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Abstract The significant advantages that biometric recog-

nition technologies offer are in danger of being left aside in

everyday life due to concerns over the misuse of such data.

The biometric data employed so far focuses on the perma-

nence of the characteristics involved. A concept known as

’the right to be forgotten’ is gaining momentum in interna-

tional law and this should further hamper the adoption of

permanent biometric recognition technologies. However, a

multitude of common applications are short-term and there-

fore non-permanent biometric characteristics would suffice

for them. In this paper we discuss ’transient biometrics’ i.e.

recognition via biometric characteristics that will change in

the short term and show that images of the fingernail plate

can be used as a transient biometric with a useful life-span

of less than six months. A direct approach is proposed that

requires no training and a relevant evaluation dataset is made

publicly available.
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1 Introduction

Common non-biometric recognition systems confirm a sub-

ject’s identity based on what a subject knowns (e.g pass-

word) or possesses (e.g access card). Such systems have the

inherent risk of disclosure of the recognition token or theft

of the possession. Such risks are largely mitigated when bio-

metric recognition systems are employed, as they offer the

possibility of confirming a subject’s identity based on their

own biometric characteristics, rather than what they know

or carry. Biometric recognition systems thus offer protec-

tion from theft of access data, as well as convenience of use

since access data does not have to be remembered or carried.

Recent biometric research has produced compelling re-

sults in terms of distinctiveness, universality and performance.

However it has also concentrated on permanent biometric

features, such as the iris, face or fingerprint. Individuals fear-

ing the misuse of their permanent biometric data and are of-

ten unwilling to provide such data to any biometric solution,

especially so for noncritical applications. Thus, the benefits

granted by biometric technology (i.e. password and device-

free access to resources), cannot be fully exploited.

The fear of misuse of biometric data is not unfounded;

while an ID-card or password can be canceled, the same

cannot be done with one’s permanent biometric data. Com-

promised biometric information may be used for unautho-

rized recognition purposes while there is also the risk of dis-

crimination via unauthorised use of such data (e.g. by in-

surance agencies). Cryptography is a plausible solution for

the protection of biometric data, but this assumes that the

subject trusts the biometric system. Cryptographic solutions

are subject to the reliability of the entire computer system,

and not just on the cryptographic algorithm used. Further-

more, a subject’s trust on a system is not only determined

by the quality of the system, but also by the importance and

sensitivity of their biometric data. Thus, subjects may be re-
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luctant to offer their biometric information for non-critical

applications.

The social acceptability of recognition systems will be-

come increasingly relevant as the ’right to be forgotten’ gains

momentum in legal systems worldwide [17]. In broad terms,

this concept stems from the desire of the individual to deter-

mine his or her future without being stigmatized by actions

performed in the past.

Research on cancelable biometrics [22,23] concentrates

on the acceptability issue. It pre-transforms the biometric in-

formation before a biometric signature is extracted. As such

a transformation is irreversible, the possibility of exploiting

any stolen information is restricted by the fact that the ex-

ploiter has no access to the original biometric information.

An extra security layer is provided as the transformation can

be changed at any given time. Nevertheless, cancelable bio-

metrics has to identify the theft of biometric information in

order to change the transformation. Last but not least, a sub-

ject still has to entrust the biometric capture point with their

permanent biometric information.

This work takes the acceptability matter a step further by

proposing the use of biometric data that does change over

the short term (i.e. is transient). This concept was discussed

in [2] but is extensively explored here. Transient biometrics

is defined as the set of biometric recognition technologies

which depend on biometric characteristics that are proven

to change over time. Thus, such biometric data automati-

cally nullifies itself after a known period of time. In contrast

to cancelable biometrics, it is the biometric data itself that

changes over time. Transient biometrics is not proposed as

a substitute to the cryptographic techniques that should be

present in any biometric system, including a transient bio-

metrics system. However, the use of transient data should

give the user the assurance that if their data are compro-

mised, it would automatically be rendered useless in a short

period of time.

This work discusses the concept of transient biometrics

(as a complete version of our initial presentation [2]) and

advocates that fingernail plate images constitute a transient

biometric characteristic. A set of algorithms for perform-

ing biometric recognition using such data are proposed and

three methodologies for extracting transient biometric sig-

natures from fingernail plate images are given. It also uses

these methodologies in direct approaches (i.e no training or

learning phases) for both the verification and the identifi-

cation tasks. Another contribution is the discussion and se-

lection of a viable signature fusion rule. Finally, a relevant

new dataset is presented and made available to the research

community to further explore this domain.

This paper is organized as follows. Section 2 presents

the biometric literature previous work on biometric recogni-

tion based on non-permanent data as well as biometric work

embracing fingernails. Section 3 details the technical side of

the proposed approach followed by Section 4 that presents

the new publicly available fingernail dataset and the exper-

imental results of the proposed method. Finally, Section 5

concludes the paper, envisaging some future perspectives.

2 Previous Work

Transient biometrics is a new area with little previous work

to report; we shall thus focus on related fields, the nearest of

which is cancelable biometrics [22,23] (see section 1). As

mentioned there, the major difference between cancelable

biometrics and transient biometrics is that in the case of the

former technology, the biometric data are protected via an

irreversible transform, while in the case of the latter, the

biometric data itself has only temporary recognition value.

Individuals are therefore more likely to volunteer such tran-

sient data, even for non-critical applications and even when

they are not entirely confident on the integrity of the capture

point.

Person re-identification is a related transient problem aris-

ing in the surveillance area. The objective is to identify if a

person has been previously observed in a non-collaborative

subject setting using non-invasive techniques. It is therefore

usually based on images, from which appearance-based lo-

cal features are used to re-identify a given subject [3,8].

Such biometric systems produce a transient identification

solution since it is only possible to identify a subject until

this subject changes clothes or other major appearance char-

acteristics. Appearance is one of the few options to use in

re-identification within a surveillance setting where the im-

ages are often taken from a distance using a video camera;

however it is questionable whether it can be regarded as a

biometric trait, since it is rather easy to spoof by knowledge-

able subjects.

The Bioelectrical characteristics of a fingernail are used

as a biometric signature in [4]. This patent work presents

a RFID chip glued over the fingernail. This embedded sys-

tem measures the subjects’ capacitance, which is claimed to

be unique, thus creating a biometric solution based over the

fingernail region.

The use of fingernail images as biometric data has been

the topic of few different lines of research. The skin under

a nail plate, called nail bed, is unique for each individual

[11]. A special acquisition system has been designed to ac-

quire images of the nail bed. Such images use the grooves

of the nail bed for recognition purposes [26]. The finger-

nail surface has also been explored for a biometric authen-

tication system [12]. This work segments the five finger-

nails as regions-of-interest (ROI) from a hand image using a

contour segmentation algorithm. The hand is photographed

while resting on a white surface. This segmentation method-

ology works but the employed dataset was biased with re-

spect to the subjects’ skin tones. Haar wavelet and Inde-
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pendent Component Analysis (ICA) are used to create a

biometric signature. From the five fingernail images, three

are used for training and two for testing. The methodology

yields high recognition rates, yet the paper does not evaluate

the effect of the growth of the fingernails on the recognition

rates (i.e. no longitudinal analysis is performed). The work

of [10] combines biometric information from fingernails and

finger knuckles to create a multi-modal biometric system.

Mel Frequency cepstral coefficients (MFCC) is employed to

create a finger knuckle biometric signature. The fingernail

signature is created by using both approximation and detail

coefficients of a second level wavelet image decomposition.

The final classification is done by a Multilayer Percptron

(MLP). Similar to the work of [12], a high classification

performance is achieved. Nevertheless, the work does not

assess the behaviour of the information over time. In both

[10,12] the final signatures are composed from information

of three fingers. There is no special fusion methodology to

keep transient characteristics of the data. It is thus likely that

the proposed solution learns hard biometric characteristics

from the subject’s fingers instead of transient information.

Thus, none of the above works involving fingernails focus

on their transient nature.

The work of [25] shows that the green camera channel

and a 3D model of the fingertip can be used for measur-

ing the force exerted by the fingertip. This work explores

changes in coloration of the fingernail images to detect the

magnitude of the force being applied to/by a specific region.

A Bayesian classifier is then used to deduce the relation be-

tween force and coloration changes. In their latest work [7],

the authors presented an automated calibration for a setup

using an adjustable camera, controlled lighting and a mag-

netic levitation haptic device. Thus they are able to measure

forces using only the camera image with higher accuracy.

The work also presents three approaches to fingernail regis-

tration. The registration results achieved are impressive but

depend on a controlled lighting setup.

The work of [6] presents a color based fingernail seg-

mentation. The work found that the third principal compo-

nent of the RGB color-space can be used to differentiate fin-

gernails from images of skin patches. The work is assessed

on a small dataset of five subjects

Our previous work assesses the use of fingernail im-

ages to create a transient biometric solution [2]. There, a

small dataset was used to evaluate the longitudinal identi-

fication rate of fingernails. It was shown that recognition

performance decreases to unusable rates after two months

. These results are in line with physiological studies show-

ing that healthy fingernails are replaced within three to six

months [28]. In the present work we extend and complete

the evaluation of fingernail images as transient biometrics

by comprehensive testing in terms of algorithms and dataset.

3 Proposed Approach

The transient biometric solution presented in this work is a

direct approach to the verification and identification tasks.

No training is employed in the task of matching a biometric

signature against a database of previously collected signa-

tures.

An image of the right index fingernail is used for the

extraction of the biometric signature. The approach will be

divided into three parts. The first part outlines the image pre-

processing which is necessary in order to make the image

suitable for biometric signature extraction. The second part

details the extraction of the biometric signature from a fin-

gernail image. The third part describes how signatures are

compared and matched.

3.1 Fingernail Plate Image Preprocessing

Image preprocessing ensures that the data delivered to the

signature extraction phase fulfills some basic requirements.

This should be a square image composed mainly of the fin-

gernail and it eliminates the possibility of using potentially

hard biometric information form finger-joints or finger shape
1.

To automatically segment fingernail images, an object

detector as proposed in [27] and extended in [15] is em-

ployed. In this object detector, a classifier is trained with

sample images of manually segmented fingernails, that match

the requirements of the signature extractor, generating the so

called positive samples. Negative samples are also generated

using sample images with no fingernail.

This fingernail image classifier is composed of a cas-

cade of elementary classifiers, also called stages. A given

region of interest (ROI) is either rejected by a stage or it pro-

ceeds to the next stage. Initial stages are simpler than sub-

sequent ones and focus in rejecting non-positive ROIs, i.e.

areas where there is a low chance of detecting a fingernail.

As such areas represent larger portions of the images, the

overall detection speed is increased. When a stage approves

a ROI, this region is passed on to the next stage. If the ROI

is approved by every stage, then this region is classified as a

fingernail image. Each stage is an Adaboost classifier which

relies on haar-like features as input.

A large number of Haar-like features can be computed

for every ROI which is significantly larger than the number

of pixels of the given region. Thus feature selection is a re-

quirement. Adaboost is employed for both the selection of

such features, as well as for the training of the classifiers.

After the input image is converted to grayscale, as re-

quired by the object-detection algorithm, a ROI is defined

1 The used dataset (see Section 4.1) provides already segmented fin-

gernail images using the methodology presented in this Section.
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by a scanning window. Robustness to scale variation is due

to scaling of the detector, which can be applied at differ-

ent scales with no extra cost. As the scanning window gazes

through the input image, the cascade classifiers detect the

fingernail multiple times. To achieve a final detection, as

shown in Fig. 1, the detected ROIs are overlaid and merged

into a single detection by selecting the average of the bounded

regions.

Fig. 1 Result from the object detector proposed by [27,15] trained to

detect fingernails. Detection outlined by a white bounding box.

Given the high resolution of the input images, the final

ROI is then scaled to 300px×300px. The original color im-

age of the selected ROI is then sent to the signature extrac-

tion stage.

3.2 Signature Extraction

Every individual has a unique fingernail bed pattern, simi-

lar to a fingerprint, which influences the texture that consti-

tutes the fingernail plate [11]. This texture is also influenced

by the day-to-day interaction of the fingernail plate and the

environment. Therefore, it is common to find white spots,

marks and scratches over the fingernail plate. It is this rich

texture region of the fingernail plate that is analyzed in order

to create a texture based signature using a grid implementa-

tion of Local Binary Patterns [19]. This signature extraction

process is described in Sec. 3.2.1.

The fingernail plate boundary and the unique white spots

on it can be quite discriminative, and to exploit such char-

acteristics two feature descriptors were employed. Section

3.2.2 explains how the SIFT[16] and BRISK [14] descrip-

tors are used to create a second signature.

Notice that both the fingernail plate texture and its bound-

ary shape have a transient nature since the fingernail plate

changes completely over a period of about 6 months [28].

3.2.1 LBP Based Signature

Local Binary Patterns (LBP) was originally proposed as a

reliable texture descriptor [19] and is known for its speed,

robustness and capacity to differentiate between micro-patterns.

The signature extraction uses a GRID extension of the LBP,

based on the work of [1].

For every image pixel an LBP value can be computed by

comparing the actual pixel value to its neighborhood. The

pixel neighborhood is defined by a circle of radius R and a

set of P equally spaced sample points. The LBP value for the

central pixel is derived out of a binary comparison against

the sample points. One bit is assigned to each sample point.

The least significant bit value comes from the comparison

against the top-left sampling point. It receives 1 when the

central pixel is greater than or equal to the sampling point

and 0 otherwise. This procedure is then applied to all other

sampling points, in a clockwise manner. Therefore when 8

sampling points are used, there are a total of 256 possible

LBP values. Fig. 2 illustrates the LBP calculation with a

sample neighborhood of (P,R) = (8,2).

Fig. 2 LBP sample points are shown in red or green circles. The value

of a sample point is bilinearly interpolated for sampling points that are

not located on the center of a pixel. Dark circles denote sample points

that have a lower value than the center pixel. Bright circles denote sam-

ple points which have a greater or equal value to the center pixel. Circle

numbers indicate the index of the bit position in the LBP code.

LBP values are called uniform if the binary part is com-

posed of one or two bit-wise transitions. Uniform LBP val-

ues account for the majority of encountered patterns on nat-

ural images [20,1]. For example, in the case of eight sam-

pling points, the patterns 00010000 and 11001111 are uni-

form since they have two bit-wise transitions. For eight sam-

pling points, a total of 58 out of the 256 possible patterns are

uniform.

To extract the LBP signature the input fingernail image

is divided into 16 blocks using a 4× 4 grid. Each image

block is submitted multiple times to a Gaussian smooth-

ing function, creating a Gaussian pyramid image set. This

process generates a total of 48 smaller images from each

input image. The final signature comes from the computa-

tion of uniform LBP values with a sample neighborhood of

(P,R) = (8,2) for each color channel. For each small image,

3 histograms of 59 bins are computed, 58 bins employed for

the uniform patterns and the last bin for the non-uniform pat-

terns. Thus, for each input image the signature is composed

of 3× 48 histograms of 59 bins. Although these histograms
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sum up to 8496 bins, the curse of dimensionality is avoided

thanks to the matching technique.

Fig. 3 LBP signature extraction. Each input image generates an LBP

based signature comprised of 144 histograms, or 48 histograms per

color channel.

3.2.2 Descriptor Based Signature

The first step of the descriptor based signature is to decom-

pose the color image into three monochromatic images. Then

keypoint detection is performed on each color channel. A

keypoint detector that produces an output of low count is

fundamental to any matching technique that relies on image

descriptors. A low count of keypoints allows the solution

to compare only significant points, speeding up the process

and yielding a more robust and discriminative set of fea-

tures. A multitude of different keypoint detectors have been

proposed in computer vision while it is common for feature

descriptors to propose their own keypoint detectors as for

example in [14,16].

Given that the image pre-processing presented in Sec.

3.1 already yields an image with a decent fingernail align-

ment and unique orientation, the use of keypoint detectors

that are robust to such characteristics would be superflu-

ous. A single fast and simple keypoint detector is shared

across different descriptors. The selected keypoint detector

is Good Features To Track (GFTT) [24] and represents a

modification of the well known Harris corner detector [9].

Fig. 4 shows the result of this keypoint detector. The key-

points concentrate around the fingernail plate boundary as

well as fingernail plate scratches and white spots, which are

ideal to discriminate across subjects.

Fig. 4 Keypoints computed for the red, green and blue channels of a

fingernail plate image. The keypoints concentrate around the fingernail

plate border.

Having defined the keypoints, descriptors must next be

computed on them. Two different keypoint descriptors are

employed. The Scale Invariant Feature Transform - SIFT

[16] was chosen for its success as a robust descriptor while

the Binary Robust Invariant Scalable Keypoint - BRISK was

selected for its efficiency [14]. Thus two biometric signa-

tures are created for each input image, based on SIFT and

BRISK respectively.

The total number of keypoints is reduced since both SIFT

and BRISK prune down the keypoints by evaluating their

stability (via contrast, distance to other keypoints, neighbor-

hood noise, etc). Final monochromatic images have an av-

erage of 800 stable keypoints. Therefore, on average, a total

of 2400 keypoints compose each of the two descriptor based

signatures, one for SIFT and the other for BRISK.

3.3 Signature Matching

Signature matching defines the metrics used in order to com-

pare different signatures. Ideally there is a small variation

across signatures from the same subject, and large variation

across signatures from different subjects. It is common to

rely on machine learning techniques to discover patterns in

signatures and then use such patters for signature matching.

Previous work [2] even employed Bayesian classification

and dimensionality reduction for signature matching.

Since the proposed approach intends to employ a direct

methodology to transient biometrics, it avoids techniques

that rely on training and cannot employ dimensionality re-

duction. Signature matching is thus done in stages; the three

signature types are matched independently. This is also con-

venient for the exploration of different signatures fusion method-

ologies.
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3.3.1 LBP Based Signature Matching

Matching LBP signatures fundamentally depends on obtain-

ing a match score between two histograms, P and Q, with n

bins. For this task, Cosine similarity as stated in Eq. 1, is

employed:

Φ(P,Q) =
P ·Q

‖P‖‖Q‖ =

n

∑
b=1

Pb ×Qb

√

n

∑
b=1

(Pb)2 ×
√

n

∑
b=1

(Qb)2

(1)

A single LBP signature is composed of 144 histograms.

Each histogram is derived from a small image region, and

depends on the layer of a Gaussian pyramid and on the color

channel. The final matching score is given as the mean score

of matching corresponding histograms across different in-

put images. Therefore, a histogram is only compared to its

counterpart in another image, which deals with the curse of

dimensionality while giving the signature the capability of

describing texture and spatial relationships at the same time.

If Xi represents the ith histogram of image X, then the LBP

matching score L between images A and B is given by Eq. 2:

L(A,B) =
1

144

144

∑
i=1

Φ(Ai,Bi) (2)

3.3.2 Descriptor Based Signature Matching

A Fast Approximate Nearest Neighbor Search, proposed by

[18], is first employed to evaluate the euclidean distance be-

tween keypoint combinations of the two images to be matched.

The resulting matches are evaluated by a RANSAC [5] algo-

rithm to remove bad matches and to detect a consensus set

of plausible matches.

In order to create a unique signature matching score which

can be combined with other scores, the RANSAC algorithm

is executed multiple times. Each time it returns the percent-

age ϒ of keypoints that are part of the consensus set. 2 The

descriptor matching score D of images A and B is then com-

puted as the average of the consensus keypoint percentage:

D(A,B) =
1

n

n

∑
i=1

|ϒi| (3)

When matching is performed across multiple images us-

ing a distance measure, it is usual to normalize its output

to yield a consistent matching score across images; however

this normalization is only possible after all inter-image dis-

tances have been computed. Being an average percentage

2 Ransac is run multiple times to ensure change in the seed of the

random number generator. Similar results are achieved if RANSAC is

executed once for a longer time.

value, the proposed matching score of Eq. 3 does not require

post-normalization and is thus suitable as a direct technique

to compute the score between two images.

3.3.3 Signature Fusion

LBP describes the micro-texture that comprises the finger-

nail plates and their spatial relationships. In contrast to the

descriptor based techniques LBP does not focus on discrim-

inating white spots, marks or the border between fingernail

plate and skin. A methodology for merging the different

techniques is thus necessary. The idea of signature fusion

is to generate a final matching score, which combines the

properties of LBP, BRISK and SIFT.

The work of [21] shows different methodologies to sim-

ilarity score fusion. Assuming that Sn is the nth similarity

score, it proposes five fusion functions, as shown in (Eq.

4). SA represents the arithmetic mean of the Manhattan (L1)

metric. SE computes the root mean square of similarities and

performs as a Euclidean (L2) metric. SG computes the prod-

uct of similarities and works as geometric mean metric. Smax

and Smin are simple rules to respectively select as final score

the maximum or minimum similarity score:

SA =
1

n

n

∑
f=1

S f (4)

SE =
1√
n

(

n

∑
f=1

S f
2

)1/2

(5)

SG =

(

n

∏
f=1

S f

)1/n

(6)

Smax =
n

max
f=1

(

S f

)

(7)

Smin =
n

min
f=1

(

S f

)

(8)

Since the proposed matching score functions of Eq. 2

and Eq. 3 have bounded outputs in the range [0,1], all of

the proposed methodologies of Eq. 4 could be employed as

score fusion techniques. However most of them cannot han-

dle the hidden issue of large variations in the skewing of the

distribution scores.

In the case of the Cosine similarity used in the LBP

matching technique (Eq. 2), the scores will have a propen-

sity towards high values. While correct matches will present

higher matching scores that wrong matches, given the deriva-

tion methodology and the fact that similarity is computed on

a 59 dimension vector, wrong matches are also likely to give

high matching scores.

The opposite is true in the case of descriptor match-

ing where a natural bias towards low values occurs in the

matching scores (Eq. 3). Given the low re-projection error

accepted by the RANSAC algorithm when computing the
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consensus set, the matching score technique will generally

produce lower values; of course it is still true that correct

matches are likely to yield higher results than wrong matches.

Given the aforementioned matching score value distri-

butions, Eq. 4 and 5 would give a bigger weight to the LBP

features, while Eq. 7 would ignore descriptor based features

and Eq. 8 would ignore LBP based features. Such issues can

be avoided with the normalization of the score distributions,

but such a process is unacceptable in a direct approach.

The selected fusion technique is the geometric mean (Eq.

6). Thus the final matching score does not weigh differ-

entially the LBP and descriptor based features. To explore

different combinations of features a total of three signature

fusions are computed. The first signature fusion FLS relies

on fusing LBP and SIFT features. This way the final signa-

ture will use the micro-texture capabilities of LBP combined

with SIFT’s capability of describing the fingernail border

and fingernail plate white spots.

A second signature fusion FLB is created using LBP and

BRISK, in order to evaluate how the BRISK descriptor com-

pares to the SIFT descriptor in this task. Finally a third sig-

nature FLBS is defined, fusing LBP, BRISK and SIFT into a

final matching score.

4 Experiments

This section describes the publicly available experimental

dataset of fingernail plate images as well as the verification

and identification performance of the proposed method on

this dataset.

4.1 Publicly Available Dataset of Fingernail Plate Images

An extended version of an experimental dataset called Tran-

sient Biometrics Nails Dataset (TBND) was created3. TBND

is composed of images of the right index finger. During ac-

quisition the subject was instructed to lay their finger over a

flat white surface and a simple point-and-shoot camera was

used to acquire an image without the the use of a flash. No

explicit instructions with respect to force applied were given

and thus our results incorporate arbitrary force differences

between users and capture sessions. Acquisition was thus

done in a semi-controlled environment; apart from the white

background and indirect lighting, the images present varia-

tion with respect to scale, focal plane and illumination. The

dataset consists of three subsets, each one compromising the

same 93 subjects, but varying on acquisition date.

The first subset D01 consists of images acquired on the

first acquisition day. The second subset D02 is composed

3 Thanks to Cham Athwal of the School of Digital Media Technol-

ogy, Birmingham City University

of images acquired one day later. The third subset D30 was

acquired one month after the first acquisition date. Given

acquisition restrictions, the acquisitions of D30 have up to

two days’ tolerance. This represents a massive expansion of

the originally collected dataset [2], and will also be made

available through NTNU Visual Computing lab’s website [

http://www.idi.ntnu.no/grupper/vis/TBND ].

4.2 Verification Performance

To evaluate verification performance a simple direct classi-

fier is used, which thresholds the matching score between

two images to determine if they correspond. To asses the

verification behavior across time and thus determine how

transient the explored fingernail plate biometric really is,

images from D01 are matched against D02 and D30. It is

anticipated that the fingernail plate biometric information

transforms as the fingernail grows. Therefore, higher veri-

fication rates should be expected for matches across a day

interval (D01xD02) than for matches across a month inter-

val (D01xD30). The difference in verification performance

between these two cases will determine how transient the

proposed biometric is.

Assuming that each subject represents a class, verifica-

tion can be treated as a binary classification problem where

the proposed solution verifies if a query image is from whom

it is claimed to be. This implies that the classification out-

put can yield four types of result: true positive, true nega-

tive, false negative and false positive. These outcomes are

typically computed by comparing each image from the first

dataset (called a query) against every image of the second

dataset (called a target). A true positive is the case where the

query is correctly classified as a match for the target while a

true negative is the case where the query is correctly classi-

fied as a non-match for the target. A false negative is when

the query is wrongly classified as a non-match for the target

while a false positive is when the query is wrongly classified

as a match.

Let TP, TN, FN and FP represent the cardinalities of

the sets that represent the above four possible classifica-

tion outcomes. By defining the False Positive Rate (FPR) as

shown in Eq. 9 and the True Positive Rate (TPR) as shown

in Eq. 10, it is possible to assess the verification perfor-

mance with the Receiver Operator Characteristics (ROC)

curve. This methodology evaluates how different thresholds

on FPR (i.e. the risk of the system) impact on TPR (i.e. the

convenience in the use of the system), by plotting FPR vs

TPR:

FPR =
FP

FP+FN
(9)
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T PR =
T P

T P+FN
(10)

Conventionally when a biometric methodology is evalu-

ated with a ROC curve, the False Positive Rate ranges from

10−3 to 1. Given that our datasets compromise 93 subjects

(being the first datasets of their kind), evaluating at FPR =

10−3 would produce results of low statistical significance

since the classification of a single subject would greatly al-

ter the output values. This, in conjunction with the assump-

tion that the proposed methodology is aimed at non-critical

biometric applications, led us to compute the ROCs curves

in the range 10−2 to 1.

We first compute the ROCs for each of the basic features

used separately: SIFT, BRISK and LBP. We assess the verifi-

cation rates for matches done with a day interval (D01xD02)

against matches done with a month interval (D01xD30). The

achieved results are shown in Fig. 5.

These ROC curves shows that all three features undergo

an expected performance deterioration within the course of

a month. This decay in performance shows that fingernail

plate images are a transient biometric feature with a short

lifetime.

We next present results on the fused signatures in Fig. 6.

The ROC curve for FLS shows verification performance for

a signature based on the fusion of LBP and SIFT. In theory

this signature fusion will have the capability to discriminate

subjects’ fingernails based on fingernail texture due to LBP,

as well as due to fingernail border characteristics and finger-

nail white spots due to the SIFT descriptor. The computed

ROCs are shown in Fig. 6 (a). The achieved results indicate

that the proposed signature fusion technique of Eq. 6 on the

fused signature FLS outperforms the two best performing in-

dividual features shown in Fig 5 [ (a) & (c) ]. Therefore, the

signature fusion technique was successful. This is further

demonstrated in the fusion that results in the FLB signature;

in this case the LBP signature is combined with the effi-

cient BRISK descriptor. The ROC curves for this fusion are

shown in Fig. 6 (b). The final signature fusion FLBS employs

all three features, LBP, BRISK and SIFT. The idea is similar

to before; use LBP to describe texture and SIFT/BRISK to

describe fingernail borders and discriminating points. This

time the fusion will also exploit any complementary infor-

mation hidden in the combination of BRISK and SIFT. The

results are shown in Fig. 6 (c).

Table 1 gives verification data for the proposed signa-

tures. It shows the True Positive Rates achieved at an FPR

of 0.01. The results indicate that the final signature fusion

FLBS for fingernail plate images is a transient biometric with

a lifetime of less than 6 months. This is based on the as-

sumption that the TPR of 0.247 after one month is already

at an unacceptable level for practical recognition purposes

(i.e. the biometric feature has been invalidated) and that the
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Fig. 5 ROC curves for SIFT (a), BRISK (b) and LBP (c). Curves la-

beled D01xD02 show the verification performance for matches done

with a day interval, while curves labeled D01xD30 show the verifi-

cation performance across an interval of a month. The performance

decay between the two intervals shows that fingernail plate images are

a transient biometric feature.

TPR value of 0.774 after one day is acceptable, at least for

non-critical applications. We sextuple the invalidation pe-

riod (from one to six months) to allow for possible future

algorithmic improvements that could improve these figures

and also taking into account physiological knowledge indi-

cating that human fingernails totally outgrow within a period

between 3 and 6 months [28].
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Fig. 6 ROC curves for combinations of [LBP+SIFT] FLS (a),

[LBP+BRISK] FLB (b) and [LBP+BRISK+SIFT] FLS (c). The perfor-

mance improvement against the individual features of Fig. 5 indicates

that a successful feature fusion methodology was found. Curves la-

beled D01xD02 show the verification performance for matches done

with a day interval, while curves labeled D01xD30 show the perfor-

mances for a month interval. The larger performance decay between

the two intervals compared to single features, further supports the case

that fingernail plate images are a transient biometric feature.

4.3 Identification Performance

The identification task is a multi class problem, where a

query biometric signature is compared against a list of col-

lected signatures (the target set) with the objective of finding

if the query matches any of the collected signatures. To eval-

Table 1 Verification data (TPR) at 0.01 FPR across datasets captured

with a day interval (D01xD02) and a month interval (D01xD30).

True Positive Rate for different intervals

Signature One day One Month

SIFT 0.742 0.269

BRISK 0.505 0.151

LBP 0.581 0.333

FLS 0.763 0.279

FLB 0.656 0.204

FLBS 0.774 0.247

uate identification performance the cumulative match curve

(CMC) will be used. CMC gauges the probability of a sig-

nature from a query dataset, in this case D02 or D30, being

correctly matched in the first k ranked subjects from the tar-

get set, in this case D01. The subjects of the target set are

ranked using FLBS (Fusion of LBP, BRISK and SIFT by Eq.

6). The abscissa in the CMC graph shows the rank while the

ordinate shows the probability of a correct match up to that

rank.

In the identification task, a simple threshold classifier

plays no role on performance and the results show how re-

liable a computed matching score is for finding a correct

match from an entire dataset. Figure 7 shows the CMC for

FLBS and gives another evaluation of the transient nature of

the proposed biometric approach.

10 20 30 40 50 60 70 80 90

Rank [k]

0

10

20

30

40

50

60

70

80

90

100

P
ro

b
a
b
ili

ty
 o

f 
co

rr
e
ct

 m
a
tc

h
 [
%

]

CMC for  FLBS

D01xD30

D01xD02

Fig. 7 Cumulative match curves for FLBS. The scores are computed by

comparing images from two query sets, respectively acquired within a

day interval D02 and within a month interval D30, against images of

the target set D01. The decay in performance from D02 to D30 fur-

ther supports the presumption that fingernail plate images constitute a

transient biometric characteristic.

It is interesting to compare the identification results against

our previous study which involved only 24 subjects [2]. Al-

though the present method is significantly more robust, it

achieves 86.022% Rank one identification on 93 subjects
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compared to 99.479% Rank one for the previous method on

24 subjects. 4

4.4 Matching Score Distribution

In this section the results are analyzed using two charts show-

ing matching score distributions. The score distribution charts

give us an unbiased view of the behavior of a transient bio-

metric across time that eliminates any bias introduced by

classifier selection.

A histogram is used to approximate the probability den-

sity function (PDF) for matches done within a day interval

(D01xD02) and within a month interval(D01xD30). In both

scenarios the matching scores were divided into two dif-

ferent PDFs. The first PDF, called ’Impostor’, accounts for

the cases where the matching score is computed between

a query subject and an impostor. The second PDF, named

’Correct Subject’, accounts for the cases where the match-

ing score is computed between a query subject and itself.

By separating the matching scores into these two cate-

gories, impostors and correct subjects, it is possible to ob-

serve the effect of time, and thus get an idea of the decay in

recognition performance. These matching scores are com-

puted using FLBS (Fusion of LBP, BRISK and SIFT using

Eq. 6). The abscissa represents matching score values while

the ordinate represents frequency expressed as a percentage.

5 Conclusion

Transient biometrics are introduced as a plausible solution

to the acceptability issue of biometric recognition systems.

It presents a methodology which reduces the risk of misuse

of biometric information; instead of relying on permanent

biometric data it uses biometric data that changes within the

short term and thus nullifies itself. Therefore, it is an engag-

ing solution for collaborative individuals which are reluctant

to volunteer hard biometric information (e.g. fingerprints,

retina images) for non-critical biometric recognition tasks.

Given the knowledge that the collected biometric data has

an expiration date and becomes useless for recognition after

this, individuals are more likely to volunteer such biometric

data for day-to-day recognition tasks.

A transient biometric feature and methodology for ver-

ification and identification tasks was presented. This builds

and completes previous work [2] and uses fingernail plate

images. A new dataset is presented and will be made pub-

licly available; it consists of a larger number of subjects,

more realistic (and challenging) capture conditions as well

as subjects with different skin tones.

4 Note that in the current study we compare day 1 to day 2 while in

the previous study the comparison was across day 1 and day 8.

(a) One Day interval

(b) One Month interval

Fig. 8 Probability Distribution Functions (PDF) for matches against

impostors and correct subjects for a one day interval (a) and a month

interval (b). The change observed in the correct subject PDF from (a)

to (b) further indicates that fingernail plate images are a plausible tran-

sient biometric. Notice that the score distribution for correct matches

changes in such a way, that in case (b) it is hard to differentiate match-

ing scores between correct subjects and impostors. This analysis elim-

inates any influence that may have been added from the choice of clas-

sifier. There is no post normalization after the matching score of Eq. 3;

as this score comes from the percentage of RANSAC inliers, using a

rather strict threshold, it is natural to have low matching scores.

The proposed methodology exploits both texture features

and (descriptor based) information extracted from discrim-

inant fingernail keypoints. No training or machine learning

techniques are employed in the computation of the biometric

signatures making this a direct approach.

Both verification and identification performance was high

within a day interval but degrades considerably after a month,

indicating that fingernail plate images are a valid transient

biometric feature. Here we consider the performance of 80%

to be high, given the novelty of the explored biometric trait.

Nevertheless, some more traditional (non-transient) biomet-

ric technologies currently offer significantly higher recog-

nition rates. It would therefore be important to explore im-

provements in the recognition rate, so that the proposed tran-

sient biometric could become commensurate with currently

’acceptable’ recognition levels. One such improvement would
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be the use multi-biometrics of the same class, by exploiting

more than one fingernail per subject. In this case it is im-

portant to adopt a suitable fusion technique and to maintain

the transient nature of the solution when extracting infor-

mation from multiple fingernails, which could potentially be

derived from a single image of the hand (that potentially also

contains non-transient data). Another possibility for improv-

ing the recognition rate would be to use machine learning

techniques instead of the current direct approach.

If one was willing to sacrifice the transient nature of the

proposed approach, e.g. in order to create a multi-biometric

solution using fingerprints and fingernails, the entire images

of the fingers could be used. This would fit well with the

works of [13], where finger knuckle images are used for

biometric identification. A multi-biometric approach would

also relate to the work of [12] where both fingernails and

finger knuckles are used as biometrics.

The current size of the dataset does not allow for a re-

alistic scalability study (e.g. it is not possible to compute a

meaningful FPR of 10−3). In further work, it would be in-

teresting to expand the size of the dataset in order to allow

for such a study.
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