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ABSTRACT 
 
 
 

This work evaluates the effects of the replacement of engine-powered vehicles by 
 

electric vehicles on carbon dioxide (CO2) emissions and energy consumption. A case study of 
 

a taxi fleet replacement was conducted with the aid of the AVL Cruise software. The 
 

simulation was performed under different scenarios of total or partial fleet replacement along 
 

a period of 15 years. The scenarios were designed considering favorable and unfavorable 
 

conditions for electricity production from a clean source, thus influencing the CO2 emission 
 

factor adopted. The simulations showed that the electric energy consumption by the electric 
 

vehicles is about four times lower than fuel energy consumption by the conventional vehicles 
 

undergoing a standard test schedule. At the end of the period considered the electric vehicles 
 

will produce lower CO2 emissions than the conventional vehicle fleet by a factor of 10, even 
 

considering the most unfavorable scenario of electric power generation. An economic analysis 
 

shows that the present value of electric vehicles over the years is lower than that of 
 

conventional vehicles, except for the first year after vehicle acquisition. 
 
 
 

Keywords: electric vehicle; CO2 emissions; energy; fuel consumption; sustainable 
 

development. 
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1. INTRODUCTION 
 
 
 

To improve air quality, increasingly strict regulation laws require reduced automotive 
 

emissions, which has influenced the development of clean technologies [1]. Those 
 

technologies include electric vehicles (EVs), hybrid electric vehicles (HEVs) and plug-in 
 

hybrid electric vehicles (PHEVs) [2]. The possible reduction of carbon dioxide (CO2) 
 

emissions with the use of those technologies also contribute to reduce global temperature 
 

increase, one of the key factors for climate change [3]. In order to reduce automotive 
 

emissions many countries adopt increasingly strict regulating laws [4]. The need to reduce 
 

carbon emissions motivates the use of renewable energy sources in the electricity matrix [5]. 
 

The demand for sustainable actions inspires the rise of solutions with higher energy efficiency 
 

[6]. Those solutions are generally characterized by less oil dependence and reduced fuel 
 

consumption [7]. In this sense, there are many studies on EVs as a possible viable alternative, 
 

especially in countries with clean electricity matrix [8]. 
 

The positive and negative aspects of the replacement of engine-powered vehicles by 
 

electrical vehicles are identified for specifics fleets [9]. One of the advantages of EVs is the 
 

absence of exhaust emissions [10]. Another advantage is the reduced noise during operation 
 

[11]. The reduction of both noise and emissions also help to reduce health risks [12]. In 
 

comparison with conventional vehicles, EVs require minimal maintenance [13]. In addition, 
 

they have lower operation cost and higher efficiency [14]. The advantages are increased with 
 

the possibility of using the EVs in distributed generation [15]. The use of electricity produced 
 

from fossil fuels reduces their advantages [16]. 
 

One of the disadvantages of EVs is their lower autonomy, in comparison with 
 

conventional vehicles [17]. Also, EVs need the development of recharging infrastructure, 
 

which already exists for conventional vehicles [18]. Increasing use of EVs demands increased 
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electricity provision [19]. Sustainability aspects of the use of EVs requires adequate battery 
 

disposal/recycling [20]. Finally, the main barrier for EVs is their high initial costs [12]. 
 

EVs are good alternatives in countries with low emission electricity matrix and cities 
 

with small geographic extension, since in this case they can operate all day with a single 
 

recharge. According to Tarroja et al. [21], it is preferable to produce the electricity used in 
 

EVs from renewable sources, depending on availability and load demand. 
 

The use of EVs may provoke increased emissions from electric power generation. 
 

Monteiro et al. [22] point out that the largest CO2 producers are power plants, responsible by 
 

around 40% of the world electricity production. Therefore, for the use of EVs it is desirable 
 

low-emission electricity matrices, which is the case of Brazil, for instance, where CO2 

 
emissions from electricity generation are low (about 135 gCO2/kWh) in comparison with 
 

other countries. In countries such as Poland and Greece, the CO2 emission factor from 
 

electricity generation is around 850 gCO2/kWh. 
 

A study developed by Varga [23] used the AVL Cruise software to simulate four 
 

different types of electric vehicles to determine the energy consumption using the New 
 

European Driving Cycle (NEDC). The results for energy consumption ranged from 0.104 to 
 

0.127 kWh/km. This data was used to calculate CO2 emissions from those vehicles in 
 

Romania based on electric power plant emissions during the period from 2004 to 2008, 
 

producing values that varied from 84 to 115.9 g/km. 
 

Yuan et al. [24] simulated an electric vehicle using the AVL Cruise software and 
 

evaluated CO2 emissions for different driving cycles (New European Driving Cycle – NEDC, 
 

1975 U.S. Federal Test Procedure – FTP-75, Japanese Modal Cycle – JC-0, and Worldwide 
 

Harmonized Light Duty Test Cycle – WLTC) and driving ranges in China. The authors used a 
 

high CO2 emission factor range (736 g/kWh to 1147 g/kWh), taking coal as the main source 
 

of power generation in the country. The emission factor used was 855 g/kWh, although the 
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authors recognized that this value varies in the different parts of the country. Simulated results 
 

showed electric vehicle energy consumption around 0.16 kWh/km and CO2 emissions about 
 

105 g/km in the FTP-75 driving cycle. The authors concluded that, for the Chinese energy 
 

matrix, the use of EVs could reduce CO2 emissions only for operation in distances shorter 
 

than 250 km, if compared to conventional vehicles. 
 

The objective of this work is to analyze further the impacts of the replacement of 
 

conventional vehicles by electric vehicles on energy consumption and CO2 emissions. The 
 

study is performed using the AVL Cruise software to simulate two similar vehicle models, 
 

one powered by an internal combustion engine and the other electric. The benefits of 
 

replacing conventional vehicles by EVs are verified using as a case study a taxi fleet of a 
 

Brazilian city, where hydroelectric power plants account for over 70% of electricity 
 

generation. The use of a renewable source of electricity is expected to increase the advantages 
 

of EVs in comparison with previous works, where the studies considered electric matrices 
 

based on fossil fuels. The extent of the reduction of CO2 emission from the use of EVs 
 

powered by an electric matrix based on renewables is presented using different scenarios of 
 

gradual fleet replacement. An economic analysis was performed to verify the costs of 
 

replacement. 
 
 
 

2. METHODOLOGY 
 
 
 

The emissions of CO2 from two vehicles of similar model were compared, one 
 

conventional, powered by an internal combustion engine (vehicle A), and the other electric 
 

(vehicle B). Table 1 presents the details of each vehicle. Vehicle A is the model that best 
 

represents the average taxi fleet in operation, which, in reality, is composed by different 
 

vehicle models. Both vehicles, A and B, were simulated under the Federal Test Procedure 75 
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(FTP-75) driving cycle using the AVL Cruise software. CO2 emissions from vehicle A was 
 

calculated considering complete combustion [25], as follows: 
 
 
 
 

(1) 
 
 
 
 

The fuel consumption map of vehicle A, available from the manufacturer, was used to 
 

evaluate the equivalent energy consumption considering the fuel as a blend of composition 
 

78% gasoline and 22% ethanol (E22), according to: 
 
 
 
 
 
 
 
 
 

As no database is available in Brazil for other pollutant gas components emitted from 
 

power generation, CO2 is the only component here evaluated, as it was done in previous 
 

studies [26,27]: 
 
 
 
 

(3) 
 
 
 
 

Four scenarios of different replacement rates of a conventional engine powered taxi 
 

fleet by electric vehicles were designed as a case study. The conventional fleet is composed 
 

by 213 vehicles, and the period of evaluation is 15 years. The fleet replacement rates adopted 
 

were 25%, 50%, 75% and 100%, with all vehicles being replaced in the beginning of the 
 

period of evaluation. Two scenarios were optimistic and two pessimistic (Tab. 3), and differ 
 

from each other according to the adopted CO2 emission factor and average distance traveled 
 

by taxi per day. For each scenario daily travel distances of 200 km and 400 km by each taxi 
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were considered, representing the minimum and the maximum values. In holiday months, the 
 

taxis were assumed to travel an additional distance of 100 km per day. 
 

In the first scenario, a low CO2 emission factor of 30 gCO2/kWh was considered, 
 

corresponding to the use of hydroelectric power to supply over 70% of the electricity demand. 
 

In scenario 2, the CO2 emission factor was slightly higher than in scenario 1 (50 gCO2/kWh) 
 

to consider a small replacement of hydroelectric power by thermoelectric power as a response 
 

to dry winter conditions, which reduce the capacity of hydroelectric power plants. In the third 
 

and fourth scenarios, the assumption of low rain levels per year means that most of the 
 

hydroelectric power is replaced by thermoelectric power, leading to the adoption of higher 
 

emission factors. 
 

For the calculations, the EVs electric energy consumption and the fuel consumption of 
 

the conventional vehicles were taken as constant parameters. Each month was considered to 
 

have an average of 30 days. The EVs batteries were taken as fully charged early in the day. In 
 

all scenarios, an annual growth rate of 5% was assumed for the emission factors. 
 

An economic analysis of the cash flow, present value and net present value was 
 

performed for both vehicles considering the cost of acquisition, operation and maintenance, 
 

and the taxi driver income. The analysis was based on the replacement of a conventional 
 

vehicle by an electric one. The acquisition price of the electric vehicle model studied in this 
 

work was estimated, because it is still a concept and is not yet available for retail, taking into 
 

consideration the price difference of other vehicle models publicly available in conventional 
 

and electric versions. Thus, the acquisition prices of US$ 8,780.2611 for vehicle A and US$ 
 

34,382.26 for vehicle B were adopted. The operation costs were based on the fuel used by 
 

vehicle A and the electric energy consumed by vehicle B. The inflation rates for fuel and 
 

energy consumption were considered 4.00% yr. and 4.86% yr., respectively, which represent 
 

the average between 2004 and 2015. The operation costs of vehicle A (COf) are: 
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where COf,i is fuel cost in 2015 (1.046 US$/L), IRf is the fuel inflation rate (%), t is the period 
 

from the initial time (year), f is the fuel consumption efficiency of vehicle A (km/L), and d is 
 

the annual travel distance (km). 
 

The operation costs of vehicle B (COe) were calculated similarly to vehicle A: 
 
 
 
 
 
 
 
 
 

where COei is the energy cost in 2015 (0.226 US$/kWh), IRe is the energy inflation rate (%), 
 

and e is the energy consumption efficiency of vehicle B (kWh/km). 
 

The maintenance costs for vehicle A was based on the study developed by Wang et al 
 

[28], taken as 0.215 US$/km in 2015. According to some authors [28,29], the maintenance 
 

costs of electric vehicles are half that of conventional vehicles. Hence, the maintenance costs 
 

of vehicle B was considered 0.1075 US$/km in 2015. The maintenance costs of vehicle A 
 

(CMA) and vehicle B (CMB) in the following years are calculated by: 
 
 
 
 

(6) 
 
 
 
 

(7) 
 
 
 

where CMAi and CMBi are the maintenance costs of vehicle A and vehicle B in 2015, 
 

respectively, and IR is the average annual inflation rate. 
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The revenue of the cash flow was taken as the taxi driver income, considering the taxi 
 

fare of 0.83 US$/km. The taxi was considered to travel 200 km per day, with a lifecycle of 5 
 

years, according to the law. The net present value (NPV) was calculated by: 
 
 
 
 
 
 
 
 
 
 

where Ci is the initial cost (US$), FC is the cash flow (US$) and ID is the discount rate (%). 
 
 
 

3. RESULTS 
 
 
 

Results from the simulations of CO2 emissions and fuel consumption, for vehicle A, 
 

and energy consumption, for vehicle B, are presented in Tabs. 3 and 4, respectively. Figure 1 
 

shows the accumulated fuel energy consumption and CO2 emissions of vehicle A, and the 
 

accumulated energy consumption of vehicle B. The accumulated energy consumption of 
 

vehicle A is nearly four times higher than that of vehicle B, showing that the use of EVs is 
 

highly advantageous in terms of energy consumption. This is a direct effect of the fuel 
 

conversion efficiency of the internal combustion engines used in conventional vehicles, which 
 

is typically around 25% and is much lower than the energy conversion efficiency of electric 
 

vehicles [16]. Figures 2 to 5 show CO2 emissions that would be avoided with the replacement 
 

of the conventional vehicles by EVs in each scenario studied. In all scenarios, different 
 

emission factors and travel distances were considered. 
 

Figure 2 shows the reduction of CO2 emissions for 25% of fleet replacement by EVs. 
 

Scenarios 1 and 2 showed low reduction of CO2 emissions, of around 770 tons of CO2 by 
 

2030, considering the travel distance of 200 km per day. Both scenarios show close results, 
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since the emissions factors have little difference. In scenarios 3 and 4, for which the emission 
 

factors are higher, the reductions reached around 700 tons of CO2, lower than that of 
 

scenarios 1 and 2. This behavior was the same for all vehicle replacement rates, thus 
 

expressing a general trend. However, for taxis that operate 400 km a day, these values are 
 

higher, reaching 1,040 tons of CO2 for scenarios 1 and 2, and 960 and 980 tons of CO2 for 
 

scenarios 3 and 4, respectively. 
 

The reduction of CO2 emissions from the replacement of 50% of the fleet by EVs is 
 

presented in Fig. 3. Scenarios 1 and 2 showed a reduction of around 1,520 tons of CO2 

 
emissions, considering vehicle operation of 200 km per day. In scenarios 3 and 4, the 
 

reductions were 1,422 and 1,400 tons of CO2, respectively. Considering the travel distance of 
 

400 km, these values change to 2080 tons of CO2 for scenarios 1 and 2, and 1,950 and 1,915 
 

tons of CO2 for scenarios 3 and 4, respectively. 
 

Figure 4 shows the emissions reduction for replacing 75% of the taxi fleet. For 
 

vehicles that travel 200 km a day, scenarios 1 and 2 showed a reduction of around 2,280 tons 
 

of CO2 by 2030. In scenarios 3 and 4, the reductions were 2,135 and 2,101 tons of CO2, 

 
respectively. For the distance of 400 km, these values were 3,135 and 3,115 tons of CO2 for 
 

scenarios 1 and 2, and 2,925 and 2,873 tons of CO2 for scenarios 3 and 4, respectively. 
 

Figure 5 shows the reduction of CO2 emission if the whole fleet was replaced by EVs. 
 

For taxis that travel 200 km a day, scenarios 1 and 2 show that, by 2030, the reduction of CO2 

 
emissions will be 3,050 and 3,033 tons of CO2, respectively. In scenarios 3 and 4, the 
 

reductions are 2,846 and 2,801 tons of CO2. For the distance of 400 km, these values are 
 

4,180 and 4,153 tons of CO2 for scenarios 1 and 2, and 3,900, and 3,830 tons of CO2 for 
 

scenarios 3 and 4, respectively. 
 

It is noticeable that longer daily travel distance by taxi produced higher reduction of 
 

CO2 emissions for all scenarios studied (Figs. 2 to 5). The use of EVs to replace the 
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conventional consistently caused significant reductions in CO2 emissions, due to the low 
 

emissions of the Brazilian electricity sector. This situation is different compared to countries 
 

where the electric matrix is coal-based and, consequently, fleet replacement does not generate 
 

negative credits and can even increase emissions. In scenarios 1 and 2, for which low 
 

emission factors were considered, the reduction on CO2 emissions from fleet replacement by 
 

EVs does not change substantially along the period studied. In scenarios 3 and 4, where the 
 

emission factors are high, the benefits on CO2 emissions from the use of EVs are reduced 
 

along the period considered. 
 

Figure 9 compares CO2 emissions from conventional vehicles and EVs for both travel 
 

distances, 200 km and 400 km. For scenarios 1 and 2, where the emission factors are low, 
 

CO2 emissions are around 50 to 64 times lower when EVs are used instead of conventional 
 

vehicles. However, this ratio is reduced to around 31 by the year 2030, still making the use of 
 

EVs advantageous. For scenarios 3 and 4, the reductions of CO2 emission from the use of EVs 
 

are much lower due to the high emission factors. In the beginning of the period studied, EVs 
 

emitted about 20 times less than conventional vehicles with internal combustion engines. 
 

However, by 2030, the EVs will emit around 12 to 10 times less than conventional vehicles in 
 

scenarios 3 and 4. 
 

Comparing the present results with those obtained by Yuan et al. [27], who simulated 
 

different types of electric vehicles in China, the calculated energy consumption was close. 
 

However, CO2 emissions were higher (105 g/km) in that work due to high emission factors 
 

adopted for the electric matrix. In the present study, CO2 emissions varied from 2.85 to 17.79 
 

gCO2/km, using Brazilian emission factors. These figures are also lower than the results 
 

presented by Varga [26], who calculated CO2 emissions from power generation between 84 
 

and 115.9 gCO2/km in Romania. Although the study presented by Varga [26] used a different 
 

driving cycle, which can lead to some discrepancy in the results, the divergence of values can 
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be mainly attributed to the differences in the electric matrices. While in Brazil hydroelectric 
 

power plants generate most of the energy demanded, in the countries considered in those 
 

studies [26,27] energy generation is coal-based, thus explaining the lower levels of CO2 

 
emissions here obtained. 
 

An economic analysis verified if the replacement of conventional taxis by electric 
 

taxis is feasible, mainly for scenarios 3 and 4, where the replacements are up to 75%. The 
 

results are presented in Tab. 5 and Fig. 7. Table 5 shows the values calculated for the taxi 
 

driver income, vehicle acquisition cost, and annual maintenance and operation costs. Only in 
 

2015, the value of vehicle A is higher than vehicle B, because the acquisition price of electric 
 

vehicles is higher than conventional vehicles. Over the years, the use of vehicle A is more 
 

expensive than vehicle B because of the higher efficiency of electric vehicles in comparison 
 

with conventional ones and the lower price of electric energy in Brazil in comparison with the 
 

equivalent fuel energy. The net present value in 5 years was US$ 125,362.49 and US$ 
 

141,116.15 for vehicles A and B, respectively. 
 
 
 

4. CONCLUSION 
 
 
 

This work investigated the replacement of conventional, compact engine-powered 
 

vehicles of a taxi fleet by electric vehicles of similar models at the rates of 25%, 50%, 75% 
 

and 100%, using two different daily travel distances. The electric power consumed by the 
 

EVs was generated under four different scenarios of increasing participation of thermoelectric 
 

power in an electric matrix mainly constituted by hydroelectric power, consequently adopting 
 

increasing CO2 emission factors. From the results obtained for both vehicle types undergoing 
 

a simulated U.S. FTP-75 test schedule, the following conclusions can be drawn: 
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 The fuel energy content consumed by the conventional, engine powered vehicles is 
 

about four times higher than the electric energy consumed by the electric vehicles; 
 

 A reduction of CO2 emissions from substitution of conventional vehicles by electric 
 

vehicles was observed for all power generation scenarios, travel distances and 
 

replacement rates applied; 
 

 The amount of reduced CO2 emissions is directly proportional to the applied 
 

replacement rate of conventional vehicles by EVs; 
 

 The reduction of CO2 emissions from the use of EVs increased about 37% when the 
 

daily travel distance by the taxi fleet was doubled; 
 

 During the 15 years period analyzed, the reduction of CO2 emissions from the 
 

substitution of conventional vehicles by EVs was decreased by around 6.1%, for 25% 
 

replacement rate, and about 1.7%, for 100% replacement rate, due to an annual 
 

increase of CO2 emission factors from electricity generation; 
 

 The total replacement of the taxi fleet by EVs would have an immediate impact from 
 

18% to 64% of CO2 emission reduction, respectively considering the most unfavorable 
 

condition of electricity generation, with high substitution of hydroelectric power by 
 

thermoelectric power, and the most favorable condition of electricity generation, with 
 

over 70% of the electricity being supplied by hydroelectric power; 
 

 At the end of the 15 years period, the total replacement of the taxi fleet by EVs would 
 

cause CO2 emission reduction from 9% to 30%, for the most unfavorable and the most 
 

favorable power generation conditions, respectively. 
 

 Although the acquisition cost of an electric vehicle is higher than a conventional 
 

vehicle, the EVs have lower operation costs. 
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 The economic analysis shows that the replacement of conventional vehicles by electric 
 

vehicles in a taxi fleet is feasible, being profitable from the second year of utilization 
 

under the conditions of this study. 
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7. NOMENCLATURE 
 
 
 

CF Fuel carbon content 
 

CMAi Cost of maintenance of conventional vehicle in the initial year (2015) (US$/year) 
 

CMBi Cost of maintenance of electrical vehicle in the initial year (2015) (US$/year) 
 

COe,i Energy cost in the initial year (2015) (US$/kWh) 
 

COf,i Fuel cost in the initial year (2015) (US$/L) 
 

CO2 Carbon dioxide 
 

d Travel distance in the FTP-75 test schedule or annual traveled distance (km) 
 

EE Electric energy consumption (kW.h/km) 
 

EF Fuel energy consumption (kW.h/km) 
 

EVs Electric vehicles 
 

fCO2 Emission factor of CO2 (tCO2/kWh) 
 

FTP-75 Federal Test Procedure 75 
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ID Discounted rate (%) 
 

ICEVs Vehicles with internal combustion engine 
 

JC-0 Japanese Modal Cycle 
 

Fuel consumption (kg/h) 
 

MCO2 Molar mass of CO2 (kg/kmol) 
 

MF Molar mass of fuel (kg/kmol) 
 

NEDC New European Driving Cycle 
 

NPV Net Present Value 
 

QLHV Low heating value of fuel (kJ/kg) 
 

SIN Brazilian National Grid System 
 

t Travel time in the FTP-75 test schedule (h) or time after initial year (year) 
 

IR Average annual inflation rate y.y (%) 
 

IRe Energy inflation rate y.y (%) 
 

IRf Fuel (gasoline) inflation rate y.y (%) 
 

WLTC Worldwide Harmonized Light Duty Test Cycle 
 

f Fuel consumption efficiency of conventional vehicle (km/L) 
 

e Energy consumption efficiency of electric vehicle (kW.h/km) 
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Table 1. Details of vehicles. 
 

PARAMETER SPECIFICATION 
 

VEHICLE A VEHICLE B 
 

Bore stroke 
 

Compression ratio 
 

Volume displacement 
 

Rated power 
 

Rated torque 
 

Fuel 
 

Battery type 
 

Voltage 

70.0 mm 64.9 mm 
 

12.15:1 
 
1.0 L 
 
53.7 kW @ 6250 rpm 
 
93.2 Nm @ 4500 rpm 
 
E22 
 
- 
 
- 

 

- 
 

- 
 
- 
 
15 kW 
 
50 Nm 
 
- 
 
Sodium-Nickel-Chlorine 
 
253 V 

 
Energy 19.2 kW.h 

 
Recharge time - 8 hours 
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Table 2. Scenarios of vehicle fleet replacement. 
 

SCENARIO CO2 EMISSION WEATHER DISTANCE TRAVELED BY A 
 

FACTOR (gCO2/kWh) CONDITIONS TAXI FOR A DAY (km) 
 

1 30 
 

2 30 – 50 
 

3 90 
 

4 90 – 140 

Favorable 200 – 400 
 
 
 

Unfavorable 
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Table 3. CO2 emissions, fuel and energy consumption of vehicle A. 
 

VEHICLE A 
 

CO2 emissions (g/km) 182.74 
 

Fuel consumption (km/L) 11.91 
 

Energy consumption (kWh/km) 0.6830 
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Table 4. Accumulated and specific energy consumption of vehicle B. 
 

VEHICLE B 
 

Accumulated energy consumption (kWh) 2.267 
 

Specific energy consumption (kWh/km) 0.0951 
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Table 5. Results from the economic analysis. 
 

VEHICLE A 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$8.780,11 

Annual 

Maintenance 

 

-$10,337.21 

-$11,742.34 

-$12,514.98 

-$13,338.47 

-$12,576.79 

Operation 

 
-$4,249.78 

-$4,419.77 

-$4,596.56 

-$4,780.42 

-$4,971.63 

-$5,170.50 

Cash Flow 

 
$26,958.78 

$25,231.69 

$23,649.77 

$22,693.26 

$21,678.56 

$22,241.37 

Present 

Value 

$26,958.78 

$23,673.95 

$20,819.75 

18,744.32 

16,800.70 

16,172.71 

Net Present 

Value 

 
 
 
$123,170.22 

VEHICLE B 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$28.090,14 

Annual 

Maintenance 

 

-$5,168.60 

-$5,871.16 

-$6,257.49 

-$6,669.23 

-$7,108.07 

Operation 

 
-$1,028.85 

-$1,078.86 

-$1,131,29 

-$1,186.27 

-$1,243.92 

-$1,304.38 

Cash Flow 

 
$10,869.66 

$33,741.20 

$32,986.20 

$32,544.89 

$32,075.50 

$31,576.21 

Present 

Value 

$10,869.66 

$31,658.09 

$29,038.94 

$26,881.64 

$24,858.25 

$22,960.50 

Net Present 

Value 

 
 
 
$141,116.15 
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Figure 1. Accumulated fuel energy consumption and CO2 emissions of vehicle A, and 
 

accumulated electric energy consumption of vehicle B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. CO2 reduction for replacement of 25% of the taxi fleet. 
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Figure 3. CO2 reduction for replacement of 50% of the taxi fleet. 
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Figure 4. CO2 reduction for replacement of 75% of the taxi fleet. 
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Figure 5. CO2 reduction for replacement of 100% of the taxi fleet. 
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Figure 6. Ratio between CO2 emissions from the vehicles powered by internal combustion 
 

engines (ICEV) and from the electric vehicles (EV). 
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Figure 6. Cash flow and present value over the years. 
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ABSTRACT 
 
 
 

This work evaluates the effects of the replacement of engine-powered vehicles by 
 

electric vehicles on carbon dioxide (CO2) emissions and energy consumption. A case study of 
 

a taxi fleet replacement was conducted with the aid of the AVL Cruise software. The 
 

simulation was performed under different scenarios of total or partial fleet replacement along 
 

a period of 15 years. The scenarios were designed considering favorable and unfavorable 
 

conditions for electricity production from a clean source, thus influencing the CO2 emission 
 

factor adopted. The simulations showed that the electric energy consumption by the electric 
 

vehicles is about four times lower than fuel energy consumption by the conventional vehicles 
 

undergoing a standard test schedule. At the end of the period considered the electric vehicles 
 

will produce lower CO2 emissions than the conventional vehicle fleet by a factor of 10, even 
 

considering the most unfavorable scenario of electric power generation. An economic analysis 
 

shows that the present value of electric vehicles over the years is lower than that of 
 

conventional vehicles, except for the first year after vehicle acquisition. 
 
 
 

Keywords: electric vehicle; CO2 emissions; energy; fuel consumption; sustainable 
 

development. 
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1. INTRODUCTION 
 
 
 

To improve air quality, increasingly strict regulation laws require reduced automotive 
 

emissions, which has influenced the development of clean technologies [1]. Those 
 

technologies include electric vehicles (EVs), hybrid electric vehicles (HEVs) and plug-in 
 

hybrid electric vehicles (PHEVs) [2]. The possible reduction of carbon dioxide (CO2) 
 

emissions with the use of those technologies also contribute to reduce global temperature 
 

increase, one of the key factors for climate change [3]. In order to reduce automotive 
 

emissions many countries adopt increasingly strict regulating laws [4]. The need to reduce 
 

carbon emissions motivates the use of renewable energy sources in the electricity matrix [5]. 
 

The demand for sustainable actions inspires the rise of solutions with higher energy efficiency 
 

[6]. Those solutions are generally characterized by less oil dependence and reduced fuel 
 

consumption [7]. In this sense, there are many studies on EVs as a possible viable alternative, 
 

especially in countries with clean electricity matrix [8]. 
 

The positive and negative aspects of the replacement of engine-powered vehicles by 
 

electrical vehicles are identified for specifics fleets [9]. One of the advantages of EVs is the 
 

absence of exhaust emissions [10]. Another advantage is the reduced noise during operation 
 

[11]. The reduction of both noise and emissions also help to reduce health risks [12]. In 
 

comparison with conventional vehicles, EVs require minimal maintenance [13]. In addition, 
 

they have lower operation cost and higher efficiency [14]. The advantages are increased with 
 

the possibility of using the EVs in distributed generation [15]. The use of electricity produced 
 

from fossil fuels reduces their advantages [16]. 
 

One of the disadvantages of EVs is their lower autonomy, in comparison with 
 

conventional vehicles [17]. Also, EVs need the development of recharging infrastructure, 
 

which already exists for conventional vehicles [18] 
 
. Increasing use of EVs demands 

 

increased 
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electricity provision [19]. Sustainability aspects of the use of EVs requires adequate battery 
 

disposal/recycling [20] 
 
. Finally, the main barrier for EVs is their 

 

high initial costs [12]. 

 

EVs are good alternatives in countries with low emission electricity matrix and cities 
 

with small geographic extension, since in this case they can operate all day with a single 
 

recharge. According to Tarroja et al. [21], it is preferable to produce the electricity used in 
 

EVs from renewable sources, depending on availability and load demand. 
 

The use of EVs may provoke increased emissions from electric power generation. 
 

Monteiro et al. [22] point out that the largest CO2 producers are power plants, responsible by 
 

around 40% of the world electricity production. Therefore, for the use of EVs it is desirable 
 

low-emission electricity matrices, which is the case of Brazil, for instance, where CO2 

 
emissions from electricity generation are low (about 135 gCO2/kWh) in comparison with 
 

other countries. In countries such as Poland and Greece, the CO2 emission factor from 
 

electricity generation is around 850 gCO2/kWh. 
 

A study developed by Varga [23] used the AVL Cruise software to simulate four 
 

different types of electric vehicles to determine the energy consumption using the New 
 

European Driving Cycle (NEDC). The results for energy consumption ranged from 0.104 to 
 

0.127 kWh/km. This data was used to calculate CO2 emissions from those vehicles in 
 

Romania based on electric power plant emissions during the period from 2004 to 2008, 
 

producing values that varied from 84 to 115.9 g/km. 
 

Yuan et al. [24] simulated an electric vehicle using the AVL Cruise software and 
 

evaluated CO2 emissions for different driving cycles (New European Driving Cycle – NEDC, 
 

1975 U.S. Federal Test Procedure – FTP-75, Japanese Modal Cycle – JC-0, and Worldwide 
 

Harmonized Light Duty Test Cycle – WLTC) and driving ranges in China. The authors used a 
 

high CO2 emission factor range (736 g/kWh to 1147 g/kWh), taking coal as the main source 
 

of power generation in the country. The emission factor used was 855 g/kWh, although the 
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authors recognized that this value varies in the different parts of the country. Simulated results 
 

showed electric vehicle energy consumption around 0.16 kWh/km and CO2 emissions about 
 

105 g/km in the FTP-75 driving cycle. The authors concluded that, for the Chinese energy 
 

matrix, the use of EVs could reduce CO2 emissions only for operation in distances shorter 
 

than 250 km, if compared to conventional vehicles. 
 

The objective of this work is to analyze further the impacts of the replacement of 
 

conventional vehicles by electric vehicles on energy consumption and CO2 emissions. The 
 

study is performed using the AVL Cruise software to simulate two similar vehicle models, 
 

one powered by an internal combustion engine and the other electric. The benefits of 
 

replacing conventional vehicles by EVs are verified using as a case study a taxi fleet of a 
 

Brazilian city, where hydroelectric power plants account for over 70% of electricity 
 

generation. The use of a renewable source of electricity is expected to increase the advantages 
 

of EVs in comparison with previous works, where the studies considered electric matrices 
 

based on fossil fuels. The extent of the reduction of CO2 emission from the use of EVs 
 

powered by an electric matrix based on renewables is presented using different scenarios of 
 

gradual fleet replacement. An economic analysis was performed to verify the costs of 
 

replacement. 
 
 
 

2. METHODOLOGY 
 
 
 

The emissions of CO2 from two vehicles of similar model were compared, one 
 

conventional, powered by an internal combustion engine (vehicle A), and the other electric 
 

(vehicle B). Table 1 presents the details of each vehicle. Vehicle A is the model that best 
 

represents the average taxi fleet in operation, which, in reality, is composed by different 
 

vehicle models. Both vehicles, A and B, were simulated under the Federal Test Procedure 75 
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(FTP-75) driving cycle using the AVL Cruise software. CO2 emissions from vehicle A was 
 

calculated considering complete combustion [25], as follows: 
 
 
 
 

(1) 
 
 
 
 

The fuel consumption map of vehicle A, available from the manufacturer, was used to 
 

evaluate the equivalent energy consumption considering the fuel as a blend of composition 
 

78% gasoline and 22% ethanol (E22), according to: 
 
 
 
 
 
 
 
 
 

As no database is available in Brazil for other pollutant gas components emitted from 
 

power generation, CO2 is the only component here evaluated, as it was done in previous 
 

studies [26,27]: 
 
 
 
 

(3) 
 
 
 
 

Four scenarios of different replacement rates of a conventional engine powered taxi 
 

fleet by electric vehicles were designed as a case study. The conventional fleet is composed 
 

by 213 vehicles, and the period of evaluation is 15 years. The fleet replacement rates adopted 
 

were 25%, 50%, 75% and 100%, with all vehicles being replaced in the beginning of the 
 

period of evaluation. Two scenarios were optimistic and two pessimistic (Tab. 3), and differ 
 

from each other according to the adopted CO2 emission factor and average distance traveled 
 

by taxi per day. For each scenario daily travel distances of 200 km and 400 km by each taxi 
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were considered, representing the minimum and the maximum values. In holiday months, the 
 

taxis were assumed to travel an additional distance of 100 km per day. 
 

In the first scenario, a low CO2 emission factor of 30 gCO2/kWh was considered, 
 

corresponding to the use of hydroelectric power to supply over 70% of the electricity demand. 
 

In scenario 2, the CO2 emission factor was slightly higher than in scenario 1 (50 gCO2/kWh) 
 

to consider a small replacement of hydroelectric power by thermoelectric power as a response 
 

to dry winter conditions, which reduce the capacity of hydroelectric power plants. In the third 
 

and fourth scenarios, the assumption of low rain levels per year means that most of the 
 

hydroelectric power is replaced by thermoelectric power, leading to the adoption of higher 
 

emission factors. 
 

For the calculations, the EVs electric energy consumption and the fuel consumption of 
 

the conventional vehicles were taken as constant parameters. Each month was considered to 
 

have an average of 30 days. The EVs batteries were taken as fully charged early in the day. In 
 

all scenarios, an annual growth rate of 5% was assumed for the emission factors. 
 

An economic analysis of the cash flow, present value and net present value was 
 

performed for both vehicles considering the cost of acquisition, operation and maintenance, 
 

and the taxi driver income. The analysis was based on the replacement of a conventional 
 

vehicle by an electric one. The acquisition price of the electric vehicle model studied in this 
 

work was estimated, because it is still a concept and is not yet available for retail, taking into 
 

consideration the price difference of other vehicle models publicly available in conventional 
 

and electric versions. Thus, the acquisition prices of US$ 8,780.2611 for vehicle A and US$ 
 

34,382.26 for vehicle B were adopted. The operation costs were based on the fuel used by 
 

vehicle A and the electric energy consumed by vehicle B. The inflation rates for fuel and 
 

energy consumption were considered 4.00% yr. and 4.86% yr., respectively, which represent 
 

the average between 2004 and 2015. The operation costs of vehicle A (COf) are: 
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where COf,i is fuel cost in 2015 (1.046 US$/L), IRf is the fuel inflation rate (%), t is the period 
 

from the initial time (year), f is the fuel consumption efficiency of vehicle A (km/L), and d is 
 

the annual travel distance (km). 
 

The operation costs of vehicle B (COe) were calculated similarly to vehicle A: 
 
 
 
 
 
 
 
 
 

where COei is the energy cost in 2015 (0.226 US$/kWh), IRe is the energy inflation rate (%), 
 

and e is the energy consumption efficiency of vehicle B (kWh/km). 
 

The maintenance costs for vehicle A was based on the study developed by Wang et al 
 

[28], taken as 0.215 US$/km in 2015. According to some authors [28,29], the maintenance 
 

costs of electric vehicles are half that of conventional vehicles. Hence, the maintenance costs 
 

of vehicle B was considered 0.1075 US$/km in 2015. The maintenance costs of vehicle A 
 

(CMA) and vehicle B (CMB) in the following years are calculated by: 
 
 
 
 

(6) 
 
 
 
 

(7) 
 
 
 

where CMAi and CMBi are the maintenance costs of vehicle A and vehicle B in 2015, 
 

respectively, and IR is the average annual inflation rate. 
 
 

8 



 

The revenue of the cash flow was taken as the taxi driver income, considering the taxi 
 

fare of 0.83 US$/km. The taxi was considered to travel 200 km per day, with a lifecycle of 5 
 

years, according to the law. The net present value (NPV) was calculated by: 
 
 
 
 
 
 
 
 
 
 

where Ci is the initial cost (US$), FC is the cash flow (US$) and ID is the discount rate (%). 
 
 
 

3. RESULTS 
 
 
 

Results from the simulations of CO2 emissions and fuel consumption, for vehicle A, 
 

and energy consumption, for vehicle B, are presented in Tabs. 3 and 4, respectively. Figure 1 
 

shows the accumulated fuel energy consumption and CO2 emissions of vehicle A, and the 
 

accumulated energy consumption of vehicle B. The accumulated energy consumption of 
 

vehicle A is nearly four times higher than that of vehicle B, showing that the use of EVs is 
 

highly advantageous in terms of energy consumption. This is a direct effect of the fuel 
 

conversion efficiency of the internal combustion engines used in conventional vehicles, which 
 

is typically around 25% and is much lower than the energy conversion efficiency of electric 
 

vehicles [16]. Figures 2 to 5 show CO2 emissions that would be avoided with the replacement 
 

of the conventional vehicles by EVs in each scenario studied. In all scenarios, different 
 

emission factors and travel distances were considered. 
 

Figure 2 shows the reduction of CO2 emissions for 25% of fleet replacement by EVs. 
 

Scenarios 1 and 2 showed low reduction of CO2 emissions, of around 770 tons of CO2 by 
 

2030, considering the travel distance of 200 km per day. Both scenarios show close results, 
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since the emissions factors have little difference. In scenarios 3 and 4, for which the emission 
 

factors are higher, the reductions reached around 700 tons of CO2, lower than that of 
 

scenarios 1 and 2. This behavior was the same for all vehicle replacement rates, thus 
 

expressing a general trend. However, for taxis that operate 400 km a day, these values are 
 

higher, reaching 1,040 tons of CO2 for scenarios 1 and 2, and 960 and 980 tons of CO2 for 
 

scenarios 3 and 4, respectively. 
 

The reduction of CO2 emissions from the replacement of 50% of the fleet by EVs is 
 

presented in Fig. 3. Scenarios 1 and 2 showed a reduction of around 1,520 tons of CO2 

 
emissions, considering vehicle operation of 200 km per day. In scenarios 3 and 4, the 
 

reductions were 1,422 and 1,400 tons of CO2, respectively. Considering the travel distance of 
 

400 km, these values change to 2080 tons of CO2 for scenarios 1 and 2, and 1,950 and 1,915 
 

tons of CO2 for scenarios 3 and 4, respectively. 
 

Figure 4 shows the emissions reduction for replacing 75% of the taxi fleet. For 
 

vehicles that travel 200 km a day, scenarios 1 and 2 showed a reduction of around 2,280 tons 
 

of CO2 by 2030. In scenarios 3 and 4, the reductions were 2,135 and 2,101 tons of CO2, 

 
respectively. For the distance of 400 km, these values were 3,135 and 3,115 tons of CO2 for 
 

scenarios 1 and 2, and 2,925 and 2,873 tons of CO2 for scenarios 3 and 4, respectively. 
 

Figure 5 shows the reduction of CO2 emission if the whole fleet was replaced by EVs. 
 

For taxis that travel 200 km a day, scenarios 1 and 2 show that, by 2030, the reduction of CO2 

 
emissions will be 3,050 and 3,033 tons of CO2, respectively. In scenarios 3 and 4, the 
 

reductions are 2,846 and 2,801 tons of CO2. For the distance of 400 km, these values are 
 

4,180 and 4,153 tons of CO2 for scenarios 1 and 2, and 3,900, and 3,830 tons of CO2 for 
 

scenarios 3 and 4, respectively. 
 

It is noticeable that longer daily travel distance by taxi produced higher reduction of 
 

CO2 emissions for all scenarios studied (Figs. 2 to 5). The use of EVs to replace the 
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conventional consistently caused significant reductions in CO2 emissions, due to the low 
 

emissions of the Brazilian electricity sector. This situation is different compared to countries 
 

where the electric matrix is coal-based and, consequently, fleet replacement does not generate 
 

negative credits and can even increase emissions. In scenarios 1 and 2, for which low 
 

emission factors were considered, the reduction on CO2 emissions from fleet replacement by 
 

EVs does not change substantially along the period studied. In scenarios 3 and 4, where the 
 

emission factors are high, the benefits on CO2 emissions from the use of EVs are reduced 
 

along the period considered. 
 

Figure 9 compares CO2 emissions from conventional vehicles and EVs for both travel 
 

distances, 200 km and 400 km. For scenarios 1 and 2, where the emission factors are low, 
 

CO2 emissions are around 50 to 64 times lower when EVs are used instead of conventional 
 

vehicles. However, this ratio is reduced to around 31 by the year 2030, still making the use of 
 

EVs advantageous. For scenarios 3 and 4, the reductions of CO2 emission from the use of EVs 
 

are much lower due to the high emission factors. In the beginning of the period studied, EVs 
 

emitted about 20 times less than conventional vehicles with internal combustion engines. 
 

However, by 2030, the EVs will emit around 12 to 10 times less than conventional vehicles in 
 

scenarios 3 and 4. 
 

Comparing the present results with those obtained by Yuan et al. [27], who simulated 
 

different types of electric vehicles in China, the calculated energy consumption was close. 
 

However, CO2 emissions were higher (105 g/km) in that work due to high emission factors 
 

adopted for the electric matrix. In the present study, CO2 emissions varied from 2.85 to 17.79 
 

gCO2/km, using Brazilian emission factors. These figures are also lower than the results 
 

presented by Varga [26], who calculated CO2 emissions from power generation between 84 
 

and 115.9 gCO2/km in Romania. Although the study presented by Varga [26] used a different 
 

driving cycle, which can lead to some discrepancy in the results, the divergence of values can 
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be mainly attributed to the differences in the electric matrices. While in Brazil hydroelectric 
 

power plants generate most of the energy demanded, in the countries considered in those 
 

studies [26,27] energy generation is coal-based, thus explaining the lower levels of CO2 

 
emissions here obtained. 
 

An economic analysis verified if the replacement of conventional taxis by electric 
 

taxis is feasible, mainly for scenarios 3 and 4, where the replacements are up to 75%. The 
 

results are presented in Tab. 5 and Fig. 7. Table 5 shows the values calculated for the taxi 
 

driver income, vehicle acquisition cost, and annual maintenance and operation costs. Only in 
 

2015, the value of vehicle A is higher than vehicle B, because the acquisition price of electric 
 

vehicles is higher than conventional vehicles. Over the years, the use of vehicle A is more 
 

expensive than vehicle B because of the higher efficiency of electric vehicles in comparison 
 

with conventional ones and the lower price of electric energy in Brazil in comparison with the 
 

equivalent fuel energy. The net present value in 5 years was US$ 125,362.49 and US$ 
 

141,116.15 for vehicles A and B, respectively. 
 
 
 

4. CONCLUSION 
 
 
 

This work investigated the replacement of conventional, compact engine-powered 
 

vehicles of a taxi fleet by electric vehicles of similar models at the rates of 25%, 50%, 75% 
 

and 100%, using two different daily travel distances. The electric power consumed by the 
 

EVs was generated under four different scenarios of increasing participation of thermoelectric 
 

power in an electric matrix mainly constituted by hydroelectric power, consequently adopting 
 

increasing CO2 emission factors. From the results obtained for both vehicle types undergoing 
 

a simulated U.S. FTP-75 test schedule, the following conclusions can be drawn: 
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 The fuel energy content consumed by the conventional, engine powered vehicles is 
 

about four times higher than the electric energy consumed by the electric vehicles; 
 

 A reduction of CO2 emissions from substitution of conventional vehicles by electric 
 

vehicles was observed for all power generation scenarios, travel distances and 
 

replacement rates applied; 
 

 The amount of reduced CO2 emissions is directly proportional to the applied 
 

replacement rate of conventional vehicles by EVs; 
 

 The reduction of CO2 emissions from the use of EVs increased about 37% when the 
 

daily travel distance by the taxi fleet was doubled; 
 

 During the 15 years period analyzed, the reduction of CO2 emissions from the 
 

substitution of conventional vehicles by EVs was decreased by around 6.1%, for 25% 
 

replacement rate, and about 1.7%, for 100% replacement rate, due to an annual 
 

increase of CO2 emission factors from electricity generation; 
 

 The total replacement of the taxi fleet by EVs would have an immediate impact from 
 

18% to 64% of CO2 emission reduction, respectively considering the most unfavorable 
 

condition of electricity generation, with high substitution of hydroelectric power by 
 

thermoelectric power, and the most favorable condition of electricity generation, with 
 

over 70% of the electricity being supplied by hydroelectric power; 
 

 At the end of the 15 years period, the total replacement of the taxi fleet by EVs would 
 

cause CO2 emission reduction from 9% to 30%, for the most unfavorable and the most 
 

favorable power generation conditions, respectively. 
 

 Although the acquisition cost of an electric vehicle is higher than a conventional 
 

vehicle, the EVs have lower operation costs. 
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 The economic analysis shows that the replacement of conventional vehicles by electric 
 

vehicles in a taxi fleet is feasible, being profitable from the second year of utilization 
 

under the conditions of this study. 
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7. NOMENCLATURE 
 
 
 

CF Fuel carbon content 
 

CMAi Cost of maintenance of conventional vehicle in the initial year (2015) (US$/year) 
 

CMBi Cost of maintenance of electrical vehicle in the initial year (2015) (US$/year) 
 

COe,i Energy cost in the initial year (2015) (US$/kWh) 
 

COf,i Fuel cost in the initial year (2015) (US$/L) 
 

CO2 Carbon dioxide 
 

d Travel distance in the FTP-75 test schedule or annual traveled distance (km) 
 

EE Electric energy consumption (kW.h/km) 
 

EF Fuel energy consumption (kW.h/km) 
 

EVs Electric vehicles 
 

fCO2 Emission factor of CO2 (tCO2/kWh) 
 

FTP-75 Federal Test Procedure 75 
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ID Discounted rate (%) 
 

ICEVs Vehicles with internal combustion engine 
 

JC-0 Japanese Modal Cycle 
 

Fuel consumption (kg/h) 
 

MCO2 Molar mass of CO2 (kg/kmol) 
 

MF Molar mass of fuel (kg/kmol) 
 

NEDC New European Driving Cycle 
 

NPV Net Present Value 
 

QLHV Low heating value of fuel (kJ/kg) 
 

SIN Brazilian National Grid System 
 

t Travel time in the FTP-75 test schedule (h) or time after initial year (year) 
 

IR Average annual inflation rate y.y (%) 
 

IRe Energy inflation rate y.y (%) 
 

IRf Fuel (gasoline) inflation rate y.y (%) 
 

WLTC Worldwide Harmonized Light Duty Test Cycle 
 

f Fuel consumption efficiency of conventional vehicle (km/L) 
 

e Energy consumption efficiency of electric vehicle (kW.h/km) 
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Table 1. Details of vehicles. 
 

PARAMETER SPECIFICATION 
 

VEHICLE A VEHICLE B 
 

Bore stroke 
 

Compression ratio 
 

Volume displacement 
 

Rated power 
 

Rated torque 
 

Fuel 
 

Battery type 
 

Voltage 

70.0 mm 64.9 mm 
 

12.15:1 
 
1.0 L 
 
53.7 kW @ 6250 rpm 
 
93.2 Nm @ 4500 rpm 
 
E22 
 
- 
 
- 

 

- 
 

- 
 
- 
 
15 kW 
 
50 Nm 
 
- 
 
Sodium-Nickel-Chlorine 
 
253 V 

 
Energy 19.2 kW.h 

 
Recharge time - 8 hours 
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Table 2. Scenarios of vehicle fleet replacement. 
 

SCENARIO CO2 EMISSION WEATHER DISTANCE TRAVELED BY A 
 

FACTOR (gCO2/kWh) CONDITIONS TAXI FOR A DAY (km) 
 

1 30 
 

2 30 – 50 
 

3 90 
 

4 90 – 140 

Favorable 200 – 400 
 
 
 

Unfavorable 
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Table 3. CO2 emissions, fuel and energy consumption of vehicle A. 
 

VEHICLE A 
 

CO2 emissions (g/km) 182.74 
 

Fuel consumption (km/L) 11.91 
 

Energy consumption (kWh/km) 0.6830 
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Table 4. Accumulated and specific energy consumption of vehicle B. 
 

VEHICLE B 
 

Accumulated energy consumption (kWh) 2.267 
 

Specific energy consumption (kWh/km) 0.0951 
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Table 5. Results from the economic analysis. 
 

VEHICLE A 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$8.780,11 

Annual 

Maintenance 

 

-$10,337.21 

-$11,742.34 

-$12,514.98 

-$13,338.47 

-$12,576.79 

Operation 

 
-$4,249.78 

-$4,419.77 

-$4,596.56 

-$4,780.42 

-$4,971.63 

-$5,170.50 

Cash Flow 

 
$26,958.78 

$25,231.69 

$23,649.77 

$22,693.26 

$21,678.56 

$22,241.37 

Present 

Value 

$26,958.78 

$23,673.95 

$20,819.75 

18,744.32 

16,800.70 

16,172.71 

Net Present 

Value 

 
 
 
$123,170.22 

VEHICLE B 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$28.090,14 

Annual 

Maintenance 

 

-$5,168.60 

-$5,871.16 

-$6,257.49 

-$6,669.23 

-$7,108.07 

Operation 

 
-$1,028.85 

-$1,078.86 

-$1,131,29 

-$1,186.27 

-$1,243.92 

-$1,304.38 

Cash Flow 

 
$10,869.66 

$33,741.20 

$32,986.20 

$32,544.89 

$32,075.50 

$31,576.21 

Present 

Value 

$10,869.66 

$31,658.09 

$29,038.94 

$26,881.64 

$24,858.25 

$22,960.50 

Net Present 

Value 

 
 
 
$141,116.15 
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Figure 1. Accumulated fuel energy consumption and CO2 emissions of vehicle A, and 
 

accumulated electric energy consumption of vehicle B. 
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Figure 2. CO2 reduction for replacement of 25% of the taxi fleet. 
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Figure 3. CO2 reduction for replacement of 50% of the taxi fleet. 
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Figure 4. CO2 reduction for replacement of 75% of the taxi fleet. 
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Figure 5. CO2 reduction for replacement of 100% of the taxi fleet. 
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Figure 6. Ratio between CO2 emissions from the vehicles powered by internal combustion 
 

engines (ICEV) and from the electric vehicles (EV). 
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Figure 6. Cash flow and present value over the years. 
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Table 5. Results from the economic analysis. 
 

VEHICLE A 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$8.780,11 

Annual 

Maintenance 

 

-$10,337.21 

-$11,742.34 

-$12,514.98 

-$13,338.47 

-$12,576.79 

Operation 

 
-$4,249.78 

-$4,419.77 

-$4,596.56 

-$4,780.42 

-$4,971.63 

-$5,170.50 

Cash Flow 

 
$26,958.78 

$25,231.69 

$23,649.77 

$22,693.26 

$21,678.56 

$22,241.37 

Present 

Value 

$26,958.78 

$23,673.95 

$20,819.75 

18,744.32 

16,800.70 

16,172.71 

Net Present 

Value 

 
 
 
$123,170.22 

VEHICLE B 
 

Year Revenue 

 
2015 $39,988.67 

2016 $39,988.67 

2017 $39,988.67 

2018 $39,988.67 

2019 $39,988.67 

2020 $39,988.67 

Acquisition 

Cost 
-$28.090,14 

Annual 

Maintenance 

 

-$5,168.60 

-$5,871.16 

-$6,257.49 

-$6,669.23 

-$7,108.07 

Operation 

 
-$1,028.85 

-$1,078.86 

-$1,131,29 

-$1,186.27 

-$1,243.92 

-$1,304.38 

Cash Flow 

 
$10,869.66 

$33,741.20 

$32,986.20 

$32,544.89 

$32,075.50 

$31,576.21 

Present 

Value 

$10,869.66 

$31,658.09 

$29,038.94 

$26,881.64 

$24,858.25 

$22,960.50 

Net Present 

Value 

 
 
 
$141,116.15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 


