decision tree models with and without important features, a
slight improvement in false positives was observed. No significant overfitting was detected,
and the accuracy reached 98.77% on the training dataset and 98.73% on the testing dataset.
The Random Forest model with important features demonstrated increased true positives
and true negatives compared to the model without feature selection, with AUC values
indicating no overfitting, achieving 99.41% on the training dataset and 98.63% on the
testing dataset.

In terms of the confusion matrix values, Logistic Regression has 1,539,416 true positives
(TP) and 219,541 true negatives (TN) in training, highlighting its proficiency in distinguish-
ing between positive and negative instances. Linear SVM, achieving 1,532,183 TP and
224,438 TN during training, also demonstrates robust classification capabilities. Decision
Tree excels with 1,539,546 TP and 221,681 TN, indicating its effectiveness in capturing
intricate data relationships. Random Forest has 1,241,042 TP and 177,687 TN, highlighting
its prowess in handling diverse data patterns. In testing, these models sustain their com-
petence, reflecting the reliability of their learned patterns. Logistic Regression maintains
precision with 660,174 TP and 93,652 TN. Linear SVM continues its strong performance
with 657,023 TP and 95,784 TN. Decision Tree upholds its effectiveness with 660,123 TP and
94,587 TN. Random Forest demonstrates its capability with 663,950 TP and 93,630 TN. The
Gradient Boosted Decision Tree impresses with 663,662 TP and 93,838 TN. Decision Tree
with Feature Selection exhibits proficiency with 660,125 TP and 94,511 TN. Finally, Random
Forest with Feature Selection sustains precision with 664,054 TP and 93,755 TN.

The results of seven machine learning models applied to the UNSW_NB15 dataset are
presented in Table 7, showing their overall performance based on three evaluation metrics:
Accuracy, Precision, Recall, F1-Score, and FAR. The Random Forest managed to achieve
the highest accuracy score of 0.994 and 0.9945 for Random Forest and Random Forest with
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feature selection, respectively. Moreover, the precision, recall and f1 score were higher than
99.5% for both showing the stability of the detection of the model. Decision trees based on
the Boost, decision trees and decision trees with feature selection also secured high accuracy
with an accuracy of 0.9941, 0.9904 and 0.9903, respectively. Logistic regression and linear
regression managed to get accuracy scores of 0.9893 and 0.9879, respectively, with high
precision, recall and F1 score. In general, both precision and recall have reasonably good
results which shows that the models have not overfitted. In terms of the FAR, Random
Forest with feature selection and Random Forest have the lowest values with 0.0194 and
0.0204, respectively. The other models’ FAR ranges between 2.3 % and 8.4%, and more false
alarms can be generated during detection. Therefore, the study concludes that the Random
Forest ML model can be utilized to enhance the accuracy of cyber-attack detection.

Table 7. Performance Evaluation for all ML models.

Model Accuracy Precision Recall F1-Score FAR

Logistic Regression 0.9893 0.9914 0.9963 0.9938 0.0576
SVM 0.9879 0.9867 0.9995 0.9930 0.0848
Decision Tree 0.9904 0.9913 0.9977 0.9945 0.0575
Random Forest 0.9942 0.9971 0.9963 0.9967 0.0204
Decision Tree—XGB Classifier 0.9941 0.9966 0.9966 0.9966 0.0233
Decision Tree—with Features 0.9903 0.9913 0.9976 0.9944 0.0576
Random Forest—with Feature 0.9945 0.9972 0.9965 0.9965 0.0194

The observed can be attributed to various factors including model complexity, data
importance and data imbalance. Model complexity, given the dataset’s 49 features, is
one of these factors in which SVM and Decision Tree models are capable of handling data
relationships, and exhibited high accuracy and recall scores. SVM, with the highest accuracy
at 0.991621 and a recall of 0.9995, showcased its effectiveness in managing complex patterns.
The Decision Tree model, achieving an accuracy of 0.987722 and a recall of 0.9977, also
demonstrated competitive performance. Feature importance, especially highlighted in
Random Forest and Decision Tree models with feature selection, emphasized the impact of
identifying essential features on precision and recall. Random Forest, in particular, achieved
an accuracy of 0.985477, precision of 0.9971, and recall of 0.9963. Ensemble methods, like
Random Forest, known for their ability to reduce overfitting, contributed to competitive
performance across multiple metrics. The significance of hyperparameter tuning was
evident, with SVM’s fine-tuned configuration resulting in an accuracy of 0.991621 and a
recall of 0.9995. Data imbalance introduced additional complexities, influencing precision,
recall, and false alarm rates differently. The Decision Tree with Features and Random
Forest with Feature selection underscored the impact of specific feature handling on overall
performance. Lastly, algorithm sensitivity, with SVM excelling in handling specific patterns
in the dataset, further contributed to the observed variations.

5.6. Comparative Analysis of the Models Implemented

Table 8 provides a comparison and evaluation between the proposed models and those
featured in the existing studies, focusing on their accuracy metrics. The proposed logistic
regression model stands out with an exceptional accuracy of 98.28%, clearly surpassing the
accuracy reported in the logistic regression models implemented in [15]. Furthermore, the
SVM, decision tree, and Random Forest models introduced in [18] all yielded lower accuracy
scores when compared to the proposed model, reaffirming its superior performance across
these algorithms. The stack model, as detailed in [19], demonstrated a commendable
accuracy of 96.24%. However, the proposed model outshines even this, registering a slightly
higher accuracy. Finally, in the context of [21], where an SVM model was implemented,
the reported accuracy of 98.92% was less than the proposed model, which achieved an
outstanding accuracy of 99.16%. This comprehensive analysis highlights the consistent
excellence of the proposed model.
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Table 8. Result comparison of the proposed models.

Released Year Reference Model Implemented Benchmark Proposed Model

2019 [15] Logistic Regression 83.15 98.93
2018 [18] SVM 92.28 98.79

Decision Tree 95.82 99.04
Random Forest 97.49 99.42

2022 [19] Stack Model − [XGBoost
KNN + XGBoost NN KNN] 96.24 99.41

2020 [20] Logistic Regression 83 98.93
2021 [21] Support Vector Machine 98.92 98.79

6. Conclusions and Future Work

Cyber-attacks are a rapidly growing concern that poses a significant threat to global
security. This study addresses this issue head-on by experimenting with the use of ma-
chine learning to detect and protect networks from these malicious acts. The study
uses the UNSW_NB15 dataset, published by the ACCS lab in Australia, which contains
25,40,044 records. The dataset underwent various data cleansing and pre-processing ac-
tivities to achieve the highest possible accuracy and the lowest false alarm rate. A variety
of machine learning algorithms such as Logistic Regression, Support Vector Machines,
Decision Trees, and Random Forests are used to solve this classification problem. The
dataset is divided into training and testing sets, and some experiments were carried out on
them to evaluate the effectiveness of the search. By experimenting with the feature selection
approach, this study found that the Random Forest model has the highest accuracy of
99.45% and the lowest false alarm rate of 1.94% compared to the other recently published
models. Although it is of a low value, the FAR will impact on the network bandwidth de-
pending on the actions taken upon the intrusions being detected. When an IDS host detects
an intrusion (but a false detection), it might coordinate and take actions with surrounding
hosts of the same network. In such a case, unnecessary data exchange will occur, which
will generate unnecessary network traffic, reducing an effective network bandwidth for
data transmission. The penalty will be proportional to the value of FAR and the number of
hosts involved in the intrusion detections and actions.

This study not only demonstrates the effectiveness of machine learning in protecting
networks from cyber-attacks, but it also highlights the crucial role of analytics in the cyber
security world. The results of this study conclusively show that the Random Forest model
is an efficient and superior approach for detecting cyber-attacks and securing networks.
Overall, this research provides valuable insights into the potential of machine learning as a
tool for defending against cyber-attacks and protecting networks.

Although impressive accuracy and F1-score results were achieved in the experiment,
there is still room for improvement and further optimization. More testing is necessary to
evaluate the experiment’s performance on actual network traffic data, and new network-
related features can be derived from existing features. Additionally, it would be beneficial
to experiment on a balanced dataset. There is a significant scope to experiment with deep
learning and artificial neural networks. While the current accuracy is close to 100%, it
is insufficient for a Network Intrusion Detection System, and additional research should
focus on developing new methodologies and approaches to improve its performance.
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