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Abstract 

Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on 

the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to 

micro-cracking susceptibility of the coating have been investigated using the finite element 

based modelling supported by experimental results of microscopic investigation of the sample 

coatings. Consecutive temperature and stress peaks are developed within the cladded material 

as a result of the laser beam moving along the complex trajectory, which can lead to micro-

cracking. The preheated to 500oC base plate allowed for decrease of the laser power and 

lowering of the cooling speed between the consecutive temperature peaks contributing in such 

way to achievement of lower cracking susceptibility. The cooling rate during cladding of the 

second and the third layer was lower than during cladding of the first one, in such way, 

contributing towards improvement of cracking resistance of the subsequent layers due to 

progressive accumulation of heat over the process. 
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1. Introduction 

  

Laser cladding, representing a cost-effective alternative to conventional techniques, is an 

intensively developing field of research for production of protective coatings of enhanced 

mechanical properties and also for repair of worn-out machine parts [1-3]. These coatings are 

characterised by a relatively high wear resistance, hardness and homogeneous fine-grained 

microstructure. At the same time, orthopaedic implant research has been driven by biological 

fixation, in which interfacial bonding between the implant and bone is generated by formation 

of a layer of biologically active material on the implant surface [4]. The presence of bio-active 

material can influence host bone regeneration by creating an environment which allows cell 

spreading, proliferation and subsequent bone formation, enabling integration of the implant 

into the body. It has been shown that bone ingrowth into implants with deliberately created and 

controlled microstructure of such coatings allows for the strength increase of the bone-implant 

composite by a factor of 3 to 6 [5]. Bioactive materials can be successfully employed as 

coatings on bio-inert metallic substrates, in order to combine high bioactivity with mechanical 

strength.  
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Bioactive glasses, discovered by Hench and co-workers at the end of the 1960s, are among 

the most promising biomaterials for bone repair and reconstruction, mainly thanks to their 

ability to form interfacial bonding with bone due to high bioactivity index. The discovery 

opened a new era in the development of materials for use in medicine. A comprehensive review 

of the state of the art in bioactive glasses from the material technology point of view 

summarizing possibilities of adjusting their physical and chemical properties tailoring the glass 

composition for novel clinical applications is presented elsewhere [6]. Unfortunately, due to 

their brittleness and relatively poor mechanical properties, their clinical applications are limited 

to non-load bearing implants. Therefore, coating a mechanically tough substrate is an 

alternative to reduce the risk of early implant failure [7].  Successful manufacturing of bioactive 

glass and silicate glass-ceramic scaffolds by means of innovative additive manufacturing 

technologies promises an expansion of the different applications of such scaffolds, including 

also load-bearing sites [8].  

The laser cladding technique is promising, since the deposition rate is good and the 

substrate is not exposed to high temperatures during processing. In spite of the observed 

crystallisation of the glass, coatings obtained via laser cladding preserve the bioactivity of the 

original glass [9]. However, due to brittleness of the coatings, micro-cracking susceptibility of 

the laser cladded layers represent a significant problem limiting a wider application of the 

technique. The micro-cracking has a deteriorating effect on mechanical properties, it can lead 

to spallation of the coatings from the base material. Generally, preheating of the base material 

prior to the coating is one of the discussed solutions applied to the different laser cladded 

materials, for example to Co–Mo–Cr–Si [2] or Fe–Cr–C–W [10] coatings. It was indicated that 

numerical modelling seems to be an effective tool to explain the cause of micro-cracking of 

the laser cladded metallic materials although the spectrum of the physical events involved are 

quite complex due to laser interaction with a multiphase environment, and also to high speed 

melting and solidification of the different materials, such as the base and coating materials. A 

numerical model based on finite element methodology was developed in this work and applied 

for analysis of the thermal and strain-stress distributions during laser cladding of bioactive 

glass coatings on the Ti6Al4V alloy basement. The effect of preheating of the basement on the 

cracking susceptibility is numerically analysed showing agreement with the results of 

microscopic investigation.  

 

2. Bioactive glasses, glass-ceramics and implant coating techniques. 

 

Materials that are capable of bonding directly to living tissue are called bioactive materials. 

Since the discovery of 45S5 Bioglass, a great number of bioactive glass and glass-ceramic 

compositions have been developed in order to adjust their bioactivity and other properties for 

specific applications [6, 11]. The main idea behind the glass development was the following: 

the ability of the implant material to form a hydroxyapatite (HA) layer on the surface in 

biological solutions would influence its bonding with the tissue instead of being rejected by the 

body. All known bioactive glass and glass-ceramic materials bond to bone, as bone contains 

HA, and some special glasses even bond to soft tissues [12, 13]. One of the most important 

glass-ceramics is the apatite-wollastonite (AW) system developed as dense glass-ceramic 

material characterised by high fracture toughness, Young’s modulus and bending strength [14]. 

Nowadays, bioactive glasses are mainly based on mixtures of oxides such as SiO2, CaO, MgO, 

Na2O, K2O and P2O5. The compositions differ from traditional soda lime ones with the lower 

percentage of silica, the absence of aluminium but the higher content of alkaline oxides and the 

presence of phosphorus. One of the most important properties of bioactive glasses is their 



controlled reactivity in body solutions [15]. The reactivity of glasses in such solutions are 

strongly dependent on the glass composition. The chemical durability and reactivity along with 

several other properties can be adjusted by the glass composition. Mechanical strength and 

especially the ability to sustain a certain mechanical impact and loading are also very important 

properties. Although, mechanical properties are more dependent on the surface condition rather 

than composition of the glass. It has been shown that the choice of the glass composition for a 

specific application should be based on an extensive and reliable knowledge on the influence 

of all components on the most relevant properties of the glass considering both the manufacture 

and the final application of the product [16].  

A bioactive glass coating on a metal substrate plays a threefold role, namely, bonding easily 

with bone, it protects the substrate from corrosion and protects tissues from corrosion products 

that potentially can induce systematic effects. It is known that such coating of bioinert metal 

implants increases bone-implant contact in the early growth period increasing primary implant 

fixation and reduce the risk early implant failure. The time-dependent surface modification that 

occurs in the consecutive steps upon implantation and starts already in a few hours have been 

described as the following [17]: 

- Alkaline and alkaline earth ions of the glass are exchanged with the environmental H+ 

ions; 

- Si-O-Si bonds are hydrolysed and new Si-OH bonds known as silanols are formed at 

the surface; 

- Polycondensation of Si-OH bonds results in formation of silica gel-like surface layer; 

- Ca2+, PO4
3- and CO3

2- ions are adsorbed on the silica gel; 

- Progressive mineralization, formation and crystallisation of hydroxycarbonate apatite 

(HCA) layer.                    

Moreover, the Si ions, progressively released after implantation promote the growth and 

osteogenic differentiation of primary osteoblasts [18], Si and Ca ions are able to promote the 

upregulation and activation of some genes in osteoprogenitor cells [19]. Nowadays, attention 

is growing on glasses obtained by sol-gel methods, which make it possible to fabricate 

bioactive glasses in a wider range of compositions unobtainable using conventional melting 

[20, 21]. The glasses manufactured by these methods assume an appropriate structure to 

promote precipitation of HCA in biological environment. They are also manufactured with 

controlled porosity making them extremely promising for different biomedical applications 

[22]. 

In spite of their enormous potential, bioactive glass and ceramic coatings are still the subject 

for research rather than wide applications. Even the coatings obtained using such well-

established methods as enamelling, thermal spray or electrophoretic deposition and thin film 

techniques, are not clinically used yet and under extensive investigation both in vitro and in 

vivo. The main disadvantage of enamelling is the residual stresses, which arise due to the 

mismatch between the coefficients of thermal expansion (CTE) between the metal and the 

glass, which can be overcome by proper formulation of the glass composition or using a bond 

coat inserted between the coating and the substrate having an intermediate CTE [23, 24, 13*]. 

As an alternative, creating a multi-layered system or a functionally graded coating with smooth 

change in composition and thermomechanical properties may be applied [25, 26]. The use of 

nanosized additives, instead of micrometric HA powders, or γ-rays sterilisation are another 

ways to improve the performance of the composite coatings [24]. A list of relevant papers 

summarising different enamelled bioactive glass coatings is provided elsewhere [7]. 

The sol-gel process is currently applied to also realise bioactive glass coatings, which 

promote the bone tissue integration improving corrosion resistance of stainless steel substrates, 

applied instead of more expensive Ti and Cr-Co ones [27, 28]. The process allows for obtaining 

hybrid organic-inorganic coatings giving a superior corrosion resistance to the stainless steel 



substrate [29]. Electrophoretic deposition (EPD) is a reliable and inexpensive technique with 

high deposition rate allowing coating parts with a complex shape [30]. The thickness control 

and the use of nanopowder are much easier with EPD. The main limitation is that the substrate 

must be conductive or coated with a conductive film and after the deposition, a sintering stage 

is required to consolidate the coatings. There are also different types of thermal spray 

techniques, such as plasma spray (PS) and high velocity oxyfuel spray (HVOF) that might be 

suitable for deposition of biomaterials [31]. Although PS deposited bioactive glass coatings are 

not widely commercially used yet, they have been studied for many years [32]. The new high 

velocity suspension flame spray (HVSFS), as an evolution of HVOF for obtaining bioactive 

glass coatings is currently under investigation [33, 34]. In this process, the torch is modified to 

enable the direct injection of liquid suspensions instead of powders. Bioactive glass coatings 

produced by different thin film technologies have been investigated for a couple of decades 

[35]. As an example, the pulse laser deposition (PLD) showed that the composition of the final 

bioactive coatings is very close to that of original bioactive glasses. PLD coatings stimulate the 

formation of HCA in an acellular simulated body fluid and promote osteoblast adhesion and 

proliferation [36 - 38]. 

The laser cladding method using powder feeding progressively considered in biomaterials 

research as the surface treatment approach conducted to calcium phosphate and bioactive glass 

coatings on Ti alloys [39-41, 9]. Laser cladding has also been applied for processing 3D 

calcium phosphate parts and bioactive glass [42]. As an alternative approach, laser cladding 

can be used as a reactive deposition technique, in which HA bioceramic coatings are 

synthesized on titanium substrate using calcium carbonate and calcium hydrogen phosphate 

[43]. It has been shown recently and mentioned in introduction that the technique can be 

successfully used for S520 bioactive glass coating on Ti substrates [9]. Despite of the observed 

crystallisation of the bioactive glass, coatings produced via laser cladding show the bioactivity 

of the original glass. Although, much more research on application of laser cladding has to be 

done and the literature on this topic is rather scarce, the technique is very promising due to at 

least two of the following factors such as the high deposition rate and not exposing the substrate 

to high temperatures during processing.       

 

3. Experimental procedure                     

 

The hybrid laser cladding system HSTM 1000 “RECLAIM”, developed by the 

Manufacturing Technology Centre (MTC) as a multipurpose system for additive 

manufacturing, was used for cladding of the bioactive glass onto Ti-6Al-4V base material 

surface. The system is equipped with a pulsed Nd:YAG (neodymium-doped yttrium aluminium 

garnet; Nd:Y3Al5O12) laser at a wavelength of 1064 nm with a maximum nominal power of 

200 watts as the heat source. The laser beam is focused over the Ti-6Al-4V substrate surface 

at 50 mm focus length. The laser spot size is 1.2mm in diameter. The working head consisting 

of laser optics and a powder injection system is docked together and can travel over the 

stationary substrate according to a computerised program at a scanning speed at up to 5 mm/s. 

Pressurised argon gas is used as the powder precursor’s carrier gas to deliver the bioactive glass 

powder particles onto the selected region on the Ti-6Al-4V base material where a melt pool is 

created by the laser beam, meanwhile argon shielding gas is flowed over the melt pool in order 

to prevent oxidation from taking place around the region. The volumetric flow of the carrying 

gas was set to between 4 and 6 l/min and that of the shielding gas was up to 10 l/min. The 

bioactive glass and commercially available Ti-6Al-4V powder precursors were used. The 

powder particle sizes were chosen in the range of 106 to 212 μm in order to ensure the 

flowability of the powder particles during the whole cladding process. Fig. 1 illustrates the 



irregular shaped particles of bioactive glass powder supplied by Glass Technology Services 

(GTS) Ltd.  

Single and multiple layer coatings were made on Ti-6Al-4V base material. The multiple 

layer coatings were made continuously layer by layer without switching off the laser power 

with intention keeping the base material hot to reduce the thermal stress. The bioactive glass 

coated structure was then sectioned for metallurgical observations. A Hitachi TM3000 Desktop 

Scanning Electron Microscope (SEM) was used for observation of the interface structure in 

back-scattered electron mode for presence of porosities and cracks. 

 

4. Mathematical model  

 

The mathematical model has been developed with intention to study the transient 

temperature distribution and the strain-stress fields during laser cladding of bioactive glass 

powders on the metal substrate. Although, the model set up includes the cladded material and 

the base plate, the presented numerical analysis is focused mainly on the cladded layer. The 

input data for the numerical calculations were taken assuming the experimental conditions 

described in the previous section along with the corresponding material properties 

characterising the base plate and the powder to be melted. The laser radiation is considered as 

a volumetric heat source to be absorbed in a volume of a green body, as it is recognised 

elsewhere [44]. A Gaussian distribution of the heat flux in the radial direction and exponential 

decay in the depth direction is defined by the following equation: 
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where Q(r, z) is the heat flux at point with coordinates (r, z); r is the radial and z is the vertical 

coordinate correspondingly, Ro is the radius of the laser beam on the top surface and α is the 

absorption coefficient of the green body. Qo is the maximum peak flux defined by the following 

equation: 
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where QL is the laser power and d is the heat penetration depth. The base was the titanium alloy 

Ti-6Al-4V (Grade 5: 6% Al, 4% V, 0.2% O2 (max) and Ti as remainder) and the powder 

material was bioactive glass with the following nominal composition: 56.5% SiO2, 11.0% 

Na2O, 3.0% K2O, 15.0% CaO, 8.5% MgO, and 6.0% P2O5) [45]. The thermal and mechanical 

properties of both materials used for the modelling are presented in Table 1.           

The property values of the materials shown in Table 1 with indications “after” were 

estimated based on available data for the materials of similar chemical composition. The 

effective thermal conductivity (ETC) of molten glass materials at high temperatures, k(T), is 

an important property affecting the glass melting and therefore the quality of the final laser 

cladded products. It is known that heat in the semi-transparent glass-melts is transferred by 

both conduction and radiation [46, 47]. The total heat flux can be expressed as the sum of a 

phononic and a radiative heat fluxes based on Fourier’s law. Due to lack of available data for 

ETC of bioactive glasses, considering the wide range of the relevant ETC values between 11-

18 W/m deg and 35-80 W/m deg for the temperature T between 1100oC and 1500oC, the 

following expressions were used in the numerical analysis based on the effective thermal 

conductivity of soda-lime silicate glass-melts [47]: 

 

  6.14021.01  TTk       (2) 

  3.17025.02  TTk         (3) 



  2.37061.03  TTk      (4) 

  5.367608.0108.2 24

4   TTTk     (5) 

 The finite element (FE) model setup was defined by the base and the coated material 

dimensions and also by sizes of single and multiple coating traces described in section 3. The 

number and sizes of the elements of the base and coating material for the different modelling 

cases were different and adjusted to achieve a reasonable computational time. It was assumed 

that the coating was located on the top surface of the base (Fig. 3a). The mathematical model 

used in the work is composed of two sets of 3-D elements within Abaqus/Standard FE software. 

The first set of the elements represents the titanium alloy base while the second one the 

increasing in time number of elements describing the melted bioactive powder material 

accumulated on the base plate surface in the form of a solid layer. In the numerical modelling, 

increase of the total amount of the cladded bioactive material was taken into account by a time-

dependant activation of the finite elements (Fig. 3b). Initially, all the cladded beads have been 

meshed during the model configuration. Then, the cladded chunks are selectively activated 

during the analysis depending on the cladding speed. The simulation uses a sequentially 

coupled approach in which the temperature results from the thermal analysis are used in the 

followed stress analysis to calculate the thermal stress effects. The thermal analysis is 

performed to calculate the heat transfer that results from the thermal load of the moving laser 

beam and is run as a fully transient heat transfer analysis. The structural analysis uses the 

temperature results as the loading with the objective to determine transient stresses and strains 

induced in the heat affected zone (HAZ) during the cladding process. 

The initial temperatures of the base titanium alloy plate for the non-preheated and 

preheated cases were correspondingly assumed as 20 and 500°C. The initial temperature of the 

elements representing the cladded material at the moment of their activation was 20oC and it 

was immediately rising to high values under the influence of the absorbed laser radiation 

described in the model as the volumetric heat source. The heat source defined by eq. (1) was 

applied in the model using DFLUX subroutine. The ambient temperature was assumed as 20oC 

while the laser power, the diameter of the laser spot and the scanning speed were changed as 

follows: 60W - 120W, 1.2 mm and 5mm/s, respectively. The base plate was assumed 10 mm 

long, 10 mm wide and 2 mm thick consisting of 3620 8-node linear heat transfer brick elements. 

Three consecutive cladded layers were considered in the simulation in which each cladded 

chunk was 1 mm long, 1 mm wide and 0.5 mm thick consisting of 48 elements of the same 

type as the base plate (Fig. 4). The indicated in Fig. 4 three corner nodes of the base plate were 

constrained to prevent rigid body motion. Node 1 was fully constrained to move in three 

dimensions while constrains in Y and Z directions and in X and Y directions were placed 

correspondingly on node 2 and 3.  

 

5. Results and discussion 

 

Temperatures and other quantities, such as strain and stress distributions, varying over time 

were calculated for the entire 3D area consisting of the base plate and the cladded layers of 

bioactive glass. Three points within the layers of bioactive glass (B1, B2 and B3) and two 

points within the metal base plate (T1 and T2) were chosen for the transient analysis, as shown 

in Fig. 5. The locations for the points were chosen deliberately for the analysis at the beginning 

and also near the middle and finishing stages of the simulated cladding process. The indicated 

points T1 and T2 are situated at the surface layer of the base plate underneath of the cladded 

material. The point locations within the cladded material correspond to the locations of the 

nodes in the middle of the appropriate group of the finite elements, as it is shown in Fig. 6. 

 



 

 

 

Fig. 7 shows the nodal temperature change calculated at the chosen points B1, B2 and B3 as 

the clad of bioactive glass is being deposited. There are two temperature curves for each point 

shown in the figure. The continuous curve corresponds to the cladding process onto the not 

preheated base plate with the initial temperature of 20oC using the laser power of 120W. The 

dashed curve represents the calculated temperature for the laser power of 90W but assuming 

the base plate preheated to 500oC. The temperature peaks shown in Fig. 7 correspond to the 

laser beam passage across the finite elements in which points B1, B2 and B3 are located within 

the first, second and the third cladding layer, correspondingly. The consecutive temperature 

peaks are developed as a result of the heat transfer from the laser beam moving along the 

trajectory shown in Fig. 5. The progress in the cladding simulation, in which several layers of 

bioactive glass are deposited onto the metal base without dilution of one into the other, shown 

at the top of Fig. 7 for several time moments corresponding to the consecutive temperature 

peaks.  

The time difference between the first maximum and minimum peaks of the temperature 

at the point B1 is about 1s, which coincides with the completion of the first cladding track, 

when the laser beam is the most remote from the starting point. Then, the temperature at the 

point rises again when the beam approaches the point B1 completing the second (adjacent) 

track. The following peaks appear to be an effect of the thermal field generated by the laser 

beam passing other selected points B2 and B3. The temperature at the point B2 reaches its first 

maximum at the time moment of about 3s, at the completion of the fourth cladding track when 

the second layer is formed. It follows by its decrease with the laser beam moving away from 

the point repeating the trend observed earlier for the point B1. It can be noticed in Fig. 7, that 

the cooling rate was less for the point B2 than the one for the point B1. Similar temperature 

variations can be seen at the point B3, situated at the third cladding layer with even less cooling 

rate than it was observed at the points B1 and B2 (Fig. 7). It can also be noticed that the 

maximum temperature exceeds the melting temperature, which was assumed as 1183oC for the 

bioactive glass, at all three points. This indicates fulfilment of the melting condition for the 

coating during the cladding process. Lower cooling rate values were observed for the case of 

cladding on the preheated rather than not preheated base plate for all selected points. The shown 

differences in the cooling rate are more pronounced after the first (the highest) temperature 

peaks at each selected point. It has to be mentioned, that the melting condition has been fulfilled 

for a short time at the surface area of the bioactive glass and situated directly under the laser 

beam at the moment of cladding of the new material chunk (Fig. 8), i.e. at the moment of 

activation of the new group of the finite element corresponded to the deposited chunk of the 

bioactive material. This allowed for keeping the rest of the coating beneath the melting 

temperature, and in such way, cladding of the several tracks and layers.  

A similar character of the temperature variations in the selected points of the coating was 

observed for the reduced (from 90W to 60W) values of the laser beam power in the case of 

preheated base plate (Fig. 9). The preheated to 500oC base plate allowed for both decrease of 

the laser power and fulfilment of the melting condition for the coating during the cladding 

process at the same time. This allowed for further lowering of the cooling rate between the 

consecutive temperature peaks contributing in such way to achievement of lower cracking 

susceptibility as a result.  It can also be seen in Fig 7 and 9 that the cooling rate during cladding 

of the second and third layers is lower than during cladding of the first one allowing for 

improvement of cracking resistance of the subsequent layers due to progressive heat 

accumulation over the process.  



Variations of the transient temperature and equivalent stress predicted at the points B1 and 

B2 during cladding of the first and second layer onto the not preheated base plate are shown in  

Fig. 10.  The dashed line in the figure corresponds to the tensile strength limit assumed for the 

cladded material as 42MPa. It can be noticed that while the maximum stress in the coating 

exceeds its strength limit for a short time during cladding of the first layer, its value is below 

the corresponding limit during cladding of the second layer of the glass. It explains increased 

cracking resistance during cladding of the subsequent layers of bioactive material. The 

numerical results are in good agreement with the experimental observations.  Fig. 11 illustrates  

the cross section of the bioactive glass coating for the single track and single layer case when 

the metal base plate was not initially preheated. A large crack can be seen in the bioactive glass 

coating. Cracking of the glass coating in longitudinal direction is also observed experimentally 

 during cladding of the single track on the not preheated base plate along with the transverse 

cracks.  These longitudinal cracks result from stress localisations at the top curved areas of the 

coating. The predicted distribution of the equivalent stress on the top surface of the single track 

shows the area where the stress exceeds the tensile strength limit for the cladded material, and 

this area coincides with the place where the longitudinal crack was observed experimentally 

(Fig. 12). It has to be mentioned that the coating structure provided valuable information about 

the peak temperature distributions at the coated surface layer of the base plate. The cross 

sections, such as presented in Fig. 11, are characterised by the melted area, where the 

temperatures have exceeded the corresponding melting temperatures assumed in the model. 

The boundary of these areas were in good agreement with the predicted profiles of the relevant 

isotherms allowing for some verification of the model predictions along with comparing areas 

of the predicted stress localisations and experimentally observed cracking areas, such as 

presented in Fig. 12. Improvement of the cracking resistance of the subsequent second and 

third layer has been also noticed experimentally. In the case of triple layer but single track 

cladding, as it is shown in Fig. 13, the transverse cracks still exist in the first layer. However, 

cracks were not observed in the subsequent 2nd and 3rd layer of the coating. The obtained results 

favour the conclusion that the transient stresses generated within the bioactive material during 

laser cladding of subsequent layers are less than those generated during cladding of the first 

layer. They can be lower than the corresponding strength limit for the coating under the 

appropriate adjustment of the laser power. The observed effect is due to heat accumulation 

from cladding of the first layer not from the initial preheating of the base plate. In addition, the 

consecutive layers are deposited at the surface of glass having the same expansion coefficient. 

Therefore micro cracks formation is less expected in that case.  

In the case of multiple tracks and multi layered coating on the not preheated base plate, 

the transverse cracks can be present in the region close to the Ti-6Al-4V substrate across tracks.  

Occasionally, the cracks can propagate to the top surface of the coating (Fig. 14a). The cracking 

during multiple track coating can occur when the laser beam thermally affects the earlier 

cladded adjacent track. As it can be seen in Fig.14b and c, the transient equivalent stress 

exceeded the tensile strength limit during cladding both the second and the third layer, 

correspondingly at the points B2 and B3, due to the influence from the adjacent track cladding 

when the laser beam passing the paths located close to these points. Therefore micro cracks are 

expected in the multi-track cladding of the bioactive material on the not preheated Ti-6Al-4V 

base plate. The maximum values of the transient stress, predicted at the surface layer of the 

metal base plate, did not exceed the assumed tensile strength for the material during the 

cladding even without the initial preheating (Fig. 15). Although, as it can be seen in Fig. 13 

showing the available experimental results, the cracks originated in the cladded material can 

propagate into the surface layer of the not preheated base plate during cladding. However, the 

numerical results show no evidence of their origination within the metal base plate during 

cladding, as the predicted transient stress within the plate is below the tensile strength during 



the whole process. It has to be mentioned that the peaks of the transient stress do not coincide 

with temperature peaks. The effect is clearly visible, for instance, in Fig. 16 showing the 

temperature and stress distribution predicted on the top surface of the base plate for the moment 

of the laser beam passage over the point T1. The equivalent stress developed within the material 

at the centre of the laser beam spot having the highest temperature is lower than the stress 

developed closer to the periphery zone, where the temperature is lower. The peaks of the 

transient thermal stress are developed around the laser heat spot due to thermal expansion of 

the material. They can affect neighbouring areas during cladding of multi tracks.    

The edges of the material chunks reveal significantly higher temperature gradients at each 

moment of cladding increasing the probability of cracking at these areas. The calculated 

temperature gradients between top and bottom edges of three consecutive chunks of the cladded 

bioactive material are presented in Fig. 17a. The temperature gradients were calculated 

between the corresponding nodes of the top and bottom sides of the cladded chunks at three 

time moments when the centre of the laser beam spot was situated at the middle of the 

corresponding chunk. Fig. 17b illustrates the schematic representation of the nodes. The edges 

of the cladded bioactive glass chunks located closer to the start of the track reveal higher 

temperature gradients favouring their higher cracking susceptibility comparing with the later 

stages of the process.  

As it has been observed experimentally, the cladded bioactive glass layers have largely 

remained amorphous. Partial crystallisation has been observed along the fusion line of the melt 

pool. Although presence of uncontrolled crystallisation may lead to some stress localisations 

within the corresponding areas of the coating, the observed minor spots of partial crystallisation 

are rather scarce and would not be playing a noticeable role in the crack initiation and 

propagation within the area. 

  

6. Conclusions 

 

(1) A numerical model based on FE methodology was developed and applied for analysis 

of the transient thermal and strain-stress distributions during laser cladding of bioactive 

glass coatings on the Ti6Al4V alloy basement. The input data for the numerical 

calculations were taken assuming the experimental setup. The number and sizes of the 

elements of the base and coating material for the different modelling cases were 

different and adjusted to achieve a reasonable computational time. The laser radiation 

was considered as a volumetric heat source. The model is composed of two sets of 3-D 

elements within Abaqus/Standard FE software representing the titanium alloy base and 

the melted bioactive powder material accumulated on the base plate surface in the form 

of a solid layer. The total amount of the cladded bioactive material was taken into 

account by time-dependant activation of the finite elements.  

(2) The consecutive temperature peaks are developed at the points of registration within 

the cladded material as a result of the laser beam moving along the complex trajectory 

consisting of three consecutive tracks and layers. Lower cooling rate was observed for 

the case of cladding on the preheated to 500oC rather than not preheated base plate for 

all selected points. The preheated base plate allowed for decrease of the laser power 

and further lowering of the cooling speed between the consecutive temperature peaks 

contributing in such way to improvement of the cracking resistance. The cooling rate 

during cladding of the second and third layers was lower than during cladding of the 

first one allowing for lower cracking susceptibility of the subsequent layers due to 

progressive accumulation of heat over the process. 



(3) The maximum transient stress in the coating exceeds its strength limit for a short time 

during cladding of the first layer. However, its value is below the corresponding limit 

during cladding of the second layer of the glass. It explains improvement of the cracking 

resistance during cladding of the subsequent layers of the bioactive material. The 

numerical results are in good agreement with the experimental observations. 

(4) In the case of multiple tracks and multi layered coating on the not preheated base plate, 

the transverse cracks can be present in the region close to the base plate across tracks. 

Occasionally, the cracks can propagate to the top surface of the coating. The cracking 

during multiple track coating can occur when the laser beam thermally affects the 

earlier cladded adjacent track.  

(5) The cracks originated in the cladded material can propagate into the surface layer of the 

not preheated base plate during cladding. However, the numerical results show no 

evidence of their origination within the metal base plate during the cladding process, as 

the predicted transient stress within the plate is below the tensile strength during the 

whole process route. 

(6) The edges of the cladded bioactive material reveal significantly higher temperature 

gradients increasing the probability of cracking at these areas. The edges located closer 

to the start of the track reveal higher temperature gradients favouring their higher 

cracking susceptibility comparing with the later stages of the process.   
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Table 1. Thermal and mechanical properties of the metal base and bioactive powder used 

for the modelling. 

 

 Ti-6Al-4V Bioactive glass 

Density, kg/m3 4.42 [57] 2.62 – 2.707 [after 46] 

Melting temperature, oC 1649 [50] 1183 [10] 

Latent heat, J/kg 360-370 [55] - 

Linear expansion 

coefficient, 1/deg 

8.6×10-6 [56] 10.86×10-6 [53, 54] 

Effective thermal 

conductivity, W/m deg 

7.2 [after 50] 50-90 [after 47] 

Heat capacity, J/kg deg 560 [after 50] 500 

Young’s modulus, GPa 113.8 [56]  80-90 [54]   

Yield stress, MPa 897 [after 58] 35 

Tensile strength, MPa 1150 [after 58] 42 [after 48] 

Poisson’s coefficient 0.342 [56] 0.261 [46] 

Convection coefficient at 

20oC , W/m2 deg  

50 [50] 50 [50] 

Stefan-Boltzmann 

constant at 20oC, 

W/m2K4 

5.7×10-8 5.7×10-8 

Emissivity coefficient 0.708 [50] 0.85-0.95 [after 51] 

 

 

 

  



 

 

 

  

Fig. 1 Irregular shaped particles of bioactive glass powder used for laser cladding. 

1 mm 



 

 

  

Fig. 2 Temperature dependence of the effective thermal conductivity of the different 

glass-melts used in the numerical analysis [after 47].  



 

 

 

 

  

Fig. 3 Schematic representation of the laser cladding of bioactive glass powders (a) 

and the FE model set-up illustrating a time dependent elements activation (b).   



 

  

Fig. 4 FE model set up illustrating the constrained base plate with cladded layers of bioactive 

glass on its top surface. 



 

 

 

 

 

 

  

Fig. 6 Location of the point within the group of the finite elements representing 

the cladded material   

Cladded material 

The base plate 

Fig. 5   Schematic representation of the point locations within the cladded material 

and the base plate along with the movement trajectory of the laser beam.  



 

 

 

 

 

  

Fig. 7 The variation of temperature with time at points B1, B2 and B3 within the cladded 

material predicted during laser cladding of bioactive glass for the different initial 

temperatures of the base plate and the following values of the laser power: 120W and 90W. 

(Note progress of the cladding simulation schematically shown at top of the figure). 



 

 

 

  

Fig. 8 The temperature distribution within the cladded material and the base plate 

predicted for the different time moments of the cladding process. Cladding of the first 

(a), second (b) and the third layer (a), correspondingly.  



 

 

 

 

 

  

Fig. 9 The variation of temperature with time at points B1, B2 and B3 within the cladded 

material predicted during laser cladding of bioactive glass for the different initial 

temperatures of the base plate and the following values of the laser power: 120W and 

60W. 
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Point B1 

Point B2 

Point B2 

Fig. 10  The transient temperature and equivalent stress predicted during laser 

cladding of the first and second layer of the bioactive glass (points B1 and B2, 

correspondingly) for the following parameters: laser power 120W and initial 

temperature of the base plate 20oC.  



 

 

 

  

Fig. 11 SEM image showing cross section of the bioactive glass coating on not preheated 

Ti-6Al-4V base plate (single track). 
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Stress localisation (left) 
Longitudinal crack (right) 

Fig. 12  The equivalent stress predicted on the top surface of the single cladded track (left) 

and SEM image illustrating the longitudinal crack occurred in the cladded material (right). 
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Ti-6Al-4V 

Fig. 13 SEM image showing cross section of bioactive glass coating on not preheated Ti-

6Al-4V base plate (single track). 
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Fig. 14 SEM image showing cross section of bioactive glass multi layered coating on not 

preheated Ti-6Al-4V base plate (multiple tracks) (a) and the transient equivalent stress 

predicted during laser cladding of the second (b) and third (c) layer of the bioactive glass 

(points B2 and B3, correspondingly) for the following parameters: laser power 120W and 

initial temperature of the base plate 20oC.  

 



 

  

Ti-6Al-4V 

Fig. 15   The equivalent stress predicted at the surface layer of the base plate (points T1 

and T2) during laser cladding of the bioactive glass for the following parameters: laser 

power 120W, the initial temperature of the base plate 20oC and 500oC.  

a 

b 

Fig. 16   The temperature (a) and equivalent stress distribution (b) predicted on the top 

surface of the base plate for the time moment of the laser beam passage over the point T1.  

(Laser power - 120W; initial temperature of the base plate - 20oC)  
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Fig. 17   The temperature gradients 

calculated between the top and bottom 

edges of the cladded chunks (a) and the 

schematic representation of the 

corresponding nodes (b). 


