

MULTIMODAL INTERACTION

TECHNIQUES FOR DISABLED

DEVELOPERS

By

Bharat Paudyal

This dissertation is submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Digital Media Technology Lab

School of Computing and Digital Technology

Birmingham City University, UK

March 2023

 i

Dedications

To all the developers who put in so much effort to make the lives of others easier and more

convenient but have developed physical impairments in the process.

 ii

DECLARATION

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this or any other University. This

dissertation is the result of my own work and includes nothing which is the outcome of work

done in collaboration except where specifically indicated in the text.

Bharat Paudyal

March 2023

 iii

ABSTRACT

Technologies such as speech recognition, eye tracking, and mechanical switches present

alternative opportunities to make coding more accessible for people with physical

impairments. These technologies have previously been explored independently to assess

their potential for supporting development work, although each input method exhibits

unique strengths and challenges. A multimodal approach utilising different combinations of

these technologies holds significant potential to address the individual limitations of each

technology. However, there has been a lack of research to date investigating how these input

approaches can be combined and the extent to which they can support inclusive coding

experiences for people with physical impairments.

To address the limited work in this area, three independent research studies were conducted

investigating multimodal input approaches for disabled developers. The first study focused

on developing a research prototype utilising a combination of speech, gaze and mechanical

switches to support writing and editing syntax. A user evaluation with 29 non-disabled

developers found that the system was perceived positively in terms of usability and

facilitated the successful completion of common coding activities. A follow-up study with

five developers who have physical impairments validated that this target audience could

successfully utilise the multimodal approach to complete standard coding tasks.

The second study investigated the usability and feasibility of different multimodal voice

coding approaches (i.e. natural language and fixed commands) in conjunction with a

mechanical switch to support coding activities. A comparative study with 25 non-disabled

developers found that both approaches demonstrated similar levels of efficacy and usability,

although participants highlighted significant potential in terms of natural language coding.

This approach was therefore developed further and evaluated within a multi-session study

with five developers who have physical impairments. Results validated the feasibility of the

multimodal natural language approach to support developers in successfully completing

coding activities.

The final study investigated the efficacy of tailoring code navigation features commonly

used within mainstream development environments (i.e. “Find by Reference”, “Go to

Definition”, and “Find”) for multimodal voice and mechanical switch interaction. A user

 iv

evaluation with 14 developers who have physical impairments highlighted that the code

navigation approaches were efficient to utilise and demonstrated a high-level of usability.

The contributions presented in this thesis highlight how the combination of different

alternative input methods can provide more inclusive coding experiences for developers

with physical impairments.

 v

ACKNOWLEDGEMENTS

I want to offer my profound gratitude to all the people who helped make completing this

PhD possible, especially my supervisors, family, and friends. First, I would like to thank my

supervisors: Prof. Chris Creed, Prof. Ian Williams and Dr Maite Frutos for their guidance,

advice, extensive academic support and consistent encouragement throughout my research

work. Chris, Ian and Maite, I am indebted for your meaningful feedback, words of

inspiration and cooperation throughout my research. Special thanks to Chris for all the

support he provided on both personal and professional levels during the research.

I would also like to thank Dr Sayan Sarcar and Dr Arthur Theil for their precious time and

ideas during the last part of my research. I would further like to thank my peers and members

of the Digital Media Technology (DMT) Lab I met during my PhD who have extended their

support to make this research possible - Dr Mauadh Al-Kalbani and Alan Dollhasz. I would

also like to thank my friends, Farkandah Aziz, Hsein Kew and Andreea Blaga for their

support. I would also like to extend my most profound appreciation to all my research

colleagues, who helped me in the initial evaluations of research prototypes on multiple

occasions. Additionally, I wish to acknowledge the London RSI center and Talon

community for supporting the recruitment of developers with physical impairments.

Nobody has been more important to me in the pursuit of this project than the members of

my family. I would like to thank my uncle Dr Jagannath, aunt Laxmi, and cousin Dr Basu.

They have encouraged and helped me at every stage of my personal and academic life and

have wished to see this achievement come true. I would like to thank my family in Nepal

and the UK for their support, well wishes, words of inspiration and appreciation throughout

my research.

Most importantly, I wish to thank my father Chiranjibi, mother Bishnu, wife Binita, Sister

Dr Pragya, brother-in-law Bishesh, daughter Adhbhika, nephew Aditya, father-in-law

Chhabi Gyawali and mother-in-law Sushila Gyawali for their unfailing love, support and

continuous encouragement, not only during the years that it has taken to produce this thesis,

but also for their constant cooperation and motivation of my academic pursuits over the

years.

 vi

CONTENTS

1 INTRODUCTION --- 1

1.1 Research Questions -- 3

1.2 Thesis Contributions -- 5

1.3 Thesis Structure -- 7

1.4 Published Work -- 8

1.5 Covid-19 --- 8

2 BACKGROUND AND RELATED WORK --- 9

2.1 Disability (Physical Impairment) --- 9

2.2 Assistive Technologies --- 12

2.3 Speech Interaction -- 17

2.3.1 Speech Recognition Technology --- 17

2.3.2 Speech Interaction Research -- 19

2.3.3 Speech Interaction for Coding -- 24

2.4 Eye Gaze Interaction --- 29

2.4.1 Eye Gaze Tracking Technology -- 29

2.4.2 Eye Gaze Interaction Research --- 31

2.4.3 Eye Gaze Interaction for Coding --- 36

2.5 Multimodal Speech and Gaze Interaction --- 38

2.5.1 Multimodal Speech and Gaze Rationale -- 39

2.5.2 Multimodal Speech and Gaze Research --- 40

2.6 Summary --- 42

3 MULTIMODAL CODING VIA SPEECH, GAZE AND SWITCHES --------------- 44

3.1 Introduction --- 44

 vii

3.2 Prototype Design --- 45

3.3 User Study 1 --- 50

3.3.1 Research Question --- 50

3.3.2 Participants --- 50

3.3.3 Apparatus --- 51

3.3.4 Procedure --- 51

3.3.5 Measures -- 53

3.3.6 Results --- 55

3.3.7 Study Summary -- 58

3.4 User Study 2 --- 59

3.4.1 Voiceye (Version 2) --- 59

3.4.2 Participants --- 60

3.4.3 Apparatus --- 60

3.4.4 Procedure --- 60

3.4.5 Measures -- 63

3.4.6 Results --- 63

3.5 Conclusions -- 66

4 MULTIMODAL FIXED GRAMMAR AND NATURAL LANGUAGE VOICE

CODING --69

4.1 Introduction --- 69

4.2 Exploratory Study -- 71

4.2.1 Participants --- 71

4.2.2 Apparatus --- 71

4.2.3 Procedure --- 71

4.3 System Design --- 76

4.3.1 Fixed Grammar (FG) -- 77

4.3.2 Natural Language (NL) --- 79

4.4 Study 1: Fixed Grammar versus Natural Language -- 80

4.4.1 Research Question --- 81

4.4.2 Participants --- 81

4.4.3 Apparatus --- 81

4.4.4 Procedure --- 82

4.4.5 Measures -- 83

4.4.6 Results --- 84

 viii

4.4.7 Study Summary --- 87

4.5 Study 2: Evaluation with Disabled Coders -- 88

4.5.1 Version 2 -- 88

4.5.2 Participants -- 88

4.5.3 Apparatus -- 89

4.5.4 Procedure -- 89

4.5.5 Results --- 90

4.6 Conclusions -- 94

5 MULTIMODAL VOICE INTERACTION FOR CODE NAVIGATION ------------ 97

5.1 Introduction --- 97

5.2 Exploratory Study -- 99

5.2.1 Participants -- 99

5.2.2 Procedure -- 100

5.2.3 Findings --- 100

5.3 Research Prototype --- 102

5.3.1 Prototype Design --- 102

5.4 User Study --- 107

5.4.1 Research Question: --- 108

5.4.2 Participants -- 108

5.4.3 Apparatus -- 108

5.4.4 Procedure -- 108

5.4.5 Measures -- 112

5.4.6 Results --- 112

5.5 Conclusions -- 115

6 DISCUSSION AND LIMITATIONS --- 118

6.1 Main Contributions -- 118

6.2 Limitations --- 121

7 CONCLUSIONS AND FUTURE WORK --- 125

7.1 Future Work --- 128

 ix

7.2 Conclusion -- 131

8 APPENDICES --- 133

Appendix A-- 133

A.1 Pre-test Questionnaires – Multimodal Coding Environment --- 133

A.2 Tasks for the exploratory Study --- 135

A.3 Post-test Questionnaire --- 147

A.4 Pre-test Questionnaire – Formal Study --- 148

A.5 Post-test Questionnaire – Formal Study -- 149

Appendix B -- 150

B.1 Pre-test Questionnaires – Multimodal Voice --- 150

B.2 Tasks for exploratory study -- 151

B.3 Post-test Questionnaire -- 154

B.4 Pre-test questionnaire for Formal study --- 155

B.5 Tasks for Formal Study --- 156

B.5 Post -test Questionnaire --- 160

Appendix C-- 161

C.1 Pre-test questionnaire for Exploratory Study --- 161

C.2 Semi-Structured Questionnaire -- 162

C.3 Pre-test Questionnaire --- 163

C.4 Tasks for First Study -- 164

C.5 Post-test Questionnaire -- 166

9 REFERENCES -- 167

 x

LIST OF TABLES

Table 2.1: Example voice command and corresponding code generated via the SPEED tool by Begel

and Graham (2005)-- 25

Table 2.2: Verbal commands and the generated output in Serenade -------------------------------------- 28

Table 3.1: List of main vocal commands used in Voiceye. The “Vocal Commands” column contains key

words/terms that users actually speak. Underlined text in “Example Code / Utterances” column

includes example code to demonstrate how each speech command functions. The action performed

through each speech command is visualized in the “Example Output” column. ∎ denotes the position

of the cursor. * denotes new commands added after the first user evaluation. -------------------------- 49

Table 3.2: Participant Details - WD =Web development; SRT =Speech Recognition Tools; EG =Eye

Gaze; IDE =Integrated Development Environment; AT =Assistive Technology; VSCode = Visual Studio

Code -- 61

Table 4.1: Frequently used commands during the exploratory study ------------------------------------- 74

Table 4.2: List of main vocal commands used for fixed command grammar. “Vocal Commands”

column contains keywords/terms that are spoken by users. Underline text in the “Speech

Commands” column denotes the optional values, whereas the bold text denotes the compulsory

value. The action performed through each speech command is visualized in the “Example Output”

column. ∎ denotes the position of the cursor. --- 78

Table 4.3: List of NL intents and example utterances used to train the NL model. * indicates the new

commands added after the first evaluation. -- 80

Table 4.4: Participant Details - CD=Coding Experience; AT =Assistive Technology; CL =Coding

Languages; JE =JavaScript Experience; IDE =Integrated Development Environment; SA=Session

Attended; VSCode = Visual Studio Code --- 89

Table 5.1: Participant information for the exploratory study- AT =Assistive Technology; CL =Coding

Languages; CE =Coding Experience; IDE =Integrated Development Environment; RSI=Repetitive

Strain Injury; VSCode = Visual Studio Code --- 100

Table 5.2: List of features along with example vocal commands used for navigation. --------------- 107

Table 5.3: Participant Details - CD=Coding Experience; AT =Assistive Technology; CL =Coding

 xi

Languages; CE =Coding Experience; IDE =Integrated Development Environment; RSI=Repetitive

Strain Injury; SUS=System Usability Score; VSCode = Visual Studio Code ------------------------------ 111

Table 7.1: A summary of user studies across each study; RSI=Repetitive Strain Injury; CP: Cerebral

Palsy; NDD =Non-disabled developers; DPI=Developers with Physical Impairments --------------- 127

 xii

LIST OF FIGURES

Figure 2.1: Microsoft Natural keyboard, an example of a Fixed-split keyboard. Image courtesy of

McLoone et al. (2010) --- 14

Figure 2.2: A vertical mouse from Penguin Ambidextrous. Image courtesy of Penguin (2021) ------ 14

Figure 2.3: (a) A sample visual scanning interface activated via switch scanning. The yellow box

moves vertically across the lines until a selection is made, followed by a gliding green box moving

horizontally across the highlighted line until a letter is selected, (b): two switches. Image courtesy of

Elsahar et al.(2019) --- 16

Figure 2.4: ASR Process. Image courtesy of Rosen and Yampolsky (2000) ------------------------------- 18

Figure 3.1: A system diagram of the Voiceye application -- 46

Figure 3.2: Screenshot of the Voiceye interface when the speech recogniser has been activated. The

spinner indicates that the recogniser is listening for speech input. The user has issued the text “type

freelance developer” in this example. The user’s gaze also hovers over the “w” key (resulting in visual

feedback through the red background). --- 48

Figure 3.3: A participant performing the usability evaluation.-- 52

Figure 3.4: The design used for the follow-up study -- 62

Figure 3.5: The HTML script on the left is written by P1, while P2 coded the CSS script on the right

--- 65

Figure 4.1: JavaScript code snippet used for the exploratory study containing syntax errors (green

highlighted text denotes where errors are located). -- 72

Figure 4.2: JavaScript code snippet used for the exploratory study where the errors are not present.

--- 72

Figure 4.3: Pseudocode used in the exploratory study --- 73

Figure 4.4: A screenshot of the code editor - text displayed next to the microphone icon highlights the

latest recognised speech command issued to the system -- 77

Figure 4.5: Architecture of the Natural Language System; The user voice input is converted into text

and is passed to Wit.ai, which generates Intents and entities in a JSON format and is passed to the

prototype. The prototype then checks the intent to trigger appropriate coding actions. -------------- 79

 xiii

Figure 4.6: A screenshot of the task interface utilised in the study – text displayed next to the

microphone icon highlighted the latest recognised speech command issued to the system. The code

used for tasks is displayed in the main coding area, while the area below demonstrated how study

tasks were presented to users. -- 92

Figure 5.1: The editor interface – at the top of the interface, a red spinner icon indicates that the

recogniser is listening. The “go to line 7” voice command has been issued by the user, and the

corresponding action has been performed. -- 103

Figure 5.2: Find all references utilised in Visual Studio Code --- 105

Figure 5.3: Find all references tailored for multimodal voice control ----------------------------------- 105

Figure 5.4: The 'find/search' function in Visual Studio Code. The user has entered the term 'editor'

where 16 occurrences are found - the user has to press the 'enter' key to move to the desired position.

 -- 106

Figure 5.5: Implementation of the 'Find' feature for multimodal voice interaction. ------------------ 106

Figure 5.6: Implementation of the ‘go to definition’ feature. The cursor was initially at line 152 and

placed over the variable “utterance” - the verbal command 'definition' has been issued resulting in

the cursor jumping to line 4. -- 107

Chapter 1: Introduction

 Bharat Paudyal – March 2023 1

1 INTRODUCTION

Software development encompasses multiple activities including designing, writing,

understanding, testing, editing, and debugging code (Snell, 2000; LaToza et al., 2006;

Minelli et al., 2015; Rosenblatt et al., 2018). Developers typically use Integrated

Development Environments (IDEs) as a tool to support the writing and management of code

(e.g. Visual Studio Code (2023), Brackets (2023) and Atom (2023)). These applications

provide a wide range of standard features such as syntax highlighting, code navigation,

autocompletion, refactoring, and versioning to facilitate developer workflows and manage

large codebases (Albusays et al., 2017; Chi and Naik, 2019). These IDEs require the use of

traditional input devices (i.e. a mouse and keyboard) to control applications and support

interactions tailored for these tools. However, this can cause significant accessibility issues

for people with physical disabilities who may have difficulty controlling these

devices (Hubbell et al., 2006; Delimarschi et al., 2014). This can result in disabled people

being excluded from development work and the opportunity to have technical careers in this

area (Wagner and Gray, 2015; Rosenblatt et al., 2018; Marshall, 2022).

To address broader accessibility issues associated with controlling digital applications,

developers typically require the use of different assistive technologies to control the

interface (Creed, 2018; Wong, 2020). In particular, people with physical impairments

commonly use tools such as mechanical switches (Anson, 1994; Lancioni et al., 2008; Di

Ferrante and Bouchard, 2020; Elsahar et al., 2021), head tracking (Haque et al., 2021), voice

control (Desilets, 2001; Wagner and Gray, 2015; Joshi and Bein, 2020; Aziz et al., 2022),

and eye gaze interaction (Bednarik and Tukiainen, 2006; Bergstrom and Schall, 2014;

Sharafi et al., 2020; Casarini et al., 2020). These tools can make interactive experiences

accessible to varying levels, although each approach has different strengths and limitations

Chapter 1: Introduction

 Bharat Paudyal – March 2023 2

(Hu et al., 2011; Majaranta and Bulling, 2014; Borgestig et al., 2017). For instance, voice

control can present a number of advantages over traditional input methods such as a more

natural input paradigm (Gaikwad et al., 2010; Malik et al., 2021), a “hands-free” solution

(Dai et al., 2003), and more efficient interactions across a range of scenarios (Martin, 1989;

Hauptmann and Rudnicky, 1990; Ruan et al., 2016; Kim et al., 2019; Sims, 2022). However,

it also presents a range of known challenges such as recognition accuracy (Wagner and

Gray, 2015; Rosenblatt et al., 2018), performance issues in noisy environments (Suhm et

al., 2001; Krishna et al., 2019), and poor mapping to standard interface designs optimised

for mouse and keyboard input (e.g. in terms of being impractical for pointing actions

(Rozado et al., 2016)).

Similarly, gaze input can present a number of accessibility benefits such as supporting

complete application control via eye movements alone (Casarini et al., 2020; Lewien, 2021),

as well as facilitating efficient target acquisition and selection of interface targets (Porta and

Ravelli, 2009; Mott et al., 2017; Kumar et al., 2020). However, limitations also include

challenges associated with selecting small targets (Miniotas et al., 2006; Biswas and

Langdon, 2011) and the well-known Midas touch issue where each fixation on an interface

target can activate selection of that object (leading to unintentional selections) (Jacob and

Karn, 2003; Rajanna and Hammond, 2018). Furthermore, mechanical switches (e.g. large

portable buttons) can make interfaces more accessible for people with severe motor

impairments, although this can also be a tedious and time-consuming method for controlling

digital systems (Kennedy et al., 2000; Krausz et al., 2003; Elsahar et al., 2019, 2021). In

terms of IDEs, each of these assistive tools presents opportunities to make coding more

accessible for people with physical impairments (Soto Munoz et al., 2019; Joshi and Bein,

2020). Whilst some initial work has explored the feasibility of these input devices in this

domain (Begel and Graham, 2005; Wagner and Gray, 2015; Rosenblatt et al., 2018), we still

lack a deeper understanding around the potential of these methods to support disabled

developers.

In particular, a multimodal approach combining different types of tools could present

interaction benefits through utilising the strengths of each input method (Beelders and

Blignaut, 2010; Van Der Kamp and Sundstedt, 2011; Creed et al., 2020; Sengupta et al.,

2020)– for instance, the use of speech input can help in addressing issues associated with

the selection of small targets using gaze, while typing code via gaze can help in reducing

Chapter 1: Introduction

 Bharat Paudyal – March 2023 3

speech misrecognition issues. Additionally, this approach provides developers with the

ability to seamlessly transition between different modes according to their personal

preferences (Rozado et al., 2016; Sengupta et al., 2018). However, there has again been a

lack of work exploring the potential of this approach to support the writing, editing, and

management of code. This is a particularly pertinent area given the rise of more hybrid and

remote working practices resulting from the Covid-19 pandemic (Gratton, 2021; Ateeq,

2022). This therefore represents a crucial and timely area requiring further work to

understand better the potential of assistive technologies and alternative input methods to

make coding more accessible for people with physical impairments.

1.1 Research Questions

To investigate the potential of alternative methods to support disabled coders, this thesis

initially explores the use of a multimodal approach (i.e. a combination of speech, gaze, and

mechanical switches) to support the writing and editing of code. The rationale for initially

focusing on these specific input devices is elaborated on further in Chapter 2, although

crucial reasons relate to the increased availability and potential of these methods to support

people with physical impairments. Results from this work identified some interaction

challenges associated with eye gaze interaction in this context, so the research focus

subsequently shifted to a multimodal voice and switch interaction technique. In particular,

an emphasis is placed on utilising a multimodal voice and switch approach to compare

natural language coding methods against using a fixed grammar comprised of predefined

vocal commands. The motivation for focusing on these two approaches was driven by a lack

of comparative work exploring the strengths and limitations of both approaches in the

literature. Results from this work identified specific interaction challenges and opportunities

associated with code navigation. This area forms the thesis's final focus, where a multimodal

voice and switch approach is utilised to explore the feasibility of different code navigation

features. The following research questions guided the focus of the work conducted:

RQ1: How can multimodal approaches (utilising speech, gaze, and mechanical

switches) support people with physical impairments in writing, editing, navigating and

selecting code?

Chapter 1: Introduction

 Bharat Paudyal – March 2023 4

Speech recognition and eye gaze interaction have improved significantly in recent years

with both approaches being used independently to support disabled users with software

development activities (Begel and Graham, 2005; Radevski et al., 2016; Rosenblatt et al.,

2018; Shakil et al., 2019). Whilst each of these technologies can present accessibility

benefits, both interaction approaches also present limitations (e.g. speech recognition issues

(Begel and Graham, 2005; Wagner and Gray, 2015; Kim et al., 2019)) and challenges with

the selection of small targets via gaze (Bates and Istance, 2002; Miniotas et al., 2006;

Skovsgaard et al., 2010; Creed et al., 2020). Initial work has explored the combination of

gaze and speech in different domains (Castellina et al., 2008; Van Der Kamp and Sundstedt,

2011; Rozado et al., 2016; Sengupta et al., 2018), which has confirmed that the limitations

of each method can be minimised through the complementary strengths of the other input

modality (Beelders and Blignaut, 2010; Elepfandt and Grund, 2012; Sengupta et al., 2020).

However, it remains unclear whether the combination of these modalities can potentially

present a viable approach to support development work for disabled developers.

Furthermore, other assistive devices such as mechanical switches are also widely used by

people with physical impairments (Lancioni et al., 2008; Folmer et al., 2011), yet it is

unclear whether the addition of a further modality can also present interaction benefits.

Additional work is therefore required to investigate the combination of speech, gaze, and

mechanical switches within the software engineering field to support developers with

physical impairments.

RQ2: To what extent can natural language and fixed grammar voice coding

approaches support the writing, editing, navigation, and selection of code?

The majority of studies that have explored the feasibility of voice-controlled approaches to

support coding activities have utilised a fixed grammar approach (i.e. a predefined set of

vocal commands) (Wagner and Gray, 2015; Rosenblatt et al., 2018; Soto Munoz et al.,

2019). Whilst this type of approach can make coding activities more accessible, it can also

present a range of interaction challenges including issues around the cognitive load

associated with the recall of voice commands (Good and Howland, 2017; Van Brummelen

et al., 2020b). Alternatively, voice-controlled natural language approaches have recently

been investigated and explored in domains such as task management (Sarmah et al., 2020),

the creative sector (Srinivasan et al., 2019), and home automation systems (Pradhan et al.,

2018; Lau et al., 2018; Ramadan et al., 2021). This approach can potentially address issues

Chapter 1: Introduction

 Bharat Paudyal – March 2023 5

associated with the recall of commands, although it can present unique challenges around

systems being able to understand and interpret a user’s intent appropriately. Both

approaches have been explored independently, yet it remains unclear which approach might

be optimal for performing coding activities. Moreover, no work to date has examined the

viability of natural language approaches with disabled developers, so it remains unclear

whether this is feasible for this target audience. Further work is therefore required to better

understand the strengths and limitations of fixed grammar and natural language methods, as

well as disabled developers’ preferences in relation to these two methods.

RQ3: How can a multimodal speech and switch interaction approach facilitate efficient

code navigation?

Code navigation has been shown to constitute 35% of development time (Ko et al., 2006)

with coders requiring efficient navigation tools to support syntax understanding, locate

specific code snippets, and for debugging purposes (Bragdon et al., 2010; Piorkowski et al.,

2013; Baker et al., 2015; Shakil et al., 2019). Initial research utilising voice-based coding

has investigated simple inline code navigation features such as moving to specific line

numbers and cursor positioning within a line (Begel and Graham, 2005; Rosenblatt et al.,

2018). However, there are also a range of commonly used navigation features used within

mainstream IDEs such as “find all references”, “go to definition”, and “find”, which have

not yet been explored in the context of interaction approaches utilising voice input. It

remains unclear whether these approaches can be tailored for multimodal voice and switch

control to support efficient code navigation via alternative methods. Further research is

therefore required to investigate the potential of these features to support developers with

physical impairments in navigating code.

1.2 Thesis Contributions

The primary contribution of this thesis is a more thorough understanding around the

strengths and limitations of alternative interaction methods to support people with physical

impairments in performing coding activities such as writing, editing, and navigation of

syntax. The main contributions are detailed below:

Chapter 1: Introduction

 Bharat Paudyal – March 2023 6

• The development of a novel multimodal inclusive coding environment utilising a

combination of voice control, eye gaze input, and mechanical switches for writing,

editing, and navigating HTML and CSS code [Chapter 3].

• The first empirical investigation into the feasibility of a multimodal approach integrating

speech, gaze and switch input to support people with physical impairments. Results

found that non-disabled users could complete a series of standard coding tasks and

perceived the multimodal input approach to be intuitive and simple to operate. A follow-

up evaluation with developers who have physical impairments validated that they could

also successfully complete a range of common coding activities via the prototype

[Chapter 3].

• An exploratory study investigating the types of speech commands developers would

prefer to use when writing, editing, and navigating code via speech input [Chapter 4].

• The development of two multimodal speech and switch interaction approaches to

support developers with physical impairments in writing and editing code – one utilising

a fixed grammar (i.e. predefined vocal commands) and another using natural language

input [Chapter 4].

• The first empirical investigation comparing fixed grammar and natural language

approaches for coding activities. Results highlighted a similar level of performance

across both approaches with participants identifying natural language input as holding

significant future potential. A multi-session follow-up study with disabled developers

demonstrated that the natural language approach could facilitate the successful

completion of common coding activities [Chapter 4].

• A first exploratory study with disabled developers investigating existing voice-based

coding navigation strategies. A key theme to emerge was a current lack of voice support

and control for standard mainstream IDE navigation features (i.e. “Find all Reference”,

“Go to Definition”, and “Find”) [Chapter 5].

Chapter 1: Introduction

 Bharat Paudyal – March 2023 7

• The development of standard code navigation techniques tailored for multimodal voice

and switch input to support disabled developers (i.e. “Find all references”, “Go to

definition”, and “Find”) [Chapter 5].

• The first empirical evaluation of code navigation techniques such as “Find all

References”, “Go to Definition”, and “Find” operated via multimodal speech and switch

interaction. Results found that the navigation approaches were efficient and usable and

enabled developers with physical impairments to successfully complete a range of

standard navigation tasks [Chapter 5].

1.3 Thesis Structure

Chapter 2 provides an introduction to disability and an overview of different forms of

assistive technology used by people with physical impairments. Previous research focused

around speech, gaze, and switch input is then highlighted with a particular emphasis on work

that has investigated these methods for coding activities.

Chapter 3 presents research exploring the potential of a multimodal approach (i.e. a

combination of speech, gaze, and switches) to support developers with physical impairments

in writing code. Two user evaluations are presented highlighting the usability of this

approach with non-disabled and disabled participants.

Chapter 4 investigates the efficacy of two multimodal speech and switch coding approaches

– Fixed Grammar and Natural Language. An initial evaluation with non-disabled developers

is detailed, as well as a follow-up study with disabled developers where their experience in

using both methods is highlighted and discussed.

Chapter 5 presents research utilising a multimodal speech and switch interaction approach

to support code navigation activities. An initial exploratory study investigating disabled

developers’ existing code navigation approaches is explored. The results of this study

informed the design of a research prototype supporting a range of navigation approaches

(tailored for multimodal voice interaction). A study involving disabled developers to

evaluate this prototype is outlined with key findings highlighted.

Chapter 1: Introduction

 Bharat Paudyal – March 2023 8

Chapter 6 summarises all key findings and insights obtained across all three studies detailed

in Chapters 3-5. Limitations associated with the research conducted are also highlighted,

alongside a discussion of important future areas requiring further investigation.

1.4 Published Work

The following papers have been published as part of this thesis.

• Paudyal, B., Creed, C., Frutos-Pascual, M. and Williams, I. (2020) Voiceye: A

Multimodal Inclusive Development Environment. In Proceedings of the 2020 ACM

Designing Interactive Systems Conference (pp. 21-33). [Core A]

• Paudyal, B. (2020) Assistive Interaction Techniques to Support Disabled Developers.

In Proceedings of the 33rd International BCS Human Computer Interaction Conference

(BCS HCI 2020) (pp. 67-69).

• Paudyal, B., Creed, C., Williams, I. and Frutos-Pascual, M. (2022) Inclusive Multimodal

Voice Interaction for Code Navigation. In Proceedings of the 2022 International

Conference on Multimodal Interaction (pp. 509-519). [Core A] [Best Demo Award]

• Paudyal, B., Creed, C., Williams, I., and Frutos-Pascual, M. Multimodal Voice Coding

for Developers with Physical Impairments. International Journal of Human-Computer

Interaction [SJR Q1 (Human Factors and Ergonomics) – Impact Factor: 4.920] –

In Submission

1.5 Covid-19

This research was completed before and during the COVID-19 pandemic. Research studies

and data collected during and after the pandemic followed COVID-19 safety guidelines.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 9

2 BACKGROUND AND RELATED WORK

This chapter reviews literature related to disability and assistive technology, emphasising

speech, gaze, and multimodal input as interaction approaches to assist people with physical

impairments. To establish the research context, disability is first discussed and defined,

followed by an overview of the various technologies employed by people with physical

impairments to address accessibility barriers. This is followed by an exploration of research

investigating the efficacy of speech interaction in various domains with a particular

emphasis on voice coding. Similarly, research examining the use of gaze interaction is then

introduced with specific coverage of studies that have examined the use of this method to

support coding activities. Research investigating the combination of speech and gaze as a

multimodal interaction approach is then highlighted and discussed. Finally, the chapter

concludes with a summary of key gaps in the literature where further research is required.

2.1 Disability (Physical Impairment)

Disability is regarded as a universal public health issue with approximately 15% of the

global population experiencing some form of disability (Disability and Health, 2022).

Recent studies estimate that 22% (14.6 million) of the United Kingdom is affected by some

form of disability leading to challenges in their day-to-day activities (Gov UK, 2021).

Common forms of disability include physical (Raghavan, 2015; Madaan and Gupta, 2021),

visual (Morrison and McKenna, 2002; Hill-Briggs et al., 2007), hearing (Crow, 2008), and

cognitive impairments (Oliver and Barnes, 2012; Sheehan and Hassiotis, 2017; Baker,

2022). The World Health Organisation’s (WHO) International Classification of Functioning

(WHO, 2013) defines disability as a “dynamic interaction between a person’s health

condition, environmental factors, and personal factors”. Similarly, the Equality Act (2010)

defines disability as “a physical or mental impairment that has a ‘substantial’ and ‘long-

term’ negative effect on the person’s ability to do normal daily activities”.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 10

The research detailed in this thesis focuses primarily on new assistive approaches to support

people with physical impairments affecting the control and movement of their upper body

limbs. Physical impairment can be defined as an impairment of body structures such as a

significant deviation in the nervous system or structures related to movement (Raghavan,

2015). Physical impairments caused by a congenital condition (e.g. cerebral palsy), an

illness or disease affecting the brain, nerves, or muscles (e.g. multiple sclerosis, amyotrophic

lateral sclerosis), an injury to the brain, spine, or limb (e.g. spinal cord injury, stroke), or

limb loss (e.g. amputation) can all have a negative impact on an individual's ability to

perform daily tasks, leading to challenges associated with mobility, manual dexterity, and

speech (Becker et al., 1997; Hill-Briggs et al., 2007). There is a broad spectrum of conditions

that can result in physical impairments – for instance, cerebral palsy is a

neurodevelopmental condition attributed to non-progressive issues in the developing fetal

or infant brain and is associated with a group of disorders associated with movement,

posture, and speech development (Bax et al., 2005). Symptoms can vary significantly

(ranging from mild to severe) - for instance, some individuals have trouble walking and

sitting, while others may have severe mobility and speech impairments, thereby affecting

their communicative development (Evans et al., 1990; Geytenbeek et al., 2010; Ferreira et

al., 2012).

Another common form of physical impairment can result from Repetitive Strain Injury

(RSI) that develops gradually and includes symptoms such as burning, stiffness, pain,

cramping, or numbness in the fingers, hand, or wrist (Necas, 1996; Yassi, 1997). For

example, studies have highlighted how RSIs can develop from the prolonged use of a mouse

and keyboard, exacerbated by downward extension or continuous pressure on the wrist

(Arnold et al., 2000; Snell, 2000; Desilets, 2001; Begel and Graham, 2006). Carpal tunnel

syndrome is also similar to RSI and includes symptoms such as numbness and tingling in

the thumb, index finger, and middle finger (Yassi, 1997; Arnold et al., 2000). A further

example of a condition resulting in physical impairments is motor neuron disease (MND) -

a progressive disorder in which degeneration of upper and lower motor neurons leads to

progressive weakness of the bulbar, limb, thoracic, and abdominal muscles (Leigh and Ray-

Chaudhuri, 1994). MND includes symptoms such as the loss of speech communication,

facial expression, and/or hand gestures, as well as lack of balance and difficulty walking

due to muscle weakness (Miller et al., 2012; Mackenzie et al., 2016). There are also a wide

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 11

range of other conditions that can affect physical abilities such as limb amputation

(Jamieson et al., 2021; Zaheer et al., 2021), arthritis (Mease et al., 2018), epicondylitis (Lai

et al., 2018; Lenoir et al., 2019), multiple sclerosis (Oh et al., 2018; Dobson and Giovannoni,

2019), Parkinson’s disease (Adams et al., 2017; Blauwendraat et al., 2020), and muscular

dystrophy (Yiu and Kornberg, 2015; Duan et al., 2021).

Disability can have significant societal implications - for instance, studies have highlighted

that disabled people are more likely to experience social exclusion and poverty (Lindsay,

2011; Raja, 2016). This can make them highly reliant on others, hinder their personal

development, and negatively impact their quality of life (Lancioni et al., 2008).

Additionally, disabled people experience significant barriers and challenges in terms of

employment opportunities and are under-represented in the workforce (Bell and

Heitmueller, 2009; Whitehead et al., 2009; Lindsay, 2011; Hogan et al., 2012; Vornholt et

al., 2018). Efforts have been undertaken to increasingly include disabled people in the labour

market – for instance, the UK Government passed the Disability Discrimination Act in 1995,

intending to end discrimination against disabled people by protecting employees and

providing greater access to goods, facilities and services (Shaw and Coles, 2004; Pope and

Bambra, 2005; Bell and Heitmueller, 2009). Furthermore, technological advancements

(such as mobile applications and personal computers) enabled disabled people to enter

employment and work professionally (Hogan et al., 2012; Macdonald and Clayton, 2013;

Graham et al., 2018). However, despite these technological advancements increasing

employment opportunities for disabled people, previous research has identified barriers

associated with the “digital divide” when accessing work opportunities that can lead to

exclusionary outcomes (Pieper et al., 2003; Macdonald and Clayton, 2013; Mavrou and

Hoogerwerf, 2016).

Moreover, studies have highlighted that people with impairments are frequently overlooked

during the design phase of systems due to the misconception that doing so requires

additional effort, time, complexity, and expense. This results in tools that are not accessible

to these user groups, thus presenting interaction barriers resulting in them being excluded

from using mainstream applications (Mankoff et al., 2005; Beelders and Blignaut, 2010;

Abualghaib et al., 2019). Common digital technologies such as computers, tablets, and other

mobile devices typically require the dexterity of human hands to control them, which can

present significant challenges for people with physical impairments (Desilets, 2001; Begel

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 12

and Graham, 2005; Rosenblatt et al., 2018; De León Cordero et al., 2021). Similarly, these

tools present substantial obstacles when performing actions such as clicking elements and

focusing a mouse over small interface targets within digital experiences (e.g. buttons, icons,

links) (Giakoumis et al., 2014; Valencia et al., 2017). Furthermore, prolonged use of input

devices such as a mouse and keyboard is associated with an increased risk of RSI and carpal

tunnel syndrome (CTS), which in turn can also present accessibility challenges (Arnold et

al., 2000; Snell, 2000; Begel and Graham, 2006).

These factors can lead to the exclusion of disabled individuals from development work and

the opportunity to pursue technical careers (Wagner and Gray, 2015; Rosenblatt et al.,

2018). It is hard to quantify the exact number of developers with physical impairments,

although the percentage of developers who self-reported having some form of physical

impairment in the 2022 Stack Overflow survey (StackOverflow, 2022) was less than one

percent (in relation to 70,000 responses from developers). According to the US National

Bureau of Labour Statistics (Labour Statistics, 2021), only about 3% of workers in the

computing and mathematical professions have a disability, compared to the US Census

Bureau's estimate of approximately 20.6% of the general population. These figures suggest

that developers with physical impairments remain underrepresented in the software

development industry (Rosenblatt, 2017; Marshall, 2022).

Research has explored different approaches to make digital systems accessible for people

with impairments resulting in the development of commercial products and research

prototypes. For instance, research has explored interaction techniques such as eye trackers,

speech recognition, motion tracking, and gesturing as alternative input methods, which can

have a profoundly positive effect on the daily lives of disabled people (Hurst and Tobias,

2011; Creed, 2018; Petrie et al., 2018). The following section provides a general overview

of assistive technologies commonly utilised by people with physical impairments.

2.2 Assistive Technologies

Assistive technology (AT) is typically defined as a device, product, or piece of equipment

acquired commercially off the shelf, modified or customised to support an individual’s

functional capabilities, thus enabling them to perform tasks they might not be able to do

otherwise (Brown, 1992; Wilcox et al., 1999; Hurst and Tobias, 2011; Bennett et al., 2018;

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 13

Creed, 2018; Gatchalian, 2019). Assistive technologies for people with physical

impairments can range from “low tech” physical solutions (e.g. switches, magnifiers, and

walking sticks) to “high-tech” digital applications offering alternative methods to control

systems (i.e. speech recognition, touch technology, eye gaze interaction) (Reichle, 2011;

Iacono et al., 2013). The following subsections provide a high-level overview of key

assistive technologies utilised by people with physical impairments (including benefits and

limitations) before covering speech and gaze interaction in further detail (which forms the

core focus of technology utilised in this thesis).

Alternative Keyboard and Mouse Devices: Researchers have explored adjustments to

conventional keyboard designs to make them more adjustable, ergonomic and effective for

supporting people with physical impairments (Brodwin et al., 2004; Henzen and Nohama,

2016; Nagendran et al., 2021). Several ergonomic keyboard designs, such as split and tented

keyboards, negative slope devices, and keyboards with altered key positions, have been

studied to reduce the physical demands of muscle tension during typing (Figure 2.1) (Smith

et al., 1998; Marklin and Simoneau, 2001). Researchers have also investigated how virtual

keyboards can be operated using additional input devices such as eye gaze, touch and head

control (Henzen and Nohama, 2016). Studies have highlighted that these physical and

virtual keyboards relieve the burden on shoulders and neck, provide more comfort, and

decrease fatigue in arms and hands while typing (Lincoln et al., 2000; Gür et al., 2020;

Nagendran et al., 2021). Similarly, studies have explored alternative mouse-pointing

devices such as a trackball, touchpad, and vertical mouse as interaction approaches for

people who may experience challenges using traditional designs (Figure 2.2) (Lee, 2005;

Ziefle, 2019).

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 14

Figure 2.1: Microsoft Natural keyboard, an example of a Fixed-split keyboard. Image courtesy of

McLoone et al. (2010)

Studies have highlighted that these devices decrease shoulder exertion, neck and shoulder

muscle activity, and shoulder elevation (Bruno Garza and Young, 2015). Despite these

benefits, research has highlighted several issues associated with the use of these devices -

for instance, prolonged overuse of the tools and adopting a certain sitting posture can cause

tiredness and can also lead to other types of injuries (Tiric-Campara et al., 2014; Mani,

2018).

Figure 2.2: A vertical mouse from Penguin Ambidextrous. Image courtesy of Penguin (2021)

Touch Interaction: With the advancement of touch-enabled devices such as smartphones

and tablets, touch has become an essential interaction approach as it can provide a natural

input experience through the manipulation of onscreen objects without the direct use of any

intermediary devices (Guerreiro et al., 2010; Mott et al., 2016; Gheran et al., 2018). The

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 15

accessibility of this input method has also been investigated with users who have physical

impairments (Kane et al., 2009; Anthony et al., 2013) - for instance, studies have highlighted

that touch-enabled devices can facilitate faster interactions than a mouse (Anthony et al.,

2013; Findlater et al., 2017). Additionally, digital buttons on a screen require less force to

tap than physical buttons, resulting in less fatigue and pain (Irwin and Sesto, 2012; Naftali

and Findlater, 2014). However, whilst touch can potentially make the interface easier to

control, it also presents accessibility issues – for example, users typically have to suspend

an arm, extend a finger and slide fingers across the screen (to perform swipes and strokes),

which can be problematic for people with limited motor control (Mott et al., 2016; Gheran

et al., 2018). Similarly, Findlater et al. (2017) highlighted that people with physical

disabilities have a much higher error rate when making selections that involve touch, whilst

Trewin et al. (2013) reported that people might encounter interaction challenges such as

activating other features by accident when using touch (e.g. zooming instead of tapping).

Head Tracking: Researchers have also explored using head-tracking as an interaction

method (Zapala and Balaj, 2012; Rodrigues et al., 2017). This approach has received

significant attention over the past decade as detecting head movements can be easily

captured through standard video cameras (Al-Rahayfeh and Faezipour, 2013; Sahadat et al.,

2018; Elsahar et al., 2019). Numerous studies have examined the use of head tracking for

controlling digital applications with a particular emphasis on cursor control (Machado et al.,

2013; Rodriguez-Cartagena et al., 2015; Sahadat et al., 2018). Similarly, studies have also

investigated the use of head tracking to facilitate navigation, obstacle recognition and

automatic movement within a wheelchair (Manogna et al., 2010; Haque et al., 2021).

However, whilst head tracking can make interface control somewhat accessible, there are

also unique challenges associated with this technology, such as the inability to make

continuous head movements or to exert sufficient control when fine movements are required

(Ossmann et al., 2012). Similarly, people with physical disabilities may have limited neck

motion and, as a result, a reduced ability to move the head in one or more directions (Karpov

et al., 2004).

Mechanical Switches: Switches can range from simple physical buttons to head, foot or

breath-controlled devices that can be activated more easily by people with limited motor

control via applying pressure on a large button (e.g. using hands, fingers, arms, or feet)

(Wilcox et al., 1999; Lancioni et al., 2008; Geytenbeek et al., 2010; Ntoa et al., 2014;

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 16

Standen et al., 2014). Switch-based interaction typically employs an indirect selection

approach (also known as a scanning process) which involves intermediary steps for making

selections within an interface. During the scanning process, items are highlighted in an

application (for a predetermined amount of time), and the user can select their desired

highlighted item by pressing the switch (Figure 2.3) (Biswas and Robinson, 2007; Folmer

et al., 2011). Studies have highlighted that mechanical switches can provide a more robust,

simple, and accessible input approach for people with physical impairments (Anson, 1994;

Tai et al., 2008). More recently, mechanical switches have been combined with other

modalities to make a multimodal interaction technique to support people with physical

impairments in creative tasks (Creed et al., 2020; Aziz et al., 2021, Aziz et al.,2022). In their

work, switches were combined with other input approaches such as speech and gaze to

control the interface. However, whilst switches can make some applications more

accessible, prolonged use has also been shown to cause mental and physical fatigue

(Kennedy et al., 2000; Krausz et al., 2003).

Figure 2.3: (a) A sample visual scanning interface activated via switch scanning. The yellow box moves

vertically across the lines until a selection is made, followed by a gliding green box moving

horizontally across the highlighted line until a letter is selected, (b): two switches. Image courtesy of

Elsahar et al.(2019)

Two further technologies that have been explored extensively in terms of alternative

interaction methods are speech and gaze interaction. Both have become more readily

available in recent years and can support accessible interfaces for people with physical

impairments. Furthermore, studies have started investigating the potential of these methods

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 17

to support coding and development activities which can benefit disabled coders. A more

detailed review of these specific technologies is provided below, alongside a review of

research on multimodal interfaces investigating the potential of combining both of these

technologies to provide more inclusive interactive systems.

2.3 Speech Interaction

2.3.1 Speech Recognition Technology

Research on automatic speech recognition (ASR) began in the 1950s when researchers at

Bell Labs developed a speech recognition system (Audrey) that accurately identified 10

English digits (Meng et al., 2012). Speech recognition gradually began to evolve during the

1960s to convert speech input into character strings or commands (Karat et al., 1999; Feng

and Sears, 2004; Gaikwad et al., 2010). Similarly, an initial investigation into continuous

speech recognition was conducted using dynamic phoneme tracking during this period

(Reddy, 1966). However, until the 1980s, ASR technology was expensive (Beelders, 2011),

had poor recognition accuracy (Hu et al., 2011), and supported a limited vocabulary size

(Schmandt et al., 1990).

The 1980s saw a flourish of activity in speech recognition technology with studies focusing

on developing robust systems capable of recognising a fluently spoken string of

concatenated words (Furui, 2010; Gulzar et al., 2014). A wide range of algorithms including

two-level dynamic programming, one-pass methods, and statistical approaches such as the

Hidden Markov Model (HMM) and N-gram were implemented to match concatenated

patterns of individual words (Juang and Furui, 2000; Furui, 2010; Meng et al., 2012). ASR

received increased public attention in the early 1990s, driven partly by a drop in the cost of

speech recognition software (Danis and Karat, 1995). The advancement of digital signal

processing, pattern matching and classification algorithms around this period also

contributed to the mass development of applications supporting speech input (Karl et al.,

1992).

Software such as Dragon Naturally Speaking and IBM Via Voice were available

commercially on desktop computers in the mid-1990s, allowing users to write letters,

compose emails, and work on spreadsheets by dictating text to the computer (Snell, 2000;

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 18

Begel and Graham, 2005; Hu et al., 2011). Continuous speech recognition was also

developed around this period, allowing users to speak at their natural pace and rhythm

(Koester, 2001). Since the 2000s, machine learning algorithms have been utilised to improve

the accuracy and reduction of recognition errors, resulting in speech technology maturing

considerably (Benkerzaz et al., 2019; Hannun, 2021; Malik et al., 2021). Today’s systems

(e.g. IBM Watson (2023), Google Speech (2023)) typically employ a standard procedure in

which captured speech input is firstly digitised, then compared against a developed

vocabulary, and finally translated and displayed (Freedman, 1995). This process comprises

three key steps: pre-processing, recognition, and communication (Rosen and Yampolsky,

2000). During pre-processing, the analogue speech waveform obtained from the human

speech input is transformed into a digital signal by sampling the signal at equally spaced

points in time (Rosen and Yampolsky, 2000; Trivedi et al., 2018). In the recognition phase,

algorithms such as Hidden Markov Models are utilised to identify the spoken input (Rosen

and Yampolsky, 2000), whilst in the communication phase the corresponding spoken text

is displayed back to the user (Figure 2.4).

Figure 2.4: ASR Process. Image courtesy of Rosen and Yampolsky (2000)

Systems utilising voice interaction have further gained in popularity over recent years,

culminating in the development of commercial voice-enabled international personal

assistants such as Amazon Alexa (2023), Google Assistant (2023), and Apple’s Siri (2023).

These products enable users to interact with devices using natural language speech to

perform a range of activities such as checking the weather, controlling home appliances or

streaming music, among others (Pradhan et al., 2018; Lau et al., 2018; Ramadan et al.,

2021). These significant advancements in speech recognition technology have also

facilitated research exploring new methods of interaction in controlling applications for

disabled people detailed in subsequent sections.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 19

2.3.2 Speech Interaction Research

Speech technology has been widely used to support accessibility and has been a popular

interaction approach for disabled people (Danis et al., 1994; Pradhan et al., 2018). In

particular, in terms of people with physical impairments, speech input presents an alternative

approach for users who may experience challenges in using traditional input devices such

as a mouse and keyboard (Dai et al., 2003; Sears et al., 2003; Pradhan et al., 2018; Aziz et

al., 2021, 2022). Research has focused on a range of key areas such as text entry via dictation

(De La Paz, 1999; Feng and Sears, 2004; McCrocklin et al., 2019), supporting web browsing

(Sarmah et al., 2020; Cambre et al., 2021), providing alternative cursor control methods

(Dai et al., 2003; Harada et al., 2006), facilitating target selection (Sears et al., 2002; Zhu et

al., 2009; Zhang et al., 2020), and for supporting creative work (Srinivasan et al., 2019; Kim

et al., 2019; Aziz et al., 2022). Previous work exploring the use of voice interaction has

primarily focused on three core approaches: grammar-based commands, natural language,

and non-speech sounds (outlined in the subsections below).

2.3.2.1 Grammar-Based Commands

Grammar-based methods typically enable users to issue commands from a predefined list

of possible commands in a strict and predefined way created through grammar rules

(Rudžionis et al., 2013; Derboven et al., 2014; Kim et al., 2019). These rules specify the

patterns and word sequences to be compared with vocal input (Wagner et al., 2012;

Ferracani et al., 2017)– for instance, the user has to utter the exact phrase from the

predefined list (e.g. if the command for moving a position right is “move right”, the voice

inputs “right move”, “right” will not trigger any actions). Researchers have implemented

the use of grammar-based or fixed commands in a wide range of applications – for instance,

prior work on cursor movement and target selection used fixed commands such as "left",

"right", "up", "down", "click", "stop" for controlling the motion of mouse (Karimullah and

Sears, 2002; Sears et al., 2003; Dai et al., 2003). Similarly, Aziz et al. (2021) utilised

predefined voice commands such as “left”, “right”, “up”, among others to support the

positioning of graphical objects within a design canvas. Sears et al. (2003) explored fixed

commands for dictating and editing text – their system utilised commands such as “select

x” (for selecting words) and “move right” to move the cursor one position right. Aziz et al.

(2022) developed voice-based approaches to manipulate the size of graphical objects within

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 20

a digital canvas. Users could issue fixed voice commands such as “big” and “small” to resize

objects from different directions based on transformation handles assigned to each object's

boundary. Elepfandt and Grund (2012) also investigated the use of short voice commands

such as “select” and “drop” for object manipulation and highlighted that participants prefer

fixed voice commands with fewer words and syllables.

 Kim et al. (2019) developed an extension of Adobe Photoshop that utilises short vocal

commands and touch input for selecting the tools and menus, changing parameters and

manipulating the document layers. For example, users are able to click the button on their

stylus pen and issue vocal shortcuts such as "watercolour brush" to select the relevant brush

and again can issue a command such as "size 50" or "50" to change the brush size. Hu et al.

(2011) used predefined commands (such as “select book” and “move up five lines”) for

interacting to perform tasks such as editing text and web browsing. Moreover, Peixoto et al.

(2013) used predefined commands to control a powered wheelchair through commands such

as “right”, “left”, “forward”, and “reverse”.

Studies have explored the possibilities of creating predefined grammars tailored to a

disabled individual’s specific needs– for instance, Cavalcante and Lorens (2015) designed

a system that enables users to customise their own grammars for triggering actions such as

“I am in the park”, “up”, “down”. The approach was evaluated using a person with physical

impairments. Similarly, Talon (2023) allows users to customise grammar for performing a

range of activities, including coding - for example, to type the word "dad", the user can

utilise chained custom commands such as “drum air drum”.

Overall, studies have highlighted that using predefined commands has higher recognition

accuracy as they are easy to train due to the limited vocabulary and grammar (Rayner et al.,

2005; Rudžionis et al., 2013; Cavalcante and Lorens, 2015). Whilst a predefined grammar

can potentially support user interactions, studies have highlighted some negative aspects

such as users having to learn and recall commands (thus increasing cognitive load) and

challenges in recognising different accents resulting in users having to repeat the same

command on multiple occasions (Wagner and Gray, 2015; Good and Howland, 2017; Kim

et al., 2019; Van Brummelen et al., 2020b).

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 21

2.3.2.2 Natural Language Interaction

Research has also started investigating whether natural language commands can provide a

more intuitive and effective approach for interacting with digital applications (Srinivasan et

al., 2019; Van Brummelen et al., 2020b; Cambre et al., 2021). Researchers have highlighted

that natural language commands are more flexible and often provide users with a higher

degree of freedom in issuing commands to a speech engine (Rudžionis et al., 2013; Sarmah

et al., 2020). In particular, recent significant improvements in natural language

understanding and speech recognition have increased the development of voice-enabled

technologies such as chatbots, search engines and home automation platforms (Porcheron

et al., 2018; Van Brummelen et al., 2020b; Song et al., 2022). Voice-enabled intelligent

personal assistants such as Amazon Alexa (2023), Google Assistant (2023), and Apple Siri

(2023) are also widely available within smart devices and facilitate more natural

conversations between users and intelligent systems (Cambre and Kulkarni, 2019; Clark et

al., 2019). Similarly, Stahl and Laub (2017) developed a voice-enabled system that enables

users to control the lights, telephone, television, computer and front door within their home

environment. An evaluation of the system with participants who have physical impairments

found the system to be accessible and usable, as well as empowering users to manage their

daily activities. Similarly, Kowalski et al. (2019) explored the potential of natural language

voice interactions with older adults in the context of smart home technology. Results

highlighted positive perceptions from participants as the natural language approach enabled

participants to issue commands with less training.

Sarmah et al. (2020) developed a tool that allows users to control different web applications

via natural language voice input through facilitating the adding and modifying of calendar

events (i.e. “move this [event] to next week”, “shift Group Meeting to Friday”) and

controlling music players (e.g. “adding all of these to the playlist”). Participants in a user

evaluation perceived the usability of the system positively as they found it was able to

accurately understand their natural language input, thus resulting in it being simple and easy

to learn. Similarly, Cambre et al. (2021) investigated the use of natural language voice

commands to allow users to navigate the web (e.g. “page scrolling”, “moving backward and

forward”) and browser utilities (e.g. “opening email/calendar”, “bookmarking pages”)

through the Firefox Voice browser extension. During the initial deployment phase (July

2020), more than 12,000 users installed the tool in their browser, although usage declined,

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 22

and it was decommissioned in February 2021. More widely, Jung et al. (2019) designed a

voice-enabled interactive educational programming game (TurtleTalk) for children,

allowing them to use natural voice input to move the turtle to a target location. While moving

the turtle, TurtleTalk utilised programming concepts such as sequencing (e.g. “move

forward and then turn left”) and iteration (e.g. “move forward six times”). Initial exploratory

research with children highlighted that voice interaction with the tool led children to be more

immersed in the experience and also found the interaction to be easy and useful.

Whilst studies have started to highlight the potential of natural language voice interaction

between users and intelligent systems, researchers have also identified challenges where the

use of natural commands (without providing context) can lead to users “guessing”

commands, thus leading to interpretation errors and frustration (Rudžionis et al., 2013;

Srinivasan et al., 2019). Additionally, some of the voice commands issued can be personal

(i.e. user asking the system to tell their name, their age) and complicated, which may pose

system comprehension challenges, resulting in user disappointment and dissatisfaction

(Luger and Sellen, 2016; Bentley et al., 2018; Zargham et al., 2022). Studies have suggested

various approaches to limit these issues – for instance, Srinivasan et al. (2019) implemented

a hybrid approach (i.e. combination of natural language and fixed grammar), where users

were displayed with contextually relevant examples to make them aware of the commands

they can issue within an experience. Results highlighted positive responses from

participants, although issues such as speech misrecognition and misinterpretation resulted

in interaction challenges. Similarly, studies have explored error-handling approaches where

the system provides an appropriate response if a user command is not recognised (Bohus

and Rudnicky, 2008; Pearl, 2016). Zargham et al. (2022) also implemented an anticipatory

error handling approach within a speech-controlled video game, where the system picks the

best available command match if it is unable to recognize the speech commands issued by

a user.

2.3.2.3 Non-Verbal Commands

Studies have also explored non-verbal speech commands as an interaction approach for

controlling digital applications. For instance, Igarashi and Hughes (2001) examined several

approaches such as “control by continuous voice” (where the user produces continuous non-

verbal sounds to trigger an action - e.g. the command “volume up, ahhhhhh” will continue

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 23

to increase the volume as long as “ahhh” continues), “control by pitch” (where a change in

pitch of a user’s voice can alter a particular control – e.g. "move up, ahhhh" for increasing

scrolling speeds) and “control by tonguing” (where discrete peaks in sound signals are

detected to form particular actions - e.g. “volume up ta ta ta” will increase the volume by

three points). No user study was conducted in this research, so the usability and reliability

of this specific approach remain unclear. Similarly, Mihara et al. (2005) combined both

discrete verbal commands (e.g. "move right" to move the cursor to the right) and non-verbal

commands (e.g. "ahhhh" to move the cursor continuously) for positioning a cursor to a

particular location. Whilst this facilitated control of the cursor, results from a user evaluation

highlighted that the participants felt tired when making continuous non-verbal sounds.

Furthermore, Bilmes et al. (2005) and Harada et al. (2006) both utilised vowel sounds (e.g.

“a” for up, “i” for down) for mouse control, while Sporka et al. (2006) implemented

humming ("mmm") sounds for controlling a Tetris game where tones with a falling pitch

triggered “left” movement actions and rising tones resulted in “right” movements. As part

of this work, the authors conducted a comparative study between non-speech and standard

speech commands with results highlighting that non-verbal commands facilitated more

efficient and accurate responses to support gameplay. Lea et al. (2022) explored non-verbal

mouth sounds such as "pop" and "click" to perform actions such as selecting items or

navigating applications on mobile devices. The study initially used the recordings of more

than 700 people with different accents (e.g. British, Chinese, Spanish) to develop and train

a model to detect non-verbal sounds. The system was tested with 28 people with speech

differences (such as cerebral palsy, muscular dystrophy, and motor-speech disorder) and

received positive feedback from participants in a user evaluation. Similarly, Jaddoh et al.

(2021) examined non-verbal commands such as “Ah” to play the news and “/u:/”

(pronounced as “oo”) to lower the volume when interacting with virtual home assistants for

people with speech impairments. Whilst this approach supported more accessible

interactions, an initial evaluation identified challenges in terms of cognitive load associated

with having to memorise and issue commands. Previous work has also highlighted that the

use of non-verbal commands can address recognition issues in fixed grammar and natural

language approaches through reducing the requirement to use short single-syllable words

and homophones (Igarashi and Hughes, 2001; Cambre et al., 2021; Lea et al., 2022; Wei et

al., 2022).

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 24

2.3.3 Speech Interaction for Coding

One key area where researchers have explored the efficacy of speech interaction is within

the domain of voice coding. This specific area can present some unique challenges – for

example, programming languages utilise punctuation symbols, as well as the composition

of words and abbreviations which may not be natively or accurately handled by speech

recognisers. Research has therefore explored a variety of approaches to support efficient

and productive approaches for supporting the writing, editing, and navigation of code via

voice interaction.

For instance, a voice-based code editing plugin for the Eclipse environment (VASDE -

Voice-Activated Syntax-Directed Editor) was developed for creating Java Syntax code. To

support with writing syntax, the plugin presents a dialogue box with predefined code that

users can select via voice commands, as well as additional commands for controlling the

editor interface (Hubbell et al., 2006). Similarly, Shaik et al. (2003) developed

SpeechClipse, a plugin embedded in the Eclipse IDE to allow users to use voice commands

to invoke keyboard actions that allow users to control menus and dialogue boxes, although

the main coding editor was inaccessible via speech. VoiceGrip, a code generation tool

developed by Desilets, (2001), enables users to verbally state pseudo-code, which is then

automatically translated into syntax for a specified programming language. However, the

tool was unable to distinguish between homophonic words (e.g. "for" with "four”, “to” with

“two”), making it highly error-prone and frustrating for users. The tool was further iterated

upon and a new tool (VoiceCode - (Désilets et al., 2006)) was developed, capable of

generating code through high-level spoken syntax. For example, a vocal command such as

“if current record number is less than max offset then” would generate the following syntax:

Begel and Graham (2005) also explored how programmers write code via voice input and

highlighted that developers use high-level abstraction and shorthand notations rather than

speaking each character in turn (i.e. “i >10” is verbalised as “i greater than 10”). Their tool

SPEED (SPEech EDitor), an Eclipse plugin, allows developers to verbalise Java code in

general spoken language. Table 2.1 displays a verbalised command along with its generated

code:

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 25

Command Code

For int, i equals zero i less than ten i plus plus

X gets math dot cosine x

End for loop

for(int i=0; i<10; i++){

 x=math.cos(x)

}

Table 2.1: Example voice command and corresponding code generated via the SPEED tool by Begel

and Graham (2005)

While the application was intended for developers with physical impairments, it was

evaluated with experienced developers without physical impairments who perceived

speech-based programming as less efficient than typing (primarily due to speech

misrecognition issues). Ayub and Saleem (2012) developed a system that allowed users to

verbalise a programming language's syntax to generate code. Their system compares voice

input against the reserved keywords (such as “cin”, “cout”, “for”, “loop”) of the C++

programming language and returns the best possible matched syntax. For instance, if the

user states the command “see out”, the system generates the C++ code “cout <<” as it closely

matches the C++ syntax (“cout”). A similar approach was implemented by Patel and Patel

(2014) using Java, enabling a user to generate code through verbalisation of the language’s

syntax and semantics. For example, “hello world string” will output the following code:

Rudd (2013) built a Python-based dictation tool to allow developers to write code using

non-natural voice commands mapped to different actions. For instance, the command “slap”

is used to trigger the enter key, while “sup” is used for searching tasks. Talon (2023) is a

tool widely used by developers with physical impairments (Nowogdorzki, 2018; Nowrin et

al., 2022) that also employs a similar approach (e.g. the user has to say “slap” to move the

cursor to the end of the line). Talon can be integrated into mainstream coding IDEs such as

Visual Studio Code and Atoms, although it can be challenging for novice users to use as it

requires learning custom voice commands in addition to programming syntax (De León

Cordero et al., 2021; Nowrin et al., 2022).

In another approach, Wagner and Gray (2015) integrated speech interaction to trigger

features such as “click”, “drag”, and “delete” with Scratch (a block-based programming

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 26

tool). A user evaluation was conducted with individuals who have physical impairments,

although the tool suffered from significant speech misrecognition issues which negatively

influenced participants’ perceptions. Other studies have also explored speech for coding

purposes – for instance, Rosenblatt et al. (2018) developed a voice-based coding tool

(VoiceIDE) that supports people with upper motor impairments in writing code. The tool

was informed through a Wizard of Oz study, which provided insights into the commands

developers prefer to use when performing coding activities. The system allowed users to

perform a number of coding activities such as writing (e.g. “make a for loop” to generate a

for loop), navigation (e.g. “go to line x” to move the cursor to line x), deletion (e.g. “delete”

to remove a character), and selection of code (e.g. “select line” to select the line on the

current cursor position). They also introduced a context colour editing feature where syntax

on different lines is highlighted with different colours, thus allowing users to specify

corresponding colour names in associated with different actions (e.g. “delete red” removes

the character or syntax highlighted in red). Whilst the evaluation with users who have

physical impairments demonstrated that navigation and selection tasks could be performed

more effectively using VocalIDE, the system was limited by speech accuracy challenges.

Okafor and Ludi (2022) proposed a speech-based interaction approach that enables people

with upper-body motor impairments to code using a block-based coding tool. A preliminary

investigation into the viability of voice commands revealed the importance of ensuring that

short vocal commands are utilised to reduce the vocal effort required (e.g. “up” instead of

“move up” and “delete” instead of “delete block”).

The majority of studies highlighted have utilised fixed or constrained commands, where the

user has to verbalise a specific command to initiate different coding activities. Researchers

have also started to explore the use of unconstrained natural language in coding

environments. For instance, Gordon (2013) developed a new programming language that

allows developers to dictate code via natural language phrases to create high-level

programming language constructs such as declaring variables and creating loops. For

example, to create a variable, the user can issue commands such as “set Y to 2 * X” and

“Set Y to 2X”). An initial evaluation with participants produced mixed results – participants

with prior coding experience successfully completed all tasks, although participants with

less development experience experienced challenges such as forgetting the commands, and

speech misrecognition issues. De León Cordero et al. (2021) developed a generic

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 27

programming vocabulary utilising natural language commands (issued via voice input) to

allow users to write basic syntaxes such as declaring variables and inserting conditional

expressions and loops. For example, to create a variable, commands such as “define integer

a equals 5”, “define integer b 5”, and “assign number 5 to variable b” can be used. Whilst

the system targets developers with limited mobility, no user evaluations have been

conducted around the application to date. Additionally, the focus is only on writing code, as

opposed to other coding activities such as syntax deletion, navigation and selection.

Chadha et al. (2018) and Modak et al. (2016) utilised natural language voice commands to

generate HTML and CSS code (e.g. the command “create a table with five rows and three

columns” would generate the corresponding HTML code). Whilst this approach helps users

quickly build web pages, the system is incapable of supporting key actions such as assigning

properties to an element (i.e. id and class). Van Brummelen et al. (2020, 2020b) introduced

CONVO, a conversational programming tool that allows users to interact with a

conversational agent using natural voice input to perform programming activities. In this

application, users can have intelligent conversations with the system – for example, a user

can issue a command such as “create a variable”, which triggers the system to ask for the

variable name. Whilst the tool was perceived positively in terms of accessibility and

usability, the system suffered from speech recognition accuracy issues which presented

significant challenges for participants. Similarly, studies have explored the potential of

natural language voice commands for enabling users to query databases (Obaido et al.,

2020) – for instance, TalkSQL translates natural language input into an executable

Structured Query Language (SQL) query (e.g. the command “amend the student name to x

whose id is x” would update the table as per the query, i.e. “update student set name =’x’

where id=x”). Whilst the tool received positive feedback from the users, however, was

unable to handle complex queries such as nested statements.

Serenade (2023) is an open-source voice coding system that allows users to insert, navigate,

delete and edit code in any programming language via natural language speech. The tool

includes features such as writing code (e.g. “add class page” generates “class page { }”) and

editing (“rename function to x” changes the function name to “x”). Table 2.2 displays some

of the vocal commands and the generated output in Serenade.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 28

Command Generated Output/Action

Add function factorial
Function factorial(){

}

Delete lines three to four Delete multiple lines

Add import numpy as np import numpy as np

Add return say of string hello return say (“hello”)

Add while i not equal zero

while(i!=0){

}

Table 2.2: Verbal commands and the generated output in Serenade

Whilst the system is readily available as an extension for applications such as Visual Studio

Code and Chrome, the usability and efficacy of the system remain unclear as no evaluations

have been reported within the literature to date.

Another key area associated with voice coding is the navigation of syntax - the majority of

speech based coding studies highlighted have employed common inline navigational

commands such as left/right/up/down. Désilets et al. (2006) enabled users to move the

cursor to different code blocks through voice using navigation commands such as “next

comma” (i.e. to move the cursor after the comma) and “after clients array at index zero”

(i.e. to move the cursor after the particular code snippet). Similarly, Begel and Graham

(2005) created a context-sensitive mouse grid structure with labels on the screen where users

could verbalise grid numbers to move the cursor to the corresponding position with the code.

Additionally, they used commands such as “jump to constructor linked list” (i.e. to move

the cursor to LinkedList constructor) and “move down 2 lines” (i.e. to move two lines below

the current cursor position). Moreover, Rosenblatt et al. (2018) utilised vocal commands

such as “go to line” and “up X lines” to navigate between lines of code.

Whilst researchers have highlighted that speech recognition has matured to an acceptable

level due to its successful integration into commercial products (Errattahi et al., 2018;

Filippidou and Moussiades, 2020), voice interaction comes with inherent limitations around

recognition issues and accuracy (Suhm et al., 2001; Wagner and Gray, 2015; Rosenblatt et

al., 2018). Additionally, speech is associated with poor performance in noisy environments

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 29

(Suhm et al., 2001) and impracticality for pointing and selecting tasks (Rozado et al., 2016).

Furthermore, while studies have investigated the use of voice input to support developers

with physical impairments in coding activities, there remain several areas where little or no

work has been conducted to date. For instance, it remains unclear which voice coding

approaches are most suitable for supporting developers with physical impairments.

Moreover, no comparative analysis has been conducted to date to gauge the efficacy and

usability of fixed grammar, and natural language approaches when performing coding

activities.

2.4 Eye Gaze Interaction

2.4.1 Eye Gaze Tracking Technology

The use of eye gaze tracking technology has also been explored as an alternative means for

enabling people with physical impairments to interact with digital systems (Sibert et al.,

2001; Jacob and Karn, 2003; Duchowski, 2018; Creed et al., 2020). Studies around this area

began in the nineteenth century to observe and understand eye movements when reading

(Rayner, 1998; Poole and Ball, 2004), although it was not until the 1970s and 1980s that it

started to flourish as a technology. This was driven through improvements in the accuracy

and precision of eye-tracking technologies (Rayner, 1998; Nivala et al., 2016; Sharafi et al.,

2020), as well as increased interest in physiological studies within the scientific community,

linking eye-tracking data with cognitive processes (Jacob and Karn, 2003). The majority of

these studies focused on analysing eye movement data for physiological observation and

were confined to controlled laboratory environments (Rayner, 1998; Morimoto and Mimica,

2005; Majaranta and Bulling, 2014; Hemmingsson and Borgestig, 2020).

More recently, studies began to explore the possibilities of eye tracking within the HCI field

(Rayner, 1998; Jacob and Karn, 2003; Poole and Ball, 2004). This initiated the demand for

using eye gaze tracking in research studies to solve usability issues (Schiessl et al., 2003; Li

et al., 2005) and for interacting with a graphical interface (Sibert et al., 2001; Jacob and

Karn, 2003). In turn, this led to consumer level eye trackers becoming more widely available

and accepted within the HCI community as a part of empirical research studies (Dalmaijer,

2014; Duchowski, 2018). Three types of eye tracking techniques have predominantly been

used - (1) videooculography (video-based tracking using a head-mounted or remote visible

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 30

light video camera) (Päivi, 2011; Duchowski, 2018), (2) infrared oculography (utilising

infrared to recognise user pupils for tracking eye movements) (Jacob and Karn, 2003), and

(3) electrooculography (where electrodes are placed to the right and left of the eyes to track

movement) (Morimoto and Mimica, 2005; Majaranta and Bulling, 2014; Müller et al., 2016;

Duchowski, 2018). Gaze interaction typically requires an eye-tracking device (such as an

infrared sensor) which captures images of an individual’s eyes when fixating on a point of

interest. The cost of commercial eye-tracking devices has reduced significantly in the last

decade as major technology companies, and the gaming industry has demonstrated

increased interest in embedding eye-tracking within their products (Majaranta and Bulling,

2014; Duchowski, 2018). For example, commercial products from companies such as Tobii

(2023) now retail for around £230 (e.g. in terms of the Tobii 5 (2023)). Sensors must be

calibrated for each user to facilitate more accurate gaze interaction – this is commonly

achieved through showing a number of calibration points on a screen and asking the user to

consecutively fixate on these points (Jacob and Karn, 2003; Majaranta and Bulling, 2014;

Duchowski, 2018).

The majority of commercial devices provide an average accuracy of 0.5° to 1° of visual

angle, which relates to between 16-33px in size within a display utilising a screen resolution

of 1280x1024px (Miniotas et al., 2006; Kumar et al., 2007). Interface targets below 1° visual

angle are considered too small for comfortable gaze selection, thus presenting a significant

limitation of gaze interaction (Miniotas et al., 2006; Skovsgaard et al., 2010; Creed et al.,

2020). Increasing the size of interface objects can address this issue, although it can present

constraints around the number of elements visible on the screen at any time (Bates and

Istance, 2002; Jacob and Karn, 2003). Another issue is calibration drift, which refers to the

accumulating deterioration in eye tracker accuracy after an initial calibration (often caused

due changes in the position of users or sensors) (Kytö et al., 2018; Müller et al., 2019). The

Midas touch issue a further key challenge associated with gaze interaction, where fixations

on interface targets can activate unintentional selections (Jacob and Karn, 2003; Meena et

al., 2017; Rajanna and Hammond, 2018). Whilst there are challenges associated with eye

tracking, a wide range of research has been completed investigating the efficacy of this

technology as an alternative or supplementary interaction approach.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 31

2.4.2 Eye Gaze Interaction Research

Research on eye gaze interaction has received significant interest from researchers (Ware

and Mikaelian, 1986; Jacob, 1990; Zhai et al., 1999; Sibert et al., 2001; Schiessl et al., 2003;

Morimoto and Mimica, 2005). A key focus of this work has explored the feasibility of the

technology to support people with physical impairments in controlling digital systems

(Hutchinson et al., 1989; Borgestig et al., 2017; Creed et al., 2020). In particular, research

has examined novel approaches for selecting small targets (Miniotas et al., 2006;

Skovsgaard et al., 2010), investigating solutions for the Midas touch issue (Jacob and Karn,

2003; Shakil et al., 2019), and using gaze as part of multimodal interaction approaches (Van

Der Kamp and Sundstedt, 2011; Beelders, 2011; Creed et al., 2020). Most of these research

studies have been conducted in the context of eye typing (Majaranta et al., 2009; Kristensson

and Vertanen, 2012; Mott et al., 2017), although other work has focused on domains such

as design (Hornof and Cavender, 2005; Santella et al., 2006; Heikkilä, 2013; Lewien, 2021),

web browsing (Porta and Ravelli, 2009; Kumar et al., 2017; Casarini et al., 2020), gaming

(Dorr et al., 2007; Istance et al., 2009; Nacke et al., 2010) and object selection (Huckauf and

Urbina, 2008; Lutteroth et al., 2015). Key methods for selecting targets such as dwell time,

dwell-free, gaze gestures, and zooming are described in further detail below.

2.4.2.1 Dwell Time

The majority of research on eye gaze selection of interface elements has focused on dwell

time approaches where users fixate on a desired interface target and wait for a specific

amount of time before a selection is completed. Studies have highlighted that dwell time is

a convenient and natural selection method as it does not require significant training and can

prevent false selections (Jacob, 1990; Sibert et al., 2001; Majaranta and Räihä, 2007;

Beelders, 2011). Typically, dwell times range from 400-1000 milliseconds (Jacob, 1990;

Špakov and Miniotas, 2004), although studies have highlighted that long fixation times can

be tiring for an individual's eyes, as well as making the interaction slower (Wobbrock et al.,

2008; Majaranta et al., 2009). A number of approaches have been implemented to enhance

the use of dwell time - for instance, Majaranta et al. (2009) explored an adjustable dwell

time approach where users can vary dwell time duration based on their requirements. A 10-

session longitudinal study was conducted with participants (who had little experience with

gaze experience) where they were asked to type using gaze and were informed to adjust the

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 32

dwell time if they felt comfortable. After using gaze typing for ten sessions, the dwell time

decreased from an average of 876ms on the first session to 282ms in the last session – thus

increasing the average typing speed from 6.9 WPM (Word Per Minute) to 16.2 WPM.

Mott et al. (2017) implemented a cascading dwell time approach which uses a language

model to calculate the probability of the next letter and then autonomously adjust dwell

time. This approach was evaluated with both disabled and non-disabled participants with

results highlighting that the cascading technique was significantly faster than a static dwell

time, enabling participants to achieve typing speeds up to 12.39 WPM. Pi et al. (2020)

utilised a similar cascading approach based on the likelihood of the next selected key with

results also presenting positive feedback. Similarly, Špakov and Miniotas (2004)

implemented an algorithm to adjust the dwell time automatically based on exits time (i.e.

the time interval between the moment a key was selected and the moment the gaze left the

key). Results found considerable variation in exit times (300ms – 1100ms) – with the

average error rate being 2.3% while the average typing speed was 12.1 WPM. Furthermore,

studies have confirmed that the use of dynamically adjusted dwell times can speed up gaze

typing and make key selection easier by predicting the probability of the next keys, thus

maintaining typing rhythm (Mott et al., 2017; Majaranta et al., 2019; Pi et al., 2020).

2.4.2.2 Dwell-Free

Whilst dwell time is a common selection approach within the field, research studies have

also explored methods to mitigate the delays caused by dwell selections. Studies have

explored the potential of dwell-free approaches, where instead of fixating on a key for a

predetermined amount of time, the user can briefly gaze at the target before moving to the

next one. For instance, Kristensson and Vertanen (2012) examined the potential of a dwell-

free approach where users can gaze in the proximity of the desired letters in their target

word, and the system would then recognise the sequences of the word and would type the

word automatically. This method was investigated to gauge the impact on typing speed,

with results highlighting an entry rate of 46 WPM, indicating that dwell-free eye-typing

may be more than twice as fast as the current state-of-the-art methods. In another approach,

Sarcar et al. (2013) utilised a dwell-free interaction by moving the eye pointer through an

interface element in an inside-outside-inside sequence. To select a target, users have to

position their eye pointer at the target onscreen key, fixate their gaze away from the key,

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 33

and finally return to the same key area. Results highlighted that the tool achieved an average

of 15% higher text entry rates over existing dwell-time based approaches. Similarly,

GazeTry implemented a swipe approach, which predicts possible words as users gaze

through the letters of the word (Liu et al., 2015). Results from a user evaluation highlighted

that the approach provided higher accuracy and resilience to text entry errors. EyeSwipe

(Kurauchi et al., 2016) utilised a similar approach allowing users to type using a “reverse

crossing mechanism” that involves initially selecting the first character of a word from an

onscreen keyboard, then glancing in the approximate vicinity of the next characters until the

final character is reached. Results from a user study highlighted that EyeSwipe produced

significantly higher typing speeds than standard dwell-time based approaches.

Overall, studies have highlighted that dwell-free approaches have the potential to improve

gaze typing through removing the need for dwell time (Kurauchi et al., 2016; Sarcar et al.,

2013; Kristensson and Vertanen, 2012). However, despite having the potential to make

interactions more efficient, dwell-free systems also include limitations and issues. For

instance, dwell-free gaze typing can result in fatigue and users requiring numerous breaks

when working on tasks (Mott et al., 2017). As the user will gaze briefly at the intended key,

there is a high chance of fixation landing on the neighbour key, thus reducing the accuracy

(Majaranta et al., 2019).

2.4.2.3 Gaze Gestures

Researchers have explored the concept of gaze gestures as an alternative method to reduce

unintentional selections and overcome the limited accuracy associated with eye trackers

(Hyrskykari et al., 2012). Gaze gestures are sequences of eye movements (typically strokes)

used to initiate commands in a sequential order (Drewes and Schmidt, 2007; Vickers, 2011).

Initial gaze gesture work was conducted by Drewes and Schmidt (2007), who evaluated

gaze movement around a dialog window in a clockwise direction to respond “yes” and in

an anti-clockwise direction for “no”. A key benefit of this approach is that no calibration is

required as users initiate commands through making a sequence of “eye strokes”. Porta and

Ravelli (2009) implemented a gaze gesturing approach for selecting buttons and hyperlinks

within a browser where users first look at the hyperlink target, move their gaze in an upward

direction, and then look back again at the target to trigger the selection. Results from a user

study found that most participants could successfully complete common selection tasks

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 34

using this type of approach. Wobbrock et al. (2008) utilised alphabetic gaze gestures to

support text entry through their EyeWrite interface, where four corners and the centre of a

small square are used for entering characters. Users can write characters though fixating

their eyes in a sequential order around the corners of the window - for example, to type the

letter “t”, the user has to move the gaze point from the top left corner to the top right corner,

and then to the bottom right corner. Results found that this approach was perceived faster,

less error-prone and resulted in less eye fatigue than on-screen QWERTY keyboard

approaches utilizing a dwell time method for character selections. Møllenbach et al. (2010)

used single gaze gesture in which the user initially looks at a target and moves their gaze

away to perform the selection. Similarly, a range of studies have investigated the

combination of eye movement and blinks to provide people with impairments with an

effective means to communicate and control their environment (Park and Lee, 1996; Norris

and Wilson, 1997; Borgestig et al., 2017). User evaluations of this type of approach have

highlighted that blink interaction could offer a feasible and efficient approach in interaction,

although issues such as fatigue due to prolonged use, accidental/unconscious blinks, and

accuracy challenges have been identified (Park and Lee, 1996; Ohno et al., 2003;

Chakraborty et al., 2019).

Whilst the studies highlighted have demonstrated that gestures can support enhanced

performance over dwell selections in some scenarios (Hyrskykari et al., 2012; Lutteroth et

al., 2015), they also possess some limitations. In particular, gaze gestures can be very slow

and cause eye fatigue when used for prolonged periods (Porta and Ravelli, 2009), as well as

adding cognitive load in terms of recalling required gesture movements (Heikkilä and Räihä,

2010; Penkar, 2014).

2.4.2.4 Zooming

The use of interface zooming is an additional alternative approach that has been explored

for supporting target selection via eye gaze. Zooming techniques enable users to adjust the

size of the area being viewed to see more or less detail (Skovsgaard et al., 2010; Vickers,

2011). Early work on eye controlled zooming interaction typically utilised a two-step

approach – where the target area magnifies on dwelling, and users can use a mouse to select

targets (Lankford, 2000; Bates and Istance, 2002). For example, the ERICA system allows

users to dwell on a target region to magnify the size, select a target with a second dwell, and

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 35

then utilise a mouse to perform actions such as a left or right click (Lankford, 2000). A

similar approach was by Bates and Istance (2002), where the whole screen magnifies by

dwelling on the area of interest, and users can then select a target using a mouse. The authors

conducted a comparative study between the head mouse, a standard eye mouse, and the

developed zoom eye mouse with results highlighting that the zoom eye mouse was easier to

use and reduced cognitive workload. Skovsgaard et al. (2010) used different zooming levels

to select interface objects, including a two-step zoom method and a continuous zoom

approach (in which the area surrounding the target would continue to zoom as long as the

user fixates their gaze, thus enabling a user to select the target). Results from a user

evaluation found the continuous zooming approach to be more accurate and faster than the

two-step method. Similarly, Ashmore et al. (2005) utilised a fisheye lens and a video-based

eye tracker to locally magnify the display at the point of the user’s gaze without losing the

content outside the magnified region. A user evaluation found that the fisheye lens approach

performed better in terms of efficiency and usability than a traditional zoom-based

approach. In another approach, Bubble Cursor (Grossman and Balakrishnan, 2005)

dynamically resizes the activation area (where a user is fixating their gaze) so that only one

target is selectable at any time. Results demonstrated that the bubble cursor outperformed

other pointing techniques in 1D and 2D target acquisition tasks. Whilst different zooming

approaches can present some enhancements over other methods (in some scenarios), studies

have also highlighted a range of interaction issues. For example, zooming over targets can

lead to visual distortions, such as the content around the periphery of a zoomed area

becoming obscured when the zoom level increases (Lankford, 2000). Similarly, the

zoomed-in portion of the screen may move disproportionately to other content, thus making

it challenging to read text or view objects (Bates and Istance, 2002; Skovsgaard et al., 2010).

In addition to the aforementioned work, studies have also explored the potential of

multimodal approaches (combining gaze with another input modality) for performing

selections - for instance, Creed et al. (2020) utilised mechanical switches instead of dwell

time as a selection method, which was perceived positively by participants. Similarly,

Eyepoint (Kumar et al., 2007) used a keyboard to complete selections of targets that users

are currently fixating on, while PressTapFlick (Rajanna et al., 2022) adopted foot input for

selection. Studies have also utilised webcams for eye tracking to facilitate the triggering of

mouse actions – right/left eye wink to trigger left/right clicks and squinting eyes for

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 36

activating scrolling (Papoutsaki et al., 2017; Meena et al., 2020; Anantha Prabha et al.,

2022).

2.4.3 Eye Gaze Interaction for Coding

Coding via eye gaze input was first investigated in 1990 when Crosby and Stelovsky (1990)

explored code comprehension techniques using an eye tracker. However, this type of

approach was not widely adopted in the programming field until 2006 due to the high costs

of the technology and issues associated with tracker accuracy (Bednarik and Tukiainen,

2006; Sharafi et al., 2015). In the coding environment, eye tracking studies to date have

focused on two key areas: (1) studying the behaviour and working practice of programmers

(including visual analysis of code reading patterns, code debugging, traceability and

collaborative programming) (Crosby and Stelovsky, 1990; Busjahn et al., 2011; Shaffer et

al., 2015; Clark and Sharif, 2017; Begel and Vrzakova, 2018) and (2) enhancing the

functionality of IDEs via the use of gaze as a supplementary input tool (Glücker et al., 2014;

Shakil et al., 2019; Santos, 2021).

The first approach has attempted to understand the psychology of programming by

exploring how eye movement can inform methods used for code comprehension,

debugging, collaborative interaction, and traceability (Begel and Vrzakova, 2018; Sharafi

et al., 2020). For example, Busjahn et al. (2015) conducted a comparative study to compare

the eye movements of novice and expert programmers in relation to identifying the reading

patterns of natural language text and source. Results found that novice and expert

programmers read code less linearly than natural language text, as they tend to skip words

and lines when reading code. Similarly, Jessup et al. (2021) compared the number of

fixations and fixation durations during code comprehension processes between novice and

expert programmers - where they were asked to read two pieces of code, rate the code on

various attributes, and describe the functionality of code. The results highlighted that experts

and novices significantly differ in their fixation counts made during the task - with experts

having more fixations than a novice, indicating that they focused more and used more

cognitive skills. Other studies have also explored the potential of eye tracking within

program comprehension scenarios to understand how developers read code and the effort

required to comprehend syntax. (Aschwanden and Crosby, 2006; Bednarik and Tukiainen,

2006; Busjahn et al., 2011; Mondal et al., 2022).

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 37

Furthermore, research has investigated eye tracking in relation to code debugging – for

instance, Lin et al. (2016) examined the eye movements of expert and novice programmers

to better understand cognitive processes associated with debugging activities. Results

highlighted that experts traced the program more logically, whereas novice coders tended

to stick to a line-by-line sequence and often jumped to random lines to identify issues.

Similarly, D’Angelo and Begel (2017) investigated collaborative coding processes in

remote pair programming exercises where a novel gaze visualisation was designed to

display where in the code their partner is currently looking. A user evaluation highlighted

that pairs spent a significant portion of their time concurrently looking at the exact code

locations when the visualisation graph was turned on – suggesting that they understood what

their partner was referring to. Prior literature has also investigated the use of an eye tracker

in traceability to keep track of syntax changes – for instance, Shaffer et al. (2015) developed

an open-source Eclipse IDE-based plugin, iTrace, which captures developers’ eye

movements while working on change tasks by automatically mapping gaze movements to

source code elements such as if statements and methods.

Another approach involves using an eye tracker as an alternative approach to support code

navigation. For instance, Shakil et al. (2019) developed a code navigation prototype

(CodeGazer) that allows users to perform navigation actions such as “Go to Definition” and

“Find all Usages” using gaze interaction. To make a selection, the user must dwell at the

corresponding identifiers (e.g. classname, function name) in the syntax, which are

highlighted in different colours, and to confirm the selection, they must again dwell at the

corresponding coloured button on the left and right sides of the screen. Whilst this approach

can support the selection of small targets within a coding context (e.g. identifiers such as

variable and function names), it also adds an additional step to the interaction process as the

users have to perform dwell selections twice. Results from a comparative study found the

gaze-based code navigation approach to be comparable with a keyboard, although slower

than mouse-based navigation.

Similarly, EyeNav (Radevski et al., 2016) utilised a combination of gaze interaction and

keyboard shortcuts to support code navigation functions such as left and right mouse clicks

for selecting code and horizontal and vertical page scrolling. For example, users use the

ALT+F keyboard shortcut to execute the page scrolling feature and then look in a specific

direction (up or down). Whilst EyeNav is available as a plugin in Brackets (2023), it has not

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 38

been formally evaluated within the literature to date. Another gaze based tool is EyeDe

(Glücker et al., 2014) which provides code navigation features such as switching between

files, navigating different methods, reviewing code documentation and providing a minimap

view for scrolling to syntax positions. The tool required users to gaze on the target code for

a dwell time duration to trigger a context menu, then gaze on the context menu icon to

confirm the selection, which increased selection time and slowed the interaction, however

after a pilot study, the authors implemented a combination of a keyboard and dwell time for

selection. Whilst the system was perceived positively by participants overall, they

highlighted issues around the selection of small targets and the accuracy of the tracking

device. Additionally, Santos (2021) developed a code editor where the cursor can be

controlled via gaze input. The editor allowed users to dwell on their desired location and

quickly jump to that position by pressing a key on either the mouse or keyboard. No user

evaluation was conducted, so how developers with physical impairments might perceive

this approach remains unclear.

In summary, while existing literature has focused on utilising eye gaze interaction for

navigation, debugging and traceability of code, no prior work has been conducted to date

investigating the feasibility of eye gaze for writing or editing code. Further research is

therefore required to understand how gaze interaction can best be utilised to support these

essential coding activities. Furthermore, prior gaze-based coding tools have only been

evaluated with non-disabled developers, so additional work is also required to explore gaze

as an interaction approach with developers who have physical impairments.

2.5 Multimodal Speech and Gaze Interaction

Research on multimodal interface design (which involves processing of two or more

modalities such as speech, pen, touch, gaze) can be traced back to the 1980s where the focus

was on developing new approaches that support flexible and efficient interaction methods

(Bolt, 1980; Oviatt, 1997; Ruiz et al., 2009; Seizov and Wildfeuer, 2017; Oviatt, 2017;

Oviatt and Cohen, 2022). Studies on multimodality have examined how multimodal

interface design can be informed through cognitive theories such as Gestalt theory, Working

Memory theory, and Cognitive Load theory to help users minimise cognitive load and hence

improve performance (Dumas et al., 2009; Kopp and Bergmann, 2017; Oviatt, 2017).

Gestalt theory emphasise perceiving and interpreting information as a whole rather than

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 39

focusing on isolated components with a focus on highlighting how people perceive visual

and spatial elements, extending to the comprehension of sounds, touch, and other types of

modalities (Oviatt et al., 2003; Trujillo and Holler, 2023). Similarly, Cognitive Load theory

pertains to the regulation of mental exertion or "load" placed on an individual's working

memory while engaging with different modalities, such as speech, gestures, or visuals to

enhance experiences through reducing cognitive burden, enabling users to efficiently

process information (Sweller et al., 1990; Dumas et al., 2009). Furthermore, Working

Memory theory focuses on improving users' processing and retention abilities – for

example, the combination of visual and auditory inputs can make it easier for users to

understand and remember content,(e.g., when compared with reading), thus reducing

cognitive load on working memory (Baddeley, 1992). Oviatt et al. (2000) believes that the

successful development of multimodal systems requires tackling important research

challenges such as creating cognitive theories to guide system design and improve natural

language processing, dialogue processing, and error-handling techniques. However, whilst

there has been substantial work around multimodal interactions and experiences, there

remains a lack of work in relation to improving tools for supporting multimodal applications

and interfaces so they can become mainstream, especially since combining multimodal

inputs (e.g., gaze, speech, and switches) across a range of domains is seen as a promising

way to achieve universal access (Dumas et al., 2009).

2.5.1 Multimodal Speech and Gaze Rationale

Previous research has identified that unimodal interaction approaches can possess

limitations and issues – for instance, gaze interaction can present challenges associated with

accuracy (Miniotas et al., 2006; Beelders and Blignaut, 2011), selection of small targets

(Skovsgaard et al., 2010; Creed et al., 2020), the Midas Touch (Van Der Kamp and

Sundstedt, 2011; Rajanna et al., 2022), and calibration errors (Heikkilä, 2013). Similarly,

speech interaction also has a range of limitations in relation to accuracy (Rozado et al., 2016)

and misrecognition of vocal input (Wagner et al., 2012; Rosenblatt et al., 2018). To address

these challenges, researchers have investigated the potential of combining both input

approaches to enhance interaction experiences and address the limitations of each modality

(Miniotas et al., 2006; Elepfandt and Grund, 2012). Additionally, this type of approach can

provide a “fall-back option” - for example, if an input method is not functioning correctly,

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 40

the user can continue working with the alternative modality or as a unimodal interaction

approach where the user has the option to fluidly choose between input methods (Beelders

and Blignaut, 2010; Sengupta et al., 2018). Additionally, studies have highlighted that

implementing multimodal approaches can require significantly less cognitive load and

present usability benefits over unimodal approaches (Kaiser et al., 2003; Zimmerer et al.,

2022).

2.5.2 Multimodal Speech and Gaze Research

Studies have also explored various multimodal approaches associated with both gaze and

speech for interaction purposes. For instance, researchers have explored combining gaze

input with a mouse (Lankford, 2000; Bates and Istance, 2002; Hansen et al., 2003), keyboard

(Wang et al., 2001; Kumar et al., 2007), gestures (Ghosh Sanjay et al., 2013; Zhang et al.,

2020), mechanical switches (Creed et al., 2020), and touch (Khamis et al., 2016; Pfeuffer

and Gellersen, 2016). Similarly, research studies have explored the use of speech with

gestures (Bolt, 1980; Wang, 1995; Oviatt, 1997; Cohen et al., 1997; Ghosh et al., 2020;

Kang et al., 2019), touch (Srinivasan et al., 2019), and mechanical switches (Aziz et al.,

2021, 2022).

Research has also explored the direct combination of speech and gaze modalities in different

domains – for instance, Wang (1995) proposed an application integrating eye gaze, voice

and gestures for manipulating 2D and 3D objects within a window-based environment.

Miniotas et al. (2006) developed a gaze and speech-based multimodal pointing technique

for selecting small, closely spaced targets. The study found that the combination of speech

and gaze interaction outperformed gaze-only interaction. Studies have also explored

multimodal interaction techniques to support creative design – for instance, Van Der Kamp

and Sundstedt (2011) combined gaze and speech to produce graphical work. The application

used gaze to control the cursor while speech input triggered actions such as drawing and

opening the colour palette. Whilst the results validated the combination of multimodal

speech and gaze interaction for an efficient drawing process and was perceived positively

by participants, several issues such as speech misrecognition and gaze accuracy were

reported. Sengupta et al. (2018) developed a multimodal browser that can be operated using

gaze and voice interaction where users can combine input methods to work together or

utilise one modality based on their preferences and context. The authors highlighted that

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 41

multimodal interaction helped overcome accuracy limitations and ambiguity issues

associated with the individual use of gaze and speech modalities. A pilot test with five users

found that the multimodal approach was more efficient and accurate across a range of tasks

when compared with a single modality.

Eye gaze and speech have also been combined to form a multimodal system for controlling

desktop environments - for instance, Rozado et al. (2016) utilised gaze to dwell on a target

position within a desktop environment and used voice to trigger actions such as a left mouse

click. Whilst the authors highlighted that the combination of both input methods could

outperform the unimodal approach (i.e. speech only and gaze only interaction), no

evaluation was conducted, so it remains unclear how the participants would have perceived

the approach. A similar approach was also proposed by Castellina et al. (2008), who

highlighted that using speech can remove the requirement for dwell time as a selection

approach, thus supporting more efficient interactions. Beelders and Blignaut (2011)

incorporated speech and gaze as additional input modalities within a word processor to

provide alternative interaction opportunities for controlling the application. Users were

provided with the freedom to select either the combination of gaze and speech or a single

modality to work based on their suitability. Speech was used for text dictation and providing

commands to control the interface (e.g. formatting text, cursor control), while various eye

tracking options such as blinking, user-defined dwell time, and look-and-shoot approach

(using the keyboard’s Enter key) were used to trigger selections. Results from a user

evaluation confirmed that a combination of speech and eye gaze significantly improved the

accessibility of the word processor.

Speech and gaze have also been utilised for game control – for instance, in the game “The

Revenge of Killer Penguins” (Wilcox et al., 2008), users select objects within the game by

using either voice commands such as “look” and “pickup” or gaze selection approaches such

as blinking and winking. No user evaluation was conducted, so it is unclear how participants

would have perceived this approach. Uludağli and Acartürk (2018) explored a multimodal

gaming approach combining gaze and voice inputs – where users are able to move from one

position to another position through gaze while using voice commands to trigger the actions

on the objects. Results from a user study highlighted that combining the two modalities can

be an acceptable interface control method for mobile devices.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 42

The use of multimodal interaction approaches to support developers in performing coding

activities has received little attention to date. Delimarschi et al. (2014) explored the

combination of gesture and voice for interacting with an existing coding IDE interface. Their

application KinectCommander used speech commands to trigger actions such as “find and

replace”, “add new files”, and “activate menus”, whereas gestures were used for moving

and resizing specific sub-windows and scrolling through code within the Microsoft Visual

Studio IDE (2023). Whilst the system has the potential to minimise the use of a keyboard

and mouse, the authors highlighted accuracy and usability issues with the system. For

example, it typically took multiple attempts for users to complete gesture commands, while

it took an average of two attempts to successfully trigger a voice command.

2.6 Summary

This chapter presented and discussed disability and common barriers encountered by people

with physical impairments, as well as some of the common assistive tools that are utilised

to make interactions with digital systems more accessible. Voice input and gaze interaction

were highlighted as two technologies that hold significant potential to support people with

physical impairments due to increased availability, cost reductions, and increased efficacy

of the technologies. Furthermore, it was highlighted that previous work has identified how

combining these technologies in a multimodal system can provide potential interaction

benefits (e.g. the strengths of each modality can address the limitations of the corresponding

input approach). A particular emphasis of the review was placed on research investigating

the potential of these technologies to support developers with physical impairments in

writing, editing, navigating and managing code. In particular, whilst previous studies have

explored the combination of voice and gaze in non-programming fields (Van Der Kamp and

Sundstedt, 2011; Beelders and Blignaut, 2011; Elepfandt and Grund, 2012; Sengupta et al.,

2018), it remains unclear what the optimal complimentary roles are for each input method

when utilised to support coding activities. Moreover, the use of additional controls (e.g.

mechanical switches commonly used by people with physical impairments) could also

further support a combined gaze and speech approach, although we have little understanding

around the feasibility of a system integrating multiple methods of input in this context.

Further work is therefore required to investigate to what extent gaze, speech and other input

tools can be combined to make coding accessible for people with physical impairments.

Chapter 2: Background and Related Work

 Bharat Paudyal – March 2023 43

Whilst studies have explored voice input to support developers with physical impairments

with coding activities, there remain several areas where less or no work has been conducted

to date – for instance, no comparative studies have been conducted to measure the efficacy

and usability of fixed grammar and natural language coding approaches. Similarly, no

evaluations using natural language approaches have been conducted with developers with

physical impairments, so it remains unclear whether these coding methods are viable for

this target audience. Similarly, little work has been focused on implementing code

navigation features such as call graphs to navigate code blocks or scrolling to a different

section of the codebase using multimodal approaches. This represents a significant gap in

the literature where further work is required to understand the potential impact of these

interaction approaches in this context. To address the lack of research around different

combinations of gaze, speech, and other input approaches to support coding, the following

three chapters present a series of studies focused on multimodal interaction approaches for

supporting developers with physical impairments.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 44

3 MULTIMODAL CODING VIA SPEECH,

GAZE AND SWITCHES

This work has been published in the proceedings of the 2020 ACM Designing Interactive

Systems Conference (DIS '20’) as “Voiceye: A Multimodal Inclusive Development

Environment” (Paudyal et al., 2020)

3.1 Introduction

This chapter presents an investigation into the use of a multimodal prototype (“Voiceye”),

enabling developers with physical impairments to write and edit code using a combination

of speech, gaze, and mechanical switches. Whilst some initial work has investigated the use

of speech as an interaction paradigm to support writing code (Begel and Graham, 2005;

Wagner and Gray, 2015; Maloku and Pllana, 2016; Rosenblatt et al., 2018), studies have

highlighted that this method of input presents known challenges around voice recognition

accuracy (Oviatt and VanGent, 1996; Suhm et al., 2001). Similarly, gaze interaction has

been utilised to support different coding activities (such as code navigation (Radevski et al.,

2016; Shakil et al., 2019; Santos, 2021)), although studies have also highlighted that this

technology exhibits inherent limitations such as issues around the selection of small targets

(Miniotas et al., 2006; Skovsgaard et al., 2010), slow typing speeds (Majaranta and Räihä,

2002; Bafna, 2018), and well-known challenges associated with the Midas touch issue

(Jacob and Karn, 2003; Glücker et al., 2014; Meena et al., 2017).

Research has started to explore how speech and gaze can be combined for making

interactions more accessible for people with physical impairments in applications such as

web browsing (Sengupta et al., 2018), operating desktop interfaces (Pireddu, 2007; Rozado

et al., 2016), and word processors (Beelders, 2011), although there has been a lack of work

to date exploring this approach to support coding activities. It also remains unclear the extent

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 45

to which the use of additional input modalities (e.g. mechanical switches) can potentially

present more inclusive and accessible interaction methods for disabled developers. To

address this gap in the literature, this chapter initially highlights the design rationale behind

a new multimodal prototype (Voiceye), along with details around a user evaluation with

non-disabled developers investigating the feasibility of the prototype to support

development tasks. Iterative updates are then highlighted based on feedback from

participants, with a further evaluation then detailed involving disabled developers to better

understand their perceptions and performance when utilising the Voiceye prototype for

coding. This chapter therefore presents three key contributions:

(1) a novel multimodal coding environment enabling people with physical impairments to

write and edit code.

(2) a user study demonstrating the usability of the system and new insights into this form of

multimodal interaction.

(3) validation of this approach through a further evaluation demonstrating that people with

physical impairments can effectively write code.

3.2 Prototype Design

To address the lack of research exploring the potential of multimodal interaction approaches

to facilitate coding activities for disabled users, a code editor (Voiceye) was developed that

can be operated using the combination of gaze, speech input, and mechanical switches.

Voiceye is a desktop-based application developed using ElectronJS (2023) that enables

writing and editing HTML/CSS code via gaze interaction, whilst voice input is used for

dictating long text (e.g. comments) and performing commands such as selecting, deleting,

and navigating code. It is built on top of CodeMirror (2023) – an open-source JavaScript-

based code editor which provides standard features such as syntax highlighting, search,

replace, and code indentation.

Voiceye consists of four components: an automatic speech recogniser (using Microsoft’s

Azure Speech service (Microsoft, 2023)), a rule-based syntax grammar, an onscreen

keyboard (controlled via gaze input), and two mechanical switches – one for performing

selections on buttons within the interface (e.g. a virtual keyboard key) and the other for

toggling activation of the voice recognition system (Figure 3.1). As the user speaks, the

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 46

prototype converts speech to text and performs a check against the rule-based syntax

grammar listed in Table 3.1. Appropriate actions are then triggered based on the spoken

command. The onscreen keyboard allows users to type code via fixating on characters of

interest and then completing the selection by pressing one of the designated mechanical

switches.

Figure 3.1: A system diagram of the Voiceye application

The main interface was informed through the design of existing mainstream development

environments (e.g. Visual Studio Code (2023), Atom (2023), Brackets (2023)). These

applications typically display line numbers by default on the left side of the interface with

the code included in the main interface area (with features such as syntax formatting

enabled). A similar interface layout was adopted, along with a theme similar to the default

one used in Visual Studio Code (Figure 3.2). The QWERTY keyboard layout is the most

common approach used in eye typing studies (Kristensson and Vertanen, 2012; Mott et al.,

2017). This layout was therefore integrated into the application with keys that are

110x110px in size to support more comfortable selection via gaze. The keyboard included

standard delete, backspace, space, enter, shift/capslock, and tab keys. A “char” key was also

provided (“123?”) to toggle between letters, numbers, and special characters. Arrow keys

are included that allow users to navigate through single characters of text (speech provides

navigation around lines and words). Early usability testing found that placing the keyboard

at the bottom border of the screen resulted in some keys being problematic to select via gaze

– 100px of padding was therefore applied to the bottom of the keyboard to make all keys

easier to select.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 47

To address issues of slow typing speeds via gaze, Emmet (2023) was integrated into the

system allowing users to write HTML and CSS code using a shorthand notation that is then

expanded to full syntax. For example, users can type “div#menu.side” to generate the

following code:

A number of approaches were also considered for performing selections (i.e. dwell time,

speech commands, gaze gestures), but a decision was made to opt for mechanical switches

commonly used by people with physical impairments (Lancioni et al., 2008). There has been

a lack of studies investigating the use of switches as a selection approach in a multimodal

context, so this approach presents an opportunity to explore users’ perceptions of this type

of interaction method.

Speech input can be activated using the designated switch – upon selection, a semi-

transparent text area is displayed above the keyboard, along with an animated spinner. When

the user speaks, the text recognised by the system is displayed to the user to provide instant

feedback. An animated spinner icon also provides a visual cue that the system is currently

processing speech input. These interface elements were added after initial usability testing

on an earlier version, where users expressed frustration at not knowing if the system had

detected their input correctly. This typically resulted in a delay in seeing if the system

performed the correct action or whether the user had to repeat the command.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 48

Figure 3.2: Screenshot of the Voiceye interface when the speech recogniser has been activated. The

spinner indicates that the recogniser is listening for speech input. The user has issued the text “type

freelance developer” in this example. The user’s gaze also hovers over the “w” key (resulting in visual

feedback through the red background).

The choice of vocal commands (Table 3.1) were informed through Rosenblatt et al. (2018)’s

Wizard of Oz (WOz) study with coders and their final choice of commands integrated into

the VocalIDE system. The WOz was conducted with ten non-disabled participants to gain

an understanding of the commonly used vocal commands when writing, editing, selecting

and deleting code. During this WOz study, participants were provided with two blocks of

code - one containing errors and another without any errors. They were asked to provide

verbal instructions to correct each syntax error to a researcher, who operated a text editor

according to a predetermined protocol. Additional commands were also included, such as

“open/close keyboard” (to trigger the keyboard), “clear” (to clear any highlighted words),

and “undo/redo” (to redo/undo the previous command).

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 49

Table 3.1: List of main vocal commands used in Voiceye. The “Vocal Commands” column contains

key words/terms that users actually speak. Underlined text in “Example Code / Utterances” column

includes example code to demonstrate how each speech command functions. The action performed

through each speech command is visualized in the “Example Output” column. ∎ denotes the position

of the cursor. * denotes new commands added after the first user evaluation.

Tasks Commands Description Example Code / Utterances Example Output

Code Entry “Type” Entering new text. <p>∎</p>

Speech: “Type welcome”

<p>welcome∎</p>

Navigation “Go to {line number}” Navigating between the

lines.

Speech: “Go to 17” Cursor placed at the start of line 17.

“Left/Right” Navigate one position

left/right.
<main∎class="main">

Speech: “left”

<∎main class="main">

* “Left/Right

{number}”

To navigate x positions

left/right.
padding: 4px ∎ 2px 3px 4px;

Speech: “Left 2”

∎padding: 4px 2px 3px 4px;

“Up/Down” Navigate one line

up/down.

8. <div class=”main”>

9. ∎<h1>User</h1>

Speech: “Up”

8. ∎<div class=”main”>

9.<h1>User</h1>

“End of Line” Navigate to the end of the

current line.
∎<h1>User</h1>

Speech: “End of line”

<h1>User</h1>∎

Selection “Select” Select one /multiple

elements of code.
padding: 4px∎2px 3px 4px;

Speech: “Select Select”

padding: 4px 2px 3px ∎ 4px;

“Select {line number}” Select a single line. 8. ∎<nav>

9. <div>header </div>

10. </nav>

Speech: “Select 9”

8. <nav>

9. <div>header </div>∎

10. </nav>

“Select {line number}

to {line number}”

Select multiple lines. 12. ∎<div>

13. …

20. </div>

Speech: “Select 12 to 20”

12. <div>

13. …

20. </div>∎

“Select {property}” Select attributes and

values.
<img∎src=”abc.png”

height=”20px”>

Speech: “Select property”

<img src=”abc.png”∎

height=”20px”>

Deletion “Delete line {line

number}”

Delete a single line. 12. ∎<nav>

13. <div>header</div>

14. </nav>

Speech: “Delete line 13”

12. <nav>

13. ∎</nav>

“Delete line {line

number} to {line

number}”

Delete multiple lines. 11. <section>

12. ∎<div>

13. …

20. </div>

21. </section>

Speech:“Delete line 12 to 20”

11. <section>

12. ∎</section>

“Delete selected” Delete highlighted code. padding:4px 2px 3px 4px;

Speech: “Delete selected”

padding: 4px 2px 3px∎;

Add

Comment

“Comment” Add single line comment. ∎padding: 4px 2px 3px 4px;

Speech “comment”

/*padding: 4px 2px 3px 4px;*/ ∎

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 50

3.3 User Study 1

To explore the feasibility and usability of the Voiceye prototype an initial evaluation was

conducted with non-disabled developers. A key requirement for using the application was

that all users could utilise a combination of speech, gaze, and switches for controlling the

interface (regardless of whether they have a physical impairment). It was therefore felt that

a first study with non-disabled participants would provide an important and relevant insight

into using this multimodal approach for coding purposes. It also provided an opportunity

for identifying areas where future improvements could be made through iterative

development work (prior to conducting evaluations with developers who have physical

impairments).

3.3.1 Research Question

The research question below was developed to address the limited work completed around

the potential of multimodal interaction to support development tasks:

RQ: How can multimodal approaches (utilising speech, gaze, and mechanical switches)

support people with physical impairment in writing, editing, navigating and selecting

code?

The broad focus of this question facilitated an exploratory research approach to help develop

a deeper understanding of the challenges and opportunities associated with this method of

interaction within a coding context.

3.3.2 Participants

29 participants (two female) were recruited from a population of university students and

social media platforms with ages ranging from 19 to 45 years (M=27.9; SD=7.87). 13

participants wore corrective lenses (10 glasses). Participants were asked to self-assess their

web development skills, as well as experience in using alternative input methods for

interaction with computers. Eight participants had prior experience using an eye tracker,

while 20 participants reported prior experience with using a speech recognition system. Nine

were native English speakers, five were native Urdu speakers, and three participants’ native

language was Bengali. Similarly, other native languages included Nepali, Malay, Romanian,

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 51

French, Farsi and Polish. 25 participants had experience with web development including

HTML and CSS coding with an average of 1.7 years of previous experience (SD=4.02).

3.3.3 Apparatus

Voiceye was installed on a Windows laptop (Intel® Core (TM) i3-7100U CUP and 8GB

RAM) with an external 23-inch LCD monitor of 1920x1080px resolution. The Eye Tribe

device (Eye Tribe, 2023) was used to support gaze tracking, providing an average accuracy

of 0.5 to 1° of visual angle and an operating range between 45-75cm. The Eye Tribe was

placed in front of the monitor on a tripod at a distance of approximately 60cm away from

the participant’s eyes. The laptop’s built-in microphone was used for capturing the speech

input. Two 65mm Jelly Bean switches were placed in front of the monitor and eye tracker

(Figure 3.3) – the one on the left was used to trigger keyboard selections, and the one on the

right for activating the speech recognition system.

3.3.4 Procedure

Pre-Test: Institutional Review Board (IRB) approval was obtained for the study.

Participants were provided with an information sheet containing details about the study and

asked to provide informed consent. They were also asked to complete a pre-test

questionnaire (Appendix A.1) to collect demographic information, as well as details on their

level of experience with software development and the use of alternative input methods.

Participants were given a demonstration of the prototype and encouraged to ask any

clarifying questions. A nine-point calibration process was then performed using the Eye

Tribe sensor. After successful calibration, participants were asked to practice with the

application for 5-10 minutes to ensure they could comfortably control the interface. During

the practice session, they were asked to write HTML and CSS code, navigate to different

line numbers, select and delete code, and edit syntax errors.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 52

Figure 3.3: A participant performing the usability evaluation.

Main Test: After the practice session, participants started working through the main tasks.

The tasks chosen were designed and categorised based on the development scenarios utilised

by Rosenblatt et al. (2018). The main task categories included Adding Code [ADD],

Selecting Code [SELECT], Deleting Code [DELETE], and Editing Code [EDIT]. Each

category consisted of 16 tasks of which 8 were related to HTML and the remaining 8 were

focused around CSS (64 in total) (Appendix A.2). The EDIT tasks were informed by the

highest occurring HTML/CSS syntax errors made by computing majors (Park et al., 2015).

The ADD tasks for HTML included adding a new element (e.g. <h1></h1>), a new element

with single or multiple properties (e.g. <div id="articles"></div>), creating elements with

child elements, writing HTML manually without using Emmet, adding some paragraph text

(e.g. <p>Welcome to my Portfolio</p>), and creating a freeform comment. ADD tasks for

CSS included adding new empty styles for classes (e.g. “.div {}”), styles with single and

multiple properties (e.g. “color: #000; background: #FFF”), styles targeting children of an

element (e.g. “.div>span”), writing CSS manually without Emmet, and standard freeform

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 53

comments. The SELECT tasks for both HTML and CSS involved selecting elements/styles,

lines, properties of elements/styles, blocks of code (i.e. spanning multiple lines), and

specific words within a block of text. DELETE tasks required removing elements/styles,

lines, element/style properties, a block of code, specific words within a block of text, and a

comment. Finally, EDIT tasks included fixing typographical mistakes, addressing unclosed

element pairs, correcting comment syntax, and fixing misidentified or “confused” constructs

(e.g. declaring <h1> instead of <title> within a header). A list of all tasks is provided in

Appendix A.2.

Participants were initially shown the “starting” code on paper that would be seen upon

starting the task. The final completed code snippet was also shown to participants (on paper)

in order to help them clearly understand what code or updates needed to be made. The

researcher would outline the actions required to complete the task – voice commands and

Emmet code related to the task categories were also provided to participants. Once they

made the necessary updates and verbally stated that they had completed the task, the

researcher used a keyboard shortcut to move onto the next task. Once all the tasks for a

particular category were completed (e.g. ADD tasks), participants moved onto the next

category, and the process was repeated until all tasks were completed. The task categories

and tasks within each category were randomised to reduce the potential impact of order

effects. The start time, end time, vocal commands, and gaze actions (i.e. buttons clicked,

position of gaze) were logged for later analysis. SUS (Brooke, 1996; Bangor et al., 2009)

and NASA-TLX (Rubio et al., 2004) were also administered after all tasks had been

completed, as well as an online survey (Appendix A.3) to obtain subjective perceptions of

the application. The aim of designing the study was not to create a highly controlled

evaluation but instead to provide structured tasks that encouraged participants to gain

experience in using the application.

3.3.5 Measures

3.3.5.1 Task Completion time

Task completion time was measured to gain an indication around the length of time required

to complete tasks using the multimodal approach. Task completion time was measured in

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 54

milliseconds from when participants started each task (i.e. after the researcher initiated the

task via a keyboard shortcut) until the task had been completed.

3.3.5.2 Usability and Cognitive Workload

SUS has been widely used as a standard measure to assess the subjective usability of systems

including software, web applications, and hardware (Shakil et al., 2019; Sengupta et al.,

2020; Creed et al., 2020). It is comprised of 10 items associated with usability and can

efficiently be administered to study participants (Brooke, 1996; Bangor et al., 2009). SUS

will therefore be utilised to measure the perceptions of usability at the end of the study.

Similarly, NASA-TLX (Rubio et al., 2004) has been widely used in research studies to

measure perceptions of workload and will also be administered to participants after

completion of the study tasks.

3.3.5.3 Speech and Gaze Performance

Speech and gaze interaction errors were categorised into four themes: Speech Recognition

– where the recogniser was inaccurate (e.g. “go to line 10” is recognised as “go two nine

10”); Unrecognised commands – where users issued commands that were not defined (e.g.

“remove line 6” instead of “delete line 6”); Gaze Typing – where an incorrect character is

selected when writing text (e.g. when required to select “d” as a first character, a user

incorrectly selects “s”); System error – where a user performs the correct action (i.e. correct

voice command or selection via eye gaze), but the system did not perform the appropriate

action (due to latency issues).

3.3.5.4 Post-Test Questionnaire

To obtain qualitative feedback, participants were presented with an online survey with

questions focused around their perceptions of using a multimodal approach for writing code,

their experiences in using speech for issuing commands, how they found the use of gaze and

Emmet for writing syntax and any suggestions for future updates (Appendix A.3).

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 55

3.3.6 Results

3.3.6.1 Task Completion Time

Task completion times ranged between 28:02 minutes to 76:01 minutes with an average

time of 41.10 minutes (SD=12.04 minutes). The ADD tasks for both HTML (7:15 min –

SD=2.10 min) and CSS (8:11 min – SD=4:41 min) and EDIT HTML tasks (7:48 min –

SD=2:57 min) took the longest to complete. The average completion times for the other

categories ranged from 2:30 min (SD=0.46 min) for SELECT CSS to 4:58 min (SD=2:06

min) for the DELETE HTML category.

3.3.6.2 Usability and Workload

The Voiceye application received an average SUS score of 68.1 (SD=20.8). According to

Bangor et al. (2009), the score can be labelled as OK. An average NASA-TLX score of 42.0

(SD=20.1) was received for the application indicating the prototype has a “somewhat high

workload”.

3.3.6.3 Speech and Gaze Performance

All vocal and gaze actions were captured and analysed in terms of the errors categorised in

Section 3.3.5.3. A total of 2493 errors were recorded (HTML: 1355; CSS: 1138) – in terms

of HTML, 350 errors were related to Unrecognised Commands (e.g. a user issuing

commands such as “remove line 100” and “go center”, which were not part of the defined

vocal grammar), 686 were associated with Speech Recognition (e.g. the command “right

10” which was often misrecognised as “write 10”, 270 were related to Gaze Typing (e.g. a

user selecting the wrong character when typing code), and 49 errors were related to System

Error (e.g. the system not responding to a command issued by the user). For CSS, 307 errors

were related to Unrecognised Commands (e.g. user uttering “cut this” – which was not part

of the command), 565 were related to Speech Recognition (e.g. the command “delete

selected” was misrecognised as “delete elected”), 218 were associated with Gaze Typing

(e.g. user accidentally pressing the characters twice), while 48 were System Errors.

3.3.6.4 Qualitative analysis

Qualitative data obtained through the semi-structured interviews and observations were

retrieved for analysis. A thematic analysis (Braun and Clarke, 2012) was implemented to

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 56

identify overarching themes and concepts by deriving codes from the retrieved qualitative

data. These themes and concepts were then iteratively analysed and grouped into the five

key themes as listed below:

Speech Interaction

20 participants provided positive responses around the use of voice for controlling the

system - comments focused around the voice being accurate, quick and easy to use:

“… the speech controlling system was efficient and easy to use” (P15).

Seven participants also highlighted that they preferred speech over gaze as an interaction

approach:

“it was much quicker, more reliable and allowed for shortcuts (such as end-of-line etc.) …

with a few extra commands I would not need to rely on the gaze-based input as much” (P28).

However, two participants explicitly commented that they found voice interaction

challenging to use:

“…your eye would be focused on the editor, not the prompt coming back so it would take

time to work out it had misheard you, then break your focus look at what happened and

repeat” (P14).

Furthermore, seven participants highlighted that some of the listed commands were not

always recognised and that they sometimes had to repeat commands on multiple occasions.

Gaze Typing

16 participants provided positive comments about typing code via gaze stating that it was

easy and intuitive to use:

“…it was reasonably quick and the keyboard layout was intuitive” (P28).

Five participants commented that they initially found it challenging but that they found it

easier over time:

“…it was harder in the beginning, but I got used to it pretty quickly” (P22).

Seven participants commented that typing via gaze was “hard” or “difficult”, including three

participants who stated accuracy and calibration issues made the experience “frustrating”

(P27, P29, P30). 20 participants commented positively on using Emmet when writing code

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 57

via gaze. These positive statements tended to emphasise that the approach was fast and

simple to use:

“…it was really easy as it did not take any time to write the code manually” (P4).

Six participants again commented that calibration and accuracy issues influenced their

coding experience via gaze:

“it was a good way of speeding up the workflow, but the eye tracker's low accuracy made it

tricky to be consistent” (P28).

Overall Multimodal Approach

19 participants provided positive responses around their experience of using a multimodal

approach in a coding environment. These participants described the approach as “simple”

and “easy” to use:

“my overall experience was good, it was easy to use and the functions were simple…” (P15).

Further comments re-emphasised participants’ overall positive perceptions of the prototype

and ability to complete tasks – for example, P17 commented that:

“…there is potential for this tool to aid programmers in general; programmers using

multiple screen at home may benefit particularly from talking to one screen and type-code

on another screen – allowing programmers to sift through data files/code”.

Observation Insights

 It was observed that Voiceye was unable to distinguish between different homophones –

for instance, when attempting to delete lines 2 to 5, participants often said “delete line 2 to

5”, although the recogniser would often interpret this as “delete line 225”. Voiceye would

therefore attempt to delete line 225 instead of deleting lines 2, 3, 4 and 5. Similarly, the

recogniser also commonly misinterpreted the context when participants stated numbers –

for example, “2” was often recognised as “to” and “4” as “for”. Additionally, participants

occasionally forgot to trigger the mechanical switch for initiating the recogniser, thus

resulting in them having to repeat commands once they realised voice input was not being

detected. It was also observed that participants triggered the speech recogniser key instead

of the gaze selection key to perform the selection of keyboard input. In a small number of

cases (N=34), participants also used voice commands to write the code in addition to gaze

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 58

input (e.g. instead of typing “color: red;” via gaze, participants would say “type colour red”

and then would use the keyboard to type the “:”).

Future Improvements

Four participants suggested including more voice commands to navigate around syntax:

“… the ‘right’ and ‘left’ options were very tedious to use. It might be useful to have some

sort of feature which allows you to move several spaces in the left and right direction at a

time” (P6).

 Similarly, P28 commented that a more extensive range of commands would be useful:

“… allowing for typing individual letters, allowing jumping to specific columns within a

line and simplifying repetitive navigation tasks (such as moving to words in the middle of

lines)”.

Eight participants also emphasised the importance of ensuring the gaze system is accurate

and comfortable to use.

3.3.7 Study Summary

The main objective of this study was to examine the feasibility and usability of multiple

input modalities in performing coding activities. The majority of participants had no prior

experience of using speech or gaze in the development environment and despite practicing

for a short period (approximately 10 minutes), all participants were able to use gaze to type,

voice to control the interface, and switches for selection. The results of the study were

positive and validated the feasibility of combining these methods of interaction for

performing coding activities. Whilst participants found the approach to be intuitive, simple

and easy to use, they also highlighted some limitations around the accuracy of speech

recogniser and eye tracking. In terms of gaze interaction, this can potentially be addressed

through utilising an eye-tracking device with a higher level of accuracy and precision. The

issues around speech misrecognition can also be minimised further through the inclusion of

additional vocal commands (e.g. the command “right” was often misrecognised as “write”,

so mapping these commands to perform the same action can help to address this issue). The

insights obtained from this evaluation provided opportunities for further iterative

development (detailed in the following section) prior to testing the feasibility of the

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 59

multimodal approach with the primary target audience (i.e. developers with physical

impairments).

3.4 User Study 2

Informed through the feedback obtained from the exploratory study, iterative updates were

made to Voiceye, and a follow-up study was conducted with five users who have physical

impairments to explore their experiences in writing HTML and CSS syntax using the

system.

3.4.1 Voiceye (Version 2)

To address feedback from the first study around enhancing syntax navigation, a new vocal

command enabling users to jump multiple positions within a line was added (e.g. Left/Right

x - “Left 5” would move the cursor five positions to the left from the current position).

Additionally, several participants during the initial study commented on the system’s

misrecognition of some commonly used voice commands like “delete” and “select”, so

similar words were integrated into the speech recogniser and then mapped to the correct

command (e.g. the system was often misrecognising a “delete” command as “de’lite” – this

“incorrect” term was therefore added to the grammar). Moreover, Wagner and Gray (2015)

previously highlighted that non-native English participants could experience more

pronunciation errors, so the system was updated to support the selection of different English

accents (i.e. British English, American English, Indian English, Australian English accent)

and offered through Microsoft’s Azure Speech service (to help further enhance recognition

accuracy) (Microsoft, 2023). Whilst most users in the first study were able to control the

system via the Eye Tribe device effectively, it was decided to integrate the Tobii 4C sensor

(Tobii, 2023) which provides a higher level of accuracy and has a more significant operating

distance to address accuracy issues reported by some users.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 60

3.4.2 Participants

Five participants were recruited through the support of the London RSI group (London RSI,

2023) and existing links within the research team. Participants’ ages ranged from 20 to 38

years. Participants had a mean age of 23.6 years (SD=7.3 years), with four being diagnosed

with RSI and one with Cerebral Palsy. Participants were asked to self-assess their experience

with web development skills and alternative input methods (Table 3.2). Participants had 2.4

years (SD=1.5 years) of web development experience, three participants had previously

used speech recognition technology for development work, whilst none had prior experience

using eye gaze as an alternative interaction approach. One participant was a native-English

speaker – the other native languages included Nepali, Lithuanian, Polish and Spanish. Two

participants wore corrective lenses (all glasses).

3.4.3 Apparatus

The study was conducted on a Windows 10 laptop (Intel® Core (TM) i3-7100U CPU and

8GB RAM) with the screen resolution set to 1920x1080px. The Tobii 4C eye tracker was

used and attached to the bottom of the screen via a magnetic connection. This sensor

provides an average accuracy of 0.4 to 0.9° of visual angle and an operating range between

50-95cm. Two 65mm Jellybean switches were again used for completing gaze-based

selections and for triggering the speech recogniser. The equipment was set up on a table and

tailored to participants’ needs (e.g. in terms of where the switches were placed).

3.4.4 Procedure

Institutional Review Board (IRB) approval was obtained for the study. Evaluations were

conducted at participants’ home or work environments (P1, P2, P4 and P5) and the DMT

Research Lab (P3). Participants were initially given an information sheet and asked to

provide informed consent. A survey (Appendix A.4) was then administered to collect

demographic information, details of impairments, and information about their web

development skills. Upon completion of the survey, participants were given a guided

demonstration of the prototype by the researcher. The eye tracker calibration process was

then completed, and participants were asked to practice using the system for around 5-10

minutes.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 61

ID Age Impairments Technical Experience Challenges

P1 21 (M)

RSI (since 2017). Burning

sensation in wrists and

forearms.

WD: 2 years; SRT: 1 year; EG: None;

IDE: Visual Studio; AT: Uses

VoiceCode and vertical mouse.

Limited HTML/CSS support

in VoiceCode; misrecognition

of speech input.

P2 38 (M)
RSI (Since 2018); Pain in the

wrist and fingertips.

WD: 5 years; SRT: 1 year; EG: None;

IDE: Web Storm; AT: Used Nuance

Dragon once – uses mouse/keyboard.

Issues with speech recognition

accuracy; experiencing severe

pain when using

keyboard/mouse.

P3 20 (M)

Epidermolysis bullosa (since

birth); gets blisters from

friction and extreme heat.

WD: 1 year; SRT: None; EG: None;

IDE: Dreamweaver; AT: Previously

used IntelliKeys – currently uses a

standard keyboard and vertical

mouse.

Experiences pain when typing

via keyboards (both standard

and IntelliKeys).

P4 18 (M)

Mild Cerebral Palsy (since

birth); affected mobility; stiff

limbs; difficulty in typing.

WD: 1 year; SRT: None; EG: None;

IDE: Dreamweaver; AT: None.

Difficulty typing on a

keyboard and using a mouse to

control software (due to

mobility impairments).

P5 21 (M)

RSI (Since 2019); Pain in the

left shoulder, numbness in

left arm and fingers.

WD: 3 years; SRT: 1 year; EG:

None; IDE: VSCode, Atom; AT:

Uses TalonVoice.

No standardized voiced

commands with TalonVoice;

voice recognition accuracy

issues.

Table 3.2: Participant Details - WD =Web development; SRT =Speech Recognition Tools; EG =Eye

Gaze; IDE =Integrated Development Environment; AT =Assistive Technology; VSCode = Visual

Studio Code

The main task was designed around a real-world development scenario in which a website

had to be coded using HTML and CSS. Participants were provided with a screenshot of the

website on paper to provide some context around the task (Figure 3.4). They were also given

a sheet with the available voice commands and examples of Emmet commands that could

be used to complete the task to avoid bias due to learning effects. The Voiceye application

was then started with a blank HTML and CSS document opened by default. Participants

were asked to start working towards coding up the design using the multimodal interaction

approach. Moreover, upon completing the activity, they were asked to complete the main

task separately using their existing assistive technology and code editor of choice (for

comparative purposes). Three participants (P1, P2, P3) were able to complete this additional

element of the study, whilst the other two preferred to leave this due to the potential

discomfort it might cause them.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 62

This study design aimed to give participants a realistic coding activity that encouraged them

to explore and openly evaluate the application and interaction approach (as opposed to

conducting a highly controlled study). There was no time limit set for the activity, although

participants were informed that they could take a break or withdraw at any time if they

experienced any fatigue, tiredness, or discomfort. Sessions lasted between 65-130 minutes,

and participants were then asked to complete a SUS form to assess the overall usability of

Voiceye. They then completed an online survey (Appendix A.5) with questions focused

around exploring their experiences of using the system. Finally, an informal interview was

conducted to further investigate their perceptions of the application and the multimodal

coding approach used.

Figure 3.4: The design used for the follow-up study

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 63

3.4.5 Measures

3.4.5.1 Usability

Perceptions of usability were measured using SUS (Brooke, 1996; Bangor et al., 2009)

administered at the end of the study. The NASA TLX was not employed for this study to

ensure participants were not overwhelmed after completing all tasks, surveys, and interview

questions.

3.4.5.2 Voiceye Experience

Participants completed an online survey and took part in a semi-structured interview to

obtain their overall impressions of using a multimodal approach for coding activities

(Appendix A.5).

3.4.5.3 Speech and Gaze Performance

Similar to the first study, all gaze (selection commands) and voice (verbal commands actions

were collated, and errors were classified into the same four themes: Speech Recognition,

Unrecognised Speech commands, Gaze Typing, and System Error.

3.4.6 Results

3.4.6.1 Usability (SUS)

All the participants were able to utilise the features within Voiceye to perform coding

activities from a blank file. Voiceye received an average SUS score of 74.0 (SD =4.6), which

can be labelled as exhibiting a “Good” level of usability (Bangor et al., 2009). Four

participants (P2, P3, P4 and P5) provided scores of 70 or over, whilst a lower score was

provided by P1 (67.5), which can be labelled as “OK” in terms of usability.

3.4.6.2 Speech and Gaze Performance

A total of 2180 voice commands and gaze selections were issued by participants during the

evaluations (HTML: 1335; CSS: 845) - 1290 were gaze-related actions, while 890 were

speech-related commands. A total of 527 errors were recorded across all five evaluations -

243 errors were related to Gaze Typing, 58 with Unrecognised Speech, 34 to System Error,

and 192 with Speech Recognition.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 64

3.4.6.3 Qualitative Feedback

Coding with Existing Tools: P1 was able to write most of the HTML code using his current

assistive tools, as well as create multiple new CSS styles. However, P1 commented that he

had to “stress” his voice when using VoiceCode (Voicecode, 2023), often due to issues

associated with speech misrecognition. He was also only able to use one hand with a

physical keyboard resulting in a slower typing rate. P2 was able to write the key components

of an HTML document and create some new CSS styles, although he regularly required

breaks due to experiencing pain when typing. It was also observed that both P1 and P2 had

issues when attempting to edit code with each commenting that they found editing incorrect

syntax to be particularly cumbersome using their existing tools. P3 was able to produce

markup for the basic components of an HTML document, although only wrote a single CSS

style. This was influenced through P3’s comment that he found it challenging when having

to use multiple keys simultaneously (i.e. typing characters such as “<” where the use of the

shift key is required).

Coding with Voiceye: All participants were able to utilise the features within Voiceye to

write HTML and CSS code starting from a blank file. P1 and P5 were able to add more

HTML elements (i.e. images, navigation, sections), whilst P2 spent more time creating

styles for CSS classes to work on the presentation of the HTML (i.e. the code on the right

side of Figure 3.5). The code on the left side of Figure 3.5 shows a screenshot of the HTML

written by P1, including common page elements such as a header, navigation bar with a

menu, images, and some longer text blocks. P1, P2, and P5 provided positive comments

about the application in that it was simple, intuitive, and easy to use. Participants P3 and P4

were also able to utilise Voiceye to write code, although their final output typically

incorporated fewer HTML and CSS elements. Time spent on the coding activity ranged

from 15 minutes (P3) – 46 minutes (P2).

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 65

Figure 3.5: The HTML script on the left is written by P1, while P2 coded the CSS script on the right

Voiceye vs Existing Assistive Technology: P1, P2 and P5 reported that Voiceye was better

than their existing coding tool and provided positive comments about the multimodal

approach. In particular, P1 and P5 reported that the use of eye gaze and voice allowed them

to select between the different input methods to fix errors when typing code, which was not

present in their current voice-based tool (i.e. TalonVoice and VoiceCode). Three

participants (P1, P2 and P3) highlighted that Voiceye helped remove the burden of using

their hands when pressing keys when using a keyboard and mouse interaction approach. P4

stated that he had never previously been exposed to any assistive tools but commented that

Voiceye could be a viable approach to support him with coding. Three participants (P1, P2

and P3) also used their existing tools to complete the task and believed that the inclusion of

additional features such as switching to different tabs and customisable voice commands

would make the prototype a viable solution for future coding.

Speech Control: All five participants utilised voice to perform coding activities with their

comments focusing on the approach being natural and easy to use, as well as commands

being easily memorable. However, each participant still experienced some minor issues with

the accuracy of the recogniser at times:

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 66

“…I know it will not recognise the programming languages, however the idea of using it as

a command is really good approach. It worked well with slight issues (not recognising...)”

(P5).

P4 reported that his stutter worsened when trying to type longer text but worked effectively

with the main commands. Two participants (P2, P4) commented that they would like to see

more voice commands (e.g. find/replace and select/delete for selecting and deleting specific

word(s) within a line rather than using left/right commands).

Typing Syntax via Gaze: Three participants (P3, P4, P5) commented that gaze was a fast and

easy approach for writing code:

“… frankly, I thought it would be slow to type HTML … but with emit [sic] code, it was

faster…” (P5).

Two participants (P1, P2) suggested that they would like to see improvements in the

accuracy of the gaze interaction, although both were able to effectively use the system to

write code. It was observed that all the participants tended to look away from the keyboard

screen while releasing the switch button, thus resulting in them selecting the wrong

character. This added a significant interaction cost as the character would then need to be

deleted. P2 and P4 highlighted that using the switches required some effort and could result

in their hands becoming tired over prolonged periods of interaction. Three participants (P1,

P2 and P5) also suggested incorporating other languages (e.g. JavaScript) to support more

comprehensive coding activities.

3.5 Conclusions

This chapter has addressed the research question highlighted in Section 3.3.1 through the

development and evaluation of a multimodal system to support people with physical

impairments with writing and editing code. Previous studies have independently explored

the potential of gaze and speech input for writing code (Begel and Graham, 2005; Bednarik

and Tukiainen, 2006; Glücker et al., 2014; Rosenblatt et al., 2018; Shakil et al., 2019),

although both approaches have been found to have strengths and limitations (e.g. challenges

around the selection of small targets via gaze and speech recognition issues). Researchers

have previously highlighted that the combination of speech and gaze could present a

complimentary and more effective method of interaction ((Beelders, 2011; Van Der Kamp

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 67

and Sundstedt, 2011; Sengupta et al., 2018)), although there has been a lack of research to

date investigating the potential of this approach. This chapter has addressed the limited work

in this area through presenting a new system (Voiceye) that integrates these methods of

interaction (in addition to mechanical switches) to enable developers with physical

impairments to write code.

The results from the two user evaluations were positive and demonstrated the feasibility of

combining speech, gaze, and mechanical switch interaction for supporting development

work. The majority of participants from the first study found coding via multimodal input

controls to be an intuitive and simple interaction approach. Coders with physical

impairments from the second study also made similar positive comments, with several

stating that this approach provided advantages over their existing assistive interaction

methods. This combination of speech and gaze interaction (supported with switch controls)

demonstrates how they can be utilised together to help overcome some of the limitations of

each technology.

In particular, writing code via gaze interaction (using a common shorthand notation) helps

to address some of the misrecognition issues around producing syntax via speech

recognition. Similarly, the use of speech input (using a fixed set of vocal commands) for

enabling actions such as the navigation, selection, and deletion of code helps to overcome

the issues of activating small targets via eye gaze. This new multimodal approach, therefore,

provides key insights on the potential of combining speech, gaze, and mechanical switches

for development work, as well as highlighting future challenges to be addressed.

From a wider perspective, this research highlights how multimodal interaction can support

the control of systems, although there is a lack of work examining the combination of

additional input methods to develop new assistive solutions (e.g. mid-air gesturing, head

tracking, facial expression control). Also, as highlighted by P17 (during the first study),

exploring the interplay of these new multimodal approaches with different external displays

and configurations could hold much potential for both disabled and non-disabled coders

(e.g. in terms of one display being optimised primarily for speech controlled activities,

whilst another could support different tasks aligned to an alternative input method).

Whilst the evaluations highlighted that the multimodal approach is viable and was perceived

positively by participants, one issue observed was the efficacy and usability of gaze input.

Chapter 3: multimodal coding via speech, gaze and switches

 Bharat Paudyal – March 2023 68

In particular, some participants across both studies encountered calibration and accuracy

issues on occasions when attempting to select interface targets. While steps were taken to

mitigate the impact of this known challenge (e.g. through using large selection targets

(Miniotas et al., 2006; Biswas and Langdon, 2011)), this still caused issues and frustration

for some participants. Furthermore, whilst the use of a standard shorthand coding notation

(i.e. Emmet) was used to support more efficient syntax generation via gaze interaction, this

can still potentially be a slow process. It was observed during the studies that participants

found speech a viable approach for writing longer comments as part of the coding activities,

so one potential alternative approach is to explore further the use of voice input along with

another input (e.g. mechanical switch) for improving the efficiency of writing code.

Another key area suggested by participants was to investigate the use of high-level

programming languages (e.g. JavaScript) via alternative input methods. These languages

present additional challenges in that a wider range of syntax and coding constructs need to

be supported. This may lead to issues around the recall of voice commands that could impact

on the feasibility of voice coding (Joshi and Bein, 2020), although other approaches, such

as natural language voice input, may potentially provide some interaction benefits (Good

and Howland, 2017; Barmpoutis, 2018). However, there has been a lack of work exploring

the viability of these methods and whether they can support more inclusive coding

experiences. This, therefore, forms the focus of the next chapter, where two different

multimodal voice coding approaches are compared in the context of writing syntax for a

high-level language.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 69

4 MULTIMODAL FIXED GRAMMAR AND

NATURAL LANGUAGE VOICE CODING

4.1 Introduction

This chapter explores the development and evaluation of a research prototype to enable

developers with physical impairments to write and edit JavaScript code utilising a

multimodal speech and mechanical switch approach. A particular emphasis is on

investigating and comparing development activities using a fixed grammar and natural

language voice coding approach. Speech as an interaction approach has developed

significantly in recent years, with researchers starting to explore the feasibility of this

approach to support coding activities - for instance, studies have investigated the efficiency

of rule-based grammar in coding environments where specific commands can be used to

write new syntax and initiate different features (Wagner and Gray, 2015; Nowogdorzki,

2018; Rosenblatt et al., 2018). Whilst this type of voice coding approach presents new

opportunities for developers, it can also give rise to some interaction challenges – for

example, users have to learn the supported vocal commands, which can add significant

cognitive load during development work (Good and Howland, 2017; Van Brummelen et al.,

2020b). Similarly, the recognition system may be unable to distinguish between

homophonic words (i.e. “for” with “four”, “to” with “two”) and may encounter difficulties

in recognising commands issued by non-English speakers (Wagner and Gray, 2015;

Rosenblatt et al., 2018). Commands may also not be recognised properly, requiring users to

repeat the same command on multiple occasions, resulting in inefficient development

experiences (Desilets, 2001; Nowogdorzki, 2018; De León Cordero et al., 2021).

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 70

An alternative approach that can address these limitations is the use of natural language (i.e.

unconstrained commands) to write syntax. This has become an increasingly viable approach

in recent years and has been investigated in different domains (e.g. creative fields

(Srinivasan et al., 2019), task management (Sarmah et al., 2020), home automation system

(Pradhan et al., 2018; Lau et al., 2018; Ramadan et al., 2021), and conversational coding

(Jung et al., 2019; Van Brummelen et al., 2020b)). This method could provide developers

with more flexibility around the commands they use to write code, thus facilitating a more

natural user experience (Delimarschi et al., 2014; Good and Howland, 2017; Mazumder et

al., 2019). Conversely, the unfamiliarity of this method could create uncertainty around

which commands to use and potentially lead to perceptions of an unnatural user experience

(Srinivasan et al., 2019; Van Brummelen et al., 2020b). Both fixed grammar and natural

language voice coding approaches have been explored independently, although no

comparative studies have been conducted to date to measure the efficacy and usability of

these approaches. Moreover, no evaluations using natural language approaches have been

conducted with developers who have physical impairments, so it remains unclear whether

this method of coding is a viable approach for this target audience.

This chapter initially explores design requirements for vocal programming through detailing

an exploratory study investigating the types of voice commands developers would prefer to

use for completing a range of coding activities. The findings of this study informed the

design of a novel research prototype utilising both natural language and fixed grammar

approaches to facilitate the writing, editing, and navigation of code. A comparative study of

the two approaches is then highlighted, where the strengths and limitations of both methods

are identified. A rationale is then provided for conducting further research on the natural

language approach, where a second version of the prototype is evaluated in a multi-session

study with developers who have physical impairments. This chapter, therefore, presents four

key contributions:

(1) results from an exploratory study highlighting the voice commands developers prefer to

use while performing coding activities.

 (2) a novel multimodal speech and mechanical switch-enabled coding environment

enabling people with physical impairments to write, edit, select, remove and navigate

JavaScript code via a fixed grammar and natural language approach.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 71

(3) a user study comparing fixed grammar and natural language approaches with results

demonstrating similar levels of performance and efficacy across both coding approaches.

 (4) a multi-session study with developers who have physical impairments validating the

feasibility of writing and editing code via multimodal natural language speech input

4.2 Exploratory Study

Limited work has been conducted to understand the types of commands preferred by

developers when performing coding tasks such as writing, navigating, and editing code. It

was therefore important to conduct an initial exploratory study with developers to

understand more deeply the types of speech commands that might be used to facilitate

different coding activities.

4.2.1 Participants

12 university students (all male, ages 20-25, M=22.2, SD=1.7) with at least a year of coding

experience (M=2.1; SD=1.2) volunteered for the study. Seven participants were native

English speakers, whilst other native languages included Polish, Italian, Punjabi, Nepali and

Romanian. Participants were initially asked to self-assess their experience using alternative

input methods for interacting with computers. Eight participants had prior experience using

voice for controlling a home environment, whilst two had previously utilised voice

interaction for performing coding activities.

4.2.2 Apparatus

The study was conducted on a Windows laptop (Intel® Core(TM) i3-7100U CUP and 8GB

RAM) machine. The laptop’s built-in microphone was used for capturing speech input

which was recorded using Microsoft’s default sound recorder software.

4.2.3 Procedure

Institutional Review Board (IRB) approval was obtained prior to the study. Participants

were initially briefed about the motivation of the research and provided informed consent.

Participants were then handed two code snippets on paper: one containing six syntax errors

(Figure 4.1) and another with the same code, but where the errors were corrected (Figure

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 72

4.2). The syntax issues incorporated into the code were informed through the common

JavaScript errors identified by Ocariza et al. (2013) and Hanam et al. (2016) to create a

realistic coding scenario. The errors were also clearly marked through highlighting the

relevant code to ensure developers were aware of the syntax issues regardless of their coding

experience. Once participants had viewed both snippets and were clear on the updates

required, they were asked to verbalise the voice commands they would use to correct each

syntax error to match the correct code. This involved them having to issue commands in

relation to navigating, selecting, deleting, and writing code.

Figure 4.1: JavaScript code snippet used for the exploratory study containing syntax errors (green

highlighted text denotes where errors are located).

Figure 4.2: JavaScript code snippet used for the exploratory study where the errors are not present.

After correcting the syntax errors, participants were given an additional task around writing

code (as opposed to editing), where they were initially given some pseudo code on paper

containing logic for creating a class, two methods, variables, a loop, and conditional

statements (Figure 4.3). Once participants had familiarised themselves with this code, they

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 73

were asked to verbalise the commands they would use to generate the relevant syntax. Each

session was recorded, and participants’ verbal commands were transcribed into text (all

participants completed the study individually).

Figure 4.3: Pseudocode used in the exploratory study

Participants issued a total number of 417 voice commands – 263 were associated with

writing code and 154 for editing syntax (Table 4.1).

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 74

A thematic analysis (Braun and Clarke, 2012) was performed to understand the common

themes associated with voice commands for performing coding activities. The first stage

involved developing initial categories around the commands issued across all participants,

followed by multiple rounds of iteratively refining key themes capturing the insights from

participants. The resulting five themes are detailed below:

Voice Command Variation: All participants used a variation of commands with the

majority (N=10) utilising high-level phrases and abstractions when issuing voice commands

Task Voice Commands Occurances

Declare a class Create Class X 10

Charlie Lima Alpha Sierra Sierra space X (NATO Alphabet) 2

Declare a function Create function X 18

Create function X with Y and Z 8

Create function X that takes Y and Z 5

Fox Uniform November Charlie Tango India Oscar November space X 5

Assign Variable Set X to Y 32

Create variable X 17

Assign X to Y 20

Condition If X greater than Y 4

Check If X greater than Y 3

Loop For X equals 0 X greater than Y and X++ 5

For loop I from 0 to Y 4

For open bracket var I equals 0 I less than or equals to Y and increment I

close bracket

3

Print Console log X 20

Print X 12

Navigate to line Go to line 28

Move to line X 19

Navigate around

Position

Move x position Left/Right/Up/Down 24

Up x, Down X, Left X, Right Y 21

Go X Left/Right 10

Delete/ Delete X 31

Delete line x 7

Select Select Line 4

Select word X 7

Table 4.1: Frequently used commands during the exploratory study

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 75

to write code, while two participants dictated each letter using the NATO alphabet. For

example, a condition such as “if (a > 5 { })” was pronounced as “if a greater than 5” by four

participants. Similarly, three participants used “check if a is greater than 5”, while “if

condition a greater than 5” was used by three participants, and two participants dictated the

code using the NATO alphabet (i.e. “India Fox Open Bracket Alpha greater than five close

brackets open curly bracket close curly bracket”). In some cases, participants verbalised

code which was syntactically incorrect, but where the semantics of the code was correct.

For instance, when creating a for loop, four participants used the command “for loop i from

0 to 10”.

Symbol Omission: Eight participants omitted common symbols (i.e. (,), ==, “, ‘, ++, --)

when coding (e.g. for (var i =0; i <=10, i++), was verbalised as “create for loop variable

i from 0 to 10”. Similarly, “function getarea(height, width)” was spoken as “create function

getarea with height width”. However, two participants who dictated each letter when writing

code used symbols for opening brackets and including operators. In the above example, the

for loop was verbalised as “for open bracket var i equals 0 i less than or equals to 10 and

increment i close bracket”.

Code Navigation: 11 participants used terms such as “new line”, “enter”, “next line”, and

“down” after each command to move to the next statement. Additionally, participants used

the terms “up x position” and “go x position down” to move to different lines. Similarly, for

navigating to different positions, seven participants used multiple individual steps to move

to their desired location (i.e. “go to line number x”, “move x position right”). However, five

participants used a single command (combining multiple steps) to navigate to a specific

position (i.e. “go to x position of line x”). Five participants also varied the commands they

issued for performing similar actions – for instance, when moving to a line number, P7 used

the command “go to line x” on three occasions and “line x” twice.

Selecting and Deleting Code: Eight participants used multiple steps when selecting and

deleting code (i.e. navigating to a particular line and then issuing a relevant command). For

example, to delete the word “defined” on line 7, participants typically stated, “go to line 9”

and then “delete defined”. When selecting and deleting whole lines, participants used

generic terms such as “delete line number x” or “select line number x”. Symbols were not

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 76

skipped when deleting or making selections. For instance, to select the term “this.height”

participants would commonly state, “select this dot height”.

Common Commands: Nine participants typically used the word “create” when declaring

a class and functions (“create class helloworld”). Similarly, participants typically used the

term “go to line” when navigating to a specific line of code. Moreover, the “delete”

command was commonly used by seven participants when removing lines of syntax, the

“select” command was widely used to select lines of code, and “end of line” was regularly

used by eight participants to manipulate the cursor. To delete and edit code, participants

would first delete the incorrect code or line (e.g. “delete line x”, “delete word”) by

navigating to the correct position and would then type the correct code. This is in contrast

to previous studies in this area (Rosenblatt et al., 2018; Begel and Graham, 2006) where

participants would use commands such as “change to” and “replace” to edit code. Finally,

seven participants commonly used the command “print” to output any text or values (e.g.

“print area is less”).

This exploratory study provided insight into the types of commands that developers prefer

to use when writing and editing syntax. This work was used to inform the design of a

research prototype detailed in the following section that supports multimodal voice coding

via both fixed grammar and natural language interaction.

4.3 System Design

The prototype from Chapter 3 was adapted for the purposes of the study discussed in

Chapter 4 – the main interface design (Figure 4.4) was again informed through the design

and layout of existing mainstream development environments (e.g. Visual Studio Code

(2023), Brackets (2023)). In particular, the prototype was designed to run in fullscreen mode

with a minimum width of 1100px and used a theme similar to the default one used in Visual

Studio Code. A microphone icon was also displayed at the top of the interface, with the

speech recogniser being disabled by default.

The architecture of the prototype consists of three major components: (1) a speech input

interface to convert speech into text (using the WebSpeech API (2023), (2) a command

interpreter to parse a user’s intent and commands, and (3) an execution method to process

coding actions based on the commands issued. The recognition system can be initiated via

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 77

the “space” key (or a different switch input), which results in the microphone icon at the top

of the interface subtly pulsating to highlight that the system is “listening” for input. Once a

user issues a command the latest speech input recognised by the system is positioned next

to the icon to provide feedback to users. An error message is also displayed below the speech

input if the voice system fails to recognise the command issued. For example, if a user fails

to provide a class name when creating a class, the prototype will display an error

highlighting that a class name is expected. Two different speech-based coding methods were

developed based on this underlying architecture – fixed grammar (FG) and natural language

(NL).

Figure 4.4: A screenshot of the code editor - text displayed next to the microphone icon highlights the

latest recognised speech command issued to the system

4.3.1 Fixed Grammar (FG)

The FG approach provides users with fixed commands for writing, editing, and navigating

code (Table 4.2). In this approach, voice input is initially converted to text and then

compared against the defined grammar (using a rule-based parser) – appropriate coding

actions are then performed if a match is detected. For example, if a user states, “create

function area with height width”, the system will output

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 78

Table 4.2: List of main vocal commands used for fixed command grammar. “Vocal Commands”

column contains keywords/terms that are spoken by users. Underline text in the “Speech Commands”

column denotes the optional values, whereas the bold text denotes the compulsory value. The action

performed through each speech command is visualized in the “Example Output” column. ∎ denotes

the position of the cursor.

Tasks Speech Commands Description Example Code / Utterances Generated Output

Code

Entry

“Create class classname” To create class Speech: “create class car”
Class car {

∎}

“Create function

functionname”
To create function Speech: “create function check”

check (){

∎}

“Create function

functionname with

parameters”

To create function with

parameters

Speech: “create function area with

height width”

area (height, width) {

∎ }

“Assign variable name to

value”
To assign a variable. Speech: “assign let height to 10” let height =10∎;

“If variable operator final

value”
To create an if condition Speech: “if let area greater than 10”

If (let area > 10){

∎}

“Loop variable from

initial value to final value
To initialize a for loop Speech: “loop variable i from 0 to 5”

for (var i =0; i < 5; i++){

∎}

“Print value” To print Speech: “print test” console.log (“test”)∎;

“Type value” To write text Speech: “type welcome” Welcome∎

Navigate

“Go to number”
Navigating between the lines of

code.
Speech: “Go to 10”

Cursor placed at start of line

10.

“Left/Right/ Up/Down

position”

Navigate x position left/right

/up/down.

var height=∎price;

Speech: “right 5”
var height=price∎;

“End of Line”
Navigate to the end of current

line.

∎throw ‘intent is not’

Speech: “End of line”
throw ‘intent is not’∎

Select

“Select line line number” Select a single line

5. ∎Class car {

6. getcar (price, brand){

 Speech: “Select line 6”

5. Class car {

6. getcar (price,brand){ ∎

“Select line from line

number to line number”
Select multiple lines

1. ∎class area {

2…….

9 }

Speech: “Select line from 1 to 9

1. class area {

2…….

9 }∎

“Next number”
Select x words right to the

cursor.

∎throw ‘intent is not’

Speech: “next 2”
throw ‘intent∎ is not’

“Previous number” Select x words left to cursor.
Let this.brand =∎brand

Speech: “previous 3”
Let ∎this.brand =brand

Delete

“Delete line line number” Delete a single line

5. ∎Class car {

6. getcar (price, brand){

7. this.price =price;

Speech: “delete line 6”

5. Class car {

6. ∎this.price =price;

Delete line from line

number to line number
Delete multiple lines

5. ∎class area {

6. Constructor(height){

7 ………

10 }

Speech “delete line from 6 to 9”

5. class area {

6 ∎}

“Delete”
Delete highlighted code; deletes

one character if not highlighted

∎throw ‘intent is not valid’

speech: “delete”
∎‘intent is not valid’

“Back” Remove character left
Let area =10∎;

speech: “back”
Let area =1∎;

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 79

Any deviation from the defined structure results in an error message being displayed. The

available commands are hidden by default within the editor and can be displayed on the

right side of the editor using the verbal command “help”. The list of commands defined for

writing code were informed through a combination of the most common terms stated by

participants in the exploratory study and a previous study in the field where commands were

categorised into four key areas: code entry, navigation, selection, and deletion (Rosenblatt

et al., 2018).

4.3.2 Natural Language (NL)

The NL method provides users with the freedom to write and edit code using unconstrained

natural speech input, as opposed to being constrained by specific commands that must be

used to control the system. To facilitate this approach, Wit.ai (Wit, 2023), an open-source

natural language interface, was used to train 182 utterances obtained from the initial

exploratory study conducted. Wit.ai implements a natural language understanding model to

extract the user’s intent and associated parameters (such as entities and traits) from vocal

commands that have been issued to the system.

Figure 4.5: Architecture of the Natural Language System; The user voice input is converted into text

and is passed to Wit.ai, which generates Intents and entities in a JSON format and is passed to the

prototype. The prototype then checks the intent to trigger appropriate coding actions.

When coding via NL, speech input is initially converted to text and passed to the Wit.ai

model using HTTP request. The model processes the request and returns the corresponding

intent and entities in JSON format. The system then checks the intent against the rule-based

interpreter to perform appropriate actions (Figure 4.5). For instance, if the user stated,

“create a new function check with two parameters brand and price”, the system would infer

the intent as “create function” and recognise two parameters (brand and price). These results

are passed onto the execution component to generate the following code within the editor.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 80

The list of intents used in the NL model are listed in Table 4.3.

Tasks Intents Example Utterances

Code

Entry

Create new class/function. “create a new class car”, “create a new function called getarea

which takes initialwidth”

Create/assign new

variable.

“create a new variable called area which takes initialheight times

initialwidth”

Create for loop. “loop I between 0 to 10”, “for loop I equal to 0 until 10

increment I”

Create if statement. “if height greater than width”, “if true”, “if not equals to false”

Console/Non-code “console log test”, “type hello world”, “print test”

Add parameters to

function*

“add hello in get method”, “add parameter height to the function

getarea”

Navigation Navigate to lines of code. “go 10”, “move to line 3”, “line 3”, “go to line 10”

Navigate code. “go up 10”, “left 30”, “move right 10”, “go down 20”

Navigate to start/end of

line.

“start of line”, “end of line”, “line end”

Copy/paste code/text* “copy”, “copy my code”, “paste”, “paste code”

Undo/redo previous

action.

“undo”, “undo up”, “redo”, “do redo”

Select Select code. “select 10 to 20”, “select car”, “select line 2”

Delete Delete code. “delete line 7”, “delete constant height”, “back”

Table 4.3: List of NL intents and example utterances used to train the NL model. * indicates the new

commands added after the first evaluation.

4.4 Study 1: Fixed Grammar versus Natural Language

An evaluation was conducted with non-disabled participants to assess the performance and

usability of the two voice coding interaction approaches developed (FG and NL). Whilst the

core focus of this work is on exploring solutions for disabled developers, it was important

to explore the efficacy of both approaches prior to conducting evaluations with developers

who have physical impairments to ensure the system was usable. Given that the key

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 81

interaction requirement for controlling the prototype is the use of voice input (regardless of

whether participants have physical impairments), it was felt that working with non-disabled

participants would provide essential insights. This methodology also aligns with other

related studies focused around investigating assistive systems (Rosenblatt et al., 2018;

Shakil et al., 2019; Aziz et al., 2021)

4.4.1 Research Question

The following research question was developed to address the limited work around the

potential of different multimodal speech coding approaches (i.e. fixed grammar and natural

language) to support development work:

RQ: To what extent can natural language and fixed grammar voice coding approaches

support the writing, editing, navigation, and selection of code?

The broad focus of this question facilitated an exploratory research approach to help develop

a deeper understanding around the challenges and opportunities associated with this method

of interaction within a coding context.

4.4.2 Participants

25 participants (4 female) were recruited from a population of university students and social

media platforms with ages ranging from 18 to 50 years (M=26.2; SD=8.4). Only two

participants from the previous study (Chapter 3) took part in this study. All participants were

fluent in English with 14 native English speakers, whilst other native languages included

Nepali, French, Hindi, Bengali, Polish and Dutch. Participants were asked to self-assess

their level of coding experience - 24 participants reported an average level of coding

experience (M=4.48 years; SD=3.6), whilst one participant reported being a novice

developer. All participants had at least one year of JavaScript coding experience. Four

participants had prior experience using assistive tools to support coding (three had

previously used speech, whereas one had experience with eye gaze interaction).

4.4.3 Apparatus

All study sessions were conducted remotely via Zoom (2023) and Microsoft Teams (2023).

Participants were required to use their microphones during the study - 21 participants used

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 82

their computer’s built-in audio input device, while four participants used an external

microphone. Participants were also required to use the Google Chrome browser as the Web

speech API was incompatible with other mainstream browsers.

4.4.4 Procedure

Pre-Test: Institutional Review Board (IRB) approval was obtained prior to the study. The

participant and researcher initially met online via Teams (N=23) or Zoom (N=2) (whichever

was most suitable for participants) at an agreed time. The research prototype was hosted on

a university server, and the link was then shared with participants. After a brief introduction

about the prototype, participants were asked to navigate to a project information page and

were requested to provide informed consent. They were then redirected to the pre-test

questionnaire (Appendix B.1) to collect demographic information, as well as details around

their coding and assistive technology experience. A within participants design was utilised,

with participants randomly assigned to use either the FG or NL approach. They were then

given a demonstration of the prototype and asked to practice with the approach they had

been assigned (e.g. through creating classes and functions, navigating to different lines of

code, selecting and deleting code) for at least 10 minutes to ensure they were comfortable

with the coding methods.

Main Test: Following the practice session, participants started to work on the main

experimental tasks. The tasks were designed and categorised into four key areas: CREATE,

DELETE, SELECT, and EDIT. Each category consisted of six separate tasks (24 tasks in

total) - CREATE tasks were informed through the evaluation tasks utilised by Soto Munoz

et al. (2019) and Van Brummelen et al. (2020) and required participants to write new syntax

within a blank document (e.g. create a class, a function with multiple attributes, an if

condition to check two variables, and a for loop). EDIT tasks included common JavaScript

errors, which were informed through the work of Ocarize et al. (2013) and Hanam et al.

(2016), who examined and classified common JavaScript errors across different code

repositories. Participants were therefore required to edit existing code to fix issues such as

syntax errors, typographical mistakes, and undefined methods. SELECT tasks included

selecting single and multiple lines of code, single and multiple characters and words, and

specific syntax within a snippet of code. DELETE tasks involved removing lines, characters,

snippets of code, and specific syntax within a snippet of code. The task categories and tasks

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 83

within each category were randomised across all participants to reduce the potential impact

of order effects. The list of tasks can be found in Appendix B.2.

Prior to starting a task, participants were initially shown the starting code they would see on

the screen once the task started (e.g. a code snippet that contained a syntax error), along

with the final code they needed to write (e.g. the same code where the syntax error has been

corrected). Once participants had familiarised themselves with what the task entailed, they

started the task via selecting the “Start Task” button. They then worked on the required task

and selected the “Completed Task” button once they had finished making the necessary

updates. Once all the tasks for a particular category were completed, participants would

automatically move on to the next category, and the process was repeated until all the

category tasks were finished. Participants were then administered the SUS survey (Brooke,

1996; Bangor et al., 2009). Participants then moved on to the next coding approach (FG or

NL) and followed the same process. At the end of the evaluation, participants were presented

with some open-ended questions (Appendix B.4) focusing on their subjective perceptions

around the two different coding methods. All sessions were recorded for later analysis with

participants’ consent.

4.4.5 Measures

Task Completion Time: As stated in Chapter 3, it was important to measure task

completion time to gain an understanding around the length of time required to complete

tasks and to assess the efficiency of the interaction approach. Task completion time was

measured in milliseconds from when participants started each task (i.e. after they selected

the “Start Task” button) until the task had been completed.

Usability: Perceptions of usability were measured via SUS (Brooke, 1996), which was

administered after all tasks had been completed for a coding approach.

Speech Performance: Errors were categorised into four themes: Speech Misrecognition –

where the recogniser was inaccurate (e.g. “delete line 10” misread as “delete nine”); System

Error – where a user command was correctly recognised, but the system did not perform

the appropriate action (due to latency issues with the Web Speech API and Wit.ai);

Unrecognised Commands – where users stated commands that were not part of the defined

FG grammar; Model Misunderstanding – where the NL model misinterpreted the intention

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 84

behind user voice commands. Speech misrecognition and system errors are applicable to

both FG and NL - unrecognised commands are only relevant for FG, whilst model

misunderstanding is only applicable to NL.

Post-Test Questionnaire: To obtain qualitative feedback, participants were presented with

an online survey with questions focused on their perceptions and experiences of each voice

coding approach (i.e. NL and FG), as well as any suggestions for future iterative

development (Appendix B.3).

4.4.6 Results

A total of 1200 coding tasks were completed by participants across the study (24 tasks * 2

conditions* 25 participants). Shapiro-Wilk’s test for normality (Rochon et al., 2012) found

that task completion time, speech recognition accuracy, and usability were not normally

distributed. A Wilcoxon test (Divine et al., 2013) was therefore used to analyse the data with

an alpha of 0.5%.

4.4.6.1 Task Completion Time

No statistically significant differences (Z =0.895; p>0.05) were observed for overall task

completion time between NL (M=16.7, SD=4) and FG (M=16.4, SD=4.4). The times ranged

between 08:54 minutes to 24:08 minutes for FG and 09:12 minutes to 24:16 min for NL. To

gain a more detailed perspective of task completion times for each task across the two

different conditions, a taskwise analysis was conducted. The EDIT tasks for both NL (6:33

min, SD=1.87 min) and FG (5:44 min, SD=1.85 min) took the longest to complete, followed

by CREATE tasks (NL - 4:23, SD=1.9 min; FG - 3:58 min, SD =1.5 min), SELECT tasks

(NL - 3:0 min, SD=0.96 min; FG - 3:10 min, SD =1.50 min), and DELETE tasks (NL -

M=2:26 min, SD =0.75; FG - M=3:08 min, SD=1.3 min).

4.4.6.2 Usability

NL obtained an average SUS score of 74.5 (SD =14.7), while FG received 73.9 (SD=16.7),

where scores can be labelled as “Good” (Bangor et al., 2009). No statistically significant

difference was found between conditions (Z=0.78, p>0.05).

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 85

4.4.6.3 Speech Performance

A total of 4996 vocal commands were issued (FG: 2868; NL: 2128). In terms of NL, 346

commands were related to speech misrecognition (16.2%), 202 were related to model

misunderstanding (9.5%), and 69 (3.4%) were associated with a system error. For FG, 563

commands were related to speech misrecognition (19.6%), 299 to unrecognised commands

(10.4%) and 125 to system error (4.3%). No significant differences were observed for

speech misrecognition (Z=0.300, p>0.05) between NL and FG. No statistically significant

differences were also observed between FG and NL in terms of system error (Z=0.19,

p>0.05).

4.4.6.4 Participant Feedback

Natural Language Coding: 11 participants stated a preference for NL where positive

comments emphasised that the approach was easier to learn, more intuitive, and less

constrained:

“… I prefer natural language speech as it was fast and responsive to … change code” (P20).

“I found that commands that were clearly interpreted by the NPL mostly did what I asked

for. The commands were intuitive and allowed me to do the actions required” (P11).

Six participants highlighted that they struggled with NL at the beginning, but found it easier

after further exposure:

“after a few attempts it became very easy and fluid to create code …” (P18).

Eight participants perceived NL to be harder and more challenging to use than FG – in

particular, it was highlighted that the system did not always interpret the participant’s

intention to write code (despite the voice input being recognised correctly):

“…Fixed command was easier to write code as the Natural Language could not recognise

what I was trying to say” (P4).

This was likely influenced by the NL model being trained with a limited dataset (182

utterances from the exploratory study). However, 18 participants explicitly reported they

felt that NL could be a better approach than FG due to potentially having fewer constraints

around the commands that could be issued to the system.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 86

It was observed during the NL evaluation that in most cases, participants provided single

instructions at a time (e.g., “Create a class car”). However, in a smaller number of

occurrences (24), participants tried to provide multiple actions joined together (e.g. “Create

a class car and create a function check and add parameters brand and price in the

function”). In 16 cases, participants stated a single command without providing any

attributes or values when creating functions, classes, declaring if conditions, and printing

values (e.g. “define class”). Whilst in this scenario, the system would output an error

message, six participants stated they wanted to see the structure of the code with relevant

placeholders (e.g. when stating “create class”, the code “class [name] { … }” would be

displayed within the editor – where “[name]” is a placeholder that can be edited).

Fixed Grammar: 13 participants preferred FG, with comments emphasising that the

inclusion of specific commands made it easier and more structured to use:

“… (having) defined keywords and rules to follow made it feel more like programming

because it was a ‘syntax’ to follow” (P2).

“Fixed commands … seemed to be more reliable as commands were easily interpreted and

executed “ (P13).

The majority of the participants (N=10) highlighted that the use of example commands

helped them to recall the available commands:

“I found the fixed commands easy to use when I had the help screen open to assist me” (P5).

“Made it much easier to have a help portal with the commands to use. For example, I had

troubles before creating a loop, but found it easier with the fixed command“ (P12).

However, 12 participants felt that FG was less intuitive and harder to use than NL because

of the constrained commands

 “…with the fixed command, I feel it was a lot more constricted with what you can say”

(P21).

It was observed that some of the commands were not recognised by the system, thus

participants had to repeat the same command multiple times, which created frustration:

“This process was a bit difficult as sometimes it would not select the line, so i would have

to say "up" 3 time or "left " 30 times” (P25).

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 87

Six participants suggested including more variations in the commands to make the system

more flexible and reliable:

“… the commands worked as they should but having a variety of commands would make it

easier.” (P7).

Speech Recognition Issues: In both NL and FG the recogniser had issues in distinguishing

between homophones (similar to Study 1 – Section 3.2.6). To overcome these issues,

participants typically used alternative strategies to complete the tasks (e.g. navigating to

lines using commands such as “up” and “down”). Whilst this facilitated the completion of

tasks, it typically required the use of additional vocal commands. Participants had to use the

exact vocal command to trigger any coding functionality in FG, which occasionally led to

challenges as they would have to repeat commands multiple times when there were

recognition issues. However, NL was more frequently able to interpret the command

correctly despite any speech misrecognition. For example, to create a class named vehicle,

“glass vehicle” would create the class in NL, although for FG, participants had to issue the

correct command “create class vehicle”. This, therefore, contributed towards the overall

number of commands issued in FG being higher than for the NL approach.

Additional Coding Commands: Participants also attempted to use commands such as

“copy”, “cut”, and “paste” on 18 occasions, although the system was not trained to handle

these features. Seven participants suggested that incorporating this functionality would

support them when writing code. Moreover, when using NL, seventeen participants used

commands associated with navigating to the start of the line (i.e. “go to beginning of line”),

although this was also unsupported by the system. Additionally, nine participants suggested

including functionality for removing or selecting a line without specifying the line number

(i.e. delete/select the line where the cursor is currently positioned) to minimise numeric

value misinterpretation in this context.

4.4.7 Study Summary

Overall, the results from this study found no significant differences between NL and FG in

terms of performance and accuracy. However, whilst issues were highlighted around NL

(i.e. around the accurate interpretation of user intentions), 18 participants indicated that this

method held the significant potential to better support development work if the model could

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 88

be developed further to become more robust. For instance, it was highlighted that having

fewer constraints around the language and commands that can be issued to the system could

present significant benefits over FG. Given the current lack of work around natural language

coding approaches (in contrast to fixed grammar methods), it was decided to take this

approach forward for iterative development and evaluation with developers who have

physical impairments to explore further its potential to support coding activities.

4.5 Study 2: Evaluation with Disabled Coders

A multi-session follow-up study was conducted with five developers with physical

impairments to investigate their experiences using NL for writing JavaScript code.

4.5.1 Version 2

1832 unique utterances provided by participants during the first evaluation (i.e. commands

not previously used for training) were used to further develop the Wit.ai model. Several

iterative updates were also made to the prototype based on participants’ feedback. In

particular, support was added for copying, cutting, and pasting individual words or syntax

and single or multiple lines simultaneously. Functionality was also incorporated where a

code skeleton is displayed if users omit key properties from a command. For instance, if a

user states “create class” without providing a class name, the system would display “class

[name] { … }” within the editor (as opposed to an error message).

4.5.2 Participants

Five participants (all male) with ages ranging from 21 to 42 years old (M=28, SD=8.7) were

recruited through existing links with the research team. For clarification, none of the

participants from the studies detailed in Chapter 3 were involved in this study. Four

participants were diagnosed with RSI, and one with Tendonitis/Carpal Tunnel. All

participants were native English speakers and had at least a year of coding experience

(M=9.5 years, SD=9.8), as well as experience in using speech technologies in their coding

environment. Table 4.4 highlights participant demographics and technical background.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 89

4.5.3 Apparatus

The evaluation was conducted remotely online via Zoom (N=4) and Microsoft Teams (N=1)

(depending on the user’s preference). All participants used an external microphone and were

again asked to use Google Chrome during the evaluation to ensure compatibility with the

Web Speech API. Participants also had the choice around which type of switch (i.e.

mechanical switch, eye tracker, head tracker, foot pedal) to use to control the speech

recogniser, with all of them opting to use the keyboard spacebar (which has been used to

control speech recognition in previous studies (Aziz et al., 2021, 2022)).

Table 4.4: Participant Details - CD=Coding Experience; AT =Assistive Technology; CL =Coding

Languages; JE =JavaScript Experience; IDE =Integrated Development Environment; SA=Session

Attended; VSCode = Visual Studio Code

4.5.4 Procedure

Institutional Review Board (IRB) approval was obtained prior to the study. Participants

were informed that they would need to be involved with three different sessions over the

period of (approximately) a week (as well as being encouraged to use the application outside

of these sessions). The evaluation consisted of different types of tasks for each session based

on difficulty level (as utilised by Rosenblatt et al. (2018) and Van Brummelen et al. (2020)).

During the first session, participants were provided with the evaluation link and asked to

ID Age Impairments Technical Experience SA/ SUS Score

P1 23(M)
RSI. Had a week-long

rest at some points.

CD: 2.5 years; AT: remapped keyboard to

be more ergonomic; Ergonomic keyboard;

JE: Expert; CL: TypeScript, Kotlin,

Python; IDE: Vim, VSCode, IntelliJ

3 (37.5)

P2 42 (M)

Tendonitis/Carpal

Tunnel; difficulty in

typing

 CD: 24 years; AT: Talon Voice (recently),

Kinesis Advantage keyboard; JE: Novice;

CL: Clojure and ClojureScript; IDE:

Spacemacs.

3(87.5)

P3 21(M) RSI. Pain in fingertips

CD: 1 year; AT: Specialized mouse and

keyboard, speech detecting; JE: Novice;

CL: Python; IDE: Brackets, Spyder.

3 (72.5)

P4 23 (M)
RSI, numbness in left

arm and fingers

CD: 5 years; AT: Talon; JE: Intermediate;

CL: Java, TypeScript, Ruby on Rails; IDE:

Neovim

3 (42.5)

P5 31 (M) RSI due to typing

CD: 15 years; AT: Talon Voice; JE:

Novice; CL: Haskell, Racket, Python;

IDE: Emacs

3 (45)

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 90

complete a consent form. They were then administered a survey to collect demographic

information, details of their impairments, and information about their technical skills.

Participants were then given a brief introduction to the prototype and provided with the

practice link. After the practice task, they were provided with the evaluation link and asked

to share their screen before proceeding with the tasks.

Tasks for the first session focused on “easy” coding activities that could be completed using

1-2 voice commands (e.g. creating a new class, moving the cursor to a specific position,

selecting and deleting single lines or words, adding a single word, and assigning a value to

a variable). The second session included more challenging tasks such as selecting and

deleting multiple lines or words within a line, creating a new function with multiple

parameters, creating an if statement, and rearranging code using cut, copy, and paste

features. For the first two sessions, participants were initially shown starting code that would

be seen upon starting the task along with the final code. The researcher outlined the actions

required to complete the task, and participants clicked a “Start” button to begin. Once the

necessary updates were made, they clicked the “Complete” button and moved on to the next

task. In the third session, participants were shown a code snippet that included a class, two

functions (one with multiple parameters), and multiple variables with different values

assigned. They were then asked to write this code on a blank document within the editor.

The tasks utilised in the evaluation can be found in Appendix B.5.

After completing the session, participants were provided with a link to freely interact with

the prototype outside the timetabled sessions. In the second and third sessions, participants

were initially asked about any issues they encountered when using the prototype during their

own time. After the completion of each session, a semi-structured interview was conducted

with participants to understand their perceptions of the prototype. Moreover, after

completing the third session, a SUS form was administered to assess the prototype's

usability.

4.5.5 Results

All participants attended the required sessions and successfully completed the evaluation

tasks, with sessions ranging from 12-40 minutes. Two participants (P3 and P4) reported

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 91

using the system on five occasions outside of the main sessions, whilst the other participants

only took part in the scheduled sessions.

4.5.5.1 Usability

The system received an average SUS score of 57 (SD= 19.51), which can be labelled as

“Poor” in terms of usability. P2 and P3 provided SUS scores that can be labelled as “good”,

whereas P1, P4, and P5 rated the prototype as having a poor level of usability (Bangor et

al., 2009).

4.5.5.2 Speech Performance

A total of 682 voice commands were issued by participants across all sessions. 195

commands were related to Speech Misrecognition (28.6%), 90 commands to Model

Misunderstanding (13.2%), and 73 (10.7%) were associated with System Error. Whilst a

number of commands were related to misrecognition and misunderstanding, the system

accurately determined the user’s intention in 95% of cases. However, the majority of

misunderstanding errors occurred when the model did not accurately interpret the role of

entities within an utterance. For instance, if the user stated, “delete line 10” and the system

recognised “delete nine 10”, the model would accurately identify the intent as “delete line”

but would recognise 9 and 10 as entities (thus resulting in lines nine and ten being deleted).

4.5.5.3 Qualitative Feedback

All the qualitative data obtained during the semi-structured interviews and observations

were retrieved for analysis. A thematic analysis (Braun and Clarke, 2012) was employed

where codes were derived from qualitative data to identify initial themes and concepts.

These themes were then iteratively refined and grouped into the five themes detailed below.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 92

Figure 4.6: A screenshot of the task interface utilised in the study – text displayed next to the

microphone icon highlighted the latest recognised speech command issued to the system. The code

used for tasks is displayed in the main coding area, while the area below demonstrated how study

tasks were presented to users.

Overall Experience: All participants stated they were impressed with the prototype and

were able to utilise the features available to perform coding activities. In particular, two

participants (P2 and P3) with novice speech coding experience reported the prototype to be

easy and useful to use, as well as emphasising that they would like to continue using the

prototype:

“…this will help my RSI, so looking forward to incorporating in my editor”

(P5).

Other participants who use existing speech coding tools like Talon Voice (P1, P4, and P5)

reported that the tool worked well in the majority of cases, although highlighted that they

would like to see improvements in the accuracy of the recogniser, which on occasions could

cause frustration (thus likely contributing to some of the lower SUS scores).

Voice Commands: Participants primarily used high-level phrases and abstractions to write

code, although on six occasions they dictated specific words representing different syntax

constructs (e.g. “type function constructor open bracket close bracket open curly bracket.”).

In contrast to the first study, all participants issued single commands at a time to achieve

particular actions (e.g. “go to line 30”, “end of the line”, “backspace”) as opposed to

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 93

chaining multiple actions together (e.g. “go to end of line 30 and backspace”). There were

also occasions where participants used different variations of commands to those observed

in the previous evaluation – for example, three participants (P1, P4, and P5) used the

command “delete that” without specifying which line or word to delete. This was likely due

to participants’ previous experience using Talon Voice which provides support for this

particular command. The coding skeletons incorporated into the second prototype iteration

were used on eight occasions by participants – copy and paste commands were also widely

utilised to support the completion of tasks.

Speech Recognition Initialisation: No significant issues were highlighted in terms of using

the spacebar to activate the recogniser. However, participants occasionally forgot to

initialise the recogniser, thus resulting in them having to repeat commands once they

realised voice input was not being detected. Providing further feedback within the interface

regarding the recogniser’s status could help to address this issue (e.g. displaying a message

if a user is talking, but the recogniser has not been initiated).

System Limitations: All participants occasionally experienced challenges around the system

misrecognising terms. Whilst the system was capable of correctly understanding a user’s

primary intention via misrecognised commands, inaccurate identification of entities (e.g.

custom variables or class names) could cause issues and result in users having to repeat

commands. To address the issue of recognition challenges when using custom names it may

be beneficial to allow users to phonetically verbalise key terms (De León Cordero et al.,

2021; Kim et al., 2019). Moreover, due to some latency in relation to the recogniser,

participants would sometimes repeat commands when the system was still processing their

original command (also resulting in commands being issued on multiple occasions).

However, it was observed that participants typically utilised the “undo” command to quickly

address any unintentional commands that were actioned by the system.

Code Navigation: Whilst participants were able to write, navigate, delete and select code

using the system, a key theme to emerge was a desire from participants to have access to

additional navigational features commonly found in mainstream IDEs (such as find,

reference navigation, and jumping to definitions). In particular, participants emphasised that

existing voice coding tools (e.g. Talon) do not currently provide these features and thus

suggested incorporating voice commands to support these syntax navigation approaches.

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 94

4.6 Conclusions

This chapter investigated the usability and feasibility of different voice coding approaches

(i.e. fixed grammar and natural language commands) to make coding activities accessible

for developers with physical impairments. Two user studies were conducted – the first study

with 25 non-disabled developers to compare the usability and feasibility of the two

approaches and a second multi-session follow-up study utilising natural language

commands involving five developers with physical impairments to facilitate the writing and

editing of JavaScript code. The first comparative evaluation with developers found that both

approaches were perceived positively and enabled participants to complete common coding

tasks. Both methods were also found to perform at similar levels in terms of usability and

task completion time, although the results indicated that some developers prefer vocal

coding to be more like standard programming (with fixed constraints – i.e. the FG version)

whilst others prefer the benefits associated with a more natural language approach (e.g. not

having to recall specific syntax). However, the majority of participants felt the NL method

had good potential if the model could be developed further to become more robust. Hence,

the natural language approach was taken forward for further evaluation with developers who

have physical impairments.

Results from the second multi-session study (utilising an updated version of the NL

prototype) highlighted that the system enabled all participants to complete common coding

tasks of varying difficulty. However, the results were mixed around perceptions of usability,

with some participants providing higher scores, whilst others were lower. Two participants

who provided higher scores both self-identified as being new to voice coding – this

potentially suggests that the NL approach can benefit developers who are less familiar with

existing voice-based coding tools, although further evaluation work will be required to

validate this point. The lower scores can be linked with issues around speech recognition

accuracy that was highlighted by participants across both studies and have been noted as a

common issue in other related work (Wagner and Gray, 2015; Rosenblatt et al., 2018; Van

Brummelen et al., 2020b) In particular, around half of the commands issued by participants

resulted in either speech misrecognition, model misunderstanding, or a system error.

To address this point, the training sample would benefit from additional diversity (e.g. input

from female developers) to develop it further and improve system recognition of intention

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 95

(Stumpf et al., 2020). The prototype also currently uses the Web Speech API (an online

automatic speech recogniser), which can present potential challenges around recognition

accuracy and delays in obtaining speech-to-text responses (due to latency rates). Offline

speech conversion tools such as Mozilla Speech (2023) could help to address this point in

future work. Another limitation is that directed tasks were used in the studies to facilitate a

controlled comparison across the two approaches, although, in a real-world coding

environment, it will not always be clear for developers which step is required next. Further

work is therefore needed to explore and validate the findings presented in real-world

scenarios over extended periods.

Whilst the natural language prototype was unconstrained in the commands that could be

issued, participants commonly stated that they were unsure about which commands to use.

In particular, several participants from the second evaluation emphasised that they wanted

some “contextual” command suggestions within the interface to help support them. As

highlighted by Srinivasan et al. (2019), the use of suggestions can make users aware of the

operations to be performed and can help to address the issue of coders potentially guessing

vocal commands. The way in which these suggestions are visualised and presented to users

is an interesting and underexplored area that holds significant potential to further support

developers in this context. Another key area for further work is around investigating how

natural language can be used to support other common coding activities (debugging,

document navigation, autocompletion). This chapter primarily focuses on how JavaScript

code can be written and edited via speech commands, so these wider areas are crucial to

explore further to help facilitate the development of more inclusive programming

environments.

Overall, this chapter presents new insights around the strengths and limitations of both fixed

grammar and natural language multimodal voice coding approaches, thus developing our

understanding around the potential of these methods. However, another key theme

highlighted by participants was focused around the need for additional navigational features

(tailored for voice control) that are commonly found in mainstream IDEs to support efficient

code navigation (e.g. find, find all references, and go to definition). The ability to navigate

code effectively is a fundamental requirement for facilitating productive workflows,

although there has been no work to date investigating how these navigation approaches can

be adapted for multimodal voice control and whether they provide any benefits for

Chapter 4: Multimodal Fixed Grammar and Natural Language Voice Coding

 Bharat Paudyal – March 2023 96

developers with physical impairments. This area, therefore, forms the focus of the next

chapter, where a range of new voice-controlled navigation approaches are developed and

evaluated with developers who have physical impairments.

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 97

5 MULTIMODAL VOICE INTERACTION

FOR CODE NAVIGATION

This work has been published in the Proceedings of the 2022 ACM International

Conference on Multimodal Interaction (ICMI '22) as “Inclusive Multimodal Voice

Interaction for Code Navigation” (Paudyal et al., 2022)

5.1 Introduction

The ability to navigate code efficiently is an essential activity for common software

development activities such as inspecting code, debugging and correcting syntax errors, and

code refactoring (LaToza et al., 2006; Baker et al., 2015; Smith et al., 2017; Albusays et al.,

2017; Shakil et al., 2019). Research has highlighted that developers spend a significant

portion of their time navigating code to support comprehension and maintenance (Ko et al.,

2006; Piorkowski et al., 2013; Radevski et al., 2016). Moreover, studies have demonstrated

that effective code navigation is crucial to support developers in building a cognitive model

of a codebase that can facilitate an understanding of code flow and the location of different

code blocks (Begel and Kariv, 2002; Krämer et al., 2013; Henley and Fleming, 2014).

Multiple code navigation approaches have been developed to support the efficient location

of syntax within a codebase including the use of call graphs (e.g. displaying a tree view of

different methods or functions) (Karrer et al., 2011; Krämer et al., 2012), canvas-based

navigation (e.g. visualising all methods in a 2D plane) (Bragdon et al., 2010; DeLine and

Rowan, 2010; Henley and Fleming, 2014), and a structural navigation approach (e.g.

displaying all usages of a method when clicked (Smith et al., 2017) or jumping to a function

definition (Shakil et al., 2019)). These navigation approaches are commonly integrated

within mainstream development environments (e.g. Visual Studio Code (2023)) where the

syntax is typically navigated via a mouse and keyboard.

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 98

However, this can present significant barriers for people with physical impairments who

may experience challenges using traditional input devices to support coding activities. The

use of voice control in conjunction with other input modalities (e.g. mechanical switches

and eye gaze, among others) presents an alternative interaction method for enabling disabled

developers to navigate code (Begel and Graham, 2005; Rosenblatt et al., 2018), although

there has been a lack of work around this area to date. Initial studies have explored simple

inline navigation approaches via speech (e.g. moving the cursor to a specific position on a

line (Wagner and Gray, 2015; Rosenblatt et al., 2018)) and page scrolling through utilising

a grid visualisation (Begel and Kariv, 2002), but there has been less work on other crucial

features such as the use of a call graph to navigate and locate specific code blocks (Karrer

et al., 2011; Krämer et al., 2012, 2013; Smith et al., 2017). Multimodal voice-controlled

methods developed to date are also yet to be empirically evaluated with developers who

have physical impairments, thus contributing to a current lack of understanding around the

potential of alternative methods to support code navigation.

To address the limited work in this area, this chapter explores the potential of different code

navigation approaches optimised for multimodal voice control such as finding references of

user-defined code constructs (e.g. variables), jumping to function definitions, and

conducting a search for specific syntax. Interviews with five developers who have physical

impairments are initially presented to further understand their current methods for

navigating code within voice-controlled editors. Findings from this exploratory study were

used to inform the development of an editor containing different code navigation approaches

that can be operated via multimodal speech input. The navigation techniques were evaluated

in a user study with developers who have physical impairments (N=14), where it was found

that they supported all users in successfully completing a range of standard code navigation

tasks. Results also highlighted that the approaches developed were efficient and intuitive to

use and demonstrated a high-level of usability. This chapter, therefore, presents three key

contributions:

 (1) insights from interviews with five disabled developers focused around current code

navigation challenges using their existing assistive tools.

 (2) a multimodal voice prototype utilising standard code navigation approaches tailored for

voice and switch control.

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 99

 (3) a user study with disabled coders demonstrating the usability and validity of the code

navigation approaches developed.

5.2 Exploratory Study

Due to the limited work around voice-based code navigation approaches, it is unclear how

developers with physical impairments currently perform code navigation activities when

programming. Understanding their current code navigation approaches and challenges is

essential to identify intuitive and appropriate code navigation approaches prior to

developing new methods. Semi-structured interviews with developers who have physical

impairments were therefore conducted to obtain a deeper understanding around their current

code navigation strategies.

5.2.1 Participants

Five participants (all male) with ages ranging from 24 to 42 years (M=31.2, SD=6.3) were

recruited through existing links with the research team. Four participants were diagnosed

with RSI and one with Tendonitis/Carpal Tunnel (Table 5.1). All participants were fluent in

English and had at least a year of coding experience (M=10.2, SD=8.7) – they also currently

use voice as an interaction approach to perform coding activities.

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 100

Table 5.1: Participant information for the exploratory study- AT =Assistive Technology; CL =Coding

Languages; CE =Coding Experience; IDE =Integrated Development Environment; RSI=Repetitive

Strain Injury; VSCode = Visual Studio Code

5.2.2 Procedure

Institutional Review Board (IRB) approval was obtained prior to the study. After a brief

introduction about the project, participants were asked to navigate to a project information

page and were asked to provide informed consent. The study consisted of an initial

questionnaire to capture demographic information, coding experience, and the nature of

participants’ impairments (Appendix C.1). Semi-structured interviews were then conducted

on Slack (2023) (a team collaboration tool) and focused on exploring challenges participants

experienced in relation to navigating code, any strategies used to overcome barriers, and

future features they felt could support them further (Appendix C.2). All responses were

captured and recorded (with participants’ consent) for later analysis.

5.2.3 Findings

Responses from all participants were retrieved for analysis. A thematic analysis was

employed, where codes were derived from retrieved data to identify initial themes and

concepts based on the concepts. These themes were then analysed iteratively and were

grouped into the three key themes detailed below.

ID Age Impairments Technical Experience

P1
31 (M) RSI due to typing

 AT: Talon Voice; CE: Novice; CL: Haskell, Racket, Python;

IDE: Emacs

P2 42 (M) Tendonitis/Capral Tunnel

 CD: 24 years; AT: Talon Voice (recently), Kinesis Advantage

keyboard; CE: Novice; CL: Clojure and ClojureScript; IDE:

Spacemacs.

P3 24 (M) RSI is recovering,

difficulty in typing

 AT: Talon Voice, Aenea/Dragon; CE: Intermediate; CL: Ellixir,

Js, Bash, TypeScript; IDE: Terminal, Tmux, Neovim; TE: 2 years

P4 33 (M) RSI; Hands and Shoulders AT: Talon Voice; CE: Intermediate; CL: Java, Python, JS,

Haskell, PureScript; IDE: Vim

P5 26 (M) Occasional RSI flare-ups AT: Dragon, Mechanical Keyboard, Logitech MX Ergo trackball;

CE: Intermediate; CL: JS, TypeScript; IDE: VSCode

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 101

Navigation Challenges: All participants highlighted that they use speech-based tools (e.g.

Talon (2023), Dragon (2023)) for development work and emphasised that their existing

tools provide limited navigation features. For instance, these tools only provide commands

for inline navigation, thus resulting in the majority of participants relying on keyboard

shortcuts (e.g. “:x” to move the cursor to line x, “/ word” to search for the term “word”):

“…I normally code in Vim, so I use tags to jump around a bit, but it’s not really as nice as

"go to definition" features in IDEs like IntelliJ” (P4).

Additionally, three participants highlighted that custom voice commands for code

navigation with speech-based tools are not intuitive and can be challenging to learn (e.g.

“slap” will move the cursor to the end of a line, “command up” will move the cursor to line

1). Whilst tools such as Talon support customisation of commands, participants highlighted

that this process can be time-consuming and requires a broader understanding of technical

skills (such as configuring a microphone and coding environment) and can be a frustrating

experience:

 “For Talon it is hard. If you don’t have technical expertise, it is hard to configure your own

customized commands...” (P2).

Navigation Workarounds: All participants reported that they use additional tools (e.g. an

eye tracker, keyboard) in conjunction with speech interaction to help overcome navigational

barriers:

 “I have an eye tracker which lets me do things like ctrl-click to follow definitions and

such...” (P2).

 Similarly, P3 stated:

 “. . .I use relative line numbers in vim, so if I want to jump to a particular line, I can say 26

down easily. I can also type fx or say fine plex to jump to the next x character … for scrolling

I might just use the trackpad 2 finger scroll”.

Moreover, two participants stated that they use key bindings (e.g. “gd” to go to definition,

“gg” to navigate to the first line) to map with their IDE navigation features to overcome

barriers:

 “. . . with Talon I use the Spacemacs key bindings which would be gd to move to definition”

(P5).

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 102

Future Enhancements: All participants expressed a desire for navigation approaches that

were less reliant on additional modalities such as a keyboard:

“…if I can use just voice to search or see the list of all search results without keys, it will

save lot of time” (P1).

Four participants highlighted a requirement for voice optimised approaches that facilitate

using common navigation features found in traditional development environments, such as

“navigating to a definition” and “listing all references” of a specified search item.

Participants also emphasised that any new approaches developed using solely voice as the

primary method of interaction should be simple and intuitive “out-of-the-box” instead of

requiring additional configuration (which can potentially be tedious and time-consuming).

The findings from this initial study provided a solid starting foundation for the project and

informed the focus of new multimodal voice code navigation approaches that support a

wider range of features (such as navigating to definitions and listing references) that have

not been explored in the existing literature to date.

5.3 Research Prototype

Drawing from prior research and insights collected from the exploratory study with

developers, a research prototype integrating different code navigation approaches tailored

for multimodal voice interaction was developed.

5.3.1 Prototype Design

The prototype was built-upon an open-source JavaScript based editor (Monaco Editor

(2023)) that provides a range of standard coding features. Similar to the prototypes outlined

in Chapters 3 and 4, the system architecture consists of three components: (1) a speech

recognition interface to convert speech into text (using the WebSpeech (2023)), (2) a

command interpreter to parse a user’s intent and command (using Wit.ai (2023)) and (3) an

execution method to process code navigation actions based on a user’s vocal commands.

The system was trained using navigation commands highlighted in previous work

(Rosenblatt et al., 2018), as well as variations of the common names of features available in

widely-used IDEs (such as “Find all References” and “Go to Definition” in Visual Studio

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 103

Code and “Find Usages” in JetBrains, along with some alternatives – e.g. “find reference”,

“all reference” and “definition”).

The interface design resembled the layout of existing mainstream development

environments (e.g. Atom (2023), Brackets (2023), Visual Studio Code (2023)) and utilised

a similar theme to the default one used in Visual Studio Code (Figure 5.1). The header area

within the interface contains a microphone icon by default and provides feedback in relation

to the speech commands that the user has issued. The recognition system can be initiated

through using an external mechanical switch (or the space key on a standard keyboard), thus

resulting in the microphone icon subtly pulsating to highlight that the system is “listening”

for input. Once a user completes an utterance, the latest speech input recognised by the

system is positioned next to the icon to provide feedback to users. An error message is

displayed below the speech input if the voice recogniser fails to understand the command.

The area below the header includes the main editor, where syntax can be written, navigated,

and edited. A list of example commands is also available and can be displayed on the right

side of the editor via the “help” vocal command.

Figure 5.1: The editor interface – at the top of the interface, a red spinner icon indicates that the

recogniser is listening. The “go to line 7” voice command has been issued by the user, and the

corresponding action has been performed.

Common code navigation features found in mainstream development environments were

also integrated into the interface and tailored for speech interaction. This includes standard

approaches such as navigating to specific lines (e.g. “go to line x”, “down x”), positioning

the cursor position within a line of code (e.g. “left x”, “right x”), and jumping to the start or

end of a line. Additional navigation approaches such as “go to definition”, “find all

references”, and “find” were also incorporated - these are widely used features within

mainstream editors (Visual Studio Code, 2023; Brackets, 2023), although no work to date

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 104

has explored how they can be adapted for speech interaction or whether this can present any

interaction benefits for developers with physical impairments. The following sub-sections

provide further detail on the design of each of these key features and how they were tailored

for voice control (a list of all navigational speech commands can be found in Table 5.2).

5.3.1.1 Find all References

In modern IDEs, the “Find all References” feature typically displays the list of all relevant

references in relation to an identifier specified by the user via keyboard input (e.g. a variable,

function). Figure 5.2 demonstrates how this feature operates within Visual Studio Code – in

this scenario, a user has placed the cursor around their desired identifier “recognition” (at

line 3) and initiated the “Find all References” feature through either a keyboard shortcut

(Shift + F12) or via the context menu (triggered through a right mouse click). This results

in a list of references being overlaid on the main editor that can be navigated through either

directional keys on the keyboard or via direct mouse selection. Once a reference has been

selected from the list, a preview of the relevant code is displayed in the main editor window,

and a user can then navigate to their desired location.

To tailor this approach for speech interaction, users can initially position the cursor (via the

voice commands available) to a specific identifier within the code (e.g. a variable, function

name). They can then issue a command to activate the “Find all References” feature (e.g.

“reference”, “find reference”, among others), and a list of references is displayed on the

right side of the interface (Figure 5.3). To remove the requirement for mouse and keyboard

input to navigate the list, each list item is mapped with a unique numeric value which users

can verbalise to select their desired reference (e.g. if “11” is issued as a vocal command, the

11th item will be selected). This results in the relevant code being previewed in the main

editor (similar to Visual Studio Code) – users can then issue a “select” vocal command to

complete the navigation and reposition the cursor at the appropriate reference point (within

the editor area).

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 105

Figure 5.2: Find all references utilised in Visual Studio Code

Figure 5.3: Find all references tailored for multimodal voice control

5.3.1.2 Find / Search

A “Find” feature is also a common component of mainstream IDEs and enables users to

search for code through providing a search term (via the keyboard). For example, in Visual

Studio Code, developers can initiate the tool either through a menu item or via a keyboard

shortcut (CTRL/CMD + F). Users can then enter their search terms (e.g. “editor”) into a text

field and press the enter key to navigate to the first instance of any search results. If there

are multiple instances of the search term, users can navigate them through either selecting

the enter key to move to the next result or using the mouse to directly select the arrows

within the “Find” area located towards the top of the interface (Figure 5.4). This feature was

adapted for speech interaction through enabling the user to issue an associated verbal

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 106

command (e.g. “find x”, “search x”) to search for the desired term. The search would then

be performed, and a similar “Find” box would be displayed towards the top of the interface.

Users can then navigate through search results (where there are multiple occurrences of the

search term) through stating the number of instances they would like to select. Figure 5.5

shows the implementation of the “Find/Search” feature in the research prototype – the user

has issued the command “find editor”, which has performed a search for the keyword

“editor” and returned 16 results. The user then issued the command “next 13th”, which

resulted in navigating to the 14th search result.

Figure 5.4: The 'find/search' function in Visual Studio Code. The user has entered the term 'editor'

where 16 occurrences are found - the user has to press the 'enter' key to move to the desired position.

Figure 5.5: Implementation of the 'Find' feature for multimodal voice interaction.

5.3.1.3 Go to Definition

The “Go to Definition” feature within mainstream IDEs enables developers to navigate

directly to the definition of an identifier (e.g., a variable, function). To use this feature, the

user typically has to place the cursor around the identifier and use a keyboard shortcut (e.g.

F12 in Visual Studio Code) or select the tool via the context menu (accessed via right mouse

click). To tailor this for voice interaction, the user can place the cursor around an identifier

(via the available voice commands) and then issue a command to initiate the “Go to

Definition” feature (e.g. “definition”, “define”). The cursor then jumps to the appropriate

definition of the user-selected identifier, and the navigation is completed (Figure 5.6).

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 107

Figure 5.6: Implementation of the ‘go to definition’ feature. The cursor was initially at line 152 and

placed over the variable “utterance” - the verbal command 'definition' has been issued resulting in the

cursor jumping to line 4.

Whilst adopting these common IDE features for voice interaction potentially presents new

opportunities for code navigation, an important next step was to formally evaluate them with

developers who have physical impairments to explore the viability of the approaches

developed.

Features Usage Example utterances

Go to Definition To navigate to the definition of Identifier
(function/class/variable)

‘define’, ‘go to definition’,
‘definition’

Find all references To display all the possibilities of a
selected Identifier

‘reference’, ‘get reference’, ‘refer’

Search To find/search a word using a caret ‘find getarea’, ‘search function
hello’

Select Next Item To move forward to the next item ‘next’, ‘next 12’, ‘next 5th ’

Select Previous Item To go back to the previous item ‘previous’, ’move previous’,
‘previous 2nd’

Left/Right/Up/Down To navigate to the desired position across
the code caret. Defaulted to one position if
the position is not provided

‘left’, ‘right 20’, ‘up 10’, ‘move 10
position left’, ‘go 20 position down’

Navigate to specific
line

To navigate between the lines of code ‘go to 10’, ‘go to line 20’

End of line Navigate to the end of the current line ‘end of line’, ‘end line’, ‘line end’

Table 5.2: List of features along with example vocal commands used for navigation.

5.4 User Study

A user evaluation was conducted to investigate the potential of the multimodal voice-

controlled code navigation techniques developed to support developers with physical

impairments.

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 108

5.4.1 Research Question:

The research question below was developed to address the limited work completed around

the potential of multimodal speech and switch interaction to facilitate the code navigation

process:

RQ: How can a multimodal speech and switch interaction approach facilitate efficient

code navigation?

The broad focus of this question facilitated an exploratory research approach to help develop

a deeper understanding around the challenges and opportunities associated with this method

of interaction within a coding context.

5.4.2 Participants

14 participants with ages ranging from 21 to 55 years old (M=33.3, SD=10.9) were recruited

via online advertisements posted within disability groups and through existing links with

the research team. 12 participants were diagnosed with RSI, one with Cerebral Palsy, and

another with Tendonitis/Carpal Tunnel. All participants had at least a year of coding

experience (M=13.0, SD=12.1), whilst 12 participants had existing experience in using

speech interaction to support coding activities (Table 5.3). For clarification, two participants

from the second study of Chapter 4 were involved in this study. 10 Participants were native

English speakers – the other native languages included Hebrew, Dutch, Tamil and Hindi.

5.4.3 Apparatus

All study sessions were conducted remotely via Zoom (2023) and Microsoft Teams (2023).

Participants were required to use the Google Chrome browser to ensure compatibility with

the Web Speech API. Participants were also required to use their own microphones for voice

input, as well as an additional device of their choice (e.g. keyboard, mechanical switch) to

trigger the speech recogniser.

5.4.4 Procedure

Institutional Review Board (IRB) approval was obtained for the study. The researcher

initially met online with participants (via Zoom or Microsoft teams - whichever was most

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 109

suitable for participants) and provided a link to the prototype, along with a brief introduction

to the project and a demonstration of the prototype. All participants were informed that they

could use their existing assistive input devices to control through the research prototype

(e.g. selecting buttons for starting and completing tasks) and initiate the speech recogniser.

However, they were still required to use the speech commands available within the

prototype for completing the navigation tasks (via their microphone). Four participants

opted to use an eye tracker, while the remainder confirmed they would use a keyboard as an

additional modality. They were then requested to complete a consent form and were

redirected to the pre-test questionnaire to collect some demographic information, as well as

details of their impairments and technical skills (Appendix C.3). Participants then completed

training tasks (e.g. moving to different lines/positions, finding references and moving to a

specified position) for approximately 10 minutes to ensure familiarity with the voice-

controlled navigation approaches.

Following the practice session, participants started to work on the main experimental tasks.

The study tasks were designed and categorised based on real case debugging scenarios

utilised in previous studies (Baker et al., 2015; Rosenblatt et al., 2018). Similar to Shakil et

al. (2019), participants were presented with three code snippets of varying lengths (i.e.

“short” – 71 lines, “medium” – 535 lines, and “long” – 2092 lines) where each snippet

consisted of 5-7 syntax errors requiring 12 navigational to uncover the bug for each code

snippet (36 in total). The code snippets were taken from an online (open source) code

repository (Chhekur, 2023) with common JavaScript syntax errors integrated (i.e. undefined

methods, incorrect method parameters, typographic errors) (Ocariza et al., 2013; Hanam et

al., 2016). The tasks utilised in the study are presented in Appendix C.4. This approach was

adopted to present realistic navigation scenarios where manipulation of the onscreen cursor

was required over shorter and longer distances within different code snippets.

Participants were initially presented with one of these snippets and then required to navigate

to each error embedded within the file. To eliminate code comprehension time impacting

task completion, participants were provided with the exact steps required for navigating to

errors (thus utilising the same approach used in previous related studies) (Shakil et al., 2019;

Sengupta et al., 2020). For instance, at the start of each task, participants were initially

shown a screenshot of the “starting” position of the cursor, alongside a second screenshot

highlighting the location of a syntax error and the required final cursor position. The tasks

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 110

associated with each code snippet were developed to encourage using the different

navigation features integrated within the prototype. In particular, there were two instances

in each code snippet which required participants to use the “Find All References” feature

(e.g. “Find all the references of the method taskShuffle and select the 9th Instance”), two

instances associated with “Go to Definition” (e.g. “Navigate to the definition of

CreateMarker”) in each code snippet, and two instances where the use of the “Find” tool

was required to successfully complete the task (e.g. “Find the variable editor”). Whilst an

emphasis was placed on these three features, tasks were also designed in a way where further

navigation commands were required to complete them (i.e., “go to line”, “left”, “right”,

“up”, “down” and “end of the line”).

Once participants had familiarised themselves with a task, they were then required to work

on the task using the commands available and selected a “Complete Task” button once they

had completed the necessary navigation step. Once all 12 navigation tasks for a code snippet

were completed, participants would move to the next snippet, and the process was repeated

until all tasks were finished. The order of code snippets was counterbalanced to reduce the

potential impact of order effects. Participants were then administered the SUS survey

(Bangor et al., 2009) followed by an online open-ended questionnaire exploring their

experiences of using the speech-based code navigation features, as well as suggestions for

any improvements. A follow-up semi-structured interview was also conducted to discuss

any key points further (Appendix C.5).

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 111

Table 5.3: Participant Details - CD=Coding Experience; AT =Assistive Technology; CL =Coding

Languages; CE =Coding Experience; IDE =Integrated Development Environment; RSI=Repetitive

Strain Injury; SUS=System Usability Score; VSCode = Visual Studio Code

ID Age Impairments Technical Experience SUS

P1 42 (M) Mild RSI- flares up under

stress or excessive typing

CD: 25 years; AT: Talon Voice; CE: Expert; CL: iOS, Swift,

Unity, C#, Python, SQL; IDE: XCode, PyCharm, VSCode

62.5

P2 21 (M) RSI, Pain in fingertips CD: 1 year; AT: Specialized mouse and keyboard, speech

detecting; CE: Novice; CL: Python; IDE: Brackets, Spyder.

80

P3 20 (M) Cerebral Palsy CD: 4 years; AT: Speech, Ergonomic keyboard; CE:

Intermediate; CL: HTML, JAVA; IDE: Dreamweaver, Android

Studio

62.5

P4 33 (M) Tennis elbow in the right arm,

finger tendonitis in most

fingers of the left hand.

CD: 17 years; AT: Talon Voice with Eye-tracking; CE: Expert;

CL: Java, Python, JS, Haskell, PureScript; IDE: Vim

87.5

P5 45 (M) RSI, Both hands CD: 6 years; AT: None; CE: Intermediate; CL: Python, Scala,

Clojure, JS; IDE: PyCharm

87.5

P6 40 (M) RSI, pain in wrists from

prolonged use of mouse

CD: 20 years; AT: Vertical Mouse; CE: Expert; CL:JS,

TypeScript; IDE: WebStorm

90

P7 28 (M) Hand and shoulder RSIs. CD: 1 year; AT: Talon Voice, Tobii Eye Tracking; CE: Novice;

CL: JS, HTML, CSS; IDE: VSCode

92.5

P8 55 (M) RSI. Both Hands, Dyslexia CD: 50 years; AT: MS Dictation, Immersive Reader; CE:

Intermediate; CL: C#, Windows; IDE: Visual Studio.

100

P9 21 (M) RSI Wrist, hypermobility,

scoliosis. Chronic

inflammation in joints,

shoulder, back, arms

CD: 4 years; AT: Talon Voice, Kinesis Advantage Keyboard;

CE: Intermediate; CL: C#, Java, Python, C++; IDE: IntelliJ,

Notepad++

92.5

P10 43 (M) Tendonitis/Carpal Tunnel;

difficulty typing

CD: 24 years; AT: Talon Voice (recently), Kinesis Advantage

keyboard; CE: Novice; CL: Clojure and ClojureScript; IDE:

Spacemacs.

95

P11 26 (M) Limited hand function and

motor impairments

CD: 5 years; AT: Speech Recognition; CE: Intermediate; CL:

Julia, MATLAB, Java, C, JS; IDE: VSCode

97.5

P12 26 (M) Occasional RSI flare-ups CD: 5 years; AT: Mechanical Keyboard, Logitech MX Ergo

trackball; CE: Intermediate; CL: JS, TypeScript, NodeJS,

Python; IDE: VSCode

70

P13 26 (M) RSI, Ulnar Nerve Pain CD: 5 years; AT: Talon Voice; CE: Intermediate; CL: HTML,

CSS, JS; IDE: VSCode

57.5

P14 40 (M) RSI, Wrist and elbow tendon

issues

CD: 15 years; AT: Talon/Dragon Voice, Eye Tracker; CE:

Expert; CL: Java, Angular; IDE: IntelliJ

92.5

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 112

5.4.5 Measures

Task Completion: Task completion time was measured to gain an indication around the

efficiency of the interaction approach developed. Task completion times were measured in

milliseconds from when participants started each task (i.e. after selecting the “Start Task”

button) until the task had been completed.

Usability: Perceptions of usability were measured using SUS (Brooke, 1996; Bangor et al.,

2009), which was administered after all navigation tasks had been completed.

Speech Recognition Accuracy: Errors were categorised into two themes: Speech

Recognition – where the recogniser was inaccurate (e.g. “Go to line 160” misrecognised as

“Go to wine 160”), and Unrecognised Commands – where the recogniser misinterpreted the

intention behind the user voice commands or the command was not recognised (e.g. “write

down”).

5.4.6 Results

5.4.6.1 Task Completion Time

All participants were able to complete all the tasks and utilise the navigation features within

the prototype. Task completion times ranged between 6:24 minutes to 17:16 minutes with

an average time of 11.9 minutes (SD=3.5 minutes). Each snippet took under 5 minutes on

average to complete, with navigation tasks associated with the short code snippet taking an

average time of 4.7 minutes (SD =1.8 min), tasks for medium length code requiring an

average time of 3.6 minutes (SD=1.45 min), and navigation steps for the long code snippet

taking 3.6 minutes on average (SD=1.2 min).

5.4.6.2 Usability

The navigation features also obtained an average SUS score of 83.4 (SD=14.3), which can

be labelled “Excellent” (Brooke, 1996; Bangor et al., 2009).

5.4.6.3 Speech Performance and Analysis

A total of 1173 vocal commands were issued (Short: 429; Medium: 382; Long: 362). 230

commands were related to speech misrecognition (19.6%), while 150 commands (12.8%)

were associated with unrecognised commands. Some of the common speech misrecognition

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 113

commands included “write” instead of “right”, “done” instead of “down”, and “to” instead

of “two”. Despite misrecognition in a small number of cases (N=30), the model could still

identify the correct intention of the command issued by the user. For instance, in multiple

cases, “right” was misrecognised as “write”, although the model would accurately identify

the intent as “right” and would perform the appropriate action.

5.4.6.4 Subjective Feedback

All qualitative data obtained during the semi-structured interviews and observations were

retrieved for analysis. A thematic analysis (Braun and Clarke, 2012) was employed where

initial groupings where developed based on data collected and then iteratively refined into

the following themes.

Perceptions of “Find All References”

All participants provided positive feedback in relation to the “Find all References”

navigation approach, with comments emphasising that the approach was intuitive, easy to

use, and time-saving:

“The navigation for references and definitions is very, very straightforward . . . and saves a

tremendous amount of time” (P8).

Eight participants highlighted that this feature is not available in other voice coding editors,

with four participants (P1, P5, P6, P14) explicitly stating that they would like the feature

integrated into their current IDE:

“. . .I will have to wait for this to come to PyCharm. I think that would be remarkable!” (P5).

Seven participants commented that the ability to verbalise numeric values to support the

selection of references was a useful feature - in particular, the option to traverse the item

position via absolute numbers (i.e. verbalising the exact numeric value, e.g. “5”, “9th”) and

relative numbers (i.e., verbalising the number with respect to the currently selected item

position, e.g. “next 6th”, “previous 5”) was useful. An issue highlighted by three participants

was in relation to speech recognition (i.e. in terms of some of the commands not being

appropriately recognised), with participants suggesting the possibility of incorporating

customisable vocabulary where commands can be tailored depending on user preferences:

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 114

“. . .In Talon I can customise my own thing and has less recognising bugs, so including

custom grammar can improve the accuracy of recogniser can be boost the performance”

(P13).

Perceptions of “Find”

Eleven participants provided positive comments in relation to the “Find” feature, with

comments focusing on simplicity and ease of use. Four participants stated that the tool was

particularly useful in terms of searching for multiple terms within a single search query -

for instance, P5 was positive about the “Find” feature, although they felt it might present

challenges in some scenarios:

“. . .the voice search worked remarkably well in finding variable/function names which

consist of multiple concatenated words . . . but maybe it will be less so for more complex

word combinations…” (P5).

P9 re-iterated this point and highlighted that the tool could be improved further through

providing users with the ability to enter individual characters via speech to address

challenges in pronouncing custom identifiers:

 “. . .would be nice to have an option to manually type letter by letter for find - since not all

keywords lend themselves to easily identified pronunciation” (P9).

Similar to the “Find all References” tool, five participants highlighted the option to select a

specific instance of a search result (e.g. “5”, “5th”) in addition to relative commands (e.g.

“previous 2”, which would select the instance two places before the currently selected result)

to be particularly useful and easy to use:

“. . .The option of moving forward/backward and directly jumping to a number makes it

easier . . . this is not present in Talon” (P13).

Two participants suggested that commands such as “go back” and “go forward” would also

be useful additions to support the efficient navigation of search results.

Perceptions of “Go to Definition”

Nine participants provided positive feedback on the use of the “Go to Definition” feature,

with comments highlighting that it was useful, intuitive, and easy to use:

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 115

“…I found those features to be useful. I have not seen them in any other packages…” (P11).

Three participants suggested incorporating similar features (e.g. “navigating to local

declaration”, “navigating to inner block within curly braces”), which exist in other coding

tools (i.e. Vim) to further enhance accessibility:

 “Use the commands of vim like gd to navigate to local declaration, fx to find next

occurrence“ (P10).

Two participants suggested integrating a feature for multiple file navigation to enable

jumping directly to the definition of the main identifier located in a different file.

Suggestions for iterative development

All participants stated they were impressed with the navigation approaches and were able

to successfully utilise them to complete the tasks. Four participants suggested potential

improvements around the accuracy of the recogniser through incorporating a local speech

recogniser. Five participants highlighted that the inclusion of a scrolling feature via voice

would also help them effectively navigate to different sections of a code listing. Three

participants suggested including a feature to navigate to a specific position of a line (e.g.,

“center of line x”, “end of line x”). Three participants also felt a “page up/down” feature

would be beneficial to support navigation within a code listing.

5.5 Conclusions

This chapter has addressed the research question highlighted in Section 5.4.1 through the

development and evaluation of a multimodal system to support people with physical

impairments with navigating syntax. Prior research on voice-based coding approaches has

primarily focused on writing and editing code, as opposed to different code navigation

techniques. The small number of research prototypes that do allow for voice-controlled

navigation typically only support simple functionality such as jumping to a specific line

(e.g. “line x”) or inline navigation (i.e. “left” to move the cursor one position to the left)

(Begel and Graham, 2005; Wagner and Gray, 2015; Rosenblatt et al., 2018). No previous

studies have explored the potential of additional commonly used code navigation techniques

with mainstream IDEs (such as “Find All References”, “Go to Definition”, and “Find”

(Smith et al., 2017; Shakil et al., 2019)) within a voice coding context. Furthermore, no

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 116

research has investigated or evaluated the efficacy of voice-based source code navigation

for developers with physical impairments. This chapter addresses the lack of work in this

area to date through presenting a novel prototype that integrates widely used code navigation

approaches that have been tailored and optimised for multimodal speech interaction.

The results from a user evaluation with developers who have physical impairments found

the code navigation approaches intuitive and easy to use, with SUS scores indicating an

excellent level of usability. These findings build on other related work in the field – for

instance, Rosenblatt et al. (2018) used navigation commands such as “go to line” and “go x

left” in their VocalIDE application (which was also received positively by participants),

although their work did not include the common navigation features investigated in this

study. Moreover, whilst navigation features such as “Find all References” and “Go to

Definition” have been explored and evaluated within systems supporting eye gaze

interaction (Shakil et al., 2019), no previous work has investigated these types of features

in relation to voice coding. This work also confirms that multimodal voice is a feasible

approach in facilitating a wide range of code navigation approaches and can help developers

with physical impairments to reduce their dependency on traditional input devices (i.e. a

keyboard and mouse). Furthermore, the majority of the participants from the study (N=11)

who use Talon as their primary voice coding tool expressed a desire to integrate the

approaches into existing mainstream IDEs (such as Visual Studio Code and Talon) to

support their development workflow. This work, therefore, addresses key challenges

associated with the navigation of code via voice interaction through presenting fully

functional techniques that can be utilised by developers with physical impairments.

One limitation of the work is the accuracy of speech recognition (which is a known issue

within the field) (Rosenblatt et al., 2018; Kim et al., 2019; Van Brummelen et al., 2020b) -

the system currently utilises a cloud-based speech recogniser which can present potential

challenges around accuracy and recognition delays due to network and latency issues. As

suggested by participants, the system could be integrated with the local Talon recogniser

(stored on the client-side) to help further address these issues. Scrolling through code via

voice control is another important area where there has been a lack of work completed to

date. Moreover, the model is currently trained with a limited range of samples and could be

developed further through integrating the terms collected during the evaluation, as well as

Chapter 5: Multimodal voice interaction for code navigation

 Bharat Paudyal – March 2023 117

through additional samples from a broader and more diverse user base (e.g. female

developers, non-English speakers).

The next chapter will present the key contributions and conclusions of the research

conducted across the thesis, as well as a discussion around limitations associated with the

work completed and future important research areas that now require further investigation.

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 118

6 DISCUSSION AND LIMITATIONS

The first chapter highlighted a lack of work on multimodal coding approaches to support

people with physical impairments in writing code, as well as the potential benefits such an

approach could provide to present more inclusive development experiences. This chapter

expands on the findings from the user studies presented in Chapters 3-5 by delving into

transferable findings and their implications for the wider disability community. In this

chapter, we first discuss the main contributions of the thesis with a particular focus on the

research questions stated in Chapter 1. The chapter concludes with limitations that are based

on the findings in the three user studies.

6.1 Main Contributions

This thesis focused on exploring different multimodal approaches (i.e. different

combinations of speech, gaze, and mechanical switches) to support inclusive development

interactions. Research studies were focused around the three research questions highlighted

in the introductory chapter. These questions are highlighted again below along with details

of how the research completed has developed our understanding of these key areas.

RQ1: How can speech recognition, eye gaze tracking and mechanical switches be

combined as a multimodal interaction approach to support coding activities for people

with physical impairments?

Research in Chapter 3 investigated this question through the development of a multimodal

coding approach combining speech, gaze, and mechanical switches. An exploratory study

was conducted with 29 non-disabled developers to measure the feasibility and usability of

the system where the results found that all participants were able to complete a series of

tasks and the prototype was rated as “OK” in terms of usability. Subjective feedback also

highlighted the intuitiveness and usability of the approach with the majority of participants

providing positive feedback and comments. Similarly, results from a follow-up study with

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 119

five developers who have physical impairments found coding via multimodal input control

to be simple and easy to use with SUS scores indicating that the system has a good level of

usability score, as well as highlighting that the approach provided advantages over their

existing interaction approaches. This combined speech and gaze interaction with switch

controls demonstrates how they can work together to support individuals with physical

impairments for coding purposes. Gaze interaction can address speech recognition

problems, while, on the other hand, speech input can manage selection, navigation, and

deletion of syntax, addressing difficulties in eye gaze activation of small targets.

Additionally, it was noticed on several occasions that participants were using the gaze-based

onscreen keyboard to control the interface rather than using speech and also issued vocal

command to fix syntax and typographical errors as opposed to using gaze. This highlights

the necessity for adaptable interaction, enabling developers to effortlessly switch between

gaze and speech based on individual preferences, mood, or coding needs.

This research therefore highlights the potential of using a multimodal approach to support

coders with physical impairments, as well as findings around the challenges and issues this

type of interaction method presents in this context.

RQ2: To what extent can natural language and fixed grammar voice coding

approaches support the writing, editing, navigation, and selection of code?

The research highlighted in Chapter 4 addressed this question through the development of

two coding approaches – one that utilised a fixed grammar and another using a natural

language method. An exploratory study was initially conducted to gain an understanding of

typical commands that developers would prefer to use when performing coding activities

via voice. Informed by the findings from this study, a novel coding system providing users

with the ability to perform coding activities via a fixed grammar and natural language

approach was developed. The first comparative evaluation with non-disabled developers

found that both approaches were perceived positively and enabled participants to

successfully complete common coding tasks. Both methods were also found to perform at

similar levels in terms of usability and task completion times. However, the results indicate

that the majority of participants felt that the natural language method had good potential if

the model could become more robust and also highlighted that this approach was intuitive

and easy to learn.

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 120

Taking this into consideration, it was therefore decided to take the natural language

approach forward for further development and evaluation within a multi-session evaluation

with five developers who have physical impairments. Results from this study emphasised

that the system enabled all participants to successfully complete common coding tasks of

varying difficulty. However, the results were mixed around perceptions of usability with

some participants providing higher scores, whilst others were lower. Two participants who

provided higher scores both self-identified as being new to voice coding – this potentially

suggests that the natural language approach can provide benefits for developers who are less

familiar with existing voice-based coding tools, although further evaluation work will be

required to validate this point. Overall, results from the user study validated that natural

language can be a feasible approach in performing coding activities for this target audience,

in addition to identifying some additional challenges that require further work moving

forward (e.g. training the natural language model with the dataset obtained during the first

evaluation, the addition of coding features such as “copy”, “cut”, “paste”, and the generation

of a skeleton code if an identifier is not provided).

The research conducted in these studies demonstrates that both fixed grammar and natural

language voice coding can facilitate standard coding activities. Furthermore, the work

highlights the viability of natural language coding via a multimodal voice approach, as well

as highlighting new insights around the challenges of this approach.

RQ3: How can a multimodal speech and switch interaction approach facilitate efficient

code navigation?

The research presented in Chapter 5 addresses this question through presenting a novel

prototype that explores how commonly used code navigation approaches (e.g. jumping to

function definitions, conducting a search for specific syntax, scrolling techniques) can be

optimised for multimodal voice interaction. The system design was initially informed

through an exploratory study with five physically impaired developers to elicit insights

around their experiences in navigating code within existing voice-controlled development

environments. This exploratory study informed the design of a code editor integrating

different navigation features tailored for multimodal speech input. Results from a user

evaluation with 14 developers who have physical impairments found that the code

navigation techniques were intuitive to use and rated as “Excellent” in terms of usability, as

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 121

well as being perceived positively overall. Several participants expressed their desire to

integrate these features within their existing coding tools, which demonstrates the

importance and novelty of this work. Participants also highlighted key challenges that

require further work, such as voice-controlled scrolling features and navigating to the

identifier located in multiple files. This research, therefore, presents new contributions and

knowledge on how commonly used code navigation approaches can be tailored for

multimodal voice and switch input, as well as the viability of these approaches for

developers with physical impairments. Overall, this work contributes valuable insights into

enhancing accessibility and usability for developers with physical impairments in the coding

domain.

6.2 Limitations

Whilst the research conducted presents multiple original contributions that have developed

our understanding in this area, there are also a range of limitations associated with the work

completed. For instance, participants across all studies experienced challenges on occasions

with the accuracy of speech recognition, thus resulting in them having to repeat commands

multiple times. Furthermore, the research prototypes developed utilised a cloud-based

speech recogniser, which can occasionally pose issues in terms of delays in processing (due

to latency rates and network issues). These are known challenges in the field (Wagner and

Gray, 2015; Rosenblatt et al., 2018; Soto Munoz et al., 2019; Van Brummelen et al., 2020b),

although it is important to note that they were not highlighted as major concerns for

participants across all studies (who were able to successfully complete all experimental

tasks). An alternative approach could involve the integration of offline conversion tools (e.g.

Mozilla Speech (2023), Wav2letter (2023)), which could potentially help to address these

issues (particularly in relation to latency), although further testing is required to examine

whether this presents any interaction benefits.

Similar limitations were also observed in relation to the eye tracker when evaluating the

multimodal prototype detailed in Chapter 3. In particular, calibration drifts were observed

during this study as participants moved their heads and seating position over the duration of

the study (these challenges have also been highlighted in previous work (Miniotas et al.,

2006; Biswas and Langdon, 2011; Creed et al., 2020)). The use of sensors with higher levels

of accuracy (e.g. Tobii 5 (Tobii, 2023)) could help to address some of the challenges

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 122

identified, although there is still scope for calibration drift to influence user experiences. It

will therefore be important for future work to investigate customisable interfaces that cater

for the unique needs of individual users to help mitigate this issue (e.g. adjusting the size of

interaction targets (Skovsgaard et al., 2010; Casarini et al., 2020)).

Another general limitation of the research is that all studies (aside from the final evaluation

in Chapter 4) were conducted over a single testing session (based in the lab or remotely

within a participant’s environment). Whilst the approach taken in the thesis still presents

important new insights and contributions around the feasibility of multimodal coding

approaches for people with physical impairments, it will be crucial moving forward to also

conduct longitudinal studies to investigate the efficacy of the approaches developed. For

example, this could present important new insights around how developers adapt their

coding practice and workflow around any limitations associated with voice coding

approaches (e.g. to work around accuracy challenges).

Another limitation of the research is that the user evaluations conducted in Chapters 4 and

5 were conducted remotely in either a participant’s home or work environment. Participants

were therefore using their microphones to support voice input which led to a lack of

consistency in the technology used within the evaluation sessions. A lack of control of

external environmental factors (e.g. background noise) could also have influenced

experiences in using the voice-controlled elements of the prototypes (Krishna et al., 2019).

However, it is important to note that participants did not raise voice recognition as a major

concern across both studies, and all participants successfully completed evaluation tasks. A

remote evaluation approach can also present some benefits in that the prototypes were

evaluated in more realistic scenarios where external factors can influence interaction

experiences. Whilst this testing method, therefore, presents some limitations, it also helps

to enhance the validity of the findings reported.

A further limitation is that the research prototypes developed only supported web-based

markup and scripting languages (i.e. HTML, CSS, and JavaScript), as opposed to other

popular languages such as Python, C#, and C++. These languages all have their coding

conventions and standards, which may mean that adaptations are required to support the

efficient writing and manipulation of syntax via multimodal coding approaches. For

instance, using Emmett (Emmet, 2023) helped to support the more rapid production of

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 123

HTML and CSS code, although this approach would not be compatible with other

languages. Further work is therefore needed to explore the nuances associated with other

languages and new approaches to support efficient workflows via multimodal interaction

methods.

Another limitation is associated with the multimodal approaches explored during this thesis

– this included a combination of speech, gaze, and multiple switches for the first research

prototype (Chapter 3) and the use of speech and a switch for the studies conducted in

Chapters 4 and 5. Whilst there is a lack of work exploring the combination of these

technologies within a coding context (as highlighted in Chapters 1 and 2), and the work

conducted presents new insights, there are also other modalities that could have been

explored. These include mid-air gesturing (Morrison and McKenna, 2002; Groenewald et

al., 2016), head tracking (Haque et al., 2021; Kabir et al., 2022), alternative mice and

keyboards (Smith et al., 1998; McLoone et al., 2010; Aigner et al., 2016; Henzen and

Nohama, 2016), Brain Computer Interfaces (BCIs) (Vallabhaneni et al., 2005; Allison et al.,

2007) and touch (Kane et al., 2009; Mott et al., 2016; Gheran et al., 2018). This represents

an important future research area where different combinations of input modalities may help

to support developers with specific requirements and forms of impairments.

In terms of the research conducted in Chapter 4, the natural language approach was taken

forward for further development and evaluation work (after the first evaluation), although

the fixed grammar approach also received positive feedback. An argument could have been

made to also take this approach forward for further research within a multi-testing session

study to gain further insights around the viability of this method. Whilst this still represents

an important area requiring further investigation, participant feedback highlighted a

particular interest in the potential of natural language input to support coding activities. It

was therefore decided that this area held potential to present new insights and contributions

for the field, although it is important to acknowledge that the fixed grammar approach was

generally perceived positively and can present benefits for developers.

Finally, in relation to the research detailed in Chapter 5 around code navigation, the study

focused on new inclusive approaches for navigating syntax within a single document. This

work did not cover other scenarios, such as searching for specific code over multiple source

files associated with a development project. Whilst this is also an important area requiring

Chapter 6: Discussion and Limitations

 Bharat Paudyal – March 2023 124

further investigation, it was felt that an important initial step was first to investigate whether

common navigation features such as “Find”, “Find all References”, and “Go to Definition”

could be tailored for multimodal voice and switch control within a single document. It will

now be important to explore the wider application of the approaches developed to

understand whether any further updates are required to these approaches to support

additional code navigation scenarios.

A wider important point relates to the recruitment disabled and non-disabled participants

for the research studies. The research detailed in Chapters 3 and 4 employed a two-phase

methodology, consisting of an initial investigation involving non-disabled developers,

followed by a subsequent investigation involving developers with physical impairments.

Chapter 5 broadened this scope by incorporating a more extensive cohort of disabled

developers, consisting of 14 participants. As mentioned earlier in Chapters 3 and 4, a key

requirement of this research is that all users were able to use assistive tools to control the

system. We therefore felt that conducting a first study with non-disabled participants

provided a relevant insight into the use of the system. It also enabled us to identify areas

where further improvements were required prior to conducting an evaluation with disabled

participants.

The recruitment of disabled participants was predominantly carried out via online

advertising, with the objective of targeting a wide range of individuals with diverse

impairments. This recruitment strategy was designed to mitigate the influence of bias that

may arise from exclusively relying on the research lab's personal contacts. It also offered an

opportunity for individuals who may not have direct affiliations with the research team to

take part in the study.

This chapter provided a discussion of findings and limitations from all three user studies

presented in this thesis (Chapter 3-5). The main contributions of this work were presented,

as well as the potential benefits to the research community. The key conclusions drawn from

the work in this thesis will be presented in Chapter 7.

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 125

7 CONCLUSIONS AND FUTURE WORK

This thesis explored the integration of different assistive technologies such as eye gaze,

speech, mechanical switches to facilitate usable, efficient and feasible approaches for

supporting developers with physical impairments to perform coding activities. The thesis

initially investigated the combination of speech, gaze, and a mechanical switch as an

alternative input approach for writing, editing, deleting, and selecting HTML and CSS code

(Chapter 3). The developed coding environment allowed developers to type code using eye

gaze, control the interface via speech, and trigger actions through mechanical switches, thus

leveraging the strengths of each modality to present a more viable coding approach. The

feasibility of this prototype was assessed through evaluations involving both non-disabled

(N=29) and disabled (N=5) participants. The design and evaluation processes primarily

focused on writing, deleting, and selecting HTML and CSS code. Two user evaluations

yielded positive results, showcasing the viability of integrating gaze, speech, and

mechanical switches for supporting development tasks.

Drawing from the feedback and insights gained from Chapter 3, the next chapter explored

the feasibility of different voice inputs (i.e., natural language and fixed grammar) along with

a mechanical switch to perform coding activities (Chapter 4). Prior work on voice-based

coding predominantly focused on using fixed and constrained commands, and none were

evaluated with disabled developers. The initial design of the system was informed via an

exploratory study involving twelve developers, aimed at gaining insights into the language

employed while utilizing voice commands for code composition. This exploratory research

informed the development of a multimodal inclusive coding environment using two voice

coding approaches: Fixed Grammar and Natural Language. A comparative study involving

non-disabled developers (N=25) produced a similar level of efficiency and usability

between both approaches when writing JavaScript code, with each method receiving

positive feedback and enabling the successful completion of development tasks. A multi-

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 126

session follow-up study with disabled developers (N=5) demonstrated that coding through

natural language speech facilitates effective code writing, editing, and navigation.

Disabled developers from the previous study (Chapter 4) emphasised a need for accessible

common code navigation features that can be utilised via speech interaction. To investigate

this further, an exploratory study with five disabled developers was conducted to gain

insights into their experience with code navigation within their existing voice-based

development environment. The findings from this study informed the design of a code

editing prototype that integrated common code navigation techniques (e.g., "Find," "Find

reference," and "Go to Definition") controlled via speech and switch input. A research study

was conducted with 14 developers with physical impairments, with results demonstrating

that the approach was a usable and efficient method for code navigation.

This thesis involved the exploration and implementation of novel multimodal input

modalities to assist developers with physical impairments in performing coding activities.

It examined the development and validation of multimodal interaction approaches within

the coding environment through evaluations with both disabled and non-disabled

developers, thus providing a comprehensive understanding of the strengths and limitations

associated with the use of multimodal interaction approaches in a coding context.

Additionally, the research explored natural language and fixed grammar voice coding

methods, confirming both approaches as usable and feasible for coding purposes. Further

investigations into the natural language approach were conducted through multi-session

studies, offering a deeper understanding of its strengths and limitations in supporting

developers during coding activities. Moreover, the research investigated mainstream code

navigation approaches and identified voice and switch as feasible interaction methods to

support developers with physical impairments in performing code navigation. Table 7.1

presents a summary of the key contributions.

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 127

Table 7.1: A summary of user studies across each study; RSI=Repetitive Strain Injury; CP: Cerebral

Palsy; NDD =Non-disabled developers; DPI=Developers with Physical Impairments

Study User Type Participants Categories/Tasks Conditions
Number

of tasks
Utilized tools SUS

Study 1

(Multimodal

Interaction)

• NDD

29 participants

with an age range

of 19 to 45

(M=27.9;

SD=7.87)

• HTML ADD

• HTML

SELECT

• HTML

DELETE

• HTML EDIT

• CSS ADD

• CSS SELECT

• CSS DELETE

• CSS EDIT

One

64 (8

categorie

s*8

tasks)

• Speech

(Controlling

interface)

• Gaze(Typing)

• Mechanical

Switches

(Selection)

68.1 (SD

=20.8)

Study 2

(Multimodal

Interaction)
• DPI

5 participants

with an average

age of 23.6 years

(SD=7.3); (4 with

RSI, 1 with CP)

• Creating a

single

webpage from

a blank

document

One

• Speech

(Controlling

interface)

• Gaze(Typing)

• Mechanical

Switches

(Selection)

74.0 (SD

=4.6)

Study 1

(Multimodal

Speech

Interaction)

• NDD

25 with ages

ranging from 18

to 50 years

(M=25.8;

SD=7.85)

• Create

• Select

• Delete

• Edit

• Natural

language

(NL)

• Fixed

Gramma

r(FG)

48 (2

condition

s*4

categorie

s*6

tasks)

• Speech

(performing the

tasks)

• Mechanical

switch

(triggering the

recognizer)

NL

=75.8

(SD

=16.0);

FG=75.4

(SD

=17.4).

Study 2

(Multimodal

Speech

Interaction)

(Multi-

session)

• DPI

6 (M =26.7, SD

=8.4); Four with

RSI, one with CP

and one with

Tendonitis/Carpal

Tunnel

• Create

• Select

• Delete

• Edit

One

• Speech

(performing the

tasks)

• Mechanical

switch

(triggering the

recognizer)

59.2

(SD=18.

5)

Study 3

(Multimodal

Code

Navigation)

• DPI

14 (M=33.3,

SD=10.9); 12

with RSI; 1 CP

and one with

Tendonitis/Carpal

Tunnel

• Short,

• Medium

• Long

One

36 (12

tasks*3

categorie

s)

• Speech

(performing the

tasks)

• Mechanical

switch

(triggering the

recognizer)

83.4

(SD=14.

3)

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 128

7.1 Future Work

Whilst the thesis presents new insights and contributions around multimodal methods to

support people with physical impairments in writing code, it also gives rise to a range of

important research areas requiring further investigation. For instance, a key emphasis of the

work detailed in this thesis focused on specific coding activities such as writing, editing,

navigating, selecting, and deleting code. Whilst these are all fundamental areas where

further work was required, future studies also need to concentrate on other key development

activities such as debugging, code versioning, and general management of a codebase.

These are all areas where there has been a lack of work to date, and it remains unclear how

they can be facilitated via multimodal interaction approaches. For instance, in terms of

debugging, this is a crucial activity that will likely require custom commands to control

different aspects of debugging, such as setting flags, stepping through code, and controlling

the compilation process. There may also be scope for natural language approaches to support

this process (e.g. “set a flag at line x and step through”, “find the function x and add a

breakpoint”). No work has been conducted in this area to date, although it is a crucial

element of the application development process where further research is now required.

Whilst the multimodal system presented in Chapter 3 highlights some interaction issues in

relation to eye gaze accuracy, it will be important to conduct additional work in this area.

For instance, it will be important to work with more accurate sensors (e.g. Tobii 5) and

examine whether this further supports the interaction approach. The study also focused on

using gaze primarily for typing code and speech for other actions (e.g. code navigation).

However, it would also be interesting to swap the primary roles of these approaches (e.g.

speech for writing code and gaze for supporting navigation, and selection of targets).

Furthermore, the ability to customise input methods and their mapping to different tasks is

an important area that requires further work, as well as ensuring that the process for

configuring these mappings is inclusive for people with physical impairments.

Another area where further research may prove fruitful is in relation to the customisation of

vocal commands to support coding. For instance, one of the limitations of a fixed grammar

approach is that users have to utilise a fixed set of commands. In some cases, the system

misrecognised some of the commands issued by participants due to their accents (e.g.

“delete line 10”, often misread as “delete nine nine”), thus resulting in them having to repeat

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 129

commands on multiple occasions. Similarly, whilst voice-based coding extensions such as

Cursorless (2023) are available for platforms such as Visual Studio Code (e.g. to support

with code navigation via voice input), they can provide some interaction challenges - for

example, developers have to learn the supported voice commands (e.g. “chuck line near” to

delete lines between two highlighted words), thus presenting additional cognitive load.

Future work, therefore, needs to investigate the potential of having a customisable approach,

where users can select and customise commands depending on their own preferences.

Similar to the customisation of input methods (highlighted above), the process for defining

these custom commands will also need to be accessible to ensure this does not present

developers with additional barriers.

Novel innovations around natural language text input to generate code have been shown to

present efficiency benefits for developers. For example, GitHub has introduced GitHub

Copilot (Nguyen and Nadi, 2023), which can suggest large code snippets of different

programming languages (e.g. if a user types “function farenheitTocelcius”, the relevant code

snippet will be auto typed within the function). This has the potential to present significant

benefits for coders with impairments, but further work is required to empirically evaluate

the strengths and limitations of this method. In particular, this approach could reduce the

amount of syntax that needs to be manually written, which could present benefits, although

it may also introduce issues if the generated code contains any issues that does not reflect

the developer’s desired outcome. For instance, a significant overhead could be added if users

have to correct the code, which may potentially be a longer process compared with manually

writing the syntax (without the support of auto-generation via natural language text input).

However, further research is required to empirically evaluate and understand the

opportunities and challenges associated with this coding approach.

Code completion is another feature that is commonplace in mainstream IDEs and has been

shown to present productivity benefits for non-disabled developers as it lowers the number

of keys needed to type the code by displaying relevant code snippets (Asaduzzaman et al.,

2016; Amlekar et al., 2018). This also holds significant potential to make coding more

efficient for people with physical impairments who are utilising alternative input methods,

although there has been limited work exploring how this feature can be tailored for

multimodal interaction. For example, this feature could be tailored to work in largely the

same way where numbers are associated with different autocompletion options which can

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 130

then be executed via an associated voice command (e.g. “complete 5”). However, there are

potentially scenarios where there can be significant numbers of autocomplete options - how

these completion options can be navigated via voice commands then becomes an important

consideration. Simple navigation commands could be utilised (e.g. “select xth item”, “scroll

list and get xth item”), although further work is required to understand the types of

interaction challenges this may present.

Another area where there has been a lack of work to date is around collaborative coding

experiences. Tools such as Slack (2023), CodePen (2023) facilitates collaborative coding

sessions (e.g. remote pair programming), although no work has explored experiences of

developers working within mixed ability teams, where teammates may be utilising

alternative input methods. This raises questions around the usability of such systems and

whether they can efficiently facilitate collaborative sessions, although it also presents social

questions around how developers feel when working collaboratively with disabled and non-

disabled colleagues. For example, if disabled developers take longer to write or navigate

code, it is not clear how this might make them feel within shared coding scenarios. Similarly,

it is unclear how non-disabled colleagues feel in these scenarios and how it might impact

their behaviour and working processes. These are important and timely questions, although

they currently remain underexplored.

More widely, a key element of coding is referring to other sources online to help address

technical issues and bugs (Slack, 2023; Stack Overflow, 2023). There has been significant

work on navigating the web via voice and gaze interaction independently (Porta and Ravelli,

2009; Kumar et al., 2017; Sinha and Dasgupta, 2021), although less work has focused on

multimodal solutions facilitating this type of activity within a coding context. For instance,

the ability to easily copy and paste code from a web browser and then integrate this syntax

within an IDE may present barriers for developers with physical impairments. There may

also be challenges with viewing educational videos demonstrating coding concepts and

examples whilst simultaneously attempting to apply the knowledge within an IDE.

Similarly, the ability to rapidly switch between different applications (e.g. a browser and

IDE) and different tabs within a web browser could also integrate challenges into the code

writing process. Further research is therefore required to understand the types of barriers

that may exist for developers in this context, as well as potential solutions to make these

coding scenarios more accessible and efficient.

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 131

The use of plugins is also a commonly used resource by developers where the wider

community develop additional features or approaches to support development productivity.

For instance, within the Visual Studio Code Community there are over 40000 plugins

available that can support developers Visual Studio Code Extensions (2023). However, no

work has examined how disabled developers with physical impairments can initially

navigate these plugins and then install them (i.e. this process may present some accessibility

barriers). It is also not clear whether the additional features presented by a plugin may

present accessibility challenges for developers that can exclude them from important tools

that their colleagues might be utilising. Further research is therefore required to understand

the accessibility of the wider ecosystem associated with development platforms to ensure

they are not presenting barriers for disabled developers.

Finally, in terms of wider impact activities, many of the developers with physical

impairments from the code navigation research studies (Chapter 5) expressed a desire for

the navigation features developed (i.e. “Go to Definition”, “Find all References”) to be

integrated into mainstream IDEs (e.g. Visual Studio Code and JetBrains). In particular, they

indicated that these features could be useful for the wider development community to make

code navigation more efficient. Similarly, it will be important to incorporate the findings

from the other studies conducted (e.g. commands for writing, selecting, and editing code via

voice) into commonly used development environments to widen the impact of the research

completed. Further work is therefore required to explore the impact of integrating these

features into mainstream IDEs and the extent to which they can support enhance code

development for both disabled and non-disabled users.

7.2 Conclusion

This thesis highlights new insights and contributions into how multimodal interaction

approaches can support people with physical impairments with writing, editing, and

navigating code. The work presented highlights how the input methods developed can make

coding more inclusive and accessible for disabled developers, as well as confirming that

combinations of input modalities such as speech, gaze, and switches are a viable approach

to support inclusive development experiences. There remain significant opportunities to

further enhance the accessibility of development environments and platforms that can

remove barriers and obstacles for people with physical impairments. Additional work is now

Chapter 7: Conclusions and Future Work

 Bharat Paudyal – March 2023 132

essential across the wider community to investigate the areas and gaps identified where there

is still limited work and understanding. This future work is crucial to ensure that developers

with physical impairments are not excluded from the software engineering and development

field and that they are able to work productively within professional mixed-ability

development teams.

Chapter 8: Appendices

 Bharat Paudyal – March 2023 133

8 APPENDICES

Appendix A

A.1 Pre-test Questionnaires – Multimodal Coding Environment

Participant ID: Date:

1. Age……………

2. Gender: ………….

3. Do you wear any corrective lenses (e.g. glasses or contact lens)?

☐Yes ☐No

4. Is English your first language? If not, then what is your first language?

…………………………………..

5. Do you have any experience of web development work?

☐Yes ☐No

If Yes, number of year:

☐Less than a year ☐1-3 years ☐4-5 years ☐5+

years

What is your experience in HTML Coding?

 ☐Beginner ☐Intermediate ☐Advanced

What is your experience in CSS Coding?

 ☐Beginner ☐Intermediate ☐Advanced

6. Do you use any coding IDE for development work?

☐Yes ☐No

If Yes, please specify the tool which you use?

………………………………………………………………………………………

…………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 134

7. Do you have any experience of using speech recognition to control system or

devices?

 ☐Yes ☐No

If Yes, which devices ……………………………………………………………..

If yes, frequency

☐Daily ☐Weekly ☐Monthly ☐One-off

8. Do you have any experience of using eye tracker to control the cursor or any other

purposes?

 ☐Yes ☐No

If Yes, which devices ……………………………………………………………..

If yes, frequency

☐Daily ☐Weekly ☐Monthly ☐One-off

9. Do you have any experience of using Emmet to write code?

 ☐Yes ☐No

If Yes, number of year:

☐Less than a year ☐1-3 years ☐4-5 years ☐5+

years

Chapter 8: Appendices

 Bharat Paudyal – March 2023 135

A.2 Tasks for the exploratory Study

SN Task Type Initial Code Final Code

1 Add a new element
HTML

ADD

<body>

</body>

<body>

 <h1></h1>

</body>

2
Add a new element

with a property

HTML

ADD

<body>

</body>

<body>

 <div id="articles"></div>

</body>

3
Add a new element

with two properties

HTML

ADD <body>

</body>

<body>

 <div id="article1"class="article">

 </div>

</body>

4
Add a new element

with children

HTML

ADD
<body>

</body>

<body>

 Home

 About

 Article

 Contact

</body>

5

Add a new element

(with an ID) with

children that have

properties [adding

properties at different

levels]

HTML

ADD

<body>

</body>

<body>

 <li class="menulink">

 <li class="menulink">

 <li class="menulink">

 <li class="menulink">

 <li class="menulink">

Chapter 8: Appendices

 Bharat Paudyal – March 2023 136

</body>

6
Manually add some

HTML code

HTML

ADD

<ul id="menu">

<li class="menu-item">Home

<li class="menu-item">About

<li class="menu-item">Articles

<li class="menu-item">Contact

<ul id="menu">

<li class="menu-item">Home

<li class="menu-item">About

<li class="menu-item">Articles

<li class="menu-item">Contact

7 Add free text
HTML

ADD

<h1>Latest Articles</h1>

<h1>Latest Articles</h1>

<p>Please find our most recent published

articles listed </p>

8 Add a comment
HTML

ADD

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

 <!-- The main menu for website -->

 <ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

9 Select a line
HTML

SELECT

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

<li class="menu-item">Contact

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

Chapter 8: Appendices

 Bharat Paudyal – March 2023 137

10 Select an element
HTML

SELECT

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

11
Select first property

of an element

HTML

SELECT

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

12
Select second

property of element

HTML

SELECT

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

<ul id="menu">

<li class="menu-item"

id=”menulink”>Home

<li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

13 Select block of code
HTML

SELECT

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

14
Select a word in free

text

HTML

SELECT

<h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

 <h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

Chapter 8: Appendices

 Bharat Paudyal – March 2023 138

15
Select multiple words

from a free text

HTML

SELECT

<h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

<h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

16 Select comment
HTML

SELECT

 <!-- This is a menu -->

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

<!-- This is a menu -->

 <ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

17 Remove a line

HTML

REMOV

E

 <div class="article"></div>

 <div class="article"></div>

 <div class="article"></div>

 <div class="article"></div>

 <div class="article"></div>

 <div class="article"></div>

 <div class="article"></div>

18 Remove an element

HTML

REMOV

E

 <ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

 <ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

19
Remove first property

of an element

HTML

REMOV

E

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

 <li class="menu-item">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

20
Remove nth property

of element

HTML

REMOV

E

<ul id="menu">

 <li class="menu-item"

id="menulink">Home

<ul id="menu">

 <li class="menu-item">Home

 <li class="menu-item">About

Chapter 8: Appendices

 Bharat Paudyal – March 2023 139

 <li class="menu-item">About

 <li class="menu-item">Articles

 <li class="menu-item">Contact

 <li class="menu-item">Articles

 <li class="menu-item">Contact

21
Remove block of

code

HTML

REMOV

E

<body>

 <ul id="menu">

 <li class="menu-item"

id="menulink">Home

 <li class="menu-item">About

 <li class="menu-item">Articles

<li class="menu-item">Contact

</body>

<body>

</body>

22 Remove a comment

HTML

REMOV

E

<ul id="menu">

 <!-- the main menu for website -->

<li class="menu-item">Home

<li class="menu-item">About

<li class="menu-item">Articles

<li class="menu-item">Contact

<ul id="menu">

 <li class="menu-item">Home

<li class="menu-item">About

<li class="menu-item">Articles

<li class="menu-item">Contact

23
Remove a word from

free text

HTML

REMOV

E

<h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

<h1>Latest Articles</h1>

 <p>Please find our recent published articles

listed </p>

24
Remove multiple

words from free text

HTML

REMOV

E

 <h1>Latest Articles</h1>

 <p>Please find our most recent published

articles listed </p>

<h1>Latest Articles</h1>

 <p>Please find our most listed </p>

25 Typographical Error
HTML

EDIT

<div id="article" calss="article">

 <h1>Article Title</h1>

 <p>Article Content</p>

<div id="article" class="article">

 <h1>Article Title</h1>

 <p>Article Content</p>

Chapter 8: Appendices

 Bharat Paudyal – March 2023 140

 </div> </div>

26 Unclosed pair
HTML

EDIT

<body>

 <h1>Article Title</h1>

 <p>Article Content

 </body>

<body>

 <h1>Article Title</h1>

 <p>Article Content </p>

 </body>

27

Confused similar

construct (using

incorrect syntax)

HTML

EDIT

<title>Article Title</title>

 <p>Article Content</p>

 <h1>Article Title</h1>

 <p>Article Content</p>

28
Mixed mode (using

CSS syntax)

HTML

EDIT

<h1 class: "red">Article Title</h1>

 <p>Article Content</p>

 <h1 class="red">Article Title</h1>

 <p>Article Content</p>

29
Misidentified

Construct

HTML

EDIT

<input button-type="submit"

value="submit">

<input type="button" value="submit">

30
Invalid lists and list

items

HTML

EDIT

 <p>Item one </p>

 <p>Item two</p>

 Item one

 Item two

31
Invalid comment

syntax

HTML

EDIT

<body>

 // list items

</body>

<body>

 <!-- list items -->

</body>

32 HTML Foundations
HTML

EDIT

<h1 class= "red">Article Title</h1>

 <align="right">Sidebar</align>

<h1 class= "red">Article Title</h1>

 <div class="right">Sidebar</div>

33 Add a new element
CSS

ADD

.div{

}

34
Add a new element

with a property

CSS

ADD

.div {

}

.div {

 color: #000;

}

Chapter 8: Appendices

 Bharat Paudyal – March 2023 141

35
Add a new element

with two properties

CSS

ADD

.div {

}

.div {

 color: #000;

 background-color: #fff;

}

36
Add a new element

with children

CSS

ADD

.div{

}

.div > span{

}

37

Add a new element

(with an ID) with

children that have

properties

CSS

ADD

.div{

}

.div#article{

color: #000;

background: #000;

font-weight: bold;

}

38
Manually add some

CSS code

CSS

ADD

.div {

 color:#fff;

 background:#ccc;

 text-align:

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

}

39 Add a free text
CSS

ADD

footer{

 color:red;

 }

footer[data-type='copy']{

 color:red;

 }

40 Add a comment
CSS

ADD

.div {

 color:#fff;

 background:#ccc;

 }

/* This will be div */

.div {

 color:#fff;

 background:#ccc;

 }

41 Select a line
CSS

SELECT

.div {

 color:#fff;

 background:#ccc;

.div {

 color:#fff;

 background:#ccc;

Chapter 8: Appendices

 Bharat Paudyal – March 2023 142

 text-align:center;

 position:absolute;

}

 text-align:center;

 position:absolute;

}

42 Select an element
CSS

SELECT

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

43
Select first property

of an element

CSS

SELECT

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

44
Select second

property of element

CSS

SELECT

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 border: 2px solid red;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 border: 2px solid red;

}

45 Select block of code
CSS

SELECT

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 border: 2px solid red;

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 border: 2px solid red;

Chapter 8: Appendices

 Bharat Paudyal – March 2023 143

} }

46
Select a word in free

text

CSS

SELECT

footer[data-type='copy']{

 color:red;

 }

footer[data-type='copy']{

 color:red;

 }

47
Select multiple words

in free text

CSS

SELECT

footer[data-type='copy']{

 color:red;

 }

footer[data-type='copy']{

 color:red;

 }

48 Select comment
CSS

SELECT

 /* This will have some comment */

.div {

 color:#fff;

 background:#ccc;

 }

 /* This will have some comment */

.div {

 color:#fff;

 background:#ccc;

 }

49 Remove a line

CSS

REMOV

E

 .div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

.div {

 color:#fff;

 text-align:center;

 position:absolute;

}

50 Remove an element

CSS

REMOV

E

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

.div2 {

 margin:2px;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

}

Chapter 8: Appendices

 Bharat Paudyal – March 2023 144

51
Remove first element

of an element

CSS

REMOV

E

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 padding: 2px 4px 5px 3px;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 padding: 4px 5px 3px;

}

52
Remove nth property

from element

CSS

REMOV

E

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 padding: 2px 4px 5px 3px;

}

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 padding: 2px 4px 3px;

}

53
Remove a block of

code

CSS

REMOV

E

.div {

 color:#fff;

 background:#ccc;

 text-align:center;

 position:absolute;

 padding: 2px 4px 5px 3px;

}

.div {

 color:#fff;

}

54
Remove a word from

free text

CSS

REMOV

E

footer[data-type='copy']{

 color:red;

 }

footer[data-type=]{

 color:red;

 }

55
Remove multiple

words from free text

CSS

REMOV

E

footer[data-type='copy']{

 color:red;

 }

footer{

 color:red;

 }

Chapter 8: Appendices

 Bharat Paudyal – March 2023 145

56 Remove a comment

CSS

REMOV

E

 /* This will have some comment */

.div {

 color:#fff;

 background:#ccc;

 }

.div {

 color:#fff;

 background:#ccc;

 }

57
Misidentified

Construct

CSS

EDIT

.div{

 font-color:#fff;

 background:#000;

}

.div{

 color:#fff;

 background:#000;

}

58 Unclosed pair
CSS

EDIT

.div{

 font-color:#fff;

 padding:20;

 background:#000;

}

.div{

 font-color:#fff;

 padding:20px;

 background:#000;

}

59 CSS Selector
CSS

EDIT

.div > #article {

 color:#000;

 background:#fff;

 font-weight:bold;

}

.div#article {

 color:#000;

 background:#fff;

 font-weight:bold;

}

60
CSS Foundation

Error

CSS

EDIT
.div: color: #fff;

.div {

 color: #fff;

}

61 Typographic Error
CSS

EDIT

.div{

 font-color:#fff;

 padding:20;

 bckagruond:#000;

}

.div{

 font-color:#fff;

 padding:20;

 background:#000;

}

62 Comment Syntax
CSS

EDIT
//image /* image */

Chapter 8: Appendices

 Bharat Paudyal – March 2023 146

.div{

 font-color:#fff;

 background:#000;

}

.div{

 font-color:#fff;

 background:#000;

}

63 Unclosed Element X
CSS

EDIT

.div {

 color:#000;

 background:#fff;

 font-weight:bold;

.div {

 color: #fff;

}

.div {

 color:#000;

 background:#fff;

 font-weight:bold;

}

.div {

 color: #fff;

}

64 Invalid Construct
CSS

EDIT

.div{

 font-color=#fff;

 padding=20;

 background=#000;

}

.div{

 font-color:#fff;

 padding:20;

 background:#000;

}

Chapter 8: Appendices

 Bharat Paudyal – March 2023 147

A.3 Post-test Questionnaire

Participant ID: Date:

1. What was your overall experience of using eye gaze and speech recognition in

development tasks?

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………..

2. How did you find writing code via gaze?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

3. How did you find speech for controlling the system?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

4. How did you find the use of Emmet via eye gaze as an approach in coding??

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

5. Do you have suggestions or feedback for the improvement of the tool?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 148

A.4 Pre-test Questionnaire – Formal Study

Participant ID: Date:

1. Age………………………………………………………………………………

2. Gender: ………….

3. Do you wear any corrective lenses (e.g. glasses or contact lens)?

………………………..

4. Is English your first language? If not, then what is your first language?

…………………………………..

5. Please specify the form of disability you have? Please provide detail about your

impairments

……………………………………………………………………………………

………………………………………………………………………………………

…………………………………………………………………………………

6. Do you have any experience of web development work?

☐Yes ☐No

If Yes, number of years:

☐Less than a year ☐1-3 years ☐4-5 years ☐5+

years

7. Do you have any experience of using speech recognition to control systems or

devices?

 ☐Yes ☐No

If Yes, which devices (e.g. Amazon echo, Siri)

……………………………………………………………..

Frequency

☐Daily ☐Weekly ☐Monthly ☐One-off

8. Do you have any experience of using eye tracking technologies to control systems

or devices?

 ☐Yes ☐No

If Yes, please give details

…………………….………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 149

A.5 Post-test Questionnaire – Formal Study

Participant ID: Date:

1. What was your overall experience of using a combination of eye gaze and speech

recognition in development tasks?

………………………………………………………………………………………

……………………………………………………………………………….

2. How did you find eye gaze tracker for writing code?

………………………………………………………………………………………

…………………………………………………………………………………

3. What is your experience of using Voice?

………………………………………………………………………………………

…………………………………………………………………………………

4. How do you compare your current approach of programming in compare to this

prototype?

………………………………………………………………………………………

…………………………………………………………………………………

5. Do you think this approach of coding can be viable for future coding??

………………………………………………………………………………………

…………………………………………………………………………………

6. Do you have any suggestions for the improvement of this system?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 150

Appendix B

B.1 Pre-test Questionnaires – Multimodal Voice

Participant ID: Date:

1. Age……………

2. Gender: ………….

3. Is English your first language? If not, then what is your first language?

…………………………………..

4. Please specify the years of coding experience ? (in numbers)

……………

5. Please specify the coding IDE you are using for your development work?

………………………………………………………………………….

6. Please specify any assistive technologies (e.g. speech recognition, eye gaze

tracking, etc.) you use for development work?

………………………………………………………………………….

7. Please specify the audio device you will be using (e.g. microphone, inbuilt-audio,

etc)?

………………………………………………………………………….

Chapter 8: Appendices

 Bharat Paudyal – March 2023 151

B.2 Tasks for exploratory study

SN Task Type Initial Code Final Code

1 Create a class ADD
 class car {

}

2 Create a function ADD
 check(brand, price){

}

3 Create a variable ADD
 var userprice =

document.getElementById(“price”).v

alue

4 Create a condition ADD
 If(userprice >=this.price) {

}

5 Create a print script ADD
 console.log(“out of my range”);

6 Create a for loop ADD
 for(var i=0; i<10; i++){

}

7 Select the word

‘brand’

SELECT
const brand=this.brand; const brand = this.brand;

8 Select “this.height “ SELECT
var this.height = price var this.height = price

9 Select a single line SELECT
class abc {

 constructor(height){

 this.height=height;

 }

}

class abc {

 constructor(height){

 this.height=height;

 }

}

10 Select multiple lines SELECT
class abc {

 constructor(height){

 this.height=height;

class abc {

 constructor(height){

 this.height=height;

Chapter 8: Appendices

 Bharat Paudyal – March 2023 152

 }

}

 }

}

11 Select a single word SELECT
throw "the intent is not defined"; throw "the intent is not defined";

12 Select multipke

words

SELECT
class abc {

 constructor(height){

 }

}

class abc {

 constructor(height){

 }

}

13 Incorrect constraint EDIT
var elements =

document.getElementById(“#stores

”);

var elements =

document.getElementById(“stores”);

14 Missing syntax EDIT
var variable2 = 'world!

 var variable2 = 'world!

’;

15 Misisng Identifier EDIT
final_text = variable1+variable2; var final_text = variable1+variable2;

16 Typographical error EDIT
var elements =

documents.getElementById('stores')

;

if(elemnets > 2){

 return final;

}

var elements =

documents.getElementById('stores');

if(elements > 2){

 return final;

}

17 Incorrect syntax EDIT
if(elements >2)

{

 return final;

}

if(elements >2)

{

 return final_text;

}

18 Missing identifier EDIT
class area {

 function getMethod(variable){

 var elements = "hello"+variable;

 }

}

getMethod()

class area {

 function getMethod(variable){

 var elements = "hello"+variable;

 }

}

getMethod(“world”)

Chapter 8: Appendices

 Bharat Paudyal – March 2023 153

19 Delete comma DELETE
const brand=this.brand;, const brand = this.brand;

20 Delete the word ‘the

.’

DELETE
var this.height = price

Var height = price

21 Delete 3rd line DELETE
class abc {

 constructor(height){

 this.height=height;

 }

}

class abc {

 constructor(height){

 }

}

22 Delete line 2, 3 and

4

DELETE
class abc {

 constructor(height){

 this.height=height;

 }

}

class abc {

}

23 Delete Multiple

words

DELETE
throw "the intent is not defined"; throw "the intent";

24 Delete the comment DELETE
// the code goes here

var elements =

documents.getElementById('price');

var elements =

documents.getElementById('price');

Chapter 8: Appendices

 Bharat Paudyal – March 2023 154

B.3 Post-test Questionnaire

1. How did you find the process of writing, editing, selecting and deleting the code

using Natural Language Speech?

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………..

2. How did you find the process of writing, editing, selecting and deleting the code

using Fixed Commands?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

3. Did you have any preference between the two versions? If so, please explain why?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

4. Do you have any suggestions for Improving the Natural Language Approach?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

5. Do you have any suggestions for Improving the Natural Language Approach?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 155

B.4 Pre-test questionnaire for Formal study

Participant ID: Date:

1. Age…………………………………………………………………………………

………………………

2. Gender: ………….

3. Is English your first language? If not, then what is your first language?

…………………………………..

4. Please specify the form of disability you have? Please provide detail about your

impairments

……………………………………………………………………………………

………………………………………………………………………………………

…………………………………………………………………………………

5. What Assistive tools do you use ?

………………………………………………………………………………………

………………………………………………………………………………………

….

6. How do your rate your JavaScript skill?

☐Novice ☐Intermediate ☐Expert

7. What Programming language/ tools do you use ?

………………………………………………………………………………………

……………………………………………………………………………

8. Please specify the audio device you will be using (e.g. microphone, inbuilt-audio,

etc)?

Chapter 8: Appendices

 Bharat Paudyal – March 2023 156

B.5 Tasks for Formal Study

First Session

SN Task Type Initial Code Final Code

1 Create a class Add
 class car {

}

2 Create a function Add
 check(){

}

3 Create a variable and

assign value

Add
 var height=5;

4 Move the cursor to 9

position right

Navigat

e
var this height = price; var this█height = price;

5 Delete single line Delete
 constructor(height){

 this.height=height;

 }

 constructor(height){

 }

6 Delete multiple words Delete
throw "the intent is not defined "; throw "the intent is";

7 Select a word Select
const height=25; const height = 25;

8 Select single line select
 constructor(height){

 this.height=height;

 }

 constructor(height){

 this.height=height;

}

9 Missing syntax Edit
var variable2 = 'world!

 var variable2 = 'world!

’;

10 Misisng Identifier Edit
final_text = variable1+variable2; var final_text = variable1+variable2;

Chapter 8: Appendices

 Bharat Paudyal – March 2023 157

Second Session

11 Incorrect construct Edit
var elements =

documents.getElementById('stores')

;

if(elemnets > 2){

 return final;

}

var elements =

documents.getElementById('stores');

if(elements > 2){

 return final;

}

12 Incorrect Edit
if(elements >2)

{

 return final;

}

if(elements >2)

{

 return final_text;

}

SN Task Type Initial Code Final Code

1 Create a function with

parameters

ADD
 checkarea (height, width){

}

2 If condition ADD
 If(userprice >=this.price) {

}

3 Loop ADD
 for(var i=0; i<10; i++){

}

4 Delete multiple lines DELETE
constructor(height, width){

 this.height=height;

 this.width=width;

 }

constructor(){

 }

5 Delete multiple words DELETE
const height=this height this height;

6 Select multiple words SELECT
throw "the intent is not

defined ";

throw "the intent is not defined";

Chapter 8: Appendices

 Bharat Paudyal – March 2023 158

7 Select multiple lines SELECT
constructor(height, width){

 this.height=height;

 this.width=width;

 }

constructor(height, width){

 this.height=height;

 this.width=width;

 }

8 Incorrect syntax EDIT
var elements =

documents.getElementById('st

ores');

if(eelmenst > 2){

 return final;

}

var elements =

documents.getElementById('stores');

if(elements > 2){

 return final;

}

9 Missing syntax EDIT
class area {

 function

getMethod(variable){

 var elements =

"hello"+variable;

 }

}

getMethod(false)

class area {

 function getMethod(variable){

 var elements = "hello"+variable;

 }

}

getMethod(“world”)

10 Copy code and paste SELECT
class car {

this.price=price;

constructor(brand, price){

this.brand=brand;

}

}

class car {

constructor(brand, price){

this.brand=brand;

this.price=price;

}

}

Chapter 8: Appendices

 Bharat Paudyal – March 2023 159

Third Session

class area {

 constructor(height, width){

 this.width=width;

 this.height=height;

 }

 checkarea(){

 let initialheight = document.getElementById("height").value;

 let initialwidth = document.getElementById("width").value;

 let previousarea = initialheight*initialwidth;

 let currentarea = this.height*this.width;

 if(previousarea >=currentarea){

 console.log("The area is greater")

 }

 else{

 console.log("The area is smaller")

 }

 }

}

Chapter 8: Appendices

 Bharat Paudyal – March 2023 160

B.5 Post -test Questionnaire

1. How did you find the process of writing new syntax?

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………..

2. How did you find the process of editing existing code?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

3. How did you find the process of deleting and selecting code?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

4. How might the use of voice influence your future coding practice?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

5. Do you have any suggestions for Improving the prototype?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 161

Appendix C

C.1 Pre-test questionnaire for Exploratory Study

Participant ID: Date:

1. Age…………………………………………………………………………………

2. Gender: ………….

3. How do your rate your Coding experience?

☐Novice ☐Intermediate ☐Expert

4. Please specify the form of disability you have? Please provide detail about your

impairments

……………………………………………………………………………………

………………………………………………………………………………………

…………………………………………………………………………………

5. What Assistive tools do you use ?

………………………………………………………………………………………

6. What coding IDE do you use?

……………………………………………………………………………………

7. What coding Language do you use?

………………………………………………………………………………………

Chapter 8: Appendices

 Bharat Paudyal – March 2023 162

C.2 Semi-Structured Questionnaire

Participant ID: Date:

1. Do you use any code navigation features when coding - if so, please elaborate on

how you typically use them (e.g. in terms of selection via any assistive tools you

use)

………………………………………………………………………………………

…………………………………………………………………………………

2. Which kind of issues do you experience when performing code navigation using the

assistive tools?

………………………………………………………………………………………

………………………………………………………………………………………

3. How do you overcome those issues?

………………………………………………………………………………………

………………………………………………………………………………………

4. Do you have any suggestions for making code navigation more accessible using your

assistive tools?

Chapter 8: Appendices

 Bharat Paudyal – March 2023 163

C.3 Pre-test Questionnaire

Participant ID: Date:

1. Age…………………………………………………………………………………

2. Gender: ………….

3. Is English your first language? If not, please specify your native?

…………………………………..

4. Please specify the years of coding experience (in number)

…………………………………………………………………………………..

5. Please specify your Programming experience?

☐Novice

☐Intermediate

☐Expert

6. Please specify platforms/languages you commonly used for programming?

………………………………………………………………………………………

………………………………………………………………………………..

7. Please specify the form of disability you have? Please provide detail about your

impairments

……………………………………………………………………………………

8. Please specify the coding IDE you are using for your development work?

………………………………………………………………………………………

9. Please specify any assistive technologies (e.g. speech recognition, eye gazing

tracking) you use for development work?

………………………………………………………………………………………

10. Please specify the audio device you will be using (e.g. microphone, inbuilt-audio,

etc)?

…………………………………………………………………………………….

Chapter 8: Appendices

 Bharat Paudyal – March 2023 164

C.4 Tasks for First Study

Short Tasks

1. Search for the word editor and move forward to 4th instance

2. Place the cursor after “var” on the same line of code

3. Find all references of the variable cmEditor and select the 7th instance from the

reference list

4. Move the cursor 6 lines down

5. Navigate to the definition of the function applyCode

6. Move the cursor to 7 lines up

7. Move the cursor to the end of the line

8. Find the variable console and move forward to 4th instance

9. Place the cursor before “output” on the same line of code

10. Find the reference of variable output and select the 6th instance from reference list

11. Navigate to the definition of the variable output

12. Navigate to line 41

Medium Tasks

1. Search for the word “recognition” and move forward to the 6th position

2. Move the cursor 8 lines down

3. Place the cursor after “re” on the same line of code

4. Find all reference of the function record and select the 4th instance from the

reference

5. Move the cursor 3 lines up

6. Find all references of the variable interval and select the 8th instance from the

reference list

7. Navigate to the line 160

8. Navigate to the definition of the variable linter

9. Search for the variable recording and move forward to the 6th instance

10. Navigate to 1 line up

11. Navigate to definition of the variable final_script

12. Navigate to the end of line

Chapter 8: Appendices

 Bharat Paudyal – March 2023 165

Long Task

1. Navigate to line 102

2. Place the cursor after “a” on the same line of code

3. Find all references of the function startRecognising and select the 5th instance

from the reference list

4. Move the cursor 66 lines down

5. Navigate to the definition of the array punctLists

6. Search for the variable taskshuffle and move forward to the 9th item

7. Move the cursor to 14 lines up

8. Find all references of the function stopRecognising and select the 1st instance

from the reference list

9. Move the cursor to 5 lines up

10. Navigate to the definition of the function insertintotext

11. Search for the variable firstword and select the 11th instance

12. Navigate to the end of line

Chapter 8: Appendices

 Bharat Paudyal – March 2023 166

C.5 Post-test Questionnaire

1. How did you find the process of code navigation using speech?

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………..

2. How did you find code navigation features such as ‘find all references’ and ‘go to

definition’ using speech ?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

3. How might the use of voice might influence your future coding practice ?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

4. Do you have suggestions for improving the prototype?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………

Chapter 9: References

 Bharat Paudyal – March 2023 167

9 REFERENCES

Abualghaib, O., Groce, N., Simeu, N., et al. (2019) Making visible the invisible: why
disability-disaggregated data is vital to “leave no-one behind.” Sustainability, 11 (11):
3091.

Adams, J.L., Dinesh, K., Xiong, M., et al. (2017) Multiple Wearable Sensors in Parkinson
and Huntington Disease Individuals: A Pilot Study in Clinic and at Home. Digital
Biomarkers, 1 (1): 52–63. doi:10.1159/000479018.

Aigner, B., David, V., Deinhofer, M., et al. (2016) “FLipMouse: a Flexible Alternative Input
Solution for People with Severe Motor Restrictions.” In Proceedings of the 7th
International Conference on Software Development and Technologies for Enhancing
Accessibility and Fighting Info-exclusion. DSAI 2016 New York, NY, USA, 1 December
2016. Association for Computing Machinery. pp. 25–32. doi:10.1145/3019943.3019948.

Albusays, K., Ludi, S. and Huenerfauth, M. (2017) “Interviews and Observation of Blind
Software Developers at Work to Understand Code Navigation Challenges.” In Proceedings
of the 19th International ACM SIGACCESS Conference on Computers and Accessibility.
ASSETS ’17 New York, NY, USA, 19 October 2017. Association for Computing Machinery.
pp. 91–100. doi:10.1145/3132525.3132550.

Alexa (2023) Amazon Alexa. Available at: https://alexa.amazon.com/ (Accessed: 24
March 2023).

Allison, B.Z., Wolpaw, E.W. and Wolpaw, J.R. (2007) Brain–computer interface systems:
progress and prospects. Expert Review of Medical Devices, 4 (4): 463–474.
doi:10.1586/17434440.4.4.463.

Al-Rahayfeh, A. and Faezipour, M. (2013) Eye Tracking and Head Movement Detection: A
State-of-Art Survey. IEEE Journal of Translational Engineering in Health and Medicine, 1:
2100212–2100212. doi:10.1109/JTEHM.2013.2289879.

Amlekar, R., Gamboa, A.F.R., Gallaba, K., et al. (2018) “Do software engineers use
autocompletion features differently than other developers?” In Proceedings -
International Conference on Software Engineering. 2018. pp. 86–89.
doi:10.1145/3196398.3196471.

Chapter 9: References

 Bharat Paudyal – March 2023 168

Anantha Prabha, P., Srinivash, K., Vigneshwar, S., et al. (2022) “Mouse Assistance for
Motor-Disabled People Using Computer Vision.” In Mahapatra, R.P., Peddoju, S.K., Roy,
S., et al. (eds.). Proceedings of International Conference on Recent Trends in Computing.
Lecture Notes in Networks and Systems Singapore, 2022. Springer Nature. pp. 403–413.
doi:10.1007/978-981-16-7118-0_35.

Anson, D. (1994) Finding Your Way in the Maze of Computer Access Technology. The
American Journal of Occupational Therapy, 48 (2): 121–129. doi:10.5014/ajot.48.2.121.

Anthony, L., Kim, Y. and Findlater, L. (2013) “Analyzing user-generated youtube videos to
understand touchscreen use by people with motor impairments.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’13 New York, NY, USA,
27 April 2013. Association for Computing Machinery. pp. 1223–1232.
doi:10.1145/2470654.2466158.

Arnold, S.C., Mark, L. and Goldthwaite, J. (2000) “Programming by voice,
VocalProgramming.” In Proceedings of the fourth international ACM conference on
Assistive technologies - Assets ’00. 2000. pp. 149–155. doi:10.1145/354324.354362.

Asaduzzaman, M., Roy, C.K., Schneider, K.A., et al. (2016) A Simple, Efficient, Context-
sensitive Approach for Code Completion. Journal of Software: Evolution and Process, 28
(7): 512–541. doi:10.1002/smr.1791.

Aschwanden, C. and Crosby, M. (2006) “Code scanning patterns in program
comprehension.” In Proceedings of the 39th hawaii international conference on system
sciences. 2006. Citeseer.

Ateeq, K. (2022) “Hybrid Working Method: An Integrative Review.” In 2022 International
Conference on Business Analytics for Technology and Security (ICBATS). February 2022.
pp. 1–8. doi:10.1109/ICBATS54253.2022.9759041.

Atom (2023). Available at: https://atom.io/.

Ayub, M. and Saleem, M.A. (2012) A Speech Recognition based Approach for
Development in C ++., 12 (10): 110–114.

Aziz, F., Creed, C., Frutos-Pascual, M., et al. (2021) “Inclusive Voice Interaction
Techniques for Creative Object Positioning.” In Proceedings of the 2021 International
Conference on Multimodal Interaction. ICMI ’21 New York, NY, USA, 18 October 2021.
Association for Computing Machinery. pp. 461–469. doi:10.1145/3462244.3479937.

Aziz, F., Creed, C., Sarcar, S., et al. (2022) “Voice Snapping: Inclusive Speech Interaction
Techniques for Creative Object Manipulation.” In Designing Interactive Systems
Conference. Virtual Event Australia, 13 June 2022. ACM. pp. 1486–1496.
doi:10.1145/3532106.3533452.

Baddeley, A. (1992) Working Memory. Science, 255 (5044): 556–559.

Chapter 9: References

 Bharat Paudyal – March 2023 169

Bafna, T. (2018) “Gaze typing using multi-key selection technique.” In ASSETS 2018 -
Proceedings of the 20th International ACM SIGACCESS Conference on Computers and
Accessibility. New York, New York, USA, October 2018. Association for Computing
Machinery, Inc. pp. 477–479. doi:10.1145/3234695.3240992.

Baker, C. (2022) Mental health statistics: prevalence, services and funding in England.
Available at: https://commonslibrary.parliament.uk/research-briefings/sn06988/
(Accessed: 15 November 2022).

Baker, C.M., Milne, L.R. and Ladner, R.E. (2015) “Struct jumper: A tool to help blind
programmers navigate and understand the structure of code.” In Conference on Human
Factors in Computing Systems - Proceedings. New York, New York, USA, April 2015.
Association for Computing Machinery. pp. 3043–3052. doi:10.1145/2702123.2702589.

Bangor, A., Kortum, P. and Miller, J. (2009) Determining what individual SUS scores mean:
adding an adjective rating scale. Journal of Usability Studies, 4 (3): 114–123.

Barmpoutis, A. (2018) “Learning programming languages as shortcuts to natural language
token replacements.” In ACM International Conference Proceeding Series. New York, NY,
USA, November 2018. Association for Computing Machinery. pp. 1–10.
doi:10.1145/3279720.3279721.

Bates, R. and Istance, H. (2002) Zooming interfaces! In January 2002. pp. 119–119.
doi:10.1145/638249.638272.

Bax, M., Goldstein, M., Rosenbaum, P., et al. (2005) Proposed definition and classification
of cerebral palsy, April 2005. Developmental Medicine & Child Neurology, 47 (8): 571–
576. doi:10.1017/S001216220500112X.

Becker, H., Stuifbergen, A. and Tinkle, M. (1997) Reproductive health care experiences of
women with physical disabilities: a qualitative study. Archives of physical medicine and
rehabilitation, 78 (12): S26–S33.

Bednarik, R. and Tukiainen, M. (2006) “An eye-tracking methodology for characterizing
program comprehension processes.” In Proceedings of the 2006 symposium on Eye
tracking research & applications - ETRA ’06. 2006. pp. 125–125.
doi:10.1145/1117309.1117356.

Beelders, T.R. (2011) Enhancing the user experience for a word processor application
through vision and voice By. Available at:
https://scholar.ufs.ac.za/bitstream/handle/11660/809/BeeldersTR.pdf?sequence=1&isAll
owed=y.

Beelders, T.R. and Blignaut, P.J. (2010) “Using vision and voice to create a multimodal
interface for Microsoft Word 2007.” In Proceedings of the 2010 Symposium on Eye-
Tracking Research & Applications - ETRA ’10. ETRA ’10 New York, NY, USA, 2010. ACM.
pp. 173–173. doi:10.1145/1743666.1743709.

Chapter 9: References

 Bharat Paudyal – March 2023 170

Beelders, T.R. and Blignaut, P.J. (2011) The Usability of Speech and Eye Gaze as a
Multimodal Interface for a Word Processor. IntechOpen. doi:10.5772/16604.

Begel, A. and Graham, S.L. (2005) “Spoken programs.” In Proceedings - 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing. 2005. IEEE. pp. 99–106.
doi:10.1109/VLHCC.2005.58.

Begel, A. and Graham, S.L. (2006) “An assessment of a speech-based programming
environment.” In Proceedings - IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2006. 2006. pp. 116–120. doi:10.1109/VLHCC.2006.9.

Begel, A. and Kariv, Z. (2002) SpeedNav: Document Navigation By Voice.

Begel, A. and Vrzakova, H. (2018) “Eye movements in code review.” In Proceedings of the
Workshop on Eye Movements in Programming - EMIP ’18. New York, New York, USA,
2018. ACM Press. pp. 1–5. doi:10.1145/3216723.3216727.

Bell, D. and Heitmueller, A. (2009) The Disability Discrimination Act in the UK: Helping or
hindering employment among the disabled? Journal of Health Economics, 28 (2): 465–
480. doi:10.1016/j.jhealeco.2008.10.006.

Benkerzaz, S., Elmir, Y. and Dennai, A. (2019) A study on automatic speech recognition.
Journal of Information Technology Review, 10 (3): 80–83.

Bennett, C.L., Brady, E. and Branham, S.M. (2018) “Interdependence as a Frame for
Assistive Technology Research and Design.” In Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility. ASSETS ’18 New York, NY, USA, 8
October 2018. Association for Computing Machinery. pp. 161–173.
doi:10.1145/3234695.3236348.

Bentley, F., Luvogt, C., Silverman, M., et al. (2018) Understanding the Long-Term Use of
Smart Speaker Assistants. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2 (3): 91:1-91:24. doi:10.1145/3264901.

Bergstrom, J.R. and Schall, A. (2014) Eye tracking in user experience design. Elsevier.

Bilmes, J.A., Li, X., Malkin, J., et al. (2005) “The vocal joystick: a voice-based human-
computer interface for individuals with motor impairments.” In Proceedings of the
conference on Human Language Technology and Empirical Methods in Natural Language
Processing. HLT ’05 USA, 6 October 2005. Association for Computational Linguistics. pp.
995–1002. doi:10.3115/1220575.1220700.

Biswas, P. and Langdon, P. (2011) A new input system for disabled users involving eye
gaze tracker and scanning interface. Journal of Assistive Technologies, 5 (2): 58–66.
doi:10.1108/17549451111149269.

Biswas, P. and Robinson, P. (2007) “Simulation to predict performance of assistive
interfaces.” In Proceedings of the 9th international ACM SIGACCESS conference on

Chapter 9: References

 Bharat Paudyal – March 2023 171

Computers and accessibility. Assets ’07 New York, NY, USA, 15 October 2007. Association
for Computing Machinery. pp. 227–228. doi:10.1145/1296843.1296885.

Blauwendraat, C., Nalls, M.A. and Singleton, A.B. (2020) The genetic architecture of
Parkinson’s disease. The Lancet Neurology, 19 (2): 170–178. doi:10.1016/S1474-
4422(19)30287-X.

Bohus, D. and Rudnicky, A.I. (2008) “Sorry, I Didn’t Catch That!” In Dybkjær, L. and
Minker, W. (eds.) Recent Trends in Discourse and Dialogue. Text, Speech and Language
Technology. Dordrecht: Springer Netherlands. pp. 123–154. doi:10.1007/978-1-4020-
6821-8_6.

Bolt, R.A. (1980) ““Put-that-there”: Voice and gesture at the graphics interface.” In
Proceedings of the 7th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1980. SIGGRAPH ’80 New York, NY, USA, 1980. ACM. pp. 262–270.
doi:10.1145/800250.807503.

Borgestig, M., Rytterström, P. and Hemmingsson, H. (2017) Gaze-based assistive
technology used in daily life by children with severe physical impairments–parents’
experiences. Developmental Neurorehabilitation, 20 (5): 301–308.
doi:10.1080/17518423.2016.1211769.

Brackets (2023) Brackets. Available at: http://brackets.io/.

Bragdon, A., Zeleznik, R., Reiss, S.P., et al. (2010) “Code bubbles.” In Proceedings of the
28th international conference on Human factors in computing systems - CHI ’10. ICSE ’10
New York, NY, USA, 2010. ACM. pp. 2503–2503. doi:10.1145/1753326.1753706.

Braun, V. and Clarke, V. (2012) “Thematic analysis.” In APA handbook of research
methods in psychology, Vol 2: Research designs: Quantitative, qualitative,
neuropsychological, and biological. APA handbooks in psychology®. Washington, DC, US:
American Psychological Association. pp. 57–71. doi:10.1037/13620-004.

Brodwin, M.G., Star, T. and Cardoso, E. (2004) Computer assistive technology for people
who have disabilities: Computer adaptations and modifications. Journal of rehabilitation,
70 (3).

Brooke, J. (1996) Sus: a “quick and dirty’usability. Usability evaluation in industry, 189 (3):
189–194.

Brown, C. (1992) Assistive technology computers and persons with disabilities.
Communications of the ACM, 35 (5): 36–45. doi:10.1145/129875.129877.

Van Brummelen, J., Weng, K., Lin, P., et al. (2020a) “CONVO: What does conversational
programming need?” In Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC. 16 July 2020. Institute of Electrical and Electronics
Engineers (IEEE). pp. 1–5. doi:10.1109/VL/HCC50065.2020.9127277.

Chapter 9: References

 Bharat Paudyal – March 2023 172

Bruno Garza, J.L. and Young, J.G. (2015) A literature review of the effects of computer
input device design on biomechanical loading and musculoskeletal outcomes during
computer work. Work, 52 (2): 217–230. doi:10.3233/WOR-152161.

Busjahn, T., Bednarik, R., Begel, A., et al. (2015) “Eye Movements in Code Reading:
Relaxing the Linear Order.” In 2015 IEEE 23rd International Conference on Program
Comprehension. 2015. pp. 255–265. doi:10.1109/ICPC.2015.36.

Busjahn, T., Schulte, C. and Busjahn, A. (2011) “Analysis of Code Reading to Gain More
Insight in Program Comprehension.” In Proceedings of the 11th Koli Calling International
Conference on Computing Education Research. Koli Calling ’11 New York, NY, USA, 2011.
ACM. pp. 1–9. doi:10.1145/2094131.2094133.

Cambre, J. and Kulkarni, C. (2019) One Voice Fits All? Social Implications and Research
Challenges of Designing Voices for Smart Devices. Proceedings of the ACM on Human-
Computer Interaction, 3 (CSCW): 223:1-223:19. doi:10.1145/3359325.

Cambre, J., Williams, A.C., Razi, A., et al. (2021) “Firefox Voice: An Open and Extensible
Voice Assistant Built Upon the Web.” In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. CHI ’21 New York, NY, USA, 6 May 2021.
Association for Computing Machinery. pp. 1–18. doi:10.1145/3411764.3445409.

Casarini, M., Porta, M. and Dondi, P. (2020) “A Gaze-Based Web Browser with Multiple
Methods for Link Selection.” In Symposium on Eye Tracking Research and Applications.
Stuttgart Germany, 2 June 2020. ACM. pp. 1–8. doi:10.1145/3379157.3388929.

Castellina, E., Corno, F. and Pellegrino, P. (2008) “Integrated speech and gaze control for
realistic desktop environments.” In Proceedings of the 2008 symposium on Eye tracking
research & applications - ETRA ’08. ETRA ’08 New York, NY, USA, 2008. ACM. pp. 79–79.
doi:10.1145/1344471.1344492.

Cavalcante, A.B. and Lorens, L. (2015) “Use case: a mobile speech assistant for people
with speech disorders.” In Proceedings of the 7th Language & Technology Conference.
2015. pp. 192–197.

Chadha, H., Mhatre, S., Ganatra, U., et al. (2018) “HTML Voice.” In Proceedings - 2018 4th
International Conference on Computing, Communication Control and Automation,
ICCUBEA 2018. August 2018. IEEE. pp. 1–4. doi:10.1109/ICCUBEA.2018.8697733.

Chakraborty, P., Roy, D., Rahman, M.Z., et al. (2019) Eye gaze controlled virtual keyboard.
International Journal of Recent Technology and Engineering, 8 (4): 3264–3269.

Chhekur, H. (2023) Colon IDE. Available at: https://github.com/Chhekur/colon-ide
(Accessed: 11 May 2022).

Chi, S. and Naik, A.K. (2019) An Empirical Study of How Developers Use Autocompletion.

Chapter 9: References

 Bharat Paudyal – March 2023 173

Clark, B. and Sharif, B. (2017) “iTraceVis: Visualizing Eye Movement Data Within Eclipse.”
In 2017 IEEE Working Conference on Software Visualization (VISSOFT). 2017. pp. 22–32.
doi:10.1109/VISSOFT.2017.30.

Clark, L., Doyle, P., Garaialde, D., et al. (2019) The State of Speech in HCI: Trends, Themes
and Challenges. Interacting with Computers, 31 (4): 349–371. doi:10.1093/iwc/iwz016.

CodeMirror (2023) CodeMirror. Available at: https://codemirror.net/.

CodePen (2023). Available at: https://codepen.io/ (Accessed: 7 December 2022).

Cohen, P.R., Johnston, M., McGee, D., et al. (1997) “QuickSet: multimodal interaction for
distributed applications.” In Proceedings of the fifth ACM international conference on
Multimedia - MULTIMEDIA ’97. Seattle, Washington, United States, 1997. ACM Press. pp.
31–40. doi:10.1145/266180.266328.

Creed, C. (2018) Assistive technology for disabled visual artists: exploring the impact of
digital technologies on artistic practice. Disability and Society, pp. 1–17.
doi:10.1080/09687599.2018.1469400.

Creed, C., Frutos-Pascual, M. and Williams, I. (2020) “Multimodal Gaze Interaction for
Creative Design.” In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI ’20 New York, NY, USA, 23 April 2020. Association for Computing
Machinery. pp. 1–13. doi:10.1145/3313831.3376196.

Crosby, M.E. and Stelovsky, J. (1990) How do we read algorithms? A case study.
Computer, 23 (1): 25–35. doi:10.1109/2.48797.

Crow, K.L. (2008) Four Types of Disabilities: Their Impact on Online Learning. TechTrends,
52 (1): 51–55.

Cursorless (2023). Available at:
https://marketplace.visualstudio.com/items?itemName=pokey.cursorless (Accessed: 26
March 2022).

Dai, L., Goldman, R., Sears, A., et al. (2003) Speech-based cursor control: a study of grid-
based solutions. ACM SIGACCESS Accessibility and Computing, (77–78): 94–101.
doi:10.1145/1029014.1028648.

Dalmaijer, E. (2014) Is the low-cost EyeTribe eye tracker any good for research? PeerJ
PrePrints.

Danis, C., Comerford, L., Janke, E., et al. (1994) “Storywriter: a speech oriented editor.” In
Conference Companion on Human Factors in Computing Systems. CHI ’94 New York, NY,
USA, 28 April 1994. Association for Computing Machinery. pp. 277–278.
doi:10.1145/259963.260490.

Chapter 9: References

 Bharat Paudyal – March 2023 174

Danis, C. and Karat, J. (1995) “Technology-driven design of speech recognition systems.”
In Proceedings of the conference on Designing interactive systems processes, practices,
methods, & techniques - DIS ’95. Ann Arbor, Michigan, United States, 1995. ACM Press.
pp. 17–24. doi:10.1145/225434.225437.

De La Paz, S. (1999) Composing via Dictation and Speech Recognition Systems:
Compensatory Technology for Students with Learning Disabilities. Learning Disability
Quarterly, 22 (3): 173–182. doi:10.2307/1511284.

De León Cordero, D., Ayala, C. and Ordóñez, P. (2021) “Kavita Project: Voice
Programming for People with Motor Disabilities.” In The 23rd International ACM
SIGACCESS Conference on Computers and Accessibility. ASSETS ’21 New York, NY, USA, 17
October 2021. Association for Computing Machinery. pp. 1–3.
doi:10.1145/3441852.3476516.

Delimarschi, D., Swartzendruber, G. and Kagdi, H. (2014) “Enabling integrated
development environments with natural user interface interactions.” In Proceedings of
the 22Nd International Conference on Program Comprehension. ICPC 2014 New York, NY,
USA, 2014. ACM. pp. 126–129. doi:10.1145/2597008.2597791.

DeLine, R. and Rowan, K. (2010) “Code canvas.” In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE ’10. ICSE ’10 New York, NY, USA,
2010. ACM. pp. 207–207. doi:10.1145/1810295.1810331.

Derboven, J., Huyghe, J. and De Grooff, D. (2014) “Designing voice interaction for people
with physical and speech impairments.” In Proceedings of the 8th Nordic Conference on
Human-Computer Interaction: Fun, Fast, Foundational. NordiCHI ’14 New York, NY, USA,
2014. ACM. pp. 217–226. doi:10.1145/2639189.2639252.

Desilets, A. (2001) VoiceGrip: A tool for programming-by-voice. International Journal of
Speech Technology, 4 (2): 103–116. doi:10.1023/A:1011323308477.

Désilets, A., Fox, D.C. and Norton, S. (2006) “VoiceCode: An Innovative Speech Interface
for Programming-by-voice.” In CHI ’06 extended abstracts on Human factors in computing
systems - CHI EA ’06. New York, 2006. ACM. pp. 239–242. doi:10.1145/1125451.1125502.

Di Ferrante, L. and Bouchard, J. (2020) The Nature and Function of Vocalizations in
Atypical Communication. Current Developmental Disorders Reports, 7 (1): 23–27.
doi:10.1007/s40474-020-00186-x.

Disability and health (2023). Available at: https://www.who.int/news-room/fact-
sheets/detail/disability-and-health (Accessed: 17 July 2022).

Divine, G., Norton, H.J., Hunt, R., et al. (2013) A Review of Analysis and Sample Size
Calculation Considerations for Wilcoxon Tests. Anesthesia & Analgesia, 117 (3): 699.
doi:10.1213/ANE.0b013e31827f53d7.

Chapter 9: References

 Bharat Paudyal – March 2023 175

Dobson, R. and Giovannoni, G. (2019) Multiple sclerosis – a review. European Journal of
Neurology, 26 (1): 27–40. doi:10.1111/ene.13819.

Dorr, M., Böhme, M., Martinetz, T., et al. (2007) Gaze beats mouse: a case study., p. 4.

Dragon (2023) Dragon Speech Recognition - Get More Done by Voice | Nuance. Available
at: https://www.nuance.com/dragon.html.

Drewes, H. and Schmidt, A. (2007) “Interacting with the Computer Using Gaze Gestures.”
In Baranauskas, C., Palanque, P., Abascal, J., et al. (eds.). Human-Computer Interaction –
INTERACT 2007. Lecture Notes in Computer Science Berlin, Heidelberg, 2007. Springer.
pp. 475–488. doi:10.1007/978-3-540-74800-7_43.

Duan, D., Goemans, N., Takeda, S., et al. (2021) Duchenne muscular dystrophy. Nature
Reviews Disease Primers, 7 (1): 1–19. doi:10.1038/s41572-021-00248-3.

Duchowski, A.T. (2018) Gaze-based interaction: A 30 year retrospective. Computers and
Graphics (Pergamon), 73: 59–69. doi:10.1016/j.cag.2018.04.002.

Dumas, B., Lalanne, D. and Oviatt, S. (2009) “Multimodal Interfaces: A Survey of
Principles, Models and Frameworks.” In Lalanne, D. and Kohlas, J. (eds.) Human Machine
Interaction: Research Results of the MMI Program. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer. pp. 3–26. doi:10.1007/978-3-642-00437-7_1.

Electronjs (2023) Electron - Build cross platform desktop apps with JavaScript, HTML, and
CSS. Electron. Available at: https://www.electronjs.org/.

Elepfandt, M. and Grund, M. (2012) “Move it there, or not?: The design of voice
commands for gaze with speech.” In Proceedings of the 4th Workshop on Eye Gaze in
Intelligent Human Machine Interaction, Gaze-In 2012. Gaze-In ’12 New York, NY, USA,
2012. ACM. pp. 1–3. doi:10.1145/2401836.2401848.

Elsahar, Y., Hu, S., Bouazza-Marouf, K., et al. (2019) Augmentative and Alternative
Communication (AAC) Advances: A Review of Configurations for Individuals with a
Speech Disability. Sensors, 19 (8): 1911. doi:10.3390/s19081911.

Elsahar, Y., Hu, S., Bouazza-Marouf, K., et al. (2021) A study of decodable breathing
patterns for augmentative and alternative communication. Biomedical Signal Processing
and Control, 65: 102303. doi:10.1016/j.bspc.2020.102303.

Emmet (2023). NA. Available at: https://docs.emmet.io/.

Equality Act (2023). Available at: https://www.gov.uk/definition-of-disability-under-
equality-act-2010 (Accessed: 28 June 2022).

Errattahi, R., El Hannani, A. and Ouahmane, H. (2018) Automatic Speech Recognition
Errors Detection and Correction: A Review. Procedia Computer Science, 128: 32–37.
doi:10.1016/j.procs.2018.03.005.

Chapter 9: References

 Bharat Paudyal – March 2023 176

Evans, P.M., Evans, S.J. and Alberman, E. (1990) Cerebral palsy: why we must plan for
survival. Archives of Disease in Childhood, 65 (12): 1329–1333.
doi:10.1136/adc.65.12.1329.

Eye Tribe (2023) The Eye Tribe. copenhagen, denmark. Available at:
https://theeyetribe.com/theeyetribe.com/about/index.html.

Feng, J. and Sears, A. (2004) Using confidence scores to improve hands-free speech based
navigation in continuous dictation systems. ACM Transactions on Computer-Human
Interaction, 11 (4): 329–356. doi:10.1145/1035575.1035576.

Ferracani, A., Faustino, M., Giannini, G.X., et al. (2017) “Natural Experiences in Museums
through Virtual Reality and Voice Commands.” In Proceedings of the 25th ACM
international conference on Multimedia. MM ’17 New York, NY, USA, 19 October 2017.
Association for Computing Machinery. pp. 1233–1234. doi:10.1145/3123266.3127916.

Ferreira, A.O., Ferreira, S.B.L. and da Silveira, D.S. (2012) Accessibility for People with
Cerebral Palsy: The use of Blogs as an Agent of Social Inclusion. Procedia Computer
Science, 14: 245–253. doi:10.1016/j.procs.2012.10.028.

Filippidou, F. and Moussiades, L. (2020) “Α Benchmarking of IBM, Google and Wit
Automatic Speech Recognition Systems.” In Maglogiannis, I., Iliadis, L. and Pimenidis, E.
(eds.). Artificial Intelligence Applications and Innovations. IFIP Advances in Information
and Communication Technology Cham, 2020. Springer International Publishing. pp. 73–
82. doi:10.1007/978-3-030-49161-1_7.

Findlater, L., Moffatt, K., Froehlich, J.E., et al. (2017) “Comparing Touchscreen and Mouse
Input Performance by People With and Without Upper Body Motor Impairments.” In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI
’17. New York, New York, USA, 2017. ACM Press. pp. 6056–6061.
doi:10.1145/3025453.3025603.

Folmer, E., Liu, F. and Ellis, B. (2011) “Navigating a 3D avatar using a single switch.” In
Proceedings of the 6th International Conference on Foundations of Digital Games. FDG
’11 New York, NY, USA, 29 June 2011. Association for Computing Machinery. pp. 154–
160. doi:10.1145/2159365.2159386.

Freedman, A. (1995) The computer glossary (7th ed.): the complete illustrated dictionary.
USA: American Management Assoc., Inc.

Furui, S. (2010) “History and Development of Speech Recognition.” In Chen, F. and
Jokinen, K. (eds.) Speech Technology: Theory and Applications. New York, NY: Springer
US. pp. 1–18. doi:10.1007/978-0-387-73819-2_1.

Gaikwad, S.K., Gawali, B.W. and Yannawar, P. (2010) A review on speech recognition
technique. International Journal of Computer Applications, 10 (3): 16–24.

Chapter 9: References

 Bharat Paudyal – March 2023 177

Gatchalian, C. (2019) Assistive Technologies in the 21st Century. Available at:
https://pressbooks.pub/techandcurr2019/chapter/21st-century-assistive-tech/
(Accessed: 5 November 2022).

Geytenbeek, J.J., Heim, M.M., Vermeulen, R.J., et al. (2010) Assessing comprehension of
spoken language in nonspeaking children with cerebral palsy: application of a newly
developed computer-based instrument. Augmentative and alternative communication,
26 (2): 97–107.

Gheran, B.-F., Ungurean, O.-C. and Vatavu, R.-D. (2018) “Toward Smart Rings as Assistive
Devices for People with Motor Impairments: A Position Paper.” In RoCHI. 2018. pp. 99–
106.

Ghosh, D., Foong, P.S., Zhao, S., et al. (2020) “EYEditor: Towards On-the-Go Heads-Up
Text Editing Using Voice and Manual Input.” In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. CHI ’20 New York, NY, USA, 21 April 2020.
Association for Computing Machinery. pp. 1–13. doi:10.1145/3313831.3376173.

Ghosh Sanjay, and Joshi, A., and and Tripathi Sanjay (2013) “Empirical Evaluation of
Multimodal Input Interactions.” In Yamamoto, S. (ed.). Human Interface and the
Management of Information. Information and Interaction Design. Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. pp. 37–47.

Giakoumis, D., Kaklanis, N., Votis, K., et al. (2014) Enabling user interface developers to
experience accessibility limitations through visual, hearing, physical and cognitive
impairment simulation. Universal Access in the Information Society, 13 (2): 227–248.
doi:10.1007/s10209-013-0309-0.

Glücker, H., Raab, F., Echtler, F., et al. (2014) “EyeDE: Gaze-enhanced Software
Development Environments.” In Proceedings of the Extended Abstracts of the 32Nd
Annual ACM Conference on Human Factors in Computing Systems. CHI EA ’14 New York,
NY, USA, 2014. ACM. pp. 1555–1560. doi:10.1145/2559206.2581217.

Good, J. and Howland, K. (2017) Programming language, natural language? Supporting
the diverse computational activities of novice programmers. Journal of Visual Languages
& Computing, 39: 78–92. doi:10.1016/j.jvlc.2016.10.008.

Google Assistant (2023) Google Assistant, your own personal Google. Available at:
https://assistant.google.com/intl/en_uk/ (Accessed: 24 March 2023).

Google Speech (2023) Speech-to-Text: Automatic Speech Recognition. Available at:
https://cloud.google.com/speech-to-text (Accessed: 8 January 2023).

Gordon, B.M. (2013) Improving Spoken Programming Through Language Design and the
Incorporation of Dynamic Context. Available at:
https://digitalrepository.unm.edu/cs_etds.https://digitalrepository.unm.edu/cs_etds/28.

Chapter 9: References

 Bharat Paudyal – March 2023 178

Gov UK (2021) Family Resources Survey: financial year 2020 to 2021. Available at:
https://www.gov.uk/government/statistics/family-resources-survey-financial-year-2020-
to-2021/family-resources-survey-financial-year-2020-to-2021 (Accessed: 28 June 2022).

Graham, C.W., Inge, K.J., Wehman, P., et al. (2018) Barriers and facilitators to
employment as reported by people with physical disabilities: An across disability type
analysis Inge, K.J. and Wehman, P. (eds.). Journal of Vocational Rehabilitation, 48 (2):
207–218. doi:10.3233/JVR-180929.

Gratton, L. (2021) Four Principles to Ensure Hybrid Work Is Productive Work. MIT Sloan
Management Review, 62 (2): 11A-16A.

Groenewald, C., Anslow, C., Islam, J., et al. (2016) Understanding 3D mid-air hand
gestures with interactive surfaces and displays: a systematic literature review.

Grossman, T. and Balakrishnan, R. (2005) “The bubble cursor: enhancing target
acquisition by dynamic resizing of the cursor’s activation area.” In Proceedings of the
SIGCHI conference on Human factors in computing systems. 2005. pp. 281–290.

Guerreiro, T., Nicolau, H., Jorge, J., et al. (2010) “Towards accessible touch interfaces.” In
Proceedings of the 12th international ACM SIGACCESS conference on Computers and
accessibility. ASSETS ’10 New York, NY, USA, 25 October 2010. Association for Computing
Machinery. pp. 19–26. doi:10.1145/1878803.1878809.

Gulzar, T., Singh, A., Kumar, D., et al. (2014) A Systematic Analysis of Automatic Speech
Recognition: An Overview., 4.

Gür, D., Schäfer, N., Kupnik, M., et al. (2020) A Human–Computer Interface Replacing
Mouse and Keyboard for Individuals with Limited Upper Limb Mobility. Multimodal
Technologies and Interaction, 4 (4): 84. doi:10.3390/mti4040084.

Hanam, Q., Brito, F.S.D.M. and Mesbah, A. (2016) “Discovering bug patterns in
Javascript.” In Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. November 2016. Association for Computing Machinery. pp. 144–
156. doi:10.1145/2950290.2950308.

Hannun, A. (2021) The History of Speech Recognition to the Year 2030.
doi:10.48550/arXiv.2108.00084.

Hansen, J.P., Johansen, A.S., Hansen, D.W., et al. (2003) “Command Without a Click:
Dwell Time Typing by Mouse and Gaze Selections.” In Interact. 2003. Citeseer. pp. 121–
128.

Haque, F.B., Shuvo, T.H. and Khan, R. (2021) “Head Motion Controlled Wheelchair for
Physically Disabled People.” In 2021 Second International Conference on Smart
Technologies in Computing, Electrical and Electronics (ICSTCEE). December 2021. pp. 1–6.
doi:10.1109/ICSTCEE54422.2021.9708577.

Chapter 9: References

 Bharat Paudyal – March 2023 179

Harada, S., Landay, J.A., Malkin, J., et al. (2006) “The vocal joystick: evaluation of voice-
based cursor control techniques.” In Proceedings of the 8th international ACM SIGACCESS
conference on Computers and accessibility. Assets ’06 New York, NY, USA, 23 October
2006. Association for Computing Machinery. pp. 197–204.
doi:10.1145/1168987.1169021.

Hauptmann, A.G. and Rudnicky, A.I. (1990) “A comparison of speech and typed input.” In
Proceedings of the workshop on Speech and Natural Language. HLT ’90 USA, 24 June
1990. Association for Computational Linguistics. pp. 219–224.
doi:10.3115/116580.116652.

Heikkilä, H. (2013) “EyeSketch: A drawing application for gaze control.” In ACM
International Conference Proceeding Series. ETSA ’13 New York, NY, USA, 2013. ACM. pp.
71–74. doi:10.1145/2509315.2509332.

Heikkilä, H. and Räihä, K.-J. (2010) Speed and Accuracy of Gaze Gestures. Journal of Eye
Movement Research, 3 (2). doi:10.16910/jemr.3.2.1.

Hemmingsson, H. and Borgestig, M. (2020) Usability of Eye-Gaze Controlled Computers in
Sweden: A Total Population Survey. International Journal of Environmental Research and
Public Health, 17 (5): 1639. doi:10.3390/ijerph17051639.

Henley, A.Z. and Fleming, S.D. (2014) “The patchworks code editor: toward faster
navigation with less code arranging and fewer navigation mistakes.” In Proc. CHI. CHI ’14
New York, NY, USA, 2014. ACM. pp. 2511–2520. doi:10.1145/2556288.2557073.

Henzen, A. and Nohama, P. (2016) “Adaptable virtual keyboard and mouse for people
with special needs.” In 2016 Future Technologies Conference (FTC). December 2016. pp.
1357–1360. doi:10.1109/FTC.2016.7821782.

Hill-Briggs, F., Dial, J.G., Morere, D.A., et al. (2007) Neuropsychological assessment of
persons with physical disability, visual impairment or blindness, and hearing impairment
or deafness. Archives of Clinical Neuropsychology, 22 (3): 389–404.
doi:10.1016/j.acn.2007.01.013.

Hogan, A., Kyaw-Myint, S.M., Harris, D., et al. (2012) Workforce Participation Barriers for
People With Disability. International Journal of Disability Management, 7: 1–9.
doi:10.1017/idm.2012.1.

Hornof, A.J. and Cavender, A. (2005) “EyeDraw.” In Proceedings of the SIGCHI conference
on Human factors in computing systems - CHI ’05. CHI ’05 New York, NY, USA, 2005. ACM.
pp. 161–161. doi:10.1145/1054972.1054995.

Hu, R., Zhu, S., Feng, J., et al. (2011) “Use of Speech Technology in Real Life
Environment.” In Stephanidis, C. (ed.). Universal Access in Human-Computer Interaction.
Applications and Services. Lecture Notes in Computer Science Berlin, Heidelberg, 2011.
Springer. pp. 62–71. doi:10.1007/978-3-642-21657-2_7.

Chapter 9: References

 Bharat Paudyal – March 2023 180

Hubbell, T.J., Langan, D.D. and Hain, T.F. (2006) “A voice-activated syntax-directed editor
for manually disabled programmers.” In Proceedings of the 8th international ACM
SIGACCESS conference on Computers and accessibility - Assets ’06. 2006. pp. 205–205.
doi:10.1145/1168987.1169022.

Huckauf, A. and Urbina, M.H. (2008) On object selection in gaze controlled environments.
Journal of Eye Movement Research, 2 (4). doi:10.16910/jemr.2.4.4.

Hurst, A. and Tobias, J. (2011) “Empowering individuals with do-it-yourself assistive
technology.” In The proceedings of the 13th international ACM SIGACCESS conference on
Computers and accessibility. ASSETS ’11 New York, NY, USA, 24 October 2011. Association
for Computing Machinery. pp. 11–18. doi:10.1145/2049536.2049541.

Hutchinson, T.E., White, K.P., Martin, W.N., et al. (1989) Human-computer interaction
using eye-gaze input. IEEE Transactions on Systems, Man, and Cybernetics, 19 (6): 1527–
1534. doi:10.1109/21.44068.

Hyrskykari, A., Istance, H. and Vickers, S. (2012) “Gaze gestures or dwell-based
interaction?” In Proceedings of the Symposium on Eye Tracking Research and
Applications. Santa Barbara California, 28 March 2012. ACM. pp. 229–232.
doi:10.1145/2168556.2168602.

Iacono, T., Lyon, K., Johnson, H., et al. (2013) Experiences of adults with complex
communication needs receiving and using low tech AAC: an Australian context. Disability
and Rehabilitation: Assistive Technology, 8 (5): 392–401.
doi:10.3109/17483107.2013.769122.

IBM Watson (2023) IBM Watson Speech to Text - Speech to Text. Available at:
https://www.ibm.com/uk-en/cloud/watson-speech-to-text (Accessed: 8 January 2023).

Igarashi, T. and Hughes, J.F. (2001) “Voice as sound: using non-verbal voice input for
interactive control.” In Proceedings of the 14th annual ACM symposium on User interface
software and technology. UIST ’01 New York, NY, USA, 11 November 2001. Association
for Computing Machinery. pp. 155–156. doi:10.1145/502348.502372.

Irwin, C.B. and Sesto, M.E. (2012) Performance and touch characteristics of disabled and
non-disabled participants during a reciprocal tapping task using touch screen technology.
Applied Ergonomics, 43 (6): 1038–1043. doi:10.1016/j.apergo.2012.03.003.

Istance, H., Vickers, S. and Hyrskykari, A. (2009) “Gaze-based interaction with massively
multiplayer on-line games.” In CHI ’09 Extended Abstracts on Human Factors in
Computing Systems. CHI EA ’09 New York, NY, USA, 4 April 2009. Association for
Computing Machinery. pp. 4381–4386. doi:10.1145/1520340.1520670.

Jacob, R.J. (1990) “What you look at is what you get: eye movement-based interaction
techniques.” In Proceedings of the SIGCHI conference on Human factors in computing
systems. 1990. pp. 11–18.

Chapter 9: References

 Bharat Paudyal – March 2023 181

Jacob, R.J. and Karn, K.S. (2003) “Eye tracking in human-computer interaction and
usability research: Ready to deliver the promises.” In The mind’s eye. Elsevier. pp. 573–
605.

Jaddoh, A., Loizides, F. and Rana, O. (2021) Non-verbal interaction with virtual home
assistants for people with dysarthria. Journal on Technology & Persons with Disabilities, 9
(13): 71–84.

Jamieson, A., Murray, L., Stankovic, L., et al. (2021) Human Activity Recognition of
Individuals with Lower Limb Amputation in Free-Living Conditions: A Pilot Study. Sensors,
21 (24): 8377. doi:10.3390/s21248377.

Jessup, S., Willis, S.M., Alarcon, G., et al. (2021) Using Eye-Tracking Data to Compare
Differences in Code Comprehension and Code Perceptions between Expert and Novice
Programmers. Available at: http://hdl.handle.net/10125/70624 (Downloaded: 20 January
2023).

Joshi, P. and Bein, D. (2020) “Audible Code, a Voice-Enabled Programming Extension of
Visual Studio Code.” In Advances in Intelligent Systems and Computing. 2020. Springer.
pp. 335–341. doi:10.1007/978-3-030-43020-7_44.

Juang, B.-H. and Furui, S. (2000) Automatic recognition and understanding of spoken
language - a first step toward natural human-machine communication. Proceedings of
the IEEE, 88 (8): 1142–1165. doi:10.1109/5.880077.

Jung, H., So, S., Oh, C., et al. (2019) “TurtleTalk: An educational programming game for
children with voice user interface.” In Conference on Human Factors in Computing
Systems - Proceedings. New York, NY, USA, May 2019. Association for Computing
Machinery. pp. 1–6. doi:10.1145/3290607.3312773.

Kabir, M.R., Abedin, M.I., Ahmed, R., et al. (2022) Auxilio: A Sensor-Based Wireless Head-
Mounted Mouse for People with Upper Limb Disability. doi:10.48550/arXiv.2210.04483.

Kaiser, E., Olwal, A., McGee, D., et al. (2003) “Mutual disambiguation of 3D multimodal
interaction in augmented and virtual reality.” In Proceedings of the 5th international
conference on Multimodal interfaces. ICMI ’03 New York, NY, USA, 5 November 2003.
Association for Computing Machinery. pp. 12–19. doi:10.1145/958432.958438.

Kane, S.K., Jayant, C., Wobbrock, J.O., et al. (2009) “Freedom to roam: a study of mobile
device adoption and accessibility for people with visual and motor disabilities.” In
Proceedings of the 11th international ACM SIGACCESS conference on Computers and
accessibility. Assets ’09 New York, NY, USA, 25 October 2009. Association for Computing
Machinery. pp. 115–122. doi:10.1145/1639642.1639663.

Kang, R., Guo, A., Laput, G., et al. (2019) “Minuet: Multimodal Interaction with an
Internet of Things.” In Symposium on Spatial User Interaction. New Orleans LA USA, 19
October 2019. ACM. pp. 1–10. doi:10.1145/3357251.3357581.

Chapter 9: References

 Bharat Paudyal – March 2023 182

Karat, C.-M., Halverson, C., Horn, D., et al. (1999) “Patterns of entry and correction in
large vocabulary continuous speech recognition systems.” In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems. CHI ’99 New York, NY, USA, 1 May
1999. Association for Computing Machinery. pp. 568–575. doi:10.1145/302979.303160.

Karimullah, A.S. and Sears, A. (2002) “Speech-based cursor control.” In Proceedings of the
fifth international ACM conference on Assistive technologies. Assets ’02 New York, NY,
USA, 8 July 2002. Association for Computing Machinery. pp. 178–185.
doi:10.1145/638249.638282.

Karl, L.R., Pettey, M. and Shneiderman, B. (1992) Speech-Activated Versus Mouse-
Activated Commands for Word Processing Applications: An Empirical Evaluation.
undefined. Available at: https://www.semanticscholar.org/paper/Speech-Activated-
Versus-Mouse-Activated-Commands-An-Karl-
Pettey/12c5940edd3dfafc0d2dea56fe9b1db0bd9a2fa8 (Accessed: 13 August 2022).

Karpov, A.A., Ronzhin, A.L., Nechaev, A.I., et al. (2004) “Assistive multimodal system
based on speech recognition and head tracking.” In 9th Conference Speech and
Computer. 2004.

Karrer, T., Krämer, J.P., Diehl, J., et al. (2011) “Stacksplorer: Call graph navigation helps
increasing code maintenance efficiency.” In UIST’11 - Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology. UIST ’11 New York, NY,
USA, 2011. ACM. pp. 217–224. doi:10.1145/2047196.2047225.

Kennedy, P.R., Bakay, R.A.E., Moore, M.M., et al. (2000) Direct control of a computer
from the human central nervous system. IEEE Transactions on Rehabilitation Engineering,
8 (2): 198–202. doi:10.1109/86.847815.

Khamis, M., Alt, F., Hassib, M., et al. (2016) “Gazetouchpass: Multimodal authentication
using gaze and touch on mobile devices.” In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. 2016. pp. 2156–2164.

Kim, Y.S., Dontcheva, M., Adar, E., et al. (2019) “Vocal shortcuts for creative experts.” In
Conference on Human Factors in Computing Systems - Proceedings. 2019. ACM.
doi:10.1145/3290605.3300562.

Ko, A.J., Myers, B.A., Coblenz, M.J., et al. (2006) An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE
Transactions on Software Engineering, 32 (12): 971–987. doi:10.1109/TSE.2006.116.

Koester, H.H. (2001) User Performance With Speech Recognition: A Literature Review.
Assistive Technology, 13 (2): 116–130. doi:10.1080/10400435.2001.10132042.

Kopp, S. and Bergmann, K. (2017) Using Cognitive Models. The Handbook of Multimodal-
Multisensor Interfaces, Volume 1: Foundations, User Modeling, and Common Modality
Combinations, p. 239.

Chapter 9: References

 Bharat Paudyal – March 2023 183

Kowalski, J., Jaskulska, A., Skorupska, K., et al. (2019) “Older Adults and Voice Interaction:
A Pilot Study with Google Home.” In Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. CHI EA ’19 New York, NY, USA, 2 May 2019.
Association for Computing Machinery. pp. 1–6. doi:10.1145/3290607.3312973.

Krämer, J.-P., Karrer, T., Kurz, J., et al. (2013) “How tools in IDEs shape developers’
navigation behavior.” In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’13 New York, NY, USA, 27 April 2013. Association for Computing
Machinery. pp. 3073–3082. doi:10.1145/2470654.2466419.

Krämer, J.-P., Kurz, J., Karrer, T., et al. (2012) “Blaze: Supporting Two-phased Call Graph
Navigation in Source Code.” In CHI ’12 Extended Abstracts on Human Factors in
Computing Systems. CHI EA ’12 New York, NY, USA, 2012. ACM. pp. 2195–2200.
doi:10.1145/2212776.2223775.

Krausz, G., Scherer, R., Korisek, G., et al. (2003) Critical Decision-Speed and Information
Transfer in the “Graz Brain–Computer Interface.” Applied Psychophysiology and
Biofeedback, 28 (3): 233–240. doi:10.1023/A:1024637331493.

Krishna, G., Tran, C., Yu, J., et al. (2019) “Speech Recognition with No Speech or with
Noisy Speech.” In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). May 2019. pp. 1090–1094.
doi:10.1109/ICASSP.2019.8683453.

Kristensson, P.O. and Vertanen, K. (2012) “The potential of dwell-free eye-typing for fast
assistive gaze communication.” In Proceedings of the Symposium on Eye Tracking
Research and Applications - ETRA ’12. New York, New York, USA, 2012. ACM Press. pp.
241–241. doi:10.1145/2168556.2168605.

Kumar, C., Hedeshy, R., MacKenzie, I.S., et al. (2020) “TAGSwipe: Touch Assisted Gaze
Swipe for Text Entry.” In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. CHI ’20 New York, NY, USA, 21 April 2020. Association for Computing
Machinery. pp. 1–12. doi:10.1145/3313831.3376317.

Kumar, C., Menges, R., Müller, D., et al. (2017) “Chromium based framework to include
gaze interaction in web browser.” In 26th International World Wide Web Conference
2017, WWW 2017 Companion. WWW ’17 Companion Republic and Canton of Geneva,
Switzerland, 2017. International World Wide Web Conferences Steering Committee. pp.
219–223. doi:10.1145/3041021.3054730.

Kumar, M., Paepcke, A. and Winograd, T. (2007) “Eyepoint: practical pointing and
selection using gaze and keyboard.” In Proceedings of the SIGCHI conference on Human
factors in computing systems. 2007. pp. 421–430.

Kurauchi, A., Feng, W., Joshi, A., et al. (2016) “EyeSwipe: Dwell-free Text Entry Using Gaze
Paths.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing

Chapter 9: References

 Bharat Paudyal – March 2023 184

Systems. San Jose California USA, 7 May 2016. ACM. pp. 1952–1956.
doi:10.1145/2858036.2858335.

Kytö, M., Ens, B., Piumsomboon, T., et al. (2018) “Pinpointing: Precise Head- and Eye-
Based Target Selection for Augmented Reality.” In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. CHI ’18 New York, NY, USA, 19 April
2018. Association for Computing Machinery. pp. 1–14. doi:10.1145/3173574.3173655.

Labour Statistics (2021) Employed persons by disability status, occupation, and sex, 2021
annual averages - 2021 A01 Results. Available at:
https://www.bls.gov/news.release/disabl.t03.htm (Accessed: 9 October 2022).

Lai, W.C., Erickson, B.J., Mlynarek, R.A., et al. (2018) Chronic lateral epicondylitis:
challenges and solutions. Open Access Journal of Sports Medicine, 9: 243–251.
doi:10.2147/OAJSM.S160974.

Lancioni, G.E., O’Reilly, M.F., Singh, N.N., et al. (2008) Microswitch-based programs for
persons with multiple disabilities: An overview of some recent developments. Perceptual
and Motor Skills, 106 (2): 355–370.

Lankford, C. (2000) “Effective eye-gaze input into Windows.” In Proceedings of the 2000
symposium on Eye tracking research & applications. ETRA ’00 New York, NY, USA, 8
November 2000. Association for Computing Machinery. pp. 23–27.
doi:10.1145/355017.355021.

LaToza, T.D., Venolia, G. and DeLine, R. (2006) “Maintaining Mental Models: A Study of
Developer Work Habits.” In Proceedings of the 28th International Conference on Software
Engineering. ICSE ’06 New York, NY, USA, 2006. ACM. pp. 492–501.
doi:10.1145/1134285.1134355.

Lau, J., Zimmerman, B. and Schaub, F. (2018) Alexa, Are You Listening? Privacy
Perceptions, Concerns and Privacy-seeking Behaviors with Smart Speakers. Proceedings
of the ACM on Human-Computer Interaction, 2 (CSCW): 102:1-102:31.
doi:10.1145/3274371.

Lea, C., Huang, Z., Jain, D., et al. (2022) “Nonverbal Sound Detection for Disordered
Speech.” In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). May 2022. pp. 7397–7401.
doi:10.1109/ICASSP43922.2022.9747227.

Lee, T.-H. (2005) Ergonomic comparison of operating a built-in touch-pad pointing device
and a trackball mouse on posture and muscle activity. Perceptual and motor skills, 101
(3): 730–736.

Leigh, P.N. and Ray-Chaudhuri, K. (1994) Motor neuron disease. Journal of Neurology,
Neurosurgery, and Psychiatry, 57 (8): 886–896.

Chapter 9: References

 Bharat Paudyal – March 2023 185

Lenoir, H., Mares, O. and Carlier, Y. (2019) Management of lateral epicondylitis.
Orthopaedics & Traumatology: Surgery & Research, 105 (8, Supplement): S241–S246.
doi:10.1016/j.otsr.2019.09.004.

Lewien, R. (2021) “GazeHelp: Exploring Practical Gaze-assisted Interactions for Graphic
Design Tools.” In ACM Symposium on Eye Tracking Research and Applications. Virtual
Event Germany, 25 May 2021. ACM. pp. 1–4. doi:10.1145/3450341.3458764.

Li, Q., Sun, L. and Duan, J. (2005) “Web page viewing behavior of users: an eye-tracking
study.” In Proceedings of ICSSSM ’05. 2005 International Conference on Services Systems
and Services Management, 2005. June 2005. pp. 244-249 Vol. 1.
doi:10.1109/ICSSSM.2005.1499470.

Lin, Y., Wu, C., Hou, T., et al. (2016) Tracking Students’ Cognitive Processes During
Program Debugging—An Eye-Movement Approach. IEEE Transactions on Education, 59
(3): 175–186. doi:10.1109/TE.2015.2487341.

Lincoln, A.E., Vernick, J.S., Ogaitis, S., et al. (2000) Interventions for the primary
prevention of work-related carpal tunnel syndrome. American Journal of Preventive
Medicine, 18 (4, Supplement 1): 37–50. doi:10.1016/S0749-3797(00)00140-9.

Lindsay, S. (2011) Discrimination and other barriers to employment for teens and young
adults with disabilities. Disability and Rehabilitation, 33 (15–16): 1340–1350.
doi:10.3109/09638288.2010.531372.

Liu, Y., Zhang, C., Lee, C., et al. (2015) “GazeTry: Swipe text typing using gaze.” In OzCHI
2015: Being Human - Conference Proceedings. New York, New York, USA, December
2015. Association for Computing Machinery, Inc. pp. 192–196.
doi:10.1145/2838739.2838804.

London RSI (2023) Central London RSI Support Group - Home | Facebook. Available at:
https://www.facebook.com/CentralLondonRsiSupportGroup/.

Luger, E. and Sellen, A. (2016) ““Like Having a Really Bad PA”: The Gulf between User
Expectation and Experience of Conversational Agents.” In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. CHI ’16 New York, NY, USA, 7 May
2016. Association for Computing Machinery. pp. 5286–5297.
doi:10.1145/2858036.2858288.

Lutteroth, C., Penkar, M. and Weber, G. (2015) “Gaze vs. Mouse: A Fast and Accurate
Gaze-Only Click Alternative.” In Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology. UIST ’15 New York, NY, USA, 5 November 2015.
Association for Computing Machinery. pp. 385–394. doi:10.1145/2807442.2807461.

Macdonald, S.J. and Clayton, J. (2013) Back to the future, disability and the digital divide.
Disability & Society, 28 (5): 702–718. doi:10.1080/09687599.2012.732538.

Chapter 9: References

 Bharat Paudyal – March 2023 186

Machado, M.-L., Guincestre, J.-Y., Aimé, M., et al. (2013) Head Pilot: A new webcam-
based Head Tracking System tested in permanently disabled patients. IRBM, 34 (2): 124–
130. doi:10.1016/j.irbm.2013.02.001.

Mackenzie, L., Bhuta, P., Rusten, K., et al. (2016) Communications Technology and Motor
Neuron Disease: An Australian Survey of People With Motor Neuron Disease. JMIR
Rehabilitation and Assistive Technologies, 3 (1): e4017. doi:10.2196/rehab.4017.

Madaan, H. and Gupta, S. (2021) “AI Improving the Lives of Physically Disabled.” In
Abraham, A., Ohsawa, Y., Gandhi, N., et al. (eds.). Proceedings of the 12th International
Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). Advances in
Intelligent Systems and Computing Cham, 2021. Springer International Publishing. pp.
103–112. doi:10.1007/978-3-030-73689-7_11.

Majaranta, P., Ahola, U.-K. and Špakov, O. (2009) Fast Gaze Typing with an Adjustable
Dwell Time. Available at: http://delivery.acm.org/10.1145/1520000/1518758/p357-
majaranta.pdf?ip=82.15.1.187&id=1518758&acc=ACTIVE
SERVICE&key=BF07A2EE685417C5.B9DB6AC12FAF3618.7F82F319CD1C5BCF.4D4702B0C
3E38B35&__acm__=1567517412_7f15fce318648ed0e23ae76d265ce7d6.

Majaranta, P. and Bulling, A. (2014) “Eye Tracking and Eye-Based Human–Computer
Interaction.” In Fairclough, S.H. and Gilleade, K. (eds.) Advances in Physiological
Computing. Human–Computer Interaction Series. London: Springer London. pp. 39–65.
doi:10.1007/978-1-4471-6392-3_3.

Majaranta, P. and Räihä, K.-J. (2002) “Twenty years of eye typing.” In Proceedings of the
symposium on Eye tracking research & applications - ETRA ’02. 2002.
doi:10.1145/507072.507076.

Majaranta, P. and Räihä, K.-J. (2007) 9. Text Entry by Gaze: Utilizing Eye-Tracking. Text
Entry Systems: Mobility, Accessibility, Universality.

Majaranta, P., Räihä, K.-J., Hyrskykari, A., et al. (2019) “Eye Movements and Human-
Computer Interaction.” In Klein, C. and Ettinger, U. (eds.) Eye Movement Research: An
Introduction to its Scientific Foundations and Applications. Studies in Neuroscience,
Psychology and Behavioral Economics. Cham: Springer International Publishing. pp. 971–
1015. doi:10.1007/978-3-030-20085-5_23.

Malik, M., Malik, M.K., Mehmood, K., et al. (2021) Automatic speech recognition: a
survey. Multimedia Tools and Applications, 80 (6): 9411–9457. doi:10.1007/s11042-020-
10073-7.

Maloku, R.S. and Pllana, B.Xh. (2016) HyperCode: Voice aided programming. IFAC-
PapersOnLine, 49 (29): 263–268. doi:10.1016/J.IFACOL.2016.11.073.

Chapter 9: References

 Bharat Paudyal – March 2023 187

Mani, K. (2018) Ergonomics education for office computer workers: an evidence-based
strategy. Anatomy, Posture, Prevalence, Pain, Treatment and Interventions of
Musculoskeletal Disorders.

Mankoff, J., Fait, H. and Juang, R. (2005) Evaluating accessibility by simulating the
experiences of users with vision or motor impairments. IBM Systems Journal, 44 (3): 505–
517. doi:10.1147/sj.443.0505.

Manogna, S., Vaishnavi, S. and Geethanjali, B. (2010) “Head Movement Based Assist
System for Physically Challenged.” In 2010 4th International Conference on Bioinformatics
and Biomedical Engineering. June 2010. pp. 1–4. doi:10.1109/ICBBE.2010.5517790.

Marketplace (2023). Available at:
https://marketplace.visualstudio.com/search?sortBy=Installs&category=All
categories&target=VSCode (Accessed: 7 December 2022).

Marklin, R.W. and Simoneau, G.G. (2001) Effect of Setup Configurations of Split
Computer Keyboards on Wrist Angle. Physical Therapy, 81 (4): 1038–1048.
doi:10.1093/ptj/81.4.1038.

Marshall, B. (2022) 7 Resources for People With Disabilities to Break Into Software
Engineering Careers. Available at: https://www.containiq.com/post/resource-disabilities-
software-engineering (Accessed: 9 October 2022).

Martin, G.L. (1989) The utility of speech input in user-computer interfaces. International
Journal of Man-Machine Studies, 30 (4): 355–375. doi:10.1016/S0020-7373(89)80023-9.

Mavrou, K. and Hoogerwerf, E.-J. (2016) Towards full digital inclusion: the ENTELIS
manifesto against the digital divide. Journal of Assistive Technologies, 10 (3): 171–174.
doi:10.1108/JAT-03-2016-0010.

Mazumder, S., Liu, B., Wang, S., et al. (2019) Building an Application Independent Natural
Language Interface. Available at: http://arxiv.org/abs/1910.14084.

McCrocklin, S., Humaidan, A. and Edalatishams, E. (2019) “ASR dictation program
accuracy: Have current programs improved.” In Proceedings of the 10th pronunciation in
second language learning and teaching conference. 2019. Iowa State University Ames, IA.
pp. 191–200.

McLoone, H., Jacobson, M., Hegg, C., et al. (2010) User-centered design and evaluation of
a next generation fixed-split ergonomic keyboard. Work (Reading, Mass.), 37: 445–56.
doi:10.3233/WOR-2010-1109.

Mease, P., Strand, V. and Gladman, D. (2018) Functional impairment measurement in
psoriatic arthritis: Importance and challenges. Seminars in Arthritis and Rheumatism, 48
(3): 436–448. doi:10.1016/j.semarthrit.2018.05.010.

Chapter 9: References

 Bharat Paudyal – March 2023 188

Meena, K., Kumar, M. and Jangra, M. (2020) “Controlling Mouse Motions Using Eye
Tracking Using Computer Vision.” In 2020 4th International Conference on Intelligent
Computing and Control Systems (ICICCS). May 2020. pp. 1001–1005.
doi:10.1109/ICICCS48265.2020.9121137.

Meena, Y.K., Cecotti, H., Wong-Lin, K., et al. (2017) “A multimodal interface to resolve the
Midas-Touch problem in gaze controlled wheelchair.” In Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
September 2017. Institute of Electrical and Electronics Engineers Inc. pp. 905–908.
doi:10.1109/EMBC.2017.8036971.

Meng, J., Zhang, J. and Zhao, H. (2012) “Overview of the Speech Recognition
Technology.” In 2012 Fourth International Conference on Computational and Information
Sciences. August 2012. pp. 199–202. doi:10.1109/ICCIS.2012.202.

Microsoft (2023) Speech to Text API | Microsoft Azure. Available at:
https://azure.microsoft.com/en-gb/services/cognitive-services/speech-to-text/.

Microsoft Teams (2023) Microsoft Teams | Group Chat, Team Chat & Collaboration.
Available at: https://www.microsoft.com/en-GB/microsoft-teams/group-chat-software.

Mihara, Y., Shibayama, E. and Takahashi, S. (2005) “The migratory cursor: accurate
speech-based cursor movement by moving multiple ghost cursors using non-verbal
vocalizations.” In Proceedings of the 7th international ACM SIGACCESS conference on
Computers and accessibility. Assets ’05 New York, NY, USA, 9 October 2005. Association
for Computing Machinery. pp. 76–83. doi:10.1145/1090785.1090801.

Miller, R.G., Mitchell, J.D. and Moore, D.H. (2012) Riluzole for amyotrophic lateral
sclerosis (ALS)/motor neuron disease (MND). The Cochrane Database of Systematic
Reviews, (3): CD001447. doi:10.1002/14651858.CD001447.pub3.

Minelli, R., Mocci, A. and Lanza, M. (2015) “I Know What You Did Last Summer - An
Investigation of How Developers Spend Their Time.” In IEEE International Conference on
Program Comprehension. August 2015. IEEE Computer Society. pp. 25–35.
doi:10.1109/ICPC.2015.12.

Miniotas, D., Špakov, O., Tugoy, I., et al. (2006) “Speech-augmented eye gaze interaction
with small closely spaced targets.” In Proceedings of the 2006 Symposium on Eye Tracking
Research &Amp; Applications. ETRA ’06 New York, NY, USA, 2006. ACM. pp. 67–67.
doi:10.1145/1117309.1117345.

Modak, S., Vikmani, S., Shah, S., et al. (2016) “Voice driven dynamic generation of
webpages.” In 2016 International Conference on Computing Communication Control and
automation (ICCUBEA). August 2016. IEEE. pp. 1–4. doi:10.1109/ICCUBEA.2016.7860153.

Chapter 9: References

 Bharat Paudyal – March 2023 189

Møllenbach, E., Lillholm, M., Gail, A., et al. (2010) “Single gaze gestures.” In Proceedings
of the 2010 Symposium on Eye-Tracking Research & Applications - ETRA ’10. Austin,
Texas, 2010. ACM Press. p. 177. doi:10.1145/1743666.1743710.

Monaco Editor (2023) Monaco Editor. Available at: https://microsoft.github.io/monaco-
editor/ (Accessed: 26 March 2022).

Mondal, S., Das, P.P. and Bhattacharjee Rudra, T. (2022) Measuring code comprehension
effort using code reading pattern. Sādhanā, 47 (3): 117. doi:10.1007/s12046-022-01876-
5.

Morimoto, C.H. and Mimica, M.R.M. (2005) Eye gaze tracking techniques for interactive
applications. Computer Vision and Image Understanding, 98 (1): 4–24.
doi:10.1016/j.cviu.2004.07.010.

Morrison, K. and McKenna, S.J. (2002) Automatic visual recognition of gestures made by
motor-impaired computer users. Technology and Disability, 14 (4): 197–203.
doi:10.3233/TAD-2002-14408.

Mott, M.E., Vatavu, R.-D., Kane, S.K., et al. (2016) “Smart Touch: Improving Touch
Accuracy for People with Motor Impairments with Template Matching.” In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. CHI ’16 New York, NY,
USA, 7 May 2016. Association for Computing Machinery. pp. 1934–1946.
doi:10.1145/2858036.2858390.

Mott, M.E., Williams, S., Wobbrock, J.O., et al. (2017) “Improving dwell-based gaze typing
with dynamic, cascading dwell times.” In Conference on Human Factors in Computing
Systems - Proceedings. New York, New York, USA, 2017. ACM Press. pp. 2558–2570.
doi:10.1145/3025453.3025517.

Mozilla Speech (2023) DeepSpeech 0.6: Mozilla’s Speech-to-Text Engine Gets Fast, Lean,
and Ubiquitous – Mozilla Hacks - the Web developer blog. Available at:
https://hacks.mozilla.org/2019/12/deepspeech-0-6-mozillas-speech-to-text-engine
(Accessed: 11 April 2021).

Müller, J.A., Wendt, D., Kollmeier, B., et al. (2016) Comparing Eye Tracking with
Electrooculography for Measuring Individual Sentence Comprehension Duration. PLoS
ONE, 11 (10): e0164627. doi:10.1371/journal.pone.0164627.

Müller, P., Buschek, D., Huang, M.X., et al. (2019) “Reducing calibration drift in mobile
eye trackers by exploiting mobile phone usage.” In Proceedings of the 11th ACM
Symposium on Eye Tracking Research & Applications. ETRA ’19 New York, NY, USA, 25
June 2019. Association for Computing Machinery. pp. 1–9.
doi:10.1145/3314111.3319918.

Chapter 9: References

 Bharat Paudyal – March 2023 190

Nacke, L.E., Stellmach, S., Sasse, D., et al. (2010) Gameplay experience in a gaze
interaction game. Available at: http://arxiv.org/abs/1004.0259 (Accessed: 13 August
2022).

Naftali, M. and Findlater, L. (2014) “Accessibility in context: understanding the truly
mobile experience of smartphone users with motor impairments.” In Proceedings of the
16th international ACM SIGACCESS conference on Computers & accessibility. ASSETS ’14
New York, NY, USA, 20 October 2014. Association for Computing Machinery. pp. 209–
216. doi:10.1145/2661334.2661372.

Nagendran, G.A., Singh, H., Raj, R.J.S., et al. (2021) “Input Assistive Keyboards for People
with Disabilities: A Survey.” In 2021 Third International Conference on Intelligent
Communication Technologies and Virtual Mobile Networks (ICICV). 2021. IEEE. pp. 829–
832.

Necas, M. (1996) Musculoskeletal Symptomnatology and Repetitive Strain Injuries in
Diagnostic Medical Sonographers: A Pilot Study in Washington and Oregon. Journal of
Diagnostic Medical Sonography, 12 (6): 266–273. doi:10.1177/875647939601200604.

Nguyen, N. and Nadi, S. (2022) “An Empirical Evaluation of GitHub Copilot’s Code
Suggestions.” In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR). May 2022. pp. 1–5. doi:10.1145/3524842.3528470.

Nivala, M., Hauser, F., Mottok, J., et al. (2016) “Developing visual expertise in software
engineering: An eye tracking study.” In 2016 IEEE Global Engineering Education
Conference (EDUCON). 2016. pp. 613–620. doi:10.1109/EDUCON.2016.7474614.

Norris, G. and Wilson, E. (1997) “The eye mouse, an eye communication device.” In
Proceedings of the IEEE 23rd Northeast Bioengineering Conference. 1997. IEEE. pp. 66–
67.

Nowogdorzki, A. (2018) WRITING CODE OUT LOUD Programmers turn to voice-command
tools to give their hands a rest. Nature, 559 (5 July 2018): 141–142.

Nowrin, S., OrdóñEz, P. and Vertanen, K. (2022) “Exploring Motor-impaired
Programmers’ Use of Speech Recognition.” In Proceedings of the 24th International ACM
SIGACCESS Conference on Computers and Accessibility. ASSETS ’22 New York, NY, USA, 22
October 2022. Association for Computing Machinery. pp. 1–4.
doi:10.1145/3517428.3550392.

Ntoa, S., Margetis, G., Antona, M., et al. (2014) Scanning-Based Interaction Techniques
for Motor Impaired Users. doi:10.4018/978-1-4666-4438-0.ch003.

Obaido, G., Ade-Ibijola, A. and Vadapalli, H. (2020) “TalkSQL: A Tool for the Synthesis of
SQL Queries from Verbal Specifications.” In 2020 2nd International Multidisciplinary
Information Technology and Engineering Conference (IMITEC). November 2020. pp. 1–10.
doi:10.1109/IMITEC50163.2020.9334088.

Chapter 9: References

 Bharat Paudyal – March 2023 191

Ocariza, F., Bajaj, K., Pattabiraman, K., et al. (2013) “An empirical study of client-side
JavaScript bugs.” In International Symposium on Empirical Software Engineering and
Measurement. 2013. pp. 55–64. doi:10.1109/ESEM.2013.18.

Oh, J., Vidal-Jordana, A. and Montalban, X. (2018) Multiple sclerosis: clinical aspects.
Current Opinion in Neurology, 31 (6): 752. doi:10.1097/WCO.0000000000000622.

Ohno, T., Mukawa, N. and Kawato, S. (2003) “Just blink your eyes: a head-free gaze
tracking system.” In CHI ’03 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’03 New York, NY, USA, 5 April 2003. Association for Computing Machinery. pp.
950–957. doi:10.1145/765891.766088.

Okafor, O. and Ludi, S. (2022) “Helping Students with Motor Impairments Program
via Voice-Enabled Block-Based Programming.” In Antona, M. and Stephanidis, C. (eds.).
Universal Access in Human-Computer Interaction. User and Context Diversity. Lecture
Notes in Computer Science Cham, 2022. Springer International Publishing. pp. 62–77.
doi:10.1007/978-3-031-05039-8_5.

Oliver, M. and Barnes, C. (2012) Back to the future: the World Report on Disability.
Disability & Society, 27 (4): 575–579. doi:10.1080/09687599.2012.686781.

Ossmann, R., Thaller, D., Nussbaum, G., et al. (2012) AsTeRICS, a Flexible Assistive
Technology Construction Set. Procedia Computer Science, 14: 1–9.
doi:10.1016/j.procs.2012.10.001.

Oviatt, S. (1997) Mulitmodal Interactive Maps: Designing for Human Performance.
Human-Computer Interaction, 12 (1): 93–129. doi:10.1207/s15327051hci1201&2_4.

Oviatt, S. (2017) “Theoretical foundations of multimodal interfaces and systems.” In The
Handbook of Multimodal-Multisensor Interfaces: Foundations, User Modeling, and
Common Modality Combinations - Volume 1. Association for Computing Machinery and
Morgan & Claypool. pp. 19–50. Available at: https://doi.org/10.1145/3015783.3015786
(Downloaded: 7 January 2024).

Oviatt, S., Cohen, P., Wu, L., et al. (2000) Designing the User Interface for Multimodal
Speech and Pen-Based Gesture Applications: State-of-the-Art Systems and Future
Research Directions. Human–Computer Interaction, 15 (4): 263–322.
doi:10.1207/S15327051HCI1504_1.

Oviatt, S. and Cohen, P.R. (2022) The Paradigm Shift to Multimodality in Contemporary
Computer Interfaces. Springer Nature. (Google-Books-ID: ZYlyEAAAQBAJ).

Oviatt, S., Coulston, R., Tomko, S., et al. (2003) “Toward a theory of organized multimodal
integration patterns during human-computer interaction.” In Proceedings of the 5th
international conference on Multimodal interfaces. ICMI ’03 New York, NY, USA, 5
November 2003. Association for Computing Machinery. pp. 44–51.
doi:10.1145/958432.958443.

Chapter 9: References

 Bharat Paudyal – March 2023 192

Oviatt, S. and VanGent, R. (1996) “Error resolution during multimodal human-computer
interaction.” In Proceeding of Fourth International Conference on Spoken Language
Processing. ICSLP ’96. October 1996. pp. 204–207 vol.1. doi:10.1109/ICSLP.1996.607077.

Päivi, M. (2011) Gaze Interaction and Applications of Eye Tracking: Advances in Assistive
Technologies: Advances in Assistive Technologies. IGI Global. (Google-Books-ID:
HuWeBQAAQBAJ).

Papoutsaki, A., Laskey, J. and Huang, J. (2017) “Searchgazer: Webcam eye tracking for
remote studies of web search.” In Proceedings of the 2017 conference on conference
human information interaction and retrieval. 2017. pp. 17–26.

Park, K.S. and Lee, K.T. (1996) Eye-controlled human/computer interface using the line-
of-sight and the intentional blink. Computers & Industrial Engineering, 30 (3): 463–473.
doi:10.1016/0360-8352(96)00018-6.

Park, T.H., Dorn, B. and Forte, A. (2015) An Analysis of HTML and CSS Syntax Errors in a
Web Development Course. ACM Transactions on Computing Education, 15 (1): 1–21.
doi:10.1145/2700514.

Patel, R. and Patel, M. (2014) Hands free JAVA (Through Speech Recognition). Available
at: www.ijcsit.com.

Pearl, C. (2016) Designing Voice User Interfaces: Principles of Conversational Experiences.
O’Reilly Media, Inc. (Google-Books-ID: MmnEDQAAQBAJ).

Peixoto, N., Nik, H.G. and Charkhkar, H. (2013) Voice controlled wheelchairs: Fine control
by humming. Computer Methods and Programs in Biomedicine, 112 (1): 156–165.
doi:10.1016/j.cmpb.2013.06.009.

Penguin (2021) Penguin Ambidextrous Vertical. Ergomax. Available at:
https://ergomax.ca/en/Products/penguin-ambidextrous-vertical-2/ (Accessed: 15
November 2022).

Penkar, A. (2014) Hypertext Navigation with an Eye Gaze Tracker. PhD Thesis,
ResearchSpace@ Auckland.

Petrie, H., Carmien, S. and Lewis, A. (2018) “Assistive Technology Abandonment:
Research Realities and Potentials.” In Miesenberger, K. and Kouroupetroglou, G. (eds.).
Computers Helping People with Special Needs. Lecture Notes in Computer Science Cham,
2018. Springer International Publishing. pp. 532–540. doi:10.1007/978-3-319-94274-
2_77.

Pfeuffer, K. and Gellersen, H. (2016) “Gaze and touch interaction on tablets.” In
Proceedings of the 29th Annual Symposium on User Interface Software and Technology.
2016. pp. 301–311.

Chapter 9: References

 Bharat Paudyal – March 2023 193

Pi, J., Koljonen, P.A., Hu, Y., et al. (2020) Dynamic Bayesian Adjustment of Dwell Time for
Faster Eye Typing. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
28 (10): 2315–2324. doi:10.1109/TNSRE.2020.3016747.

Pieper, M., Morasch, H. and Piéla, G. (2003) Bridging the educational divide. Universal
Access in the Information Society, 2 (3): 243–254. doi:10.1007/s10209-003-0061-y.

Piorkowski, D.J., Fleming, S.D., Kwan, I., et al. (2013) “The whats and hows of
programmers’ foraging diets.” In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’13 New York, NY, USA, 27 April 2013. Association for
Computing Machinery. pp. 3063–3072. doi:10.1145/2470654.2466418.

Pireddu, A. (2007) Multimodal Interaction: an integrated speech and gaze approach.
Available at: https://www.researchgate.net/publication/239542563.

Poole, A. and Ball, L. (2004) Eye Tracking in Human-Computer Interaction and Usability
Research : Current Status and Future Prospects. undefined. Available at:
https://www.semanticscholar.org/paper/Eye-Tracking-in-Human-Computer-Interaction-
and-%3A-Poole-Ball/92bc546258e9b6560cea225ca9f6745fa636ae6a (Accessed: 16 July
2022).

Pope, D. and Bambra, C. (2005) Has the disability discrimination act closed the
employment gap? Disability and Rehabilitation, 27 (20): 1261–1266.
doi:10.1080/09638280500075626.

Porcheron, M., Fischer, J.E., Reeves, S., et al. (2018) “Voice Interfaces in Everyday Life.” In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
Montreal QC Canada, 21 April 2018. ACM. pp. 1–12. doi:10.1145/3173574.3174214.

Porta, M. and Ravelli, A. (2009) “WeyeB, an eye-controlled web browser for hands-free
navigation.” In Proceedings - 2009 2nd Conference on Human System Interactions, HSI
’09. 2009. pp. 210–215. doi:10.1109/HSI.2009.5090980.

Pradhan, A., Mehta, K. and Findlater, L. (2018) “Accessibility Came by Accident.” In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI ’18
New York, NY, USA, 2018. ACM. pp. 1–13. doi:10.1145/3173574.3174033.

Radevski, S., Hata, H. and Matsumoto, K. (2016) “EyeNav.” In Proceedings of the 9th
Nordic Conference on Human-Computer Interaction - NordiCHI ’16. NordiCHI ’16 New
York, NY, USA, 2016. ACM. pp. 1–4. doi:10.1145/2971485.2996724.

Raghavan, P. (2015) Upper Limb Motor Impairment Post Stroke. Physical medicine and
rehabilitation clinics of North America, 26 (4): 599–610. doi:10.1016/j.pmr.2015.06.008.

Raja, D.S. (2016) Bridging the disability divide through digital technologies. Background
paper for the World Development report.

Chapter 9: References

 Bharat Paudyal – March 2023 194

Rajanna, V. and Hammond, T. (2018) A Gaze-Assisted Multimodal Approach to Rich and
Accessible Human-Computer Interaction. doi:10.48550/arXiv.1803.04713.

Rajanna, V., Russel, M., Zhao, J., et al. (2022) PressTapFlick: Exploring a gaze and foot-
based multimodal approach to gaze typing. International Journal of Human-Computer
Studies, 161: 102787.

Ramadan, Z., F. Farah, M. and El Essrawi, L. (2021) From Amazon.com to Amazon.love:
How Alexa is redefining companionship and interdependence for people with special
needs. Psychology & Marketing, 38 (4): 596–609. doi:10.1002/mar.21441.

Rayner, K. (1998) Eye movements in reading and information processing: 20 years of
research. Psychological bulletin, 124 (3): 372.

Rayner, M., Chatzichrisafis, N., Bouillon, P., et al. (2005) “Japanese speech understanding
using grammar specialization.” In Proceedings of HLT/EMNLP 2005 Interactive
Demonstrations. 2005. pp. 26–27.

Reddy, D.R. (1966) Approach to Computer Speech Recognition by Direct Analysis of the
Speech Wave. The Journal of the Acoustical Society of America, 40 (5): 1273–1273.
doi:10.1121/1.2143468.

Reichle, J. (2011) Evaluating Assistive Technology in the Education of Persons with Severe
Disabilities. Journal of Behavioral Education, 20 (1): 77–85. doi:10.1007/s10864-011-
9121-1.

Rochon, J., Gondan, M. and Kieser, M. (2012) To test or not to test: Preliminary
assessment of normality when comparing two independent samples. BMC Medical
Research Methodology, 12 (1): 81. doi:10.1186/1471-2288-12-81.

Rodrigues, A.S., da Costa, V.K., Cardoso, R.C., et al. (2017) “Evaluation of a Head-Tracking
Pointing Device for Users with Motor Disabilities.” In Proceedings of the 10th
International Conference on PErvasive Technologies Related to Assistive Environments.
PETRA ’17 New York, NY, USA, 21 June 2017. Association for Computing Machinery. pp.
156–162. doi:10.1145/3056540.3056552.

Rodriguez-Cartagena, J.K., Claudio-Palacios, A.C., Pacheco-Tallaj, N., et al. (2015) “The
Implementation of a Vocabulary and Grammar for an Open-Source Speech-Recognition
Programming Platform.” In Proceedings of the 17th International ACM SIGACCESS
Conference on Computers & Accessibility. ASSETS ’15 New York, NY, USA, 26 October
2015. Association for Computing Machinery. pp. 447–448.
doi:10.1145/2700648.2811346.

Rosen, K. and Yampolsky, S. (2000) Automatic speech recognition and a review of its
functioning with dysarthric speech. Augmentative and Alternative Communication, 16
(1): 48–60. doi:10.1080/07434610012331278904.

Chapter 9: References

 Bharat Paudyal – March 2023 195

Rosenblatt, L. (2017) “VocalIDE.” In Proceedings of the 19th International ACM SIGACCESS
Conference on Computers and Accessibility - ASSETS ’17. ASSETS ’17 New York, NY, USA,
2017. ACM. pp. 417–418. doi:10.1145/3132525.3134824.

Rosenblatt, L., Carrington, P., Hara, K., et al. (2018) “Vocal Programming for People with
Upper-Body Motor Impairments.” In W4A. 2018. pp. 10–10.
doi:10.1145/3192714.3192821.

Rozado, D., McNeill, A. and Mazur, D. (2016) VoxVisio–Combining Gaze and Speech for
Accessible HCI. Resna 2016. Available at:
https://www.resna.org/sites/default/files/conference/2016/pdf_versions/cac/rozado.pd
f.

Ruan, S., Wobbrock, J.O., Liou, K., et al. (2016) Speech Is 3x Faster than Typing for English
and Mandarin Text Entry on Mobile Devices.

Rubio, S., Díaz, E., Martín, J., et al. (2004) Evaluation of Subjective Mental Workload: A
Comparison of SWAT, NASA-TLX, and Workload Profile Methods. Applied Psychology, 53
(1): 61–86. doi:10.1111/j.1464-0597.2004.00161.x.

Rudd, T. (2013) PyVideo.org · Using Python to Code by Voice. Available at:
https://pyvideo.org/pycon-us-2013/using-python-to-code-by-voice.html.

Rudžionis, V., Ratkevičius, K., Rudžionis, A., et al. (2013) “Recognition of Voice Commands
Using Hybrid Approach.” In Skersys, T., Butleris, R. and Butkiene, R. (eds.). Information
and Software Technologies. Communications in Computer and Information Science
Berlin, Heidelberg, 2013. Springer. pp. 249–260. doi:10.1007/978-3-642-41947-8_21.

Ruiz, N., Chen, F., Oviatt, S., et al. (2009) Multimodal input. Multimodal Signal Processing:
Theory and applications for human-computer interaction, pp. 231–255.

Sahadat, M.N., Sebkhi, N., Kong, F., et al. (2018) “Standalone Assistive System to Employ
Multiple Remaining Abilities in People with Tetraplegia.” In 2018 IEEE Biomedical Circuits
and Systems Conference (BioCAS). October 2018. pp. 1–4.
doi:10.1109/BIOCAS.2018.8584688.

Santella, A., Agrawala, M., DeCarlo, D., et al. (2006) “Gaze-based interaction for semi-
automatic photo cropping.” In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’06 New York, NY, USA, 22 April 2006. Association for Computing
Machinery. pp. 771–780. doi:10.1145/1124772.1124886.

Santos, A.L. (2021) “Javardeye: Gaze Input for Cursor Control in a Structured Editor.” In
Companion Proceedings of the 5th International Conference on the Art, Science, and
Engineering of Programming. Programming ’21 New York, NY, USA, 22 March 2021.
Association for Computing Machinery. pp. 31–35. doi:10.1145/3464432.3464435.

Chapter 9: References

 Bharat Paudyal – March 2023 196

Sarcar, S., Panwar, P. and Chakraborty, T. (2013) “EyeK: an efficient dwell-free eye gaze-
based text entry system.” In Proceedings of the 11th Asia Pacific Conference on Computer
Human Interaction. APCHI ’13 New York, NY, USA, 24 September 2013. Association for
Computing Machinery. pp. 215–220. doi:10.1145/2525194.2525288.

Sarmah, R.J., Ding, Y., Wang, D., et al. (2020) “Geno: A developer tool for authoring
multimodal interaction on existing web applications.” In UIST 2020 - Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. New York, NY,
USA, 2020. ACM. pp. 1169–1181. doi:10.1145/3379337.3415848.

Schiessl, M., Duda, S., Thölke, A., et al. (2003) Eye tracking and its application in usability
and media research. MMI-interaktiv Journal, 6 (2003): 41–50.

Schmandt, C., Ackerman, M.S. and Hindus, D. (1990) Augmenting a window system with
speech input. Computer, 23 (8): 50–56. doi:10.1109/2.56871.

Sears, A., Feng, J., Cseitutu, K., et al. (2003) Hands-free, speech-based navigation during
dictation: Difficulties, consequences, and solutions. Human-Computer Interaction, 18 (3):
229–257. doi:10.1207/S15327051HCI1803_2.

Sears, A., Lin, M. and Karimullah, A.S. (2002) Speech-based cursor control: understanding
the effects of target size, cursor speed, and command selection. Universal Access in the
Information Society, 2 (1): 30–43. doi:10.1007/s10209-002-0034-6.

Seizov, O. and Wildfeuer, J. (2017) New Studies in Multimodality: Conceptual and
Methodological Elaborations. Bloomsbury Publishing. (Google-Books-ID:
J5smDwAAQBAJ).

Sengupta, K., Bhattarai, S., Sarcar, S., et al. (2020) “Leveraging Error Correction in Voice-
based Text Entry by Talk-and-Gaze.” In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, (25/04/20 - 30/04/20). January 2020. pp. 1–11.
doi:10.1145/3313831.3376579.

Sengupta, K., Ke, M., Menges, R., et al. (2018) “Hands-free web browsing.” In Proceedings
of the 2018 ACM Symposium on Eye Tracking Research & Applications - ETRA ’18. ETRA
’18 New York, NY, USA, 2018. ACM. pp. 1–3. doi:10.1145/3204493.3208338.

Serenade (2023) Serenade | Documentation. Available at: https://serenade.ai/docs/.

Shaffer, T.R., Wise, J.L., Walters, B.M., et al. (2015) “iTrace: Enabling Eye Tracking on
Software Artifacts Within the IDE to Support Software Engineering Tasks.” In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015
New York, NY, USA, 2015. ACM. pp. 954–957. doi:10.1145/2786805.2803188.

Shaik, S., Corvin, R., Sudarsan, R., et al. (2003) “SpeechClipse: an Eclipse speech plug-in.”
In Proc. ETX at OOPSLA. eclipse ’03 New York, NY, USA, 2003. ACM. pp. 84–88.
doi:10.1145/965660.965678.

Chapter 9: References

 Bharat Paudyal – March 2023 197

Shakil, A., Lutteroth, C. and Weber, G. (2019) “CodeGazer: Making Code Navigation Easy
and Natural With Gaze Input.” In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. CHI ’19 New York, NY, USA, 2 May 2019. Association for
Computing Machinery. pp. 1–12. doi:10.1145/3290605.3300306.

Sharafi, Z., Sharif, B., Guéhéneuc, Y.-G., et al. (2020) A practical guide on conducting eye
tracking studies in software engineering. Empirical Software Engineering, 25 (5): 3128–
3174. doi:10.1007/s10664-020-09829-4.

Sharafi, Z., Soh, Z. and Guéhéneuc, Y.-G. (2015) A systematic literature review on the
usage of eye-tracking in software engineering. Information and Software Technology, 67:
79–107. doi:10.1016/j.infsof.2015.06.008.

Shaw, G. and Coles, T. (2004) Disability, holiday making and the tourism industry in the
UK: a preliminary survey. Tourism Management, 25 (3): 397–403. doi:10.1016/S0261-
5177(03)00139-0.

Sheehan, R. and Hassiotis, A. (2017) Digital mental health and intellectual disabilities:
state of the evidence and future directions. Evidence Based Mental Health, 20 (4): 107–
111. doi:10.1136/eb-2017-102759.

Sibert, L.E., Templeman, J.N. and Jacob, R.J. (2001) Evaluation and Analysis of Eye Gaze
Interaction: Fort Belvoir, VA: Defense Technical Information Center.
doi:10.21236/ADA389984.

Sims, D. (2022) Two-fifths of adults own and use a voice-activated personal assistant or
smart speaker device, finds survey. Available at:
https://www.djsresearch.co.uk/InformationTechnologyMarketResearchInsightsAndFindi
ngs/article/Two-fifths-of-adults-own-and-use-a-voice-activated-personal-assistant-or-
smart-speaker-device-finds-survey-05114 (Accessed: 13 August 2022).

Sinha, M. and Dasgupta, T. (2021) A web browsing interface for people with severe
speech and motor impairment. Journal of Enabling Technologies, 15 (3): 189–207.
doi:10.1108/JET-07-2020-0029.

Siri (2023) Siri. Available at: https://www.apple.com/uk/siri/ (Accessed: 24 March 2023).

Skovsgaard, H., Mateo, J.C., Flach, J.M., et al. (2010) “Small-target selection with gaze
alone.” In Eye Tracking Research and Applications Symposium (ETRA). January 2010. pp.
145–148. doi:10.1145/1743666.1743702.

Slack (2022) Where work happens. Available at: https://slack.com/intl/en-gb/ (Accessed:
7 May 2022).

Smith, J., Brown, C. and Murphy-Hill, E. (2017) “Flower: Navigating program flow in the
IDE.” In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). October 2017. pp. 19–23. doi:10.1109/VLHCC.2017.8103445.

Chapter 9: References

 Bharat Paudyal – March 2023 198

Smith, M.J., Karsh, B.-T., Conway, F.T., et al. (1998) Effects of a Split Keyboard Design and
Wrist Rest on Performance, Posture, and Comfort. Human Factors, 40 (2): 324–336.
doi:10.1518/001872098779480451.

Snell, L. (2000) AN INVESTIGATION INTO PROGRAMMING BY VOICE. Available at:
http://www3.imperial.ac.uk/pls/portallive/docs/1/18619779.PDF.

Song, Y., Wong, R.C.-W., Zhao, X., et al. (2022) “VoiceQuerySystem: A Voice-driven
Database Querying System Using Natural Language Questions.” In Proceedings of the
2022 International Conference on Management of Data. SIGMOD ’22 New York, NY, USA,
11 June 2022. Association for Computing Machinery. pp. 2385–2388.
doi:10.1145/3514221.3520158.

Soto Munoz, J.G., De Casso Verdugo, A.I., Geraldo Gonzalez, E., et al. (2019a)
“Programming by Voice Assistance Tool for Physical Impairment Patients Classified in to
Peripheral Neuropathy Centered on Arms or Hands Movement Difficulty.” In Proceedings
- 2019 International Conference on Inclusive Technologies and Education, CONTIE 2019. 1
October 2019. Institute of Electrical and Electronics Engineers Inc. pp. 210–217.
doi:10.1109/CONTIE49246.2019.00048.

Soto Munoz, J.G., De Casso Verdugo, A.I., Geraldo Gonzalez, E., et al. (2019b)
“Programming by Voice Assistance Tool for Physical Impairment Patients Classified in to
Peripheral Neuropathy Centered on Arms or Hands Movement Difficulty.” In Proceedings
- 2019 International Conference on Inclusive Technologies and Education, CONTIE 2019.
October 2019. Institute of Electrical and Electronics Engineers Inc. pp. 210–217.
doi:10.1109/CONTIE49246.2019.00048.

Špakov, O. and Miniotas, D. (2004) “On-line adjustment of dwell time for target selection
by gaze.” In Proceedings of the third Nordic conference on Human-computer interaction.
2004. pp. 203–206.

Sporka, A.J., Kurniawan, S.H., Mahmud, M., et al. (2006) “Non-speech input and speech
recognition for real-time control of computer games.” In Proceedings of the 8th
international ACM SIGACCESS conference on Computers and accessibility. Assets ’06 New
York, NY, USA, 23 October 2006. Association for Computing Machinery. pp. 213–220.
doi:10.1145/1168987.1169023.

Srinivasan, A., Dontcheva, M., Adar, E., et al. (2019) “Discovering natural language
commands in multimodal interfaces.” In International Conference on Intelligent User
Interfaces, Proceedings IUI. New York, NY, USA, 17 March 2019. Association for
Computing Machinery. pp. 661–672. doi:10.1145/3301275.3302292.

Stack Overflow (2023) Stack Overflow. Available at: https://stackoverflow.com/
(Accessed: 4 January 2023).

StackOverflow (2022) Stack Overflow Developer Survey 2022. Available at:
https://survey.stackoverflow.co/2022/?utm_source=social-

Chapter 9: References

 Bharat Paudyal – March 2023 199

share&utm_medium=social&utm_campaign=dev-survey-2022 (Accessed: 9 October
2022).

Stahl, C. and Laub, P. (2017) “Maintaining multiple sclerosis patients’ quality of life: a
case study on environment control assistance in a smart home.” In Proceedings of the
10th International Conference on PErvasive Technologies Related to Assistive
Environments. PETRA ’17 New York, NY, USA, 21 June 2017. Association for Computing
Machinery. pp. 83–86. doi:10.1145/3056540.3064943.

Standen, P., Brown, D., Roscoe, J., et al. (2014) “Engaging Students with Profound and
Multiple Disabilities Using Humanoid Robots.” In Stephanidis, C. and Antona, M. (eds.)
Universal Access in Human-Computer Interaction. Universal Access to Information and
Knowledge. Lecture Notes in Computer Science. Cham: Springer International Publishing.
pp. 419–430. doi:10.1007/978-3-319-07440-5_39.

Stumpf, S., Peters, A., Bardzell, S., et al. (2020) Gender-Inclusive HCI Research and Design:
A Conceptual Review. Foundations and Trends in Human–Computer Interaction, 13 (1):
1–69. doi:10.1561/1100000056.

Suhm, B., Myers, B. and Waibel, A. (2001) Multimodal error correction for speech user
interfaces. ACM Transactions on Computer-Human Interaction, 8 (1): 60–98.
doi:10.1145/371127.371166.

Sweller, J., Chandler, P., Tierney, P., et al. (1990) Cognitive load as a factor in the
structuring of technical material. Journal of Experimental Psychology: General, 119 (2):
176–192. doi:10.1037/0096-3445.119.2.176.

Tai, K., Blain, S. and Chau, T. (2008) A Review of Emerging Access Technologies for
Individuals With Severe Motor Impairments. Assistive Technology, 20 (4): 204–221.
doi:10.1080/10400435.2008.10131947.

Talon (2023) Talon 0.0.7.7 documentation. Available at:
https://talonvoice.com/docs/index.html#document-index.

Tiric-Campara, M., Krupic, F., Biscevic, M., et al. (2014) Occupational Overuse Syndrome
(Technological Diseases): Carpal Tunnel Syndrome, a Mouse Shoulder, Cervical Pain
Syndrome. Acta Informatica Medica, 22 (5): 333–340. doi:10.5455/aim.2014.22.333-340.

Tobii (2023) Tobii Gaming | Eye Tracker 4C for PC Gaming. Buy Now at €169. Available at:
https://gaming.tobii.com/tobii-eye-tracker-4c/.

Tobii 5 (2023) Tobii Eye Tracker 5 | The Next Generation of Head Tracking and Eye
Tracking. Available at: https://gaming.tobii.com/product/eye-tracker-5/ (Accessed: 26
March 2023).

Trewin, S., Swart, C. and Pettick, D. (2013) “Physical accessibility of touchscreen
smartphones.” In Proceedings of the 15th International ACM SIGACCESS Conference on

Chapter 9: References

 Bharat Paudyal – March 2023 200

Computers and Accessibility. ASSETS ’13 New York, NY, USA, 21 October 2013.
Association for Computing Machinery. pp. 1–8. doi:10.1145/2513383.2513446.

Trivedi, A., Pant, N., Shah, P., et al. (2018) Speech to text and text to speech recognition
systems-Areview. IOSR J. Comput. Eng, 20 (2): 36–43.

Trujillo, J.P. and Holler, J. (2023) Interactionally Embedded Gestalt Principles of
Multimodal Human Communication. Perspectives on Psychological Science, 18 (5): 1136–
1159. doi:10.1177/17456916221141422.

Uludağli, M. and Acartürk, C. (2018) User interaction in hands-free gaming: a comparative
study of gaze-voice and touchscreen interface control. Turkish Journal of Electrical
Engineering and Computer Sciences, 26 (4): 1967–1976. doi:10.3906/elk-1710-128.

Valencia, X., Pérez, J.E., Arrue, M., et al. (2017) Adapting the Web for People With Upper
Body Motor Impairments Using Touch Screen Tablets. Interacting with Computers, 29 (6):
794–812. doi:10.1093/iwc/iwx013.

Vallabhaneni, A., Wang, T. and He, B. (2005) “Brain—Computer Interface.” In He, B. (ed.)
Neural Engineering. Bioelectric Engineering. Boston, MA: Springer US. pp. 85–121.
doi:10.1007/0-306-48610-5_3.

Van Brummelen, J., Weng, K., Lin, P., et al. (2020b) “CONVO: What does conversational
programming need?” In Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC. July 2020. Institute of Electrical and Electronics
Engineers (IEEE). pp. 1–5. doi:10.1109/VL/HCC50065.2020.9127277.

Van Brummelen, J., Weng, K., Lin, P., et al. (2020c) Convo: What does conversational
programming need? An exploration of machine learning interface design. Available at:
http://arxiv.org/abs/2003.01318.

Van Der Kamp, J. and Sundstedt, V. (2011) “Gaze and voice controlled drawing.” In ACM
International Conference Proceeding Series. 2011. doi:10.1145/1983302.1983311.

Vickers, S. (2011) Eye-gaze interaction techniques for use in online games and
environments for users with severe physical disabilities.

Visual Studio Code (2023). Available at: https://code.visualstudio.com/ (Accessed: 6
December 2022).

Voicecode (2023) Advanced Voice-Control, speech to code, program by voice, stop RSI.
Available at: https://www.voicecode.io/ (Accessed: 26 May 2021).

Vornholt, K., Villotti, P., Muschalla, B., et al. (2018) Disability and employment – overview
and highlights. European Journal of Work and Organizational Psychology, 27 (1): 40–55.
doi:10.1080/1359432X.2017.1387536.

Chapter 9: References

 Bharat Paudyal – March 2023 201

Wagner, A. and Gray, J. (2015) An Empirical Evaluation of a Vocal User Interface for
Programming by Voice. International Journal of Information Technologies and Systems
Approach, 8 (2): 47–63. doi:10.4018/IJITSA.2015070104.

Wagner, A., Rudraraju, R., Datla, S., et al. (2012) “Programming by voice.” In Proceedings
of the 2012 ACM annual conference extended abstracts on Human Factors in Computing
Systems Extended Abstracts - CHI EA ’12. CHI EA ’12 New York, NY, USA, 2012. ACM. pp.
2087–2087. doi:10.1145/2212776.2223757.

Wang, J. (1995) “Integration of eye-gaze, voice and manual response in multimodal user
interface.” In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics. 1995. IEEE. pp. 3938–3942. doi:10.1109/icsmc.1995.538404.

Wang, J., Zhai, S. and Su, H. (2001) Chinese input with keyboard and eye-tracking: an
anatomical study. doi:10.1145/365024.365298.

Ware, C. and Mikaelian, H.H. (1986) “An evaluation of an eye tracker as a device for
computer input2.” In Proceedings of the SIGCHI/GI conference on Human factors in
computing systems and graphics interface. 1986. pp. 183–188.

Wav2letter (2023) Wav2letter. Available at: https://ai.facebook.com/tools/wav2letter
(Accessed: 5 December 2022).

WebSpeech (2023) Using the Web Speech API - Web APIs | MDN. Available at:
https://developer.mozilla.org/en-
US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API.

Wei, J., Tag, B., Trippas, J.R., et al. (2022) “What Could Possibly Go Wrong When
Interacting with Proactive Smart Speakers? A Case Study Using an ESM Application.” In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI ’22
New York, NY, USA, 29 April 2022. Association for Computing Machinery. pp. 1–15.
doi:10.1145/3491102.3517432.

Whitehead, M., Clayton, S., Holland, P., et al. (2009) Helping chronically ill or disabled
people into work: what can we learn from international comparative analyses? Available
at: http://phrc.lshtm.ac.uk/project_2005-2011_c206.html (Accessed: 17 August 2022).

Wilcox, M.J., Norman-Murch, T., Oberstein, J.S., et al. (1999) Assistive Technology: Tips,
Tools, and Techniques. A Parent Resource Manual.

Wilcox, T., Evans, M., Pearce, C., et al. (2008) Gaze and voice based game interaction: the
revenge of the killer penguins. SIGGRAPH Posters, 81 (10.1145): 1400885–1400972.

Wit (2023) Wit.ai.

Wobbrock, J.O., Rubinstein, J., Sawyer, M.W., et al. (2008) “Longitudinal evaluation of
discrete consecutive gaze gestures for text entry.” In Proceedings of the 2008 symposium

Chapter 9: References

 Bharat Paudyal – March 2023 202

on Eye tracking research & applications. ETRA ’08 New York, NY, USA, 26 March 2008.
Association for Computing Machinery. pp. 11–18. doi:10.1145/1344471.1344475.

Wong, G. (2020) The Role of Assistive Technology in Enhancing Disability Arts. Review of
Disability Studies: An International Journal, 16 (1): 1–31.

World Health Organization. “How to use the ICF: A practical manual for using the
International Classification of Functioning, Disability and Health (ICF).” Exposure draft for
comment. Geneva: WHO 13 (2013). (2013).

Yassi, A. (1997) Repetitive strain injuries. The Lancet, 349 (9056): 943–947.
doi:10.1016/S0140-6736(96)07221-2.

Yiu, E.M. and Kornberg, A.J. (2015) Duchenne muscular dystrophy. Journal of Paediatrics
and Child Health, 51 (8): 759–764. doi:10.1111/jpc.12868.

Zaheer, A., Malik, A.N., Masood, T., et al. (2021) Effects of phantom exercises on pain,
mobility, and quality of life among lower limb amputees; a randomized controlled trial.
BMC Neurology, 21 (1): 416. doi:10.1186/s12883-021-02441-z.

Zapala, D. and Balaj, B. (2012) Eye Tracking and Head Tracking–The two approaches in
assistive technologies.

Zargham, N., Pfau, J., Schnackenberg, T., et al. (2022) ““I Didn’t Catch That, But I’ll Try My
Best”: Anticipatory Error Handling in a Voice Controlled Game.” In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems. CHI ’22 New York, NY,
USA, 28 April 2022. Association for Computing Machinery. pp. 1–13.
doi:10.1145/3491102.3502115.

Zhai, S., Morimoto, C. and Ihde, S. (1999) “Manual and gaze input cascaded (MAGIC)
pointing.” In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. CHI ’99 New York, NY, USA, 1 May 1999. Association for Computing Machinery.
pp. 246–253. doi:10.1145/302979.303053.

Zhang, X., Lu, C., Yin, J., et al. (2020) The Study of Two Novel Speech-Based Selection
Techniques in Voice-User Interfaces. IEEE Access, 8: 217024–217032.
doi:10.1109/ACCESS.2020.3041649.

Zhu, S., Ma, Y., Feng, J., et al. (2009) “Speech-Based Navigation: Improving Grid-Based
Solutions.” In Gross, T., Gulliksen, J., Kotzé, P., et al. (eds.). Human-Computer Interaction
– INTERACT 2009. Lecture Notes in Computer Science Berlin, Heidelberg, 2009. Springer.
pp. 50–62. doi:10.1007/978-3-642-03655-2_6.

Ziefle, M. (2019) “Is the trackball a serious alternative to the mouse? A comparison of
trackball and mouse with regard to cursor movement performance in manipulation
tasks.” In Human-Centered Computing. CRC Press. pp. 158–162.

Chapter 9: References

 Bharat Paudyal – March 2023 203

Zimmerer, C., Krop, P., Fischbach, M., et al. (2022) “Reducing the Cognitive Load of
Playing a Digital Tabletop Game with a Multimodal Interface.” In CHI Conference on
Human Factors in Computing Systems. New Orleans LA USA, 29 April 2022. ACM. pp. 1–
13. doi:10.1145/3491102.3502062.

Zoom (2023) Video Conferencing, Web Conferencing, Webinars, Screen Sharing - Zoom.
Available at: https://zoom.us/.

