Adaptive mobile activity recognition system with evolving data streams

Abdallah, Zahraa and Gaber, Mohamed Medhat and Srinivasan, Bala and Krishnaswamy, Shonali (2015) Adaptive mobile activity recognition system with evolving data streams. Neurocomputing, 150 (A). pp. 304-317. ISSN 0925-2312

Full text not available from this repository. (Request a copy)

Abstract

Mobile activity recognition focuses on inferring current user activities by leveraging sensory data available on today's sensor rich mobile phones. Supervised learning with static models has been applied pervasively for mobile activity recognition. In this paper, we propose a novel phone-based dynamic recognition framework with evolving data streams for activity recognition. The novel framework incorporates incremental and active learning for real-time recognition and adaptation in streaming settings. While stream evolves, we refine, enhance and personalise the learning model in order to accommodate the natural drift in a given data stream. Extensive experimental results using real activity recognition data have evidenced that the novel dynamic approach shows improved performance of recognising activities especially across different users.

Item Type: Article
Uncontrolled Keywords: Ubiquitous computing Mobile application Activity recognition Stream mining Incremental learning Activelearning
Subjects: G400 Computer Science
Divisions: Faculty of Computing, Engineering and the Built Environment
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology
Faculty of Computing, Engineering and the Built Environment > School of Computing and Digital Technology > Enterprise Systems
UoA Collections > UoA11: Computer Science and Informatics
Depositing User: $ Ian McDonald
Date Deposited: 26 Jan 2017 11:54
Last Modified: 26 Jan 2017 11:54
URI: http://www.open-access.bcu.ac.uk/id/eprint/3830

Actions (login required)

View Item View Item

Research

In this section...