
Journal of Network and Computer Applications 225 (2024) 103869

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

A Stochastic Computational Graph with Ensemble Learning Model for solving
Controller Placement Problem in Software-Defined Wide Area Networks
Oladipupo Adekoya ∗, Adel Aneiba
Birmingham City University, Birmingham, United Kingdom

A R T I C L E I N F O

Keywords:
Computational graph
Controller placement
SDWAN
XGBoost

A B S T R A C T

The Preponderance of literature has established that most of the metaheuristic algorithms were associated
with identified challenges in solving the Controller Placement Problem in SD-WAN. This study proposed
a Stochastic Computational Graph Model with an Ensemble Learning (SCGMEL) approach to address the
scalability, intelligence, and high computational complexity challenges experienced by the existing metaheuris-
tic algorithms. The proposed SCGMEL used stochastic gradient descent with momentum and learning rate
decay, a computational graph model, and the eXtreme Gradient Boosted Trees (XGBoost) algorithm as the
optimization and machine learning approaches. The proposed solution was tested using datasets from Internet
Zoo topology with six objective functions: load balancing, maximum controller failure, average controller-
to-controller latency, average switch-to-controller latency, and maximum controller-to-controller latency. The
XGBoost outperformed other regression models, in predicting the number of controllers, with mean absolute
error of 1.855751 versus 1.883536, 3.729863, and 3.829268 for the random forest, logistic regression, and K-
nearest neighbor, respectively. Furthermore, the execution time, average and total CPU usages of the algorithms
demonstrated the computational efficiency of the proposed SCGMEL over ANSGA-III, NSGA-II, and MOPSO
with percentage decreases of 99.983%, 99.985%, and 99.446%, respectively. Consequently, the proposed
SCGMEL was recommended for controller placement in SD-WAN, subject to the usage conditions.
1. Introduction

A fundamental change in the way that communication networks
operate has been catalyzed by the dissemination of Software-Defined
Networking, also known as SDN (Wang et al., 2017). This shift is
directed towards a logically centralized architecture where the con-
trol plane and data plane are segregated. This design facilitates the
relocation of control operations from network devices to specialized
software-based controller instances situated centrally (Liu et al., 2015).
The centralized controller assumes responsibility for managing network
switches and establishing forwarding rules that dictate packet behav-
ior (Tootoonchian and Ganjali, 2010). While the controller’s logical
presence is centralized, its spatial distribution is essential to address
factors like fault tolerance, scalability, resilience, and performance (Ros
and Ruiz, 2016).

In the realm of Wide Area Networks (WAN), the conventional
centralized approach faces limitations, particularly in terms of perfor-
mance and scalability. Addressing these challenges entails the deploy-
ment of multiple controllers to collaboratively oversee the network,
a task known as controller placement (CP) (Heller et al., 2012). The
strategic identification of a limited number of controllers meeting

∗ Corresponding author.
E-mail address: oladipupo.adekoya@mail.bcu.ac.uk (O. Adekoya).

specific conditions becomes pivotal in Software-Defined Wide Area
Networks (SD-WAN) (Hock et al., 2013). Randomly determining the
number and location of controllers does not guarantee satisfactory per-
formance. Therefore, to achieve an effective and dependable SD-WAN,
questions surrounding the optimal number and location of controllers
must be resolved (Heller et al., 2012).

Traditional approaches, such as exhaustive methods or metaheuris-
tic techniques, grapple with computational complexity, lack of predic-
tive intelligence, and scalability issues when addressing the controller
placement problem (Adekoya and Aneiba, 2022). While mathematical
optimization methods like CPLEX optimizer and integer linear program-
ming offer optimality, they struggle with computational costs and local
optima entrapment (Giroire et al., 2014). Metaheuristics like Multi-
Objective Particle Swarm Optimization (MOPSO), Nondominated Sort-
ing Genetic Algorithm II (NSGA-II), and Adapted Nondominated Sorting
Genetic Algorithm III (ANSGA-III) are utilized as computational tools or
methodologies to guide the search for optimal or near-optimal solutions
for controller placement within the SD-WAN network (Gao et al.,
2015; Ahmadi et al., 2015; Adekoya and Aneiba, 2022). However, it is
important to note that, apart from ANSGA-III, these approaches grapple
vailable online 20 March 2024
084-8045/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.jnca.2024.103869
Received 5 March 2023; Received in revised form 29 January 2024; Accepted 12 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2024

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:oladipupo.adekoya@mail.bcu.ac.uk
https://doi.org/10.1016/j.jnca.2024.103869
https://doi.org/10.1016/j.jnca.2024.103869
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2024.103869&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
with scalability challenges. Moreover, they fall short in predicting
the required number of controllers and tend to be computationally
expensive when compared to the innovative approach proposed in this
study.

This study introduces a groundbreaking solution, the Stochastic
Computational Graph Model with Ensemble Learning (SCGMEL), with
the primary aim of overcoming the substantial challenges that existing
metaheuristic algorithms encounter when addressing the Controller
Placement Problem within SD-WAN. Departing from previous method-
ologies, the SCGMEL method unveils an exceptional innovation by
seamlessly integrating mini-batch stochastic gradient descent with mo-
mentum and learning rate decay, a computational graph model, and
the powerful eXtreme Gradient Boosted Trees (XGBoost) algorithm.

Meticulously crafted, the SCGMEL approach is designed to directly
confront three pivotal challenges: scalability, intelligence, and the intri-
cate computational complexity that have hitherto presented significant
obstacles for existing metaheuristic algorithms seeking to solve the
Controller Placement Problem within SD-WAN. Through the synergistic
incorporation of mini-batch stochastic gradient descent, a computa-
tional graph model, and the XGBoost algorithm, SCGMEL introduces a
hybridized methodology that deftly leverages the strengths of optimiza-
tion and machine learning techniques, thereby substantially amplifying
the approach’s effectiveness in achieving optimal solutions.

At the forefront of innovation is SCGMEL’s remarkable achievement
in significantly enhancing computational efficiency. This advancement
marks a major stride forward and is complemented by the pioneering
application of XGBoost in predicting the optimal number of controllers
required. In contrast to established algorithms such as ANSGA-III,
NSGA-II, and MOPSO, the SCGMEL approach excels in terms of total
CPU usage, including execution time and average CPU usage. Further-
more, the predictive capacity introduced by SCGMEL emerges as a
remarkable innovation, surpassing other regression models and con-
tributing substantially to more informed decision-making and improved
accuracy in resource allocation. In summary, the SCGMEL represents
a paradigm shift in tackling the challenges of the Controller Place-
ment Problem within SD-WAN. Through the strategic fusion of in-
novative techniques, SCGMEL not only overcomes existing obstacles
but also propels the field forward with enhanced efficiency, predictive
capabilities, and optimal solutions.

The primary contributions of this study are summarized as follows:

• This study is the first to use a stochastic computational graph
and an ensemble learning method to address the issue of CP in
SD-WAN.

• The study optimizes controller location in the face of several
competing objectives with the use of stochastic gradient descent
with decay rate and momentum, as well as computational graphs.

• The study adopts a distributed XGBoost for the prediction of
the ideal number of controllers in a software-defined wide-area
network.

The following is an overview of the sections in this manuscript.
Section 2 reviews the related works. The Section 3 explains the problem
definition and objective functions used in optimizing the controller
location in SD-WAN. Section 4 describes the proposed stochastic com-
putational graph with an ensemble learning approach used to address
the CPP in SD-WAN. In a similar fashion, the experiment, the result, its
discussion, the verification and validation of the proposed SCGMEL, as
well as the general conclusion, are each separated into Sections 5, 6, 7
and 8, accordingly.

2. Related works

The controller placement problem in software-defined networks
(SDNs) has been a prominent focus of contemporary research endeav-
2

ors. Researchers have presented various methodologies and algorithms
to address this challenge, each contributing unique perspectives and
innovations. Each approach offers distinct contributions, ranging from
multi-objective optimization to machine learning and reinforcement
learning techniques. While these methods may exhibit scalability and
computational challenges (Multi-Objective Optimisation techniques),
they collectively lay the foundation for innovative solutions that aim
to enhance SDN controller placement and optimize network perfor-
mance. This study’s proposed stochastic computational graph approach,
coupled with an ensemble learning model, holds promise as a novel
solution to predict the optimal number and position of controllers
in SD-WAN networks. This literature review provides an insightful
overview of the key approaches while highlighting their strengths,
limitations, and potential areas of application.

The fundamental importance of the Controller Placement Problem
(CPP) is emphasized by Heller et al. (2012), who delve into the im-
pact of controller placement on latency metrics and propose optimal
solutions based on real-world models. The authors advocate for the
significance of practical latency requirements, suggesting that many
network architectures require only a single controller to fulfill these
criteria.

Expanding upon the groundwork of Heller et al. (2012), Yao et al.
(2014) introduce the Capacitated Controller Placement Problem
(CCPP), considering controller load in addition to latency. The au-
thors argue that controller load is a vital consideration and present a
method to reduce the overall number of controllers required. Building
on previous work, Hock et al. (2014, 2013) introduce the Pareto
Optimal Controller Placement framework, which extends the analy-
sis to include inter-controller latency, resilience, and load balancing.
These authors leverage Pareto Simulated Annealing (PSA) to optimize
multiple objectives simultaneously. However, the method is computa-
tionally expensive and requires a predetermined number of controllers,
presenting potential limitations.

Multi-Objective Evolutionary Algorithms (MOEAs) have gained
prominence in addressing the CPP. The seminal NSGA-II by Deb (2011)
is an early example, enhanced by NSGA-III (Seada and Deb, 2014). Ah-
madi and Khorramizadeh (2018) adapt NSGA to resolve multi-objective
CPP issues in large networks, incorporating greedy heuristic and intelli-
gent mechanisms. However, this method is computationally expensive
and faces scalability challenges. Xu et al. (2022) in their study in-
troduced a multi-controller load balancing model with a focus on
optimizing three key objectives. The design aimed to achieve controller
load balancing, reduce communication latency between the control
plane and the forwarding plane, and minimize switch migration costs.
The approach incorporated dynamic switch migration to distribute load
across controllers efficiently, leading to reduced network latency and
migration costs. Notably, the authors employed the Genetic Algorithm
for Improved Multi-Objective Optimization to handle the challenges
posed by fixed controller-switch mappings. While this approach show-
cases promise in optimizing network performance, scalability and
computational efficiency could be potential concerns. Additionally, the
algorithm’s ability to predict the optimal number of controllers required
for an SD-WAN network and to learn the heuristics of combinatorial
optimization tasks remains to be determined. Further testing is needed
to confirm its practical applicability.

Aravind et al. (2022) proposed the application of a simulated an-
nealing algorithm to address the controller placement problem. In
contrast with mixed-integer linear programming, the authors aimed to
reduce execution time while optimizing controller placement. Their ap-
proach considers various conflicting objectives, including average and
worst-case delays under controller failure and inter-controller delays.
Notably, the study focuses on optimizing these objectives without con-
sidering switch-to-controller latency, a key factor in SDN controller op-
timization. While the simulated annealing approach accelerates optimal
controller placement compared to mixed-integer linear programming,
it may face challenges in efficiently addressing diverse solutions when

multiple conflicting objectives exceed three. Furthermore, it might

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
encounter computational inefficiency, limitations in predicting the op-
timal number of controllers, and an inability to learn the heuristics of
combinatorial optimization problems. Hemagowri and Selvan (2023)
introduced a hybrid evolutionary algorithm, combining the artificial
fish algorithm and chaotic Gaussian map, to optimize controller place-
ment in SDN. Their approach strives to concurrently optimize controller
placement based on various conflicting metrics, such as controller load,
bandwidth, fault tolerance, data transmission rate, and propagation
latency. To enhance solution diversity, a chaotic map extraction based
on a Gaussian distribution was employed. While this approach exhibits
efficiency in optimizing controller placement, challenges might arise
in attaining diverse solutions for artificial fish within scenarios involv-
ing more than three conflicting objectives. Moreover, the inclusion
of heuristic strategies during the training process might lead to com-
putational intensity. Furthermore, the algorithm lacks the ability to
learn the heuristics of combinatorial optimization problems specific to
SD-WAN controller placement.

Kazemian and Mirabi (2022) addressed the controller placement
challenge as a multi-objective optimization problem and introduced the
Antlion optimization algorithm. Their study considers three objective
functions: switch-to-controller delay, controller–controller delay, and
separate connectivity links between nodes and controllers. The Antlion
optimization procedure is a population-based evolutionary technique
known for effectively optimizing conflicting objectives in SDN con-
troller placement. However, challenges may arise when simultaneously
optimizing more than three objectives, and the algorithm lacks the
ability to learn the heuristics of combinatorial optimization problems.
Compared to the stochastic computational graph approach proposed in
this study, the Antlion optimization algorithm is known to be compu-
tationally expensive due to the various heuristic strategies involved in
the training process.

Bagha et al. (2022) proposed a seagull optimization algorithm for
controller placement, coupled with fuzzy C-Means clustering to parti-
tion the network. This approach aimed to optimize several objective
functions, including end-to-end delay, inter-controller delay, node-to-
controller delay, and controller load. The C-Means clustering algorithm
was used for grouping controllers in close proximity to reduce overall
network performance. However, uncertainties surround the practical-
ity of this approach, particularly regarding fuzzy C-Means’ applica-
tion in partitioning networks with conflicting objectives. Additionally,
population-based metaheuristics might face scalability issues in ad-
dressing multiple conflicting objectives. Moreover, this approach lacks
the capability to learn the heuristics of combinatorial optimization,
which could impact execution time.

Qaffas et al. (2023) proposed the adaptive group-based cuckoo
optimization algorithm to address the controller placement challenge
as a multi-objective optimization. Their study focused on optimizing
an SDN-enabled wireless sensor network, considering reliability con-
straints, timing constraints, and controller installation costs. While the
approach demonstrates the ability to find near-optimal solutions effi-
ciently based on the considered objective functions, scalability concerns
and limitations in predicting the required number of controllers remain.
Additionally, the group-based approach lacks the ability to learn the
heuristics of combinatorial optimization problems. In comparison to the
stochastic computational graph approach proposed in this study, the
Adaptive group-based cuckoo optimization algorithm may be computa-
tionally intensive due to the involvement of heuristic strategies during
the training process.

Radam et al. (2022) propose a hybrid approach using harmony
search and PSO algorithms for multi-controller-based SDN optimiza-
tion. This technique optimizes multiple metrics while facing com-
putational inefficiency challenges. Alouache et al. (2022) employ a
Multi-Objective Genetic Algorithm combined with machine learning to
optimize controller placement for Vehicular networks and 5G. While ca-
pable of calculating placements, this approach may suffer from scalabil-
3

ity and computational inefficiency. Chen et al. (2022b) and Xiang et al.
(2022) harness reinforcement learning techniques to optimize routing
in SDNs and introduce optimal controller placements. These approaches
exhibit potential for addressing the CPP, considering real-time network
conditions. Yazdinejad et al. (2021) propose an SDN controller archi-
tecture for drone management, utilizing machine learning techniques.
While not explicitly related to CPP, it showcases the integration of SDN
and machine learning for optimized network performance. Wu et al.
(2020) introduce a dynamic reinforcement learning-based approach
to CPP, considering load balancing, flow fluctuations, and latency
reduction. This technique exploits historical data and dynamic learning
to achieve optimal controller placement. Chen et al. (2022a) present
an ensemble and message-passing neural network-based deep reinforce-
ment learning model for optical network routing optimization, offering
robust decision-making capabilities. Thalapala et al. (2022) introduce
a unique approach based on the wisdom of artificial crowds, achieving
optimal controller placement while minimizing the number of con-
trollers. Similarly, the cuckoo search algorithm, introduced by Sapkota
et al. (2022), presents a population-based metaheuristic optimization
technique for SD-WAN controller placement. The approach optimizes
conflicting objectives like inter-controller delay, load balancing, and
switch-controller delay. While efficient, scalability and the ability to
learn heuristics may be limited.

Lastly, the authors in Adekoya and Aneiba (2022) introduced
ANSGA-III as a solution for solving the CP challenge within SD-WAN.
ANSGA-III aimed to optimize multiple competing objectives concur-
rently, addressing the complexities of SD-WAN controller placement.
Despite its scalability, capable of handling more than three objectives,
ANSGA-III was observed to be computationally demanding, setting it
apart from the machine learning approach proposed in this study.
Notably, ANSGA-III lacked the ability to acquire the heuristics essential
for solving intricate combinatorial optimization tasks like SD-WAN CP.
An additional limitation was the pre-determined determination of the
number of controllers, potentially leading to either inflated installation
costs or compromised network performance.

Consequently, a pressing necessity emerges for the development of
a novel approach that blends computational efficiency and intelligence
to effectively address the challenges of CPP within the realm of SD-
WAN. This research endeavor seeks to fulfill this demand by harnessing
the stochastic computational graph approach in tandem with ensemble
learning, resulting in a well-rounded solution capable of predicting
optimal controller numbers and locations while efficiently navigating
the intricacies of SD-WAN controller placement.

3. Problem definition

In this research, the CPP in SD-WAN was analyzed. The approach
in this research offered the ideal placement of controllers about SD-
WAN architecture to satisfy multiple network criteria all at once.
While switch-to-controller latency is the most important factor in a
CPP scenario, other competing priorities must be considered. Among
these goals are load balancing, average node-to-controller latency,
maximum controller failure, maximum controller-to-controller latency,
and controller–controller latency.

Based on the findings of this research, a controller placement
method was developed as an unbounded, many-objective CPP. Eqs. (1)
through (6) are where the objective functions of this research are
presented to the reader. The SD-WAN is built in the form of an
undirected graph represented by the equation 𝐺=(𝛺,𝐸), in which 𝛺
represents the collection of switches and 𝐸 represents the links that
exist between the switches. In the meantime, to compute placement,
a distance matrix denoted by the letter D contains information on
the quickest routes between each pair of switches. The delay between
switches 𝛼 and node 𝛽 is represented as 𝑑𝛼𝛽 . Take note that the authors
of this study arrived at their foundation for normalization by dividing

the delay measured in D by the diameter of the corresponding graph.

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba

r

𝜎
t
t
t

T
t
n
t
r
a
r
l

a
c

s
s
t
c
s
t
e
p
d

m
a
t
o
i
t
t
i
c
t
t
n
t
o
t
e
a
t
c
i
s
t
o

𝜂

The solution area is bound to a set of
(𝑚
𝑛

)

positions to get the desired
esult, which is specified by the number of controllers wanted.

According to the findings of this study, placement is referred to as a
-element, where 𝜎 is a subset of 𝛺. The 𝜎-subset of 𝛺, which is a space
hat contains all of the possible options, serves as the solution area for
he CPP. Given a topology with 21 nodes and a specified number of con-
rollers so that 𝜎=7, for example, the set 𝜒 = 3, 4, 7, 9, 15, 16, 19} signifies

controller locations (|𝑃𝐿| = 7. This is an illustrated example. According
to the assumption, the seven controllers need to be positioned at nodes
3, 4, 7, 9, 15, 16, and 33. It is important to keep in mind that moving the
members about in any subset will not result in the creation of any new
combination. Consequently, the overall number of possible locations in
this network is

(21
7

)

, given the circumstances of this particular instance.
It is expected that a set of objectives known as {𝛽1, 𝛽2,… , 𝛽𝑚} is to
be minimized. When all other alternatives for possible placement have
been exhausted, 𝜆 in the solution area, then solution 𝜒 is the optimal
solution. In other words, ∀𝛼 𝛽𝛼(𝑙𝑎𝑚𝑏𝑑𝑎) ≤ 𝛽𝛼(𝜒) and 𝛽𝛼(𝜆) < 𝛽𝛼(𝜒) no
less than one index 𝛼. To address the controller placement problem with
the SCGMEL, it is necessary to ensure that optimal solutions for the
entire solution area reduce as the model progresses towards the optimal
solution, demonstrating that the SCGMEL is capable of minimizing
losses and reaching an optimal solution in less time.

3.1. Objective functions

In this section of the study, a comprehensive overview of the ob-
jectives under scrutiny is provided. For a more in-depth understanding
of these objectives, readers are directed to refer to the study conducted
by Lange et al. (2015). The process of controller placement involves ad-
dressing multiple conflicting objectives within a given configuration of
controllers. These objectives encompass various performance goals that
require careful consideration. The evaluation of the controller’s worst-
case and average switch-to-controller latency constitutes the first two
performance metrics. In essence, these metrics capture the connection
established between a switch and a controller. The determination of
worst-case switch-to-controller latency, as outlined in Eq. (1), entails
assessing the maximum latency observed across all switch-controller
pairs within a particular member placement 𝑃𝐿 ∈ 2𝛺 where 𝛺 is the
set of potential placement. Conversely, Eq. (2) computes the average
switch-to-controller latency by considering the cumulative latency val-
ues between switches and controllers for a given distance matrix 𝐷,
associated with the placement.

These calculations serve as pivotal indicators of network perfor-
mance and connectivity efficiency, shedding light on the quality of
interaction between switches and controllers within the placement
configuration. The examination of worst-case and average latencies in
the context of controller placement facilitates a comprehensive under-
standing of network responsiveness and latency management, crucial
for optimizing the overall functioning of Software-Defined Networking
(SDN) systems.

𝜂𝐿𝑎𝑡−𝑚𝑎𝑥−𝑁2𝐶 (𝑃𝐿)=max
𝜔∈𝛺

min
𝑝𝑙∈𝑃𝐿

𝑑𝜔,𝑝𝑙 , (1)

𝜂𝐿𝑎𝑡−𝑎𝑣𝑔−𝑁2𝐶 (𝑃𝐿)= 1
|𝛺|

∑

𝜔∈𝛺
min
𝑝𝑙∈𝑃𝐿

𝑑𝜔,𝑝𝑙 . (2)

he real-world significance of these metrics becomes palpable when
he tangible implications are put into consideration. Imagine a bustling
etwork environment, where switches communicate with controllers
o facilitate seamless data flow. Eqs. (1) and (2) encapsulate these
eal-world concerns by mathematically quantifying the worst-case and
verage latencies, respectively. These equations unravel the intricate
elationship between placement configurations, distance matrices, and
atency dynamics.

The switch-to-controller latency objective function contributes to
form of dynamic placement, even during the initial deployment of

ontrollers. While the physical positions of the controllers may remain
4

tatic, optimizing switch-to-controller latency ensures efficient and re-
ponsive communication paths between switches and controllers. In
his context, ‘‘dynamic placement’’ does not necessarily mean physi-
ally moving controllers, but rather optimizing the network’s respon-
iveness and adaptability. By minimizing switch-to-controller latency,
he network is better equipped to handle varying traffic patterns,
nsuring that data can quickly reach the appropriate controller for
rocessing and decision-making. This responsiveness is essential for
ynamic network management and efficient resource utilization. .

In the vast expanse of a large-scale network, the deployment of
ultiple controllers brings forth a pivotal need for seamless interaction

nd cohesive information exchange. The harmony between these con-
rollers becomes paramount, as they work in concert to steer network
perations. Amidst this intricate dance, a crucial factor emerges—
nter-controller latency. It is a metric of paramount importance, one
hat holds the key to fostering efficient controller collaborations and
hereby unleashing the network’s true potential. When contemplat-
ng the strategic placement of controllers, the consideration of inter-
ontroller latency becomes non-negotiable. The driving force behind
his imperative lie in the quest to minimize latency, to ensure that
he dialogue between controllers is swift, responsive, and conducive to
etwork harmony. This is not a mere academic abstraction; it mirrors
he real-world dynamics where controllers, much like the conductors
f a symphony, must synchronize their actions seamlessly. Just as
he formulation of Eqs. (1) and (2) serves a specific purpose, the
xpressions represented by Eqs. (3) and (4) fulfill a comparable role,
lbeit with a distinct focus on assessing inter-controller latency. Parallel
o the treatment of switch-to-controller latency, the equations for inter-
ontroller latency intricately account for both the utmost and average
nter-controller latency possibilities. These performance metrics hold
ignificant sway over the cooperative interactions among controllers,
hereby necessitating a comprehensive investigation within the domain
f CPP.
𝐿𝑎𝑡−𝑚𝑎𝑥−𝑁2𝐶 (𝑃𝐿) = max

𝑝𝑙1 ,𝑝𝑙2∈𝑃𝐿
𝑑𝑝𝑙1 ,𝑝𝑙2 , (3)

𝜂𝐿𝑎𝑡−𝑎𝑣𝑔−𝑁2𝐶 (𝑃𝐿) = 1
(

|𝑃𝐿|
2

)

∑

𝑝𝑙1 ,𝑝𝑙2∈𝑃𝐿
𝑑𝑝𝑙1 ,𝑝𝑙2 . (4)

In the pursuit of minimizing latency and optimizing data transmis-
sion pathways, it is imperative to also address the crucial aspect of
controller load balancing, which is vital for maintaining the efficient
functioning of a network. While the other performance metrics consid-
ered in this study were designed for minimization, a distinct imbalance
metric is introduced in this context instead of a balancing measure.
This novel approach aims to achieve a well-distributed load across
the controllers, promoting operational uniformity (Lange et al., 2015).
While the physical positions of the controllers themselves might not
change dynamically, the allocation of switches to controllers is being
optimized in a way that ensures a balanced distribution of network
load. This load-balancing process, even in the context of fixed controller
positions, can be thought of as a dynamic optimization process because
it aims to adapt and optimize the network’s behavior over time and
changing conditions. In the realm of dynamic controller placement, the
number of devices allocated to a specific controller is denoted by the
variable 𝑚𝑝𝑙, where 𝑝𝑙 signifies a particular placement configuration.
Concomitantly, 𝑚𝑝𝑙 represents the count of devices associated with the
placement 𝑝𝑙. To quantitatively capture load distribution disparities,
the imbalance metric is formally defined by Eq. (5) (Lange et al., 2015).
This equation effectively measures the difference in 𝑚𝑝𝑙 values between
the two controllers, specifically the one with the lowest allocation and
the one with the highest allocation of nodes. The introduction of this
imbalance metric contributes to the dynamic placement of controllers,
ensuring load-balancing objectives are dynamically incorporated into
the overall optimization process.

𝜂𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑃𝐿) = max 𝑚𝑝𝑙 − min 𝑚𝑝𝑙 . (5)

𝑝𝑙∈𝑃𝐿 𝑝𝑙∈𝑃𝐿

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba

s
o
t
b

a
t
B
a
e
p

4

o
l
A
s
r
L
t
d
a

t
i
l
t
(
l
(

c
a
d
(
c
o
f
l

e
(
t
a
t

s
c
i
w
t
t
c

T

Furthermore, an investigation into the possibility of maintaining
resilient network operation in the event of controller failures was
conducted as an essential objective within the optimization process of
SD-WAN controller placement.

Consider a set denoted as CL = 2𝑃 ∖ {∅} encompassing all potential
controller positions remaining viable following the hypothetical failure
of up to (𝑛−1) controllers. The average node-to-controller latency under
various failure scenarios is theoretically modeled by Eq. (6).

𝜂𝑎𝑣𝑔−𝑁2𝐶 (𝑃𝐿) = 1
|𝐶𝐿|

∑

𝑃𝐿∈𝐶𝐿

(

1
|𝛺|

∑

𝜔∈𝛺

(

min
𝑝𝑙∈𝑃𝐿

𝑑𝜔,𝑝𝑙

)

)

. (6)

The consideration of resilient operation in the face of controller failures
contributes to the dynamic placement of controllers. Ensuring resilience
against controller failures is a crucial aspect of network design and
optimization, especially in dynamic and rapidly changing environments
like SD-WAN. By incorporating resilience as an objective function, the
controller placement algorithm seeks to find positions that not only
optimize other performance metrics but also ensure that the network
remains operational even in the presence of failures. This contributes
to the dynamic nature of controller placement as it necessitates adapt-
ability and flexibility in the placement strategy to account for potential
failures and maintain network stability. In this context, ‘‘dynamic place-
ment’’ does not necessarily refer to physically moving controllers, but
rather to the ability of the network to dynamically adjust its behavior
and configuration to ensure continued operation and robustness in the
face of failures. The resilience objective ensures that the network is
able to maintain effective communication and operation even if certain
controllers fail, which aligns with the concept of dynamic adaptation.

4. Proposed stochastic computational graph with ensemble learn-
ing model for SD-WAN controller placement

In this section, the research introduces the proposed solution, a
stochastic computational graph with an ensemble learning model, de-
signed to address the CPP in the context of SD-WAN. The CPP holds
paramount importance, particularly within expansive enterprise net-
works like SD-WAN, where determining the optimal number of con-
trollers to deploy and their strategic placement is a pivotal concern,
complicated by competing objectives.

Past successes in solving controller placement issues in SD-WAN
have been achieved through various metaheuristic algorithms, includ-
ing MOPSO, ANSGA-III, and NSGA-II. However, these algorithms often
encounter scalability challenges, particularly when the number of ob-
jectives exceeds three, and are associated with high computational
demands. Notably, these solutions might lack the required level of intel-
ligence to predict the optimal number of controllers needed for efficient
SD-WAN deployment. To overcome these limitations, the proposed
approach leverages a stochastic computational graph coupled with an
ensemble learning technique, specifically XGBoost. This novel strategy
aims to address the issues of scalability, intelligence, and computational
complexity inherent in the aforementioned metaheuristic algorithms.

The proposed approach encompasses several critical components
and algorithms, including stochastic gradient descent, an adaptive ap-
proach for objective function minimization, and the utilization of the
PyTorch machine learning framework. PyTorch streamlines gradient
computations and enables the construction of dataflow graphs, rep-
resenting how data traverses the graph in multi-dimensional arrays.
This not only automates gradient computations but also facilitates the
translation of problem definitions into a format that enhances the
computational graph model’s effectiveness. The computational graph
itself is employed to represent mathematical functions using graph
theory, encapsulating the essence of various objective functions.

A notable feature of the solution is the integration of the XGBoost
model, an ensemble learning technique, to predict the required number
of controllers for an SD-WAN deployment. This predictive capability
5

is invaluable in achieving an intelligent and well-informed controller t
placement strategy. The choice of XGBoost as an ensemble learning
method is rooted in its proven ability to enhance predictive accuracy
and model performance. XGBoost, as a boosting algorithm, falls within
the category of ensemble methods, where the focus is on improving
the capabilities of a single base model through iterative refinement.
XGBoost achieves its ensemble effect through the construction of an
ensemble model comprised of multiple decision trees. Unlike ensemble
of models which involve combining multiple independently trained
models, the ensemble model in this context pertains to the collaborative
operation of multiple decision trees within XGBoost. It is important
to clarify that in this research, the term ‘‘ensemble model’’ refers
pecifically to the collective behavior of the individual decision trees
rchestrated by XGBoost. The emphasis is on iteratively enhancing
he performance of a single model through sequential learning and
oosting, rather than combining distinct independently trained models.

In summary, the proposed stochastic computational graph with
n ensemble learning model offers a promising avenue for solving
he complex challenges associated with SD-WAN controller placement.
y leveraging the strengths of each component and algorithm, the
pproach strives to enhance scalability, intelligence, and computational
fficiency while providing valuable insights into optimal controller
lacement for dynamic and efficient SD-WAN network operation.

.0.1. Proposed stochastic computational graph algorithm description
The algorithm outlined in Algorithm 1 begins by requiring the input

f the zoo topology dataset (Knight et al., 2011), as well as a data
oader for loading tensors (representing controller locations) in batches.
dditionally, the learning rate (a parameter influencing optimization
tep size) and the number of epochs (iterations) are specified. The algo-
ithm then loads essential libraries for calculation (Line 2), such as Data
oader and PyTorch. The dataset is loaded (Line 3) and converted into
ensor format (Line 4). The Haversine function is applied to compute
istances between locations (Line 5), and the study’s objective functions
re computed using a computational graph technique (Line 6).

The algorithm generates a random initial controller location using
he computational graph (Line 7), preserving a copy for later compar-
son (Line 8). A small amount of noise is introduced to the controller
ocation in order to facilitate the computation of gradients (Line 9), and
he instruction to track the operations of the tensor was sent to PyTorch
Line 10). A list is initialized to store losses, validation losses, and total
osses (Line 11), with the final validation loss computed after all epochs
Line 12).

The initial losses are recorded as the best loss (Line 13), and the
ontroller location is marked as the final location. The algorithm enters
loop (Line 14) iterating across sequences in the model. Through the

ata loader (Line 15), each tensor representing the controller location
Line 7) is processed. Objective functions are computed through the
omputational graph, and the computational graph enables the use
f automatic differentiation to compute the gradients of the objective
unction, which can be used to update the parameters (controller
ocations) of the optimization algorithm. (Lines 17–18).

The controller location is updated based on learning rate and gradi-
nts (Lines 19–20), and all objectives are summed to form a single loss
Line 22). Position tensor losses and controller location losses are added
o the training losses (Lines 23–24). Validation losses are accumulated
nd saved (Line 25), and if the current losses are lower than prior losses,
he best loss and final location are updated (Lines 26–33).

A callback rate prevents overfitting (Lines 34–35), and print mes-
ages are displayed every four epochs. Line 36 executes after 10 epochs,
hecking for improvement and terminating algorithms if no progress
s made. The best score is returned at an early stop (Line 42), along
ith optimal controller placement sites (Line 43). This algorithm op-

imizes SD-WAN controller placement, addressing conflicting objec-
ives and leveraging an ensemble learning model within a stochastic
omputational graph framework.

he below explanation substantiates the statement in Line 22 of

he algorithm that all objectives are summed to form a single loss

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
In the context of optimizing SD-WAN controller placement with
six distinct objectives, it is crucial to differentiate between differen-
tiable and non-differentiable objectives for a comprehensive evaluation
of the optimization process and the eventual outcome. Among these
objectives, four are differentiable, including average and worst-case
switch-controller latency, as well as average and worst-case controller–
controller latency. These differentiable objectives are amenable to a
computational graph approach and can be optimized using gradient-
based techniques, such as stochastic gradient descent (SGD), as demon-
strated in this study.

On the other hand, the remaining two objectives, load balancing,
and average controller resilience, are non-differentiable metrics. Unlike
differentiable objectives, non-differentiable metrics cannot be directly
optimized using gradient information, posing a challenge for standard
gradient-based methods like SGD. In response to this challenge, a
weighted approach is employed to transform non-differentiable objec-
tives into scalar metrics, thereby enabling their inclusion within the
optimization process.

In this study, each objective is assigned a weight to indicate its
relative significance. This weighted approach facilitates the amalga-
mation of all six objectives into a unified optimization problem. By
merging the differentiable objectives, which are amenable to gradient
calculation, with the non-differentiable metrics, treated as scalar values
with weights, a holistic optimization problem is formulated. This com-
prehensive approach considers all objectives and aims to achieve the
optimal controller placement for SD-WAN while accounting for diverse
performance criteria.

The incorporation of weighted values for non-differentiable met-
rics, accompanied by the weighted-based approach, is instrumental in
transforming the individual objectives into a cohesive scalar function.
Consequently, this approach allows for trade-off balancing between
different objectives, culminating in the synthesis of a singular weighted
objective function that encapsulates all six objectives. The allocation of
weights to each objective provides the algorithm with the flexibility
to navigate trade-offs, ensuring an optimal controller placement that
aligns with multifaceted performance criteria.

This integrated approach substantiates the statement in Line 22 of
the algorithm, wherein all objectives are aggregated to form a single
loss. By leveraging the weighted-based approach, this study achieves
the harmonious integration of differentiable and non-differentiable ob-
jectives, thereby enhancing the efficacy of gradient-based optimization
methods for differentiable objectives, while appreciating the signifi-
cance of non-differentiable metrics. The combined weighted objective
function encapsulates all objectives, endorsing a comprehensive and
multi-criteria approach to SD-WAN controller placement optimization.

4.0.2. Flowchart description of the proposed stochastic computational graph
algorithm

The flowchart detailing the algorithm 1 is presented here, providing
a succinct overview to enhance comprehension of the proposed method,
as visually depicted in 1. The depicted flowchart serves as a guide
to grasp the algorithm’s functionality, illustrating the key steps and
interactions.

Input Definition: The first box encompasses the algorithm’s inputs,
mirroring the parameters highlighted in algorithm 1. These inputs
include the dataset (with the zoo topology and other relevant informa-
tion), as well as fundamental tuning parameters such as the learning
rate, momentum, decay rate, number of epochs, data loader configura-
tion, and early stopping criteria. Corresponding to the details outlined
in algorithm 1, each parameter’s significance is reiterated.

Data Preparation: In the second box, the dataset provided in
coordinate format undergoes a transformation into the tensor format,
a requisite step for seamless integration with the computational graph
framework. The Haversine function is then employed to compute the
geographical distance between distinct locations.
6

Fig. 1. The flowchart of the proposed Stochastic Computational Graph.

Objective Function Definition: The third box defines the set of
objective functions central to the optimization of controller place-
ment. These objectives encompass vital performance metrics, includ-
ing maximum switch-to-controller latency, load balancing, average
controller-to-controller latency, maximum controller-to-controller la-
tency, average switch-to-controller latency, and maximum controller
resilience. Initial Controller Placement: Box four illustrates the
generation of the initial controller locations using PyTorch

tensors. To facilitate comparison between initial and final controller
positions concerning loss functions, the initial positions are duplicated.
A controlled amount of noise is introduced to the controller locations
to facilitate gradient computation.

Loss Function Calculation: The fifth box delineates the process of
calculating loss functions. PyTorch is instructed to monitor the oper-
ations involving decision variables (controller locations). Placeholder
variables are defined to capture training loss, validation loss, and
aggregate loss.

Iterative Optimization: The subsequent flowchart boxes mirror
the iterative optimization process expounded in algorithm 1. As the
description for algorithm 1 remains consistent for these subsequent

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Algorithm 1 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑜𝑟
𝑆𝐷 − 𝑊𝐴𝑁 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑟𝑎𝑝ℎ
1: Require: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡, 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(∅∞), 𝑛𝑒𝑝𝑜𝑐ℎ𝑠,

𝑑𝑎𝑡𝑎𝑙𝑜𝑎𝑑𝑒𝑟(𝑑𝑙), 𝑒𝑎𝑟𝑙𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒,
𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒, 𝑎𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

2: 𝐿𝑜𝑎𝑑 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠
3: 𝐿𝑜𝑎𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 (𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 − 𝑏𝑎𝑠𝑒𝑑)
4: 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑖𝑛𝑡𝑜 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑠
5: 𝐷𝑒𝑓𝑖𝑛𝑒 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

2(𝑟)𝑎𝑟𝑐𝑠𝑖𝑛
(
√

𝑠𝑖𝑛2
(

𝛽1−𝛽2
2

)

+𝑐𝑜𝑠(𝛽1)𝑐𝑜𝑠(𝛽2)𝑠𝑖𝑛2
(

𝛼1−𝛼2
2

)

)

6: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑟𝑎𝑝ℎ (𝐶𝐺) 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

7: 𝑈𝑠𝑒 𝐶𝐺 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

8: 𝐶𝑙𝑜𝑛𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑙𝑎𝑡𝑒𝑟 𝑢𝑠𝑒
9: 𝐴𝑑𝑑 𝑙𝑖𝑡𝑡𝑙𝑒 𝑛𝑜𝑖𝑠𝑒 𝑡𝑜 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 ℎ𝑒𝑙𝑝 𝑖𝑛

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
10: 𝑇 𝑒𝑙𝑙 𝑃 𝑦𝑇 𝑜𝑟𝑐ℎ 𝑡𝑜 𝑡𝑟𝑎𝑐𝑘 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑇 𝑒𝑛𝑠𝑜𝑟
11: 𝐶𝑟𝑒𝑎𝑡𝑒 𝑙𝑖𝑠𝑡 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠𝑒𝑠, 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠, 𝑙𝑜𝑠𝑠𝑒𝑠𝑠𝑢𝑚
12: 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠, = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑜𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 𝑎𝑙𝑙 𝑒𝑝𝑜𝑐ℎ 𝑖𝑠 𝑑𝑜𝑛𝑒
13: 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠, 𝑎𝑛𝑑 𝑓𝑖𝑛𝑎𝑙𝑙𝑜𝑐𝑠 = 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠
14: for 𝑒𝑝𝑜𝑐ℎ𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒(𝑛𝑒𝑝𝑜𝑐ℎ𝑠) do
15: 𝑅𝑢𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑢𝑠𝑖𝑛𝑔 𝑑𝑙
16: for 𝑝𝑜𝑠𝑡𝑒𝑛𝑠𝑜𝑟 𝑖𝑛 𝑑𝑙 do
17: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑙𝑜𝑠𝑠2, 𝑙𝑜𝑠𝑠, 𝑙𝑜𝑠𝑠.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

(𝑃𝑦𝑇 𝑜𝑟𝑐ℎ𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑)
18: 𝑙𝑜𝑠𝑠2 = 𝑓𝑖𝑟𝑠𝑡 + 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑙𝑜𝑠𝑠 =

𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑎𝑛𝑑 𝑙𝑜𝑠𝑠.𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑=
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 (𝑃𝑦𝑇 𝑜𝑟𝑐ℎ𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑)

19: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 1 + 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 ∗ 𝑛𝑜𝑒𝑝𝑜𝑐ℎ ∗
𝑎0, 𝑤ℎ𝑒𝑟𝑒 𝑎0 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

20: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠 = 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠 − 𝑛𝑒𝑤 𝑙𝑟(𝑎1) ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡+𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∗
𝑐ℎ𝑎𝑛𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒=𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒

21: end for
22: 𝐴𝑑𝑑 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑓𝑜𝑟𝑚 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑜𝑠𝑠

23: 𝑎𝑝𝑝𝑒𝑛𝑑
(

𝑎𝑙𝑙𝑙𝑜𝑠𝑠𝑒𝑠(𝑝𝑜𝑠𝑡𝑒𝑛𝑠𝑜𝑟𝑠, 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠)
)

𝑡𝑜 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠𝑒𝑠

24: 𝑠𝑒𝑡 𝑎𝑙𝑙𝑙𝑜𝑠𝑠𝑒𝑠
(

𝑝𝑜𝑠𝑡𝑒𝑛𝑠𝑜𝑟𝑠, 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠)
)

𝑡𝑜 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠
25: 𝑠𝑢𝑚 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝑖𝑛 𝑙𝑜𝑠𝑠𝑒𝑠
26: if 𝑒𝑝𝑜𝑐ℎ > 0 then
27: if 𝑙𝑜𝑠𝑠𝑒𝑠 < 𝑚𝑖𝑛(𝑙𝑜𝑠𝑠𝑒𝑠𝑠𝑢𝑚 then
28: 𝑓𝑖𝑛𝑎𝑙𝑙𝑜𝑐𝑠 = 𝑐𝑜𝑛𝑡𝑙𝑜𝑐𝑠.𝑐𝑙𝑜𝑛𝑒()
29: 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠 = 𝑣𝑎𝑙𝑙𝑜𝑠𝑠
30: 𝑎𝑝𝑝𝑒𝑛𝑑 𝑣𝑎𝑙𝑙𝑜𝑠𝑠 𝑡𝑜 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑒𝑠
31: 𝑎𝑝𝑝𝑒𝑛𝑑 𝑙𝑜𝑠𝑠𝑒𝑠 𝑡𝑜 𝑙𝑜𝑠𝑠𝑒𝑠𝑠𝑢𝑚
32: end if
33: end if
34: if 𝑒𝑝𝑜𝑐ℎ mod 𝑣𝑒𝑟𝑏𝑜𝑠𝑒==0 then
35: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑒𝑎𝑐ℎ 𝑣𝑎𝑙𝑙𝑜𝑠𝑠𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑜𝑠𝑠𝑒𝑠
36: if 𝑒𝑝𝑜𝑐ℎ > 𝑒𝑎𝑟𝑙𝑦 − 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 then
37: if 𝑚𝑖𝑛(𝑙𝑜𝑠𝑠𝑒𝑠𝑠𝑢𝑚[−𝑒𝑎𝑟𝑙𝑦− 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 ∶]) > 𝑚𝑖𝑛(𝑙𝑜𝑠𝑠𝑒𝑠𝑠𝑢𝑚 then
38: end if
39: end if
40: end if
41: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑎𝑡 𝑒𝑎𝑟𝑙𝑦 − 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔
42: end for
43: Expected ∶ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

steps, readers are encouraged to refer to the algorithm’s explanation

to avoid redundancy.
7

Fig. 2. The flowchart of the proposed Ensemble Learning method (XGBoost).

4.0.3. The flowchart of the proposed XGBoost model
By consolidating the flowchart description with that of algorithm 1,

the aim is to eliminate repetition and ensure a seamless transition from
textual to visual representation. This approach facilitates a deeper un-
derstanding of the proposed stochastic computational graph algorithm
and its intricate details.

The proposed stochastic computational graph is detailed in Al-
gorithm 1, while its corresponding flowchart is depicted in Fig. 1.
In a parallel manner, the flowchart and algorithm encompassing the
proposed XGBoost are presented. The descriptions of these compo-
nents seamlessly follow the elucidation of the stochastic computational
graph flowchart. This structured approach ensures a coherent and
comprehensive understanding of the entire methodology.

4.0.4. The description of the proposed xgboost model flowchart
The flowchart, presented in Fig. 2, illustrates the XGBoost employed

to determine the optimal number of controllers required for SD-WAN’s
optimal placement. This model plays a crucial role in enhancing the
efficiency and effectiveness of controller deployment. The choice of
XGBoost as an ensemble learning method is rooted in its proven ability
to enhance predictive accuracy and model performance (Mamun et al.,
2022). XGBoost, as a boosting algorithm, falls within the category of
ensemble methods, where the focus is on improving the capabilities
of a single base model through iterative refinement. XGBoost achieves
its ensemble effect through the construction of an ensemble model

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba

o
p

m
i
j
c
i

1
1

1

1

1

1

1

1

comprised of multiple decision trees. Unlike ensemble of models
which involves combining multiple independently trained models, the
ensemble model (XGBoost) in this context pertains to the collabo-
rative operation of multiple decision trees within XGBoost (Montiel
et al., 2020). The ensemble learning model, its methodology, and its
application are detailed in the following discussion.

Input Loading and Preprocessing: The process begins with load-
ing geographical datasets from the zoo topology (Knight et al., 2011),
which consists of diverse WAN datasets from 242 service providers.
These datasets are sourced from the zoo topology directory, a repository
for real-world WAN datasets used for research purposes. The loaded
datasets are then converted into a tensor format, and the haversine
distance formula calculates distances between geographical locations.

Objective Function Definitions and Seed Value Specification:
The third box establishes the objective functions used for calculating
controller placement. Additionally, the population size and seed value
are specified to ensure reproducibility and consistency in the results.

Random Initial Controller Location Generation: A random set
f initial controller locations is generated to initiate the optimization
rocess.
Stochastic Computational Graph Model for Controller Place-
ent: In Box 6, the proposed stochastic computational graph model

s utilized to optimize the decision variables based on the defined ob-
ective functions. This approach facilitates the identification of optimal
ontroller placement, and the resulting overall loss plays a pivotal role
n determining the required number of controllers.
Optimal Controller Number Estimation: Box eight employs the

overall loss function obtained from the previous step to estimate the
optimal number of controllers. This is achieved through the application
of the elbow method, a technique that aids in identifying the inflection
point where the overall loss starts to plateau. This point corresponds to
the optimal number of controllers needed for SD-WAN deployment.

Feature Engineering and Dataset Preparation: Boxes nine to thir-
teen involve the preparation of data for the XGBoost model. Multiple
steps are undertaken, including merging datasets from the zoo topol-
ogy, performing feature engineering, and extracting essential features
from the dataset.

Prediction of Optimal Controller Number with XGBoost: The
subsequent sequence of boxes focuses on predicting the suitable num-
ber of controllers using the XGBoost model. This prediction is based on
various dataset features and leverages feature engineering techniques.

Correlation Analysis and Model Preparation: In Box fifteen, cor-
relation analysis is conducted between the features (X) and the target
variable (number of controllers) to assess the model’s potential perfor-
mance. This step helps determine the suitability of the selected features
for accurate prediction.

Training and Performance Evaluation with XGBoost: The sub-
sequent stages encompass the training of the XGBoost model. The
dataset is split into training (80%) and testing (20%) subsets, and the
mean absolute error is utilized as a performance metric to evaluate the
model’s predictive accuracy.

Model Training Process and Optimal Controller Number Predic-
tion: The final box encapsulates the training process of the XGBoost
model, leading to the prediction of the required number of controllers.
This prediction is based on the model’s

learned patterns and insights from the feature-engineered dataset.
With the comprehensive understanding gained from the elucidation

of flowcharts and their corresponding explanations, the research now
introduces the proposed ensemble learning algorithm. As delineated in
the depiction of the proposed XGBoost within the flowchart in Fig. 2,
the identical elucidation provided for this flowchart is equally appli-
cable to the description of the corresponding algorithm. The reader
8

should please refer to the 4.0.3.
Algorithm 2 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑜
𝑃 𝑟𝑒𝑑𝑖𝑐𝑡 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑁𝑢𝑚𝑏𝑒𝑟
𝑖𝑛 𝑆𝐷 −𝑊𝐴𝑁 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
1: Require: 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑏𝑎𝑠𝑒𝑑

𝑑𝑎𝑡𝑎𝑠𝑒𝑡
2: 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑖𝑛𝑡𝑜 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓𝑜𝑟𝑚𝑎𝑡𝑠
3: 𝐷𝑒𝑓𝑖𝑛𝑒 ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

2(𝑟)𝑎𝑟𝑐𝑠𝑖𝑛
(
√

𝑠𝑖𝑛2
(

𝛽1−𝛽2
2

)

+𝑐𝑜𝑠(𝛽1)𝑐𝑜𝑠(𝛽2)𝑠𝑖𝑛2
(

𝛼1−𝛼2
2

)

)

4: 𝐷𝑒𝑓𝑖𝑛𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑔𝑟𝑎𝑝ℎ 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

5: 𝑆𝑝𝑒𝑐𝑖𝑓𝑦 𝑠𝑒𝑒𝑑 𝑎𝑛𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
6: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
7: 𝑈𝑠𝑒 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑟𝑎𝑝ℎ 𝑚𝑜𝑑𝑒𝑙 𝑡𝑜

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠
8: 𝑂𝑏𝑡𝑎𝑖𝑛 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝
9: 𝐹 𝑖𝑛𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑜𝑠𝑠 𝑢𝑠𝑖𝑛𝑔 𝑒𝑙𝑏𝑜𝑤 𝑚𝑒𝑡ℎ𝑜𝑑
0: 𝑀𝑒𝑟𝑔𝑒 𝑎𝑙𝑙 242 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑧𝑜𝑜 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦
1: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 𝑡𝑜 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
2: 𝐺𝑒𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑙𝑖𝑘𝑒 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
3: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑚𝑒𝑎𝑛, 𝑚𝑒𝑑𝑖𝑎𝑛, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚, 𝑠𝑢𝑚,

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑥 𝑎𝑟𝑒𝑎, 𝑢𝑝𝑝𝑒𝑟 𝑎𝑛𝑑 𝑙𝑜𝑤𝑒𝑟
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑠, 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑢𝑠𝑖𝑛𝑔
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑒𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔

4: 𝐵𝑢𝑖𝑙𝑑 𝑢𝑝 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑎𝑛𝑑 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓
𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟)

5: 𝐿𝑜𝑎𝑑 𝑡ℎ𝑒 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙 𝑋𝐺𝐵𝑜𝑜𝑠𝑡
𝑎𝑛𝑑 𝑠𝑝𝑙𝑖𝑡 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑋 𝑜𝑓 80% 𝑎𝑛𝑑 𝑦 𝑜𝑓 20%

6: 𝑇 𝑟𝑎𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑑 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑖𝑡
𝑤𝑖𝑡ℎ 𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

7: Expected ∶ 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠

4.1. Description of the computational graph in the proposed solution

A computational graph is a potent tool that translates mathemat-
ical functions into a graph theory framework. It simplifies intricate
mathematical relationships by organizing elements as nodes or edges
in a graph (Evins, 2013). In a computational network, nodes can
represent input values or functions that combine various values (Kim
et al., 2022). Objective functions, pivotal in optimizing controllers,
typically manifest mathematically, as showcased in Section 3. To lever-
age the potency of graph theory, this study embraces a computational
graph approach to encapsulate objective functions. By mapping these
functions onto a computational graph, the model efficiently interprets
and executes them, thereby amplifying performance and operational
fluency. Prominent machine learning frameworks, such as PyTorch and
TensorFlow (Paszke et al., 2017) and De Rainville et al. (2012), heavily
lean on constructing these computational graphs. These graphs facili-
tate back-propagation, vital for gradient calculation within a network.
Backpropagation involves estimating the gradient of an input weight,
which gauges loss change due to slight weight adjustment (Gao et al.,
2020). To curtail overall loss and expedite training convergence, the
weight undergoes iterative refinement using computed gradient, learn-
ing rate, and optimization parameters like momentum and learning
decay rate.

The computational graph approach resonates with the multifaceted
nature of SD-WAN controller placement, offering a unified framework

for both differentiable and non-differentiable objectives. It seamlessly

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
integrates with machine learning models, embraces a weighted ap-
proach for conflicting metrics, and ensures scalability and efficiency
for large-scale network optimization. This holistic approach empow-
ers informed decisions, enabling optimal controller placement while
accommodating diverse performance criteria.

The choice of the computational graph approach in this re-
search is well-justified based on the following reasons: Optimiza-
tion of Objective Functions: The computational graph approach is
used to optimize the objective functions for SD-WAN controller place-
ment. This approach is chosen because it allows us to systematically
analyze and minimize multiple conflicting objectives, such as switch-to-
controller latency, controller load balancing, and controller resilience.
The computational graph provides a structured framework to rep-
resent and calculate these objectives, facilitating their simultaneous
optimization.

Differentiable and Non-Differentiable Objectives: The proposed
method involves both differentiable and non-differentiable objectives.
Differentiable objectives, such as latency metrics, can be seamlessly
integrated into the computational graph and optimized using gradient-
based methods like stochastic gradient descent (SGD). On the other
hand, non-differentiable objectives, like load balancing and controller
resilience, pose challenges for traditional optimization algorithms. The
computational graph allows us to handle both types of objectives within
a unified framework.

Weighted Approach for Non-Differentiable Objectives: The com-
putational graph’s flexibility enables us to incorporate a weighted
approach for non-differentiable objectives. By assigning appropriate
weights to each objective, we can convert non-differentiable metrics
into scalar values and include them in the optimization process. This
ensures that the optimization process considers the trade-offs between
different objectives, enhancing the overall quality of the controller
placement.

Integration with Machine Learning Models: The computational
graph seamlessly integrates with machine learning models, such as
XGBoost. In the flowchart, we see how the computational graph’s
outputs, including the overall loss and controller locations, feed into
the ensemble learning model. This integration allows us to harness the
power of machine learning to predict the optimal number of controllers
based on the computed losses and other features.

Scalability and Efficiency: The computational graph approach pro-
vides a scalable and efficient means of optimizing complex objective
functions. This is particularly important in large-scale networks like SD-
WAN, where numerous variables and objectives need to be considered.
The graph structure optimizes computations and allows for parallel
processing, leading to faster convergence and improved efficiency.

4.2. Description of the stochastic gradient descent in the proposed solution

Stochastic Gradient Descent emerges as a pivotal optimization algo-
rithm extensively harnessed in the realm of machine learning (Yazan
and Talu, 2017). Its seamless integration with back-propagation, par-
ticularly through frameworks like PyTorch, has solidified its status as a
cornerstone for training neural networks. SGD stands as a strategic op-
timization approach uniquely tailored to tackle the intricate challenges
posed by SD-WAN controller placement. The selection of SGD is firmly
rooted in its remarkable compatibility with the computational graph
model central to this study’s methodology. As previously elucidated,
the computational graph forms the backbone for optimizing objective
functions, making SGD a natural fit for traversing this dynamic land-
scape. This symbiotic partnership between SGD and the computational
graph manifests in a synergistic optimization process that navigates the
intricate web of controller placement decisions.

The synergy begins with SGD’s prowess in handling differentiable
objectives, seamlessly aligning with the computational graph’s capacity
to manage such functions. This seamless alignment allows for a har-
9

monious optimization process, refining placement decisions iteratively
and culminating in well-informed outcomes. The iterative nature of
SGD mirrors the step-by-step construction of the computational graph,
forming a complementary relationship that propels the optimization
journey forward. Crucially, the dynamic nature of SGD’s learning rate
brings adaptability to the forefront. This adaptability fine-tunes the
step size to the unique contours of the optimization landscape. By
dynamically adjusting the learning rate, SGD accelerates convergence
speed and intricately refines controller placement—a critical aspect
when striving to meet the diverse performance criteria intrinsic to
SD-WAN. The symbiotic dance between SGD and the computational
graph is further enriched by their parallel processing capabilities. As
SGD’s iterations unfold, the computational graph adapts concurrently,
efficiently exploiting parallelism to hasten convergence. This seamless
interaction caters to the demands of large-scale networks like SD-WAN,
where numerous variables and objectives intertwine. In summation, the
strategic adoption of SGD harmonizes with the dynamic computational
graph model, culminating in an optimization strategy that adeptly
leverages the graph’s versatility. This union navigates the intricate
network terrain with efficiency and precision, orchestrating an iterative
ballet that converges towards optimal placement decisions, each step
informed by the seamless interplay between SGD’s adaptability and the
computational graph’s dynamic construction.

4.3. Learning rate

In Chee and Toulis (2018), the impact of the learning rate on the
gradient descent algorithm is emphasized. The learning rate determines
the scale of parameter updates as the algorithm progresses downhill. It
has a dual role in influencing the speed of knowledge acquisition by
the model and the reduction of the cost function. Machine learning
involves two types of parameters: machine-learnable parameters ad-
justed autonomously by algorithms and hyper-parameters set by data
scientists. The latter fine-tune the learning process to enhance predic-
tive accuracy. Represented as 𝛼, determining the optimal learning rate
is challenging. This research employs a time-decaying learning rate,
making the learning process dynamic rather than static, which adapts
to the problem’s complexity over time. This approach ensures a flexible
and precise optimization trajectory.

4.4. Stochastic gradient descent with momentum

Incorporating momentum into stochastic gradient descent, known
as SGD with momentum (Liu et al., 2020), introduces a memory ele-
ment that retains a portion of the prior vector update while computing
the next one. This augmentation enhances the optimization process
by helping SGD navigate past local minima and converge towards the
global optimum. Combining momentum with SGD accelerates opti-
mization and aids in avoiding the challenges of selecting an optimal
learning rate, which can lead to getting stuck in local minima or
slow convergence. In the context of the proposed solution’s optimiza-
tion phase, this investigation introduces historical information into
parameter updates through momentum. The momentum component
is influenced by gradients observed in previous iterations. By incor-
porating momentum, the proposed technique mitigates the impact of
increased learning pace and ensures training consistency. It is crucial
to retain a record of recent vector modifications to account for them
in subsequent computations, contributing to the overall stability and
effectiveness of the optimization process.

4.5. Learning rate decay

Learning rate decay, as discussed in You et al. (2019), is instrumen-
tal in guiding the model towards the global optimum and mitigating
oscillations observed in traditional SGD without momentum and learn-

ing rate decay. The recommended SGD optimization model integrates

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba

T
p
d
t

an adaptive learning rate decay strategy, which assesses the signif-
icance of prior updates in the optimization process. This approach
gradually moderates the training pace, reducing manual intervention
and parameter adjustments. The outcome is a reduction in oscilla-
tion and expedited convergence, underscoring the advantages of a
moderated learning rate.

4.6. Execution time

The execution time of a computer program holds significant im-
portance in assessing system performance (Stattelmann et al., 2014).
It reflects the duration for executing instructions within algorithms
or models. The goal is to minimize execution time, achieved by opti-
mizing the number of steps needed to complete tasks. Tracking time
intervals involves counting clock ticks between the start and end of
events, yielding accurate measurements. In the realm of computer sci-
ence and software engineering, execution refers to the implementation
of program commands, with each code line representing a distinct
task. Evaluation of non-functional aspects often necessitates estimating
execution time. To this end, techniques fall into static and dynamic cat-
egories. Static methods predict task completion time through structural
code analysis and hardware modeling. Dynamic approaches involve
running the program for estimation, sometimes coupling static analysis
for prediction. Notably, static timing analysis estimates worst-case
execution time. This research employs dynamic timing analysis on
the proposed and state-of-the-art optimization algorithms to estimate
execution time. Run-time libraries play a role, and execution time
involves interpreting instructions to execute tasks.

4.7. Average CPU usage

Average CPU Utilization: Average CPU usage quantifies the work-
load a CPU handles to complete assigned tasks (Domingues et al.,
2005). Elevated CPU usage can detrimentally affect system perfor-
mance, necessitating vigilant monitoring. The Python System and Pro-
cess Utilities module, or psutil, provides insights into active processes
and system utilization (CPU, memory, load). Primarily employed for
system monitoring and process management, it gauges core load per-
centages for performance assessment. Evaluating hardware resource
consumption during program execution is vital to gauge program ef-
fectiveness and its impact on resource utilization.

4.8. Total CPU usage

Total CPU Usage: Total CPU usage quantifies the entirety of pro-
cessing power allocated to execute an algorithm (Rashid et al., 2018).
The cumulative CPU percentage employed since the initiation of the
procedure is denoted as the total CPU percent. It signifies the com-
prehensive CPU utilization by the process from its inception. In this
study, the total CPU was computed by multiplying the execution time
with the average CPU utilization. The execution time of the algorithm
was measured using the time module (DateTime) in the experiment.
The datetime.now() function was invoked before the script’s com-
mencement, while the end time was recorded using the same method
just before the script’s culmination. The time module serves diverse
purposes in this experiment, encompassing timestamping at procedure
initiation and conclusion, ultimately calculating the ‘‘execution time’’
by determining the temporal difference between the two timestamps.

4.9. Mean absolute error

Mean Absolute Error (MAE), as described in Qi et al. (2020), rep-
resents the average magnitude of discrepancies between actual and
predicted values. Another interpretation characterizes it as the mean
difference between observed data and predicted outcomes. By disre-
garding the sign of deviations, the potential for offsetting between
10
opposing numerical values is mitigated. In the context of this research,
the efficacy of a regression model is assessed through the MAE metric.
A higher MAE, considerably distant from zero, indicates sub-optimal
performance, while an MAE closer to or equal to zero signifies a nearly
flawless model with minimal prediction errors. It is important to note
that the interpretation of MAE’s effectiveness depends on context. For
instance, in this study, a lower value of MAE, approaching zero, is
considered indicative of superior model performance.

5. Experimentation

For this experiment, a computer with an Intel Core i7-6820HQ
processor running at 2.70 GHz, 1600 MHz DDR3 RAM with 64 GB,
and a Microsoft Windows 10 Professional Edition operating system was
used. For the purpose of the experiment, Python programming language
was utilized. In order to build the code, Jupyter notebook version
6.3.0 was utilized. The code is accessible as open-source with the link
provided at this web address https://tinyurl.com/2p95ad26. In this
study, the automatic differentiation and computation of gradients were
done with the help of the machine learning package known as PyTorch.
TensorFlow PyTorch was used to create the decision variables, which
were then changed to tensor format to make PyTorch easier to use. A
tensor container was used to store the initial location of the controller.
This location was chosen at random from the members of the dataset.
In order to load the tensors in batches, a dataloader was employed.
Multiple competing objectives for SD-WAN controller location were
optimized using stochastic gradient descent. The number of controllers
was predicted using XGBoost, a gradient-descent tree regression model.

The main purpose of this research is to determine how many SD-
WAN controllers are required to build up the topology and where in
the WAN topology to place them in order to achieve various goals.
The WAN topology used in this study was gotten from the Internet
Zoo topology (Knight et al., 2011). This study makes use of the entire
datasets in the zoo topology, which consist of 242 datasets from differ-
ent service providers, for the prediction of the number of controllers,
while one dataset (BtEurope) was used for the placement of controllers,
so that competing objectives may all be met. Feature engineering was
performed on the available data to extract important features which
help in building the data used in the number of controller predictions.
The X features consist of features such as the longitude, latitude, size
of the datasets, the mean distance, maximum distance, and standard
deviation, the lower (25%) and upper (75%) percentile. Meanwhile, the
𝑦 features which represent the target variable consist of the number of
controllers. There are a total of six objectives to this research: latency
from switch to controller on average, maximum latency from switch to
the controller, latency from the controller to the controller on average,
maximum latency from the controller to controller, resilience regarding
controller failure, and load balancing (load imbalance). The settings
were established using the following variables. The learning rate was
0.01, the total amount of objectives was 6, the number of tensors
(controller location) was 7, the epoch numbers were 200, the early
stopping (callback operation) was 10, and the seed value (reproducible)
was 12. The training data was 80% while the test data was 20%.

6. Results and discussion

This section presents a comprehensive summary of the experimental
outcomes. The study undertakes a comparative analysis, juxtaposing
the results of the Stochastic Computational Graph with Ensemble Learn-
ing against those of ANSGA-III, NSGA-II, and MOPSO algorithms. The
culmination of these analyses is visually depicted in Figures 3 to 19.

he central objective of this research revolves around strategically
ositioning SD-WAN controllers within the WAN topology to attain
iverse objectives while optimizing the number of controllers. To attain
he insights elucidated in this study, six critical aspects of the SD-WAN

https://tinyurl.com/2p95ad26

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 3. Image showing the BtEurope Dataset.

controller placement quandary were scrutinized. These aspects encom-
passed vital performance indicators such as execution time, average
CPU usage, average core load, total CPU usage, and regression model
performance gauged by the mean absolute error. The pivotal attributes
under consideration encompassed latency from average switch to con-
troller, maximum switch-to-controller latency, average controller-to-
controller latency, maximum controller-to-controller latency, controller
resilience in the face of failures, and load balancing.

In the pursuit of equitable comparison, both the proposed algorithm
and the bench-marked counterparts were subjected to identical data
observations. Parameters under scrutiny encompassed initial and final
controller placements, execution time, average CPU usage, average core
load, and total CPU usage—with the latter computed as the product
of execution time and average CPU utilization. Similarly, in a bid
to facilitate comprehensive comparison and validation, all algorithms
underwent meticulous amalgamation. The transition of initial and fi-
nal controller positions was mapped onto corresponding location data
frames, articulated in a coordinate-based format. All the algorithms
were combined to enhance comparison and validation. The initial and
final controller locations were mapped back to the corresponding loca-
tion data frames (coordinates-based form), and the haversine distance
function was used to calculate the distance between the locations.

The initial and final losses were determined based on the initial and
final controller locations, utilizing the respective objective functions.
The disparity in total loss between the initial and final states was
then computed. This process was executed for all pertinent objective
functions. Subsequently, the average of these losses across all objectives
within each algorithm was computed for assessment. These procedures
serve as a basis for evaluating the models’ performance.

The subsequent sections delve into the analysis and interpretation
of the experimental outcomes. To corroborate the presented results,
readers are encouraged to refer to the provided link for validation:
https://tinyurl.com/2p95ad26.

The visual representations encapsulated in Figs. 3, 4, and 5 provides
an insightful depiction of the BTEurope dataset, the initial and final
controller placements orchestrated by the stochastic computational
graph model. Fig. 6 emerges as a pivotal cornerstone, unveiling the
11

initial controller’s spatial disposition, its corresponding coordinates,
Fig. 4. Image showing the Starting Controller Location.

Fig. 5. Image showing the Final Controller Location.

and the encompassing initial loss. This image assumes paramount
significance as it serves as a barometer to gauge the model’s efficacy
post-controller optimization. From the contours of Fig. 6, a discernible
initial controller overall loss of 4988.71 emerges, encapsulating the
baseline performance metrics. In tandem, Fig. 7 occupies the spotlight,
unfurling the overarching loss achieved by the proposed stochastic
computational graph model without the inclusion of decay rate and
momentum. Evidently, the model converges at epoch 209, culminating
in an overall loss of 1580.04. This visualization underscores the model’s
propensity to optimize and refine its performance over iterations. Fig. 8
elegantly charts the trajectory of overall training and validation, juxta-
posed against the total loss. This compelling graph unveils a noteworthy
trend: as the number of epochs escalates, the proposed computational
graph model diligently curbs the loss function. This phenomenon,
whereby the loss steadily diminishes with escalating epochs, signifies
the model’s progressive quest for convergence. A pivotal facet here is
the employment of a callback operation (early stopping), a strategic
maneuver to preempt overfitting. This operation ensures that the model
deftly halts when further training ceases to yield a reduction in loss, ef-
fectively attaining convergence and forestalling unnecessary iterations.
Collectively, these graphical representations interweave to construct a
nuanced narrative, underscoring the efficacy of the stochastic compu-
tational graph model and its intricate interplay with vital components
such as decay rate, momentum, and early stopping mechanisms.

The visual representation encapsulated in Fig. 9 offers a profound
insight into the overarching score and the pivotal epochs that culminate
in model convergence. This outcome is a direct consequence of the
strategic incorporation of decay rate and momentum into the model’s
architecture. Notably, the convergence point is distinctly marked at
epoch 66, signifying a critical juncture in the optimization process. The
crux of this analysis revolves around the profound impact of momentum
and decay rate on the proposed stochastic computational model. It
is manifestly evident that the integration of these dynamic elements
imparts a remarkable advantage. Comparatively, when juxtaposed with

https://tinyurl.com/2p95ad26

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
the stochastic computational model lacking momentum and decay
rate, as exemplified in Figs. 8, 7, and 6, the proposed solution show-
cases a more efficient trajectory. Illustratively, Fig. 10 systematically
dissects each individual objective function alongside the cumulative
total loss, presenting a comprehensive panorama of the optimization
landscape. Additionally, Fig. 11 emerges as a central pivot, spotlighting
the culmination of the stochastic computational model embellished
with momentum and decay rate. Evidently, the figure substantiates the
model’s achievement of an overall loss of 883.41, attained through a
notably expeditious convergence process spanning a mere 66 epochs.
In essence, the collective narrative woven through these visual rep-
resentations underscores the indispensable role played by momentum
and decay rate in elevating the efficiency and efficacy of the proposed
stochastic computational model. This convergence of evidence imparts
a robust rationale for their integration, amplifying the model’s potency
in arriving at optimal solutions swiftly and with heightened precision.

Fig. 12 emerges as a pivotal visual aid, unraveling the imperative
facet of determining the requisite number of controllers for seamless
SD-WAN deployment, with a specific focus on the BtEurope network
scenario. The same methodology is seamlessly extended to encompass
all datasets within the zoo topology (Knight et al., 2011), ensuring a
comprehensive and consistent evaluation. The foundation for ascertain-
ing the optimal number of controllers rests upon the bedrock of the
overall loss function, as conspicuously depicted in the graph. Within
this analytical framework, a noteworthy juncture, known as the point
of inflection, materializes. This pivotal juncture is found at a count of 7
controllers. It is essential to engage in a judicious analysis of the trade-
offs inherent in this context. Opting for 14 controllers, while potentially
yielding enhanced network performance, could incur a substantial
financial burden for service providers. Conversely, selecting a more
frugal configuration, with 7 controllers, offers a prudent alternative
that does not significantly compromise the overall loss metric. This
delicate balance between performance and cost underscores the signif-
icance of a nuanced decision-making process. Therefore, the evidence
presented substantiates the notion that opting for a configuration of
7 controllers emerges as a pragmatic and astute choice for service
providers embarking on SD-WAN deployment. This prudent decision
effectively navigates the trade-offs and encapsulates the essence of
optimizing the network infrastructure for optimal performance while
judiciously managing costs.

Fig. 13 serves as a comprehensive visual representation, shedding
light on the execution time attributes of various models employed
in the evaluation process. The proposed algorithm, characterized as
the stochastic computational graph model, stands juxtaposed with
three other models: ANSGA-III, NSGA-II, and MOPSO. Upon meticulous
scrutiny of the graph, a discernible trend materializes: the proposed
solution remarkably excels in terms of computational efficiency, as
reflected in its notably lower execution time. This advantageous trait
is particularly highlighted by the fact that the proposed solution out-
performs the other compared algorithms by an impressive margin of
almost 100%. This performance discrepancy underscores the prowess
of the proposed algorithm in achieving faster optimization of controller
location. The commendable computational efficiency and scalability
exhibited by the proposed solution position it as a highly recommended
choice for service providers contemplating the migration or deployment
of SD-WAN architecture. The algorithm’s ability to strike a harmonious
balance between swift execution (lower execution time) and accommo-
dating a multitude of objectives renders it an attractive and pragmatic
option for SD-WAN planning endeavors.

Fig. 14 provides a clear depiction of the average CPU utilization
exhibited by both the proposed algorithm and the three alternative
models considered in the evaluation process. Similarly, akin to the
execution time graph illustrated in Fig. 14, this graph portrays the
salient observation that the proposed solution demonstrates the lowest
CPU usage across the spectrum of algorithms studied.
12
Fig. 6. Image showing the initial controller location, its coordinates, and the overall
loss.

Fig. 7. Image showing the overall loss of the stochastic computational graph model
without momentum and decay rate.

Fig. 8. Graph of overall training and validation of the stochastic computational model.

Fig. 9. Image showing the overall loss of the stochastic computational graph with
momentum and decay rate.

Fig. 10. Graph representing individual objective function overall loss of the stochastic
computational model.

Fig. 11. Graph of overall loss of stochastic computational model with momentum and
decay rate.

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 12. Graph of the number of controller.

Remarkably, the proposed SCGMEL solution distinguishes itself by
showcasing superior performance in comparison to its counterparts.
The magnitude of this performance improvement is vividly highlighted
in the percentages of reduction achieved. Specifically, the SCGMEL
solution outperforms ANSGA-III by a substantial reduction of 99.983%,
NSGA-II by an equivalent reduction of 99.983%, and MOPSO by an im-
pressive reduction of 99.946%. This substantial margin of performance
enhancement positions the SCGMEL solution as the clear choice, thus
warranting its strong recommendation. Furthermore, Fig. 15 elucidates
the total CPU usage exhibited by the proposed algorithm alongside
the three alternative models considered in the evaluation. The dis-
cernible pattern in this graph reaffirms the trend observed in other
computational complexity metrics, including execution time and aver-
age CPU utilization. The proposed solution consistently outperforms its
algorithmic counterparts in terms of computational demands.

In summation, the overarching performance assessment based on
computational complexity unequivocally positions the proposed
stochastic computational graph model as a formidable contender. Its su-
periority is pronounced not only in individual metrics but across a com-
prehensive range, making it the recommended choice for deployment
in the context of SD-WAN.

Fig. 16 serves as a visual representation encapsulating the essence
of all the optimization algorithms scrutinized in this study. The graph
magnifies their respective performances in the context of minimiz-
ing losses, all conducted under identical experimental conditions and
objective functions governing the optimization of controllers. Upon
careful examination of the graph, a clear pattern emerges: the proposed
solution stands out prominently by consistently achieving a greater
reduction in losses compared to its algorithmic counterparts. This
discernible trend underscores the efficacy of the proposed approach in
efficiently minimizing losses, positioning it as a standout performer in
the realm of optimization algorithms.

The inferential statistics for both the proposed XGBoost model and
other compared regression models (KNN, random forest, and linear
regression) are presented comprehensively in Table 1. Additionally,
Fig. 17 visually presents the regression models employed for predicting
the optimal number of controllers required for SD-WAN deployment.
Notably, the proposed XGBoost model is subjected to a rigorous com-
parison with the aforementioned regression models. Evaluation of these
models hinges on the mean absolute error metric, shedding light on
their performance. Remarkably, the outcomes showcased in the graph
distinctly highlight the superiority of the proposed solution. With an
impressively low test mean absolute error of 1.855, coupled with an
efficient prediction time of 0.004, the proposed regression model not
only operates expeditiously but also exhibits unparalleled accuracy
when contrasted with its machine learning regression counterparts. In
13
Fig. 13. Graph showing the execution time of the four Algorithms.

Fig. 14. Graph showing the average CPU usage of the four Algorithms.

a parallel vein, Fig. 18 delves into the performance analysis of the
proposed regression model concerning the prediction of the number of
controllers. This insightful graph accentuates the juxtaposition between
randomly selected datasets from the zoo topology on the 𝑥-axis and
the corresponding actual versus the predicted number of controllers
on the 𝑦-axis. The graphical representation elegantly encapsulates the
model’s predictive prowess, providing a visual affirmation of its efficacy
in approximating the optimal controller number. The graph clearly
illustrates that the proposed regression model closely predicts the
actual number of controllers across the majority of selected datasets.
This noteworthy accuracy highlights the effectiveness of the model’s
predictive capabilities. As a practical implication, it is advisable for
SD-WAN service providers and administrators to embrace the method-
ology outlined in this study when determining the appropriate number
of controllers for their deployment. By implementing this approach,
they can significantly mitigate control plane overhead, leading to a
substantial enhancement in overall network performance. This not
only streamlines the decision-making process but also contributes to
the optimization of SD-WAN operations, ultimately translating into
improved service quality and operational efficiency (see Fig. 19).

6.1. Statistical analysis of final output loss for proposed and benchmark
algorithms

The objective of this analysis is to conduct a statistical assessment
to determine whether the proposed controller placement algorithm
indeed exhibits a significantly lower output loss when compared to the
reviewed MOPSO, NSGA-II, and ANSGA-III algorithms. The significance

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 15. Graph showing the total CPU usage of the four Algorithms.

Fig. 16. Graph showing the final losses of the four Algorithms.

Table 1
Inferential statistics table of all the regression models.

of this analysis lies in its potential to identify the most recommended
controller placement algorithm that demonstrates the least significant
output loss within the SDN context. Prior to delving into the statistical
analysis, this study will first establish the relevance of the proposed
approach by comparing it to relevant and similar models (see Table 2).
In comparison to existing models in the field, the reported approach
presented in this research offers distinct advantages and improvements.
While several optimization techniques, such as MOPSO and ANSGA-
III, have been previously employed for SDN controller placement, the
proposed approach introduces a comprehensive solution that addresses
key limitations and provides superior performance (see Fig. 20).

MOPSO, NSGA-II, and ANSGA-III, although valuable, have shown
challenges in scalability (except ANSGA-III), computational complexity,
and lack the ability to predict the required number of controllers
needed for SD-WAN deployment. In contrast, this research introduces
a novel methodology: The stochastic Computational Graph Model with
Ensemble Learning. These approaches are specifically tailored to over-
come these challenges and optimize multiple conflicting objectives
simultaneously (see Fig. 26).
14
Fig. 17. Graph showing all the regression models for optimal number of controllers
prediction.

Fig. 18. Graph showing the proposed XGBoost regression model for the prediction of
controller.

Fig. 19. Graph showing the proposed XGBoost predicted and actual controller number.

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 20. Final output loss means of the optimization algorithms.
Table 2
Sample datasets illustrating the final output loss values obtained from various
optimization algorithms.

The relevance of the reported approach is its computational effi-
ciency and intelligent nature. This was demonstrated in the study as
revealed by the execution time, average CPU, and Total CPU usage
performance metrics which are all used to assess the performance of the
optimization algorithm. By using a computational graph approach, you
can model the complex interactions between the different objectives,
while using a machine learning framework such as PyTorch or Ten-
sorFlow can provide efficient computation and optimization. Stochastic
gradient descent with learning rate decay and momentum can help to
improve the convergence rate and the quality of the solutions found,
while the weighted sum approach can help to find a solution that
balances the trade-offs between the different objectives (see Fig. 22).

Contrary to this approach, evolutionary algorithms are more com-
putationally complex than machine learning approaches, particularly
if the search space is large and complex. Evolutionary algorithms
involve iteratively generating and evaluating a population of candidate
solutions using heuristics such as selection, crossover, and mutation,
which can require a significant number of computational resources,
especially when searching for an optimal solution in the presence of
conflicting objectives. Similarly, the ensemble learning model (XG-
Boost) used in this research helps in the prediction of the optimal
number of controllers to be deployed in the SD-WAN environment. In
summary, the reported approach not only outperforms existing models
in terms of execution time, computational efficiency, and scalability but
also introduces a holistic solution by integrating an intelligent solution
that provides the optimal number of controllers to be deployed. This
clear distinction and innovative integration highlight the relevance
and superiority of this research approach when compared to relevant
similar models (see Figs. 23–25).

For clear conceptual justification, this work computed the final
losses of the objective functions of each of the optimization algorithms
using the initial controller position and final controller positions data
(obtained after optimization had taken place) (see Table 2). Here is the
link to the validation experiment. https://tinyurl.com/2p95ad26 and
https://tinyurl.com/2p95ad26.
15
Fig. 21. Kruskal–Wallis Test.

Fig. 22. The final output loss median.

Interpretation:
The analysis of the final output loss data reveals important in-

sights. Specifically, the proposed algorithm demonstrates a network
final output loss mean of 936.018623, while the MOPSO algorithm
exhibits the highest network final output loss mean of 1459.347972.
This comparison underscores the potential differences in performance
among these four controller placement algorithms based on the net-
work’s final output loss. Initially, a parametric test was conducted on
the sample data. However, this research identified a deviation from
the assumptions of normality and homogeneity of variance. To ensure
the accuracy of the analysis and prevent any misleading conclusions,
the data was subsequently subjected to a non-parametric test. This
approach circumvents the requirement for homoscedasticity, thereby
providing a more robust and reliable assessment of the algorithms’
comparative performance in terms of network final output loss (see
Fig. 24).

6.1.1. Non-parametric test of Kruskal–Wallis
The Kruskal–Wallis test is a nonparametric method used to com-

pare medians among different datasets, determining if a statistically
significant difference exists among multiple groups. Unlike parametric
tests, it does not require assumptions of normality or equal variances,
making it suitable for non-normally distributed data. This test involves
ranking observations within groups and computing a test statistic based
on rank sums (see Fig. 21). The null hypothesis assumes equal medians
for all groups, while the alternative suggests at least one group’s
median differs. By comparing the test’s 𝑝-value to a significance level
(usually 0.05), Should the 𝑝-value be lower than the chosen significance
level, indicating a statistically significant result, the null hypothesis is
rejected. This infers a meaningful disparity in medians among at least
two groups. If the 𝑝-value is below the threshold, indicating statistical
significance, this infers meaningful median disparities among groups.
Further investigation can be done using post hoc tests like Pairwise

https://tinyurl.com/2p95ad26
https://tinyurl.com/2p95ad26

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 23. Proposed algorithm and MOPSO Algorithm.
Fig. 24. Proposed algorithm and NSGA-II Algorithm.
Wilcoxon rank-sum or Conover–Iman tests, helping identify specific
groups with substantial median differences (see Fig. 25).

6.1.2. Wilcoxon rank-sum pairwise method (Post Hoc-Test)
The Wilcoxon rank-sum pairwise test is a nonparametric statistical

method used to compare the medians of two independent datasets for
substantial statistical differences. This test involves ranking observa-
tions from both groups and calculating the sum of ranks for each group.
The test statistic is then determined as the smaller of the two rank
sum totals. A 𝑝-value is computed based on the distribution of the
test statistic under the null hypothesis, which assumes no difference
between the groups. If the calculated probability value is lower than a
predetermined significance level, typically not exceeding 0.05, the null
hypothesis is rejected. This implies a statistically significant divergence
in medians between the two groups. The test is particularly suitable
when parametric assumptions like normality or equal variances are not
met, such as with non-normally distributed or unequal variance data.
It is robust and capable of handling outliers and non-normality. For
multiple pairwise comparisons, it is essential to adjust the significance
level, often using methods like the Bonferroni correction, to control the
family-wise error rate effectively.

6.1.3. Kruskal–Wallis test
This test serves as a substitute for the ANOVA test due to the

violation of assumptions regarding homoscedasticity, normality, and
variance. The hypotheses for this test are as follows:

Null Hypothesis (H0): There are no significant differences among
the medians of network final output losses for the four algorithms at a
5% significance level.

Alternative Hypothesis (H1): At least one of the algorithms produces
a network final output loss median that is significantly different from
the medians of other algorithms at a 5% significance level.

Decision: The null hypothesis is rejected at the 5% significance
level, indicating significant evidence. Conclusion: At least one of the
algorithms yields a network final output loss median that differs sig-
nificantly from the medians of other algorithms at the 5% significance
level. As a result of this significant difference, the pairwise comparison
of algorithms will be conducted using the Wilcoxon rank-sum pairwise
method.

6.1.4. Post HOC test: Wilcoxon rank-sum pairwise method
The median will be compared for the difference. The median for the

final output loss for:
The null hypothesis is rejected, indicating a significant difference

between the median values of the two compared algorithms at the 5%
significance level. This suggests that the proposed algorithm exhibits a
significantly lower final output loss than the MOPSO algorithm at the
5% significance level.

The null hypothesis is rejected, leading to the conclusion that a
significant difference exists between the median values of the two
compared algorithms at the 5% significance level. This implies that the
proposed algorithm demonstrates a significantly lower final output loss
compared to the MOPSO algorithm at the 5% significance level.

The null hypothesis is rejected, indicating a significant difference
between the median values of the two compared algorithms at the 5%
16
significance level. This implies that the proposed algorithm exhibits a
significantly lower final output loss than the MOPSO algorithm at the
5% significance level.

In summary, the thorough and comprehensive statistical analysis
has consistently yielded the rejection of the null hypothesis, reveal-
ing a significant discrepancy among the median values of all the
algorithms under comparison at a 5% significance level. This pro-
vides substantial evidence that the proposed optimization algorithm
consistently achieves a substantial reduction in the final output loss
when contrasted with the benchmarked algorithms. The persistent and
reliable rejection of the null hypothesis through multiple iterations
underscores the resilience and efficacy of the proposed algorithm in
achieving a noteworthy decrease in final output loss. Consequently,
the proposed algorithm emerges as a compelling and favorable option
for optimization, clearly outperforming the benchmarked optimization
algorithm.

7. Verification and validation of the proposed stochastic compu-
tational model

In this section of the article, the author demonstrates that the major
objective of the suggested model has been accomplished in terms of
its quality and credibility by demonstrating that the model has carried
out the tasks that it was intended to carry out. Verification includes
testing, analysis of the design, and analysis of the requirements to
guarantee the best quality of the final product (Sargent, 2010). One
can consider this method to have a degree of objectivity. On the other
hand, the nature of the process of validation is marked by a high degree
of subjectivity. It necessitates the formation of personal opinions on
the degree to which a problem-solving strategy that has been proposed
or developed is successful in meeting a need that is existent in the
real world. The validation process includes a wide range of tasks,
including user testing, prototyping, and modeling the requirements.
During the planning and building of the solution that was offered, the
standards were adhered to in a very strict manner. The purpose of
the suggested approach is to overcome the issues that were described
in the literature. Some of these challenges include scalability, high
computational complexity, and the absence of an established way to
learn the heuristics of combinatorial optimization during the placement
of controllers in SD-WAN. When looking at the figure in 26, it is
evident that the proposed stochastic computational graph model for
the optimization of controller placement in SD-WAN actually fulfills
its intended design aim and meets the outcomes that were anticipated.
This can be seen clearly by looking at this figure, which illustrates
the loss/objective function progression towards the optimal solution.
In a manner analogous to this, the optimum number of controllers to
be deployed is demonstrated in Fig. 27. Both of these figures provide
evidence that the suggested model is being verified and that it does, in
fact, achieve the goals that it was designed to do.

Fig. 26 depicts the total loss function and its convergence to the
optimal solution, demonstrating that this was the model’s objective
when it was created. The aim of this work is to devise a method
for optimizing controller placement that minimizes the sum of the
losses incurred by the objective functions used in conjunction with

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Fig. 25. Proposed algorithm and ANSGA-III Algorithm.
Fig. 26. Outcome of the proposed stochastic computational graph model with
momentum and a learning decay rate.

the decision variables (controller positions). A validation or test set
is used in supervised machine learning to verify the accuracy of the
model on new data. As opposed to supervised learning, the suggested
stochastic computational graph model uses a form of learning called
reinforcement learning. Here, the model is validated by comparing its
results on many test datasets. These datasets were derived from those
deposited in the internet zoo topology’s online repository by service
providers including Bt Latin America, Bt North America, Network USA,
and Tata NLD. The efficiency of the proposed stochastic computational
graph model was compared to the state-of-the-art optimization algo-
rithms (ANSGA-III, NSGA-II, and MOPSO) in the context of controller
placement, which is demonstrated graphically in 28. The figure in 28,
which displays total CPU consumption (the product of average CPU
usage and execution time), validates the correctness of the suggested
model.

8. Conclusion

The issue of controller placement in SDN has garnered significant
attention in both academic and industrial circles. This challenge be-
comes even more critical in extensive enterprises like SD-WAN, where
the optimization of numerous conflicting objectives is paramount. To
tackle this complex problem, metaheuristic algorithms such as ANSGA-
III, NSGA-II, and MOPSO have been proposed in the existing literature.
However, these approaches, with the exception of ANSGA-III, grapple
with scalability concerns—particularly when the number of objectives
surpasses three. Moreover, these methods are often computationally
inefficient and lack the capacity to grasp the intricate heuristics of
combinatorial optimization problems like SD-WAN controller place-
ment. In response, this study introduces a novel solution: the stochastic
computational graph with an ensemble learning model. This innovative
approach aims to address the challenges associated with SD-WAN
controller placement.

A comprehensive comparative analysis was conducted, pitting the
reviewed ANSGA-III, NSGA-II, and MOPSO against the proposed
stochastic computational graph. The evaluation was based on crucial
metrics, including execution time, average CPU usage, and overall CPU
utilization. The findings from the experimentation unveiled the prowess
of the proposed approach: the stochastic computational graph not only
17
Fig. 27. Graph showing the Optimal Controller Number.

Fig. 28. Graph showing the average CPU usage of the four Algorithms.

demonstrated enhanced computational efficiency (rapidly generating
optimal controller placements) but also exhibited remarkable scalabil-
ity (handling more than three conflicting objectives simultaneously).
Furthermore, the solution showcased a higher level of intelligence, as
exemplified by its ability to predict the optimal number of controllers
required for SD-WAN deployment through the incorporation of an
ensemble learning model, namely XGBoost.

In light of these compelling outcomes, the proposed stochastic
computational graph with an ensemble learning model emerges as
a potent remedy for the computational inefficiencies associated with
existing algorithms. It proves itself adept at addressing the optimization
of multiple conflicting objectives while demonstrating a keen abil-
ity to forecast the ideal number of controllers essential for SD-WAN
deployment. In conclusion, the proposed approach stands out as a
recommended solution for efficient and effective controller placement
in SD-WAN scenarios.

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba

o

CRediT authorship contribution statement

Oladipupo Adekoya: Conceptualization, Methodology, Writing –
riginal draft, Writing – review & editing. Adel Aneiba: Project ad-

ministration, Supervision.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors extend their heartfelt appreciation to Makinde Kay-
ode from the Engineering Department of the University of Agricul-
ture, Abeokuta, Nigeria. His invaluable contribution in elucidating and
showcasing the computational graph approach, along with its applica-
bility in the realm of Software-Defined Networking (SDN), is sincerely
acknowledged and greatly valued.

References

Adekoya, O., Aneiba, A., 2022. An adapted nondominated sorting genetic algorithm III
(NSGA-III) with repair-based operator for solving controller placement problem in
software-Defined Wide Area networks. IEEE Open J. Commun. Soc. 3, 888–901.

Ahmadi, V., Jalili, A., Khorramizadeh, S.M., Keshtgari, M., 2015. A hybrid NSGA-II for
solving multiobjective controller placement in SDN. In: 2015 2nd International
Conference on Knowledge-Based Engineering and Innovation. KBEI, IEEE, pp.
663–669.

Ahmadi, V., Khorramizadeh, M., 2018. An adaptive heuristic for multi-objective
controller placement in software-defined networks. Comput. Electr. Eng. 66,
204–228.

Alouache, L., Yassa, S., Ahfir, A., 2022. A multi-objective optimization approach for
SDVN controllers placement problem. In: 2022 13th International Conference on
Network of the Future. NoF, IEEE, pp. 1–9.

Aravind, P., Varma, G.S., Reddy, P.P., 2022. Simulated annealing based optimal
controller placement in software defined networks with capacity constraint and
failure awareness. J. King Saud. Univ. Comput. Inf. Sci. 34 (8), 5721–5733.

Bagha, M.A., Majidzadeh, K., Masdari, M., Farhang, Y., 2022. Improving delay in SDNs
by metaheuristic controller placement. Int. J. Ind. Electron. Control Optim. 5 (3).

Chee, J., Toulis, P., 2018. Convergence diagnostics for stochastic gradient descent with
constant learning rate. In: International Conference on Artificial Intelligence and
Statistics. PMLR, pp. 1476–1485.

Chen, J., Xiao, W., Li, X., Zheng, Y., Huang, X., Huang, D., Wang, M., 2022a. A
routing optimization method for software-defined optical transport networks based
on ensembles and reinforcement learning. Sensors 22 (21), 8139.

Chen, C., Xue, F., Lu, Z., Tang, Z., Li, C., et al., 2022b. RLMR: Reinforcement learning
based multipath routing for SDN. Wirel. Commun. Mob. Comput. 2022.

De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau, M., Gagné, C., 2012. Deap: A
python framework for evolutionary algorithms. In: Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation. pp. 85–92.

Deb, K., 2011. Multi-objective optimisation using evolutionary algorithms: an intro-
duction. In: Multi-Objective Evolutionary Optimisation for Product Design and
Manufacturing. Springer, pp. 3–34.

Domingues, P., Marques, P., Silva, L., 2005. Resource usage of windows computer
laboratories. In: 2005 International Conference on Parallel Processing Workshops.
ICPPW’05, IEEE, pp. 469–476.

Evins, R., 2013. A review of computational optimisation methods applied to sustainable
building design. Renew. Sustain. Energy Rev. 22, 230–245.

Gao, X., Ramezanghorbani, F., Isayev, O., Smith, J.S., Roitberg, A.E., 2020. Torchani:
a free and open source pytorch-based deep learning implementation of the ANI
neural network potentials. J. Chem. Inf. Model. 60 (7), 3408–3415.

Gao, C., Wang, H., Zhu, F., Zhai, L., Yi, S., 2015. A particle swarm optimization
algorithm for controller placement problem in software defined network. In:
International Conference on Algorithms and Architectures for Parallel Processing.
Springer, pp. 44–54.

Giroire, F., Moulierac, J., Phan, T.K., 2014. Optimizing rule placement in software-
defined networks for energy-aware routing. In: 2014 IEEE Global Communications
Conference. IEEE, pp. 2523–2529.

Heller, B., Sherwood, R., McKeown, N., 2012. The controller placement problem. ACM
SIGCOMM Comput. Commun. Rev. 42 (4), 473–478.

Hemagowri, J., Selvan, P.T., 2023. A hybrid evolutionary algorithm of optimized
controller placement in SDN environment. Comput. Assist. Methods Eng. Sci..

Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., Tran-Gia, P., 2013. Pareto-
optimal resilient controller placement in SDN-based core networks. In: Proceedings
18

of the 2013 25th International Teletraffic Congress. ITC, IEEE, pp. 1–9.
Hock, D., Hartmann, M., Gebert, S., Zinner, T., Tran-Gia, P., 2014. POCO-PLC: Enabling
dynamic pareto-optimal resilient controller placement in SDN networks. In: 2014
IEEE Conference on Computer Communications Workshops. INFOCOM WKSHPS,
IEEE, pp. 115–116.

Kazemian, M.M., Mirabi, M., 2022. Controller placement in software defined networks
using multi-objective antlion algorithm. J. Supercomput. 1–24.

Kim, T., Zhou, X., Pendyala, R.M., 2022. Computational graph-based framework for
integrating econometric models and machine learning algorithms in emerging
data-driven analytical environments. Transp. A: Transp. Sci. 18 (3), 1346–1375.

Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M., 2011. The internet
topology zoo. IEEE J. Sel. Areas Commun. 29 (9), 1765–1775.

Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M., Hoffmann, M.,
2015. Heuristic approaches to the controller placement problem in large scale SDN
networks. IEEE Trans. Netw. Serv. Manag. 12 (1), 4–17.

Liu, Y., Gao, Y., Yin, W., 2020. An improved analysis of stochastic gradient descent
with momentum. Adv. Neural Inf. Process. Syst. 33, 18261–18271.

Liu, J., Zhang, S., Kato, N., Ujikawa, H., Suzuki, K., 2015. Device-to-device commu-
nications for enhancing quality of experience in software defined multi-tier LTE-a
networks. IEEE Netw. 29 (4), 46–52.

Mamun, M., Farjana, A., Al Mamun, M., Ahammed, M.S., 2022. Lung cancer prediction
model using ensemble learning techniques and a systematic review analysis. In:
2022 IEEE World AI IoT Congress. AIIoT, IEEE, pp. 187–193.

Montiel, J., Mitchell, R., Frank, E., Pfahringer, B., Abdessalem, T., Bifet, A., 2020.
Adaptive xgboost for evolving data streams. In: 2020 International Joint Conference
on Neural Networks. IJCNN, IEEE, pp. 1–8.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch.

Qaffas, A.A., Kamal, S., Sayeed, F., Dutta, P., Joshi, S., Alhassan, I., 2023. Adap-
tive population-based multi-objective optimization in sdn controllers for cost
optimization. Phys. Commun. 58, 102006.

Qi, J., Du, J., Siniscalchi, S.M., Ma, X., Lee, C.-H., 2020. On mean absolute error for
deep neural network based vector-to-vector regression. IEEE Signal Process. Lett.
27, 1485–1489.

Radam, N.S., Al-Janabi, S.T.F., Jasim, K.S., 2022. Multi-controllers placement
optimization in sdn by the hybrid hsa-pso algorithm. Computers 11 (7), 111.

Rashid, Z.N., Sharif, K.H., Zeebaree, S., 2018. Client/servers clustering effects
on CPU execution-time, CPU usage and CPU idle depending on activities of
parallel-processing-technique operations. Int. J. Sci. Technol. Res. 7 (8), 106–111.

Ros, F.J., Ruiz, P.M., 2016. On reliable controller placements in software-defined
networks. Comput. Commun. 77, 41–51.

Sapkota, A., Dawadi, B., Babu, R., Joshi, C., Shashidhar, R., et al., 2022. Multi-controller
placement optimization using naked mole-rat algorithm over software-defined
networking environment. J. Comput. Netw. Commun. 2022.

Sargent, R.G., 2010. Verification and validation of simulation models. In: Proceedings
of the 2010 Winter Simulation Conference. IEEE, pp. 166–183.

Seada, H., Deb, K., 2014. U-NSGA-III: A unified evolutionary algorithm for single,
multiple, and many-objective optimization. COIN Rep. 2014022.

Stattelmann, S., Oriol, M., Gamer, T., 2014. Execution time analysis for industrial
control applications. arXiv preprint arXiv:1404.0847.

Thalapala, V.S., Mohan, A., Guravaiah, K., 2022. WOACCPP: Wisdom of artificial
crowds for controller placement problem with latency and reliability in SDN-WAN.

Tootoonchian, A., Ganjali, Y., 2010. Hyperflow: A distributed control plane for
openflow. In: Proceedings of the 2010 Internet Network Management Conference
on Research on Enterprise Networking, Vol. 3. pp. 10–5555.

Wang, G., Zhao, Y., Huang, J., Wang, W., 2017. The controller placement problem in
software defined networking: A survey. IEEE Netw. 31 (5), 21–27.

Wu, Y., Zhou, S., Wei, Y., Leng, S., 2020. Deep reinforcement learning for controller
placement in software defined network. In: IEEE INFOCOM 2020-IEEE Confer-
ence on Computer Communications Workshops. INFOCOM WKSHPS, IEEE, pp.
1254–1259.

Xiang, M., Chen, M., Wang, D., Luo, Z., 2022. Deep reinforcement learning-based
load balancing strategy for multiple controllers in SDN. e-Prime-Adv. Electr. Eng.
Electron. Energy 2, 100038.

Xu, A., Sun, S., Wang, Z., Wang, X., Han, L., 2022. Multi-controller load balancing
mechanism based on improved genetic algorithm. In: 2022 International Conference
on Computer Communications and Networks. ICCCN, IEEE, pp. 1–8.

Yao, G., Bi, J., Li, Y., Guo, L., 2014. On the capacitated controller placement problem
in software defined networks. IEEE Commun. Lett. 18 (8), 1339–1342.

Yazan, E., Talu, M.F., 2017. Comparison of the stochastic gradient descent based
optimization techniques. In: 2017 International Artificial Intelligence and Data
Processing Symposium. IDAP, IEEE, pp. 1–5.

Yazdinejad, A., Rabieinejad, E., Dehghantanha, A., Parizi, R.M., Srivastava, G., 2021. A
machine learning-based sdn controller framework for drone management. In: 2021
IEEE Globecom Workshops. GC Wkshps, IEEE, pp. 1–6.

You, K., Long, M., Wang, J., Jordan, M.I., 2019. How does learning rate decay help
modern neural networks? arXiv preprint arXiv:1908.01878.

http://refhub.elsevier.com/S1084-8045(24)00046-8/sb1
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb1
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb1
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb1
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb1
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb2
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb3
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb3
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb3
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb3
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb3
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb4
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb4
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb4
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb4
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb4
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb5
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb5
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb5
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb5
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb5
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb6
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb6
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb6
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb7
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb7
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb7
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb7
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb7
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb8
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb8
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb8
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb8
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb8
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb9
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb9
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb9
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb10
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb10
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb10
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb10
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb10
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb11
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb11
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb11
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb11
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb11
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb12
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb12
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb12
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb12
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb12
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb13
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb13
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb13
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb14
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb14
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb14
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb14
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb14
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb15
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb16
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb16
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb16
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb16
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb16
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb17
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb17
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb17
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb18
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb18
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb18
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb19
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb19
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb19
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb19
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb19
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb20
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb21
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb21
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb21
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb22
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb22
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb22
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb22
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb22
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb23
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb23
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb23
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb24
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb24
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb24
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb24
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb24
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb25
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb25
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb25
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb26
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb26
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb26
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb26
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb26
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb27
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb27
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb27
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb27
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb27
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb28
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb28
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb28
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb28
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb28
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb29
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb29
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb29
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb30
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb30
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb30
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb30
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb30
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb31
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb31
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb31
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb31
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb31
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb32
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb32
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb32
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb33
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb33
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb33
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb33
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb33
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb34
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb34
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb34
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb35
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb35
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb35
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb35
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb35
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb36
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb36
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb36
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb37
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb37
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb37
http://arxiv.org/abs/1404.0847
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb39
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb39
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb39
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb40
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb40
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb40
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb40
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb40
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb41
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb41
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb41
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb42
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb43
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb43
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb43
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb43
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb43
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb44
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb44
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb44
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb44
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb44
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb45
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb45
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb45
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb46
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb46
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb46
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb46
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb46
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb47
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb47
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb47
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb47
http://refhub.elsevier.com/S1084-8045(24)00046-8/sb47
http://arxiv.org/abs/1908.01878

Journal of Network and Computer Applications 225 (2024) 103869O. Adekoya and A. Aneiba
Oladipupo Adekoya received the B.Sc. degree in Computer
Science from Olabisi Onabanjo University, Nigeria, in 2007,
and the M.Sc. Degree in Data Network and Security from
Birmingham City University, UK, in 2018, where he is
currently pursuing his Ph.D. degree with the School of
Computing Engineering and Built Environment. His research
interests include SDN/NFV and Artificial Intelligence. He is
a Member of IET.
19
Adel Aneiba received the B.Sc. degree in Computer Science
from the University of Benghazi in Libya, the M.Sc. degree
in e-commerce from Staffordshire University in the year
2003, and the Ph.D. degree in Computing in the year
2008. He is an Associate Professor in the Internet of Things
(IoT) at Birmingham City University, UK. His research inter-
ests include IoT, computer network simulation, evaluation,
optimization and block-chain. He is a Member of IET.

	A Stochastic Computational Graph with Ensemble Learning Model for solving Controller Placement Problem in Software-Defined Wide Area Networks
	INTRODUCTION
	Related Works
	Problem Definition
	Objective functions

	Proposed Stochastic Computational Graph with Ensemble Learning Model for SD-WAN Controller Placement
	Proposed Stochastic Computational Graph Algorithm Description
	Flowchart Description of the Proposed Stochastic Computational Graph Algorithm
	The Flowchart of the Proposed XGBoost Model
	The description of the Proposed XGBoost Model flowchart

	Description of the computational graph in the proposed solution
	Description of the stochastic gradient descent in the proposed solution
	Learning rate
	Stochastic gradient descent with momentum
	Learning rate Decay
	Execution time
	Average CPU usage
	Total CPU usage
	Mean Absolute Error

	Experimentation
	Results and Discussion
	Statistical Analysis of Final Output Loss for Proposed and Benchmark Algorithms
	Non-Parametric Test of Kruskal–Wallis
	Wilcoxon rank-sum pairwise method (Post Hoc-Test)
	Kruskal–Wallis test
	Post HOC Test: Wilcoxon rank-sum Pairwise method

	Verification and Validation of the Proposed Stochastic Computational model
	Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References

