A genetic algorithm approach to optimising random forests applied to class engineered data

Elyan, Eyad and Gaber, Mohamed Medhat (2016) A genetic algorithm approach to optimising random forests applied to class engineered data. Information Sciences, 384. pp. 220-234. ISSN 00200255

[img] Text
1-s2 0-S0020025516305783-main.pdf
Restricted to Repository staff only until 4 August 2018.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (634kB) | Request a copy

Abstract

In numerous applications and especially in the life science domain, examples are labelled at a higher level of granularity. For example, binary classification is dominant in many of these data sets, with the positive class denoting the existence of a particular disease in medical diagnosis applications. Such labelling does not depict the reality of having different categories of the same disease; a fact evidenced in the continuous research in root causes and variations of symptoms in a number of diseases. In a quest to enhance such diagnosis, data sets were decomposed using clustering of each class to reveal hidden categories. We then apply the widely adopted ensemble classification technique Random Forests. Such class decomposition has two advantages: (1) diversification of the input that enhances the ensemble classification; and (2) improving class separability, easing the follow-up classification process. However, to be able to apply Random Forests on such class decomposed data, three main parameters need to be set: number of trees forming the ensemble, number of features to split on at each node, and a vector representing the number of clusters in each class. The large search space for tuning these parameters has motivated the use of Genetic Algorithm to optimise the solution. A thorough experimental study on 22 real data sets was conducted, predominantly in a variety of life science applications. To prove the applicability of the method to other areas of application, the proposed method was tested on a number of data sets from other domains. Three variations of Random Forests including the proposed method as well as a boosting ensemble classifier were used in the experimental study. The results prove the superiority of the proposed method in boosting up the accuracy.

Item Type: Article
Subjects: G400 Computer Science
Divisions: Faculty of Computing, Engineering and the Built Environment
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology > Enterprise Systems
UoA Collections > UoA11: Computer Science and Informatics
Depositing User: Miss Jessica Baylis
Date Deposited: 21 Sep 2016 13:59
Last Modified: 11 Oct 2017 10:46
URI: http://www.open-access.bcu.ac.uk/id/eprint/3293

Actions (login required)

View Item View Item

Research

In this section...