
Performance Implication and Analysis of the
OpenFlow SDN Protocol

Aliyu Lawal Aliyu, Peter Bull & Ali Abdallah
Centre for Cloud Computing

School of Computing & Digital Technology
Birmingham City University

Email: (Aliyu.Lawal-Aliyu, Peter.Bull & Ali.Abdallah)@bcu.ac.uk

Abstract—Software Defined Networks provide the ability to
manage networks from a centralised point through separating
control plane from the data plane. This brings opportunities in
terms of manageability, flexibility and cost savings in network
operations. This centralisation, however, also brings about a
potentially serious performance bottleneck and poses a scalability
issue in high performance networks.

This paper investigates performance of Software Defined
Networks in general, and the OpenFlow protocol, to provide
insight into the components of control path delay incurred by
packets and ways to optimise flow forwarding. Two Openflow
controllers (Floodlight and Pox) were used to validate perfor-
mance measurements in relation to their theoretical composi-
tion. Secondly, the packet processing dynamics of switches, in
particular OpenVSwitch are examined, looking at the control
packet forwarding behaviour in the kernel module to meet high
performance network and traffic engineering demand.

Keywords: SDN, OpenFlow, Delay, Performance and Scal-
ability.

I. INTRODUCTION

The emergence of Software Defined Networking (SDN)
changes the way networks operate by decoupling control
plane from the data plane and delegating it to an external
controller, through which network operations are managed [1].
This development causes a drastic change in the networking
industry because SDN provides flow-level control and global
visibility of flows in networks for fine grained control [2].
This allows network operators to specify their requirements
at the application level, thereby making network management
easier and introducing new services. These features attract
data centres and high performance networks to adopt SDN
for the purpose of orchestration and automation e.g real-
time virtual machine migration, and optimisation for network
virtualisation.

With the adoption of SDN in this environment, two critical
issues need to be addressed in order to cope with traffic in
data centers and high performance networks:

• The delay accumulated by flows (datapath requests) as
they traverse the control path.

• How many flows a controller can process per second.
An additional potential issue that contributes to this latency

is software forwarding in switches, which impacts latency sen-
sitive application. These switches are now used as mainstream
switches in cloud computing and virtualised environment, with
the most commonly used being Open Virtual Switch (OVS)[3],

where it is used as an edge switch and operates in high
performance networks.

This paper focuses on:
• Evaluating the factors that contribute to latency associated

with flow processing in OpenFlow controllers.
• Evaluating the implication of using both hardware and

software switches and the significant performance con-
straint imposed on software switches.

• Proposed solutions for both OpenFlow controllers and
the switches to perform optimally in high performance
environments.

The rest of the paper is organised as follows: Section
II explores the background of the OpenFlow protocol and
discusses the related work in OpenFlow performance. Section
III provides details of the factors that influence OpenFlow
performance and proposed mitigation techniques. Section IV
discusses the performance implications of software switches
in comparison with hardware switches used in OpenFlow
networks. Finally, section V concludes and discusses future
directions.

II. BACKGROUND

Current SDN implementations largely focus on the use of
the OpenFlow protocol to carry control messages from the
logically centralised controller to the switches in the data
plane. The controller obtains a global view of the whole net-
work from the different forwarding elements under its control
[4]. This helps in managing the network from a centralised
point with complete visibility. However there are proven
concepts where the controller implementation is distributed
for redundancy, failover and reliability. For instance (ONIX
[5] and ONOS [6]), these controllers still maintain global
knowledge of the network under their own domain.

Both centralised and distributed SDN controllers offer au-
tomated enforcement of network policies with fewer human
errors and can automatically react to changing varying network
load (thus change in network state) [7]. However an important
issue to note is the performance bottleneck introduced in the
communication link between the switches and the controller
[8]. This is due to the control path (slow path) link between
the switch and controller being slower than the hardware based
(fast path) Application-Specific Integrated Circuits (ASICs),
which forward packets at line rate [9].



Current deployments of SDN within virtualised environ-
ments often make use of software switches [10]. These pro-
vide network access to virtual machines and provide packet
forwarding and processing at the data plane, which is handled
by either software or hardware switches.

A need arises to understand in detail the performance
implications of software processing, and possible ways to
accelerate flows in high performance networks (enterprise and
data centre) due to large volume of flows that must be process
in few milliseconds to avoid congestion and delay. In an
OpenFlow implementation incoming packets from switches
invoke the controller path for flow rule set up, which is slow
and increase the latency of the path as more packets arrive
[11]. This is because the current network architectures are
not designed to operate in that manner, and the architecture
of SDN introduced new communication entities between the
centralised controller and forwarding elements.

A. Related Work

The following are examples of projects attempting to ad-
dress OpenFlow performance issues:

• OFLOPS [11] is a framework that tests the performance
of OpenFlow enabled switches with a remote controlled
application. OFLOPS helps in determining the strength
and weaknesses in terms of performance between the
forwarding engine in the switches and remote application.

• Devoflow [8] is a framework that improves the scalabil-
ity of OpenFlow by managing the overhead caused by
sending packets to control path. The framework modifies
the Openflow model and allows it to load balance data
center traffic in a more efficient way.

• Scotch-Overlay [9] is a mechanism that leverages high
control path capacity of OVS to increase the performance
of control path. This consolidates the control path capac-
ity of many switches to be utilised during peak load and
abnormal traffic surge.

The frameworks examined did not provide detailed ex-
amination of the implication of delays in propagation and
flow rule insertion. It is crucial, however, to understand these
implications and provide ways to improve and avoid these
delays, to support future high performance networking.

III. PERFORMANCE IMPLICATIONS OF OPENFLOW

According to [7], the granularity offered by OpenFlow
brings about correctness in flow policy implementation without
per switch configuration, and near optimal management of
flows due to a global network view. Despite this, there is
significant performance implication with high performance
networks like data centre and enterprise [8][11]. Traffic from
data centres are of high volume and commodity switches are
not designed to handle thousands of flow entries because
of their flow table built capacity. Therefore running large
OpenFlow network with complete visibility poses scalability
issue for high performance network operation.

The design of OpenFlow brings about overhead, and costs
ranging from polling for flow statistics from the switches by

HOST 2

HOST 1

SERVER 

SWITCH

CONTROLLER

Fast Path : ASICs (Line rate forwarding)

Slow Path: 
Management CPU

eth1
eth2 eth3

eth0

eth0 eth0

Packet_in Message Packet_out
Flow_mod

Flow_mod
Match & Mask
Idle_timeout= 10
Hardtime_out= 60
Action= Forward 
port3
Priority = 42739

Packet_out
Action=Forward port3
Buffer ID = 250

OpenFlow Agent(OFA)

Flow 1
 Flow 2 …… 
Flow N

α

β

ρ
Flow Table

λ 

θ

 Ʈ

 ɣ 

Fig. 1. OpenFlow Operation

the controller and the distributive system cost of different
switches requiring the controller to handle flows. A single
controller with wide visibility of all flows poses a centralised
bottleneck and consequently scalability becomes an issue [8].
Section III-A, III-B and III-C discuss in detail the factors that
cause OpenFlow performance issues.

A. Implementation Overhead

In OpenFlow implementation, when a packet arrives
(Packet_in) the switch checks the flow against known
flow entries. These flow entries are looked up in either the
hash tables or linear tables for software switches, or Ternary
Content Addressable Memory (TCAM) for hardware switches
[9]. To quantify this:

• Let α designate the time it takes for the packet lookup
process when there is no match in flow table, the table
miss is applied to the packet.

• Let β be the latency in moving the packet to OpenFlow
Agent (OFA).

• Let ρ be the time for the OFA to encapsulate the
Packet_in message to the controller.

• Finally, λ is the delay incurred through transmitting the
Packet_in message across the control path to the
controller.

Depending on the implementation whether using hardware
or software switches, bandwidth between data and control
plane is finite, as is the compute capacity. This can hinder
the rate at which flows are set up, as only thousands of flows
per second can be implemented. Figure 1 depicts the described
process:

Bandwidth in the control path (slow path) is negligible due
to costs, unlike data path (fast path) which uses ASIC line
card on hardware to forward at line rate which is fast. For
instance the line card forwarding rate of a HP procurve 5406zl
is 320Gb/s (fast path) as compared to the CPU slow path which
is just 80 Mbps (slow path). Thus the control path is slower
than data path [8][12][11].



B. Packet Modification Delay

Flow-based networking requires the attention of the con-
troller periodically, which causes the accumulation of addi-
tional delay and latency in the control plane [13][14]. The
controller set up flow rules based on organisational policy and
global network state, and in this scenario θ represents the time
it takes for the controller to set up flows.

C. Flow Table Update Delay

Installing flow entries in a flow table induce significant
delay [12]. The flow table in OpenFlow switches serves as
the memory that holds all active flows and is similar to the
Forwarding Information Base (FIB) in conventional routers.
The controller pushes flow rule settings back to the switch
and the flow table updates and reorders the rules based on
the idle timeout in the flow table and implemented TCAM
algorithm. The delay incurred for this process can be referred
to as τ .

After a flow_mod operation the switch updates it table
and (if required) reorders the flow entries. An OpenFlow
barrier message is received to ensure that change is reflected
on the data plane. For hardware the completion time for
successful FIB update is in the hundreds of microseconds
range [15]. There is an accumulated delay associated with flow
insertion in the flow table, and it grows as the number of flow
entries increases. This is the time it takes for a packet to be
processed by the controller and push down to the switch for
forwarding based on the rule sets defined. Flow_add takes
less time to update unlike flow_mod which is found to cause
a higher delay in some hardware due to cross vendor variation
in OpenFlow implementation [2][11]. As more entries are
populated in TCAM, the more complex updating of flow
entries becomes. Irrespective of flow type, however, software
switches are not affected by any additional delay for flow
insertion caused by flow_add or flow_mod. For an exact-
match flow entry, forwarding is done at line rate (hardware)
or hash tables for software, and the last delay is forwarding
to the exit interface referred to as γ. Summing up the total
propagation and processing delay, the flow rule insertion delay
can be calculated as the summation of all delays as follows:
Let flow rule insertion delay = η,

η = α + β + ρ + λ + θ + τ + γ (1)

In a typical reactive flow set up that requires the attention
of the controller for any ingress packet, then all the delay
parameters affect the packet that is being processed which
makes equation (1) to be true.

For proactive flows there is no invocation of the control path
because flows are set beforehand and the controller has prior
knowledge of the arriving flows. Proactive flows are initiated
by stimuli from external network events like movement of
virtual machine from one physical to another, backup, load
balancing of elephant and mice flows etc. The first packet
from an external source that triggers a proactive flow will not
experience delay caused by α, β, ρ and λ because they are
not triggered from the switch to controller but rather from

TABLE I
PROPAGATION DELAYS

α Flow rule lookup process by switch using software tables, or
TCAM in hardware.

β Time it takes for a non-matching flow to be sent to the
Opeflow agent (OFA) in the switch.

ρ OpenFlow agent encapsulate packet and generate a Packet in
message.

λ Delay caused by invoking the control-path.
θ Time for controller to determine how packets should be

handled based on established policy settings or global network
state.

τ Delay incurred for pushing the flow rule back to the switch
to update the flow table.

γ Switch forwarding based on flow rule.

Fig. 2. Flow Rule Insertion Delay

the application to controller. The total delay experienced by
proactive flows are θ, τ and γ, because α, β, ρ and λ all equal
to zero in a proactive flow setting as shown in equation (2).

η = θ + τ + γ (2)

To depict the effect of the control path delay, the Mininet
[16] emulation environment is used. Both the links and the
hosts are instantiated in network namespaces a feature of
Linux kernel which is a virtual container. Internet Control
Message Protocol (ICMP) ping request and reply are used to
measure the delay using the POX and Floodlight controllers in
the Mininet emulation environment. The test is carried out on
a PC with Intel Core i5-4200M and 16GB RAM. The network
setup is depicted in Figure 1, which consists of a single switch
with three hosts and a centralised controller. For the complete
flow rule insertion delay that satisfies equation (1), the first
packet_in event invokes the control path to forward packet
to the controller. This triggers the subsequent delays that lead
to a successful implementation of flows in the switch flow
table.

The resulting Round Trip Time (RTT) delay between the
two hosts is shown in Figure 2. The first packet_in event,
where packets are sent to the controller, resulted in a delay
of 32ms using POX and 15ms with Floodlight. This is in
comparison to a delay of average mean of 0.302ms for
Floodlight and 1.253ms for POX. Note that the higher delay
in Pox is the result of flow hard timeouts causing the need for
the re-installation of flow rules.



Fig. 3. Control Path delay for First Packet_in Event Only

TABLE II
CONTROLLER PROGRAMMING LANGUAGES AND DOMAIN OF

APPLICATION

Language Controller Domain Thread
Java OpenDayLight Data Center Multi
Java ONOS Telecom / Data Center Multi
Java Floodlight Campus Multi
Java Iris Telecom Multi
Python Ryu Campus / Research Single
C MUL Data Center Multi
C++ Runos Telecom / Data Center Multi
C, Python ONIX WAN / Data Center Multi
C, Ruby Trema Data Center Multi

The delay found from contacting the controller is further
analysed in Figure 3, where stream of packet_in messages
were sent to the controller. It can be seen that the delay varies
greatly, due to the emulation environment used, and for the
fact that this is reliant on the invocation of a software based
controller.

D. OpenFlow Controllers

The type of controller used influences the performance of
the network. The performance of a controller is measured
based on number of packet_in messages processed per
second (throughput) and the average time the processor takes
to process events (latency). [8].

Another key factor to consider is the programming language
used for controller development. Java is one of the best choice
due to its cross platform, multi-threading support and modular
capabilities. Python does not scale well due to its inability to
multi-thread. C and C++ controllers provide improved levels
of performance, however, they tend to have issues of memory
management. The .NET languages are not cross platforms and
limited to single environment operation. Table II presents the
programming languages used by some of the controllers with
their domain of application, and threading ability.

The throughput of multi-threaded controllers depends on
two factors, firstly the algorithm responsible for distributing
flows across various threads, and secondly the the mechanism
used in network interaction or the respective libraries used by
the controller [17].

IV. DATA PLANE DEVICE PERFORMANCE

OpenFlow switches are currently implemented either in
hardware or software based virtualisation. The following sub-
sections discuss these switch types in further detail.

A. Hardware Switches

According to [10], hardware based switches benefit in terms
of performance from efficient packet offloading mechanisms
integrated in their Network Interface Cards (NICs). Hardware
NICs have the ability to migrate packets to Direct Memory
Access (DMA) and even CPU cache, referred to as Direct
Cache Access (DCA), without the help of the CPU [18].
NIC can also support a modern multicore architecture e.g
Receive Side Scaling (RSS), which places packets among
different CPU queues for processing. These features are absent
in software [19].

As [2] discusses, in traditional switching hardware, where
the control, data and management planes are vertically inte-
grated, the control plane minimally degrades the data plane
performance, and forwarding is done at line rate for all flows.
Conversely, in SDN OpenFlow enabled switches where the
control plane functions are delegated to an external controller,
a delay is experienced in flow set up [14]. However, according
to [10], the speed at which this process happens depends on
the following:

• General purpose CPUs that process packets at slower
rates than special purpose ASICs.

• TCAM technology [20], which has a significant effect on
the size of hardware flow tables, flow rule insertion rate,
flow table entries, and flow rule complexity [8].

• The switch firmware, which can either buffer or delay
flow insertion. In addition, some firmwares are capable
of using a software table with predefined guidelines
on migrating flows to hardware tables in the event of
software table saturation.

For instance OVS allows 200,000 rule with flow set-up rate
of 42,000 per second [21]. Conversely HP ProCurve 5406zl
with K.15.10.0009 firmware support only 1500 flow table
entries in hardware with 275 rule set up per second[22]. Due
to these factors network emulators cannot make generalised
conclusions of the performance fidelity of SDN networks
because it is at its early stage unlike the traditional switches
that have matured over the years and performance assumptions
can be made with little variation in implementation.

1) Hardware Design Solution and Issues: Hardware design
intended for OpenFlow will drastically improve performance
but the consequent to this comes with ASICs cost, com-
plexity and power consumption. Also, going by Moore’s law
which needs processor replacement after a certain period of
time would not give a permanent relief. The control plane
bandwidth will increase if the processing power increases. A
possible alternate solution to this as argued by [2][9] is to
use software based switches in commodity hardware devices
because they have higher control plane bandwidth, but this
would not be a cost effective solution to enterprise.



Kernel Space

User Space

eth0 eth1

DATAPATH

OVS-SWITCHD

ofproto

dpif netdev

eth3

OpenFlow 
Controller

Slow Path (non-matching flow)

Fast Path (matched flows)

Fig. 4. OVS Architecture

B. Software Switches

Virtual switches have become an integral part of any
virtualised computing set up ranging from cloud computing
and network virtualisation [10]. The most adopted and used
virtual switch is Open Virtual Switch (OVS) which is vendor
independent, flexible, open source and licensed under Apache
2.0 [3]. OVS is integrated in different hypervisors like Xen,
KVM, and Qemu, and serve as a software switch [23]. OVS
is heavily used in SDN implementations and cloud computing
frameworks like Openstack.

1) Factors Affecting Performance of OVS: OVS leverages
the UNIX/Linux kernel to implement OpenFlow switch func-
tionality. Flow entries are stored in memory, and according
to [24], forwarding is several orders of magnitude lower
than hardware. In OVS architecture, the switch daemon (ovs-
vswitchd) situated in userspace and data path (kernel module)
are the most important component that affect performance. The
data path (fast path) which is the kernel module is responsible
for packet forwarding based on rules maintained in flow table
to forward matched flows with corresponding actions.

vswitchd manages flows in the Kernel module. It contains
various components (ofproto, netdev and dpif) as shown in
Figure 4 that help configure OVS instances, connects external
OF controllers and communicate with the underlying system.

2) Performance Implication: Delay and latency are ob-
served in OVS on packets arriving without a match in kernel
module, because packets are copied, encapsulated and sent
to the user space which is slower and accumulates more
delay. As more packets arrive to the kernel module without
a matching rule in the cached entries, the higher the delay
and latency in setting up and installing flows, since packets
must go to vswitchd for flow rule set up. Additionally, the
classifier in userspace is responsible for the lookup action
for unmatched flows in the kernel module, there is latency
associated with the lookup process which add up to overall
performance constraint.

The userspace is responsible for managing all the flow set
up in kernel including statistics and flow monitoring. Querying
of managed flows from the kernel module is costly to the
switch, because forwarding is carried out by management CPU
which is slow as compared to ASIC packet processing.Figure
5 depicts the performance behaviour of forwarding functions

Fig. 5. OVS-Kernel matching for L1, L2 and L3

TABLE III
MAXIMUM RULE INSERTION

Layer Maximum Delay (ms)
L1 3.011
L2 1.291
L3 1.297

TABLE IV
MINIMUM RULE INSERTION

Layer Minimum Delay (ms)
L1 0.082
L2 0.081
L3 0.032

in the kernel module, without controller assistance from user-
space.

The forwarding measurement is carried out for traffic in
physical, data and network layer of the OSI model thus Layer
1 (L1), Layer 2 (L2) and Layer 3 (L3) matching. Layer 1
matches on physical ports, while Layer 2 uses MAC addresses
and Layer 3 uses IP addresses. This is implemented in the
Mininet environment, as seen from Figure 5.

The first sets of flows that arrived have higher delays due to
flow setup latency. Subsequent flows matched on the already
cached entries in kernel module. The setup delay is due to
netdev, which is a module responsible for managing kernel
module activities locally, and when a flow hits the kernel there
is an associated delay in communication time between the
kernel module and netdev. The respective rule insertion delays
observed for L1, L2 and L3 are seen in Tables III and IV.

Note that the test is carried out in a virtualised environment

Fig. 6. User Space Packet Delay



(Mininet) leveraging operating system resources. Performance
is therefore subjected to constraints like buffer size, delay,
bandwidth and simulated packet loss.

For the vswitchd the delay is measured using POX as the
OpenFlow controller as seen from Figure 6, an increase in
delay is experienced due to additional load on the OVS kernel
for encapsulating non-matching flow to userspace which is
slowpath. With packets at userspace the delay turn out to be
high with first packet having 39.2ms, and minimum delay
at 0.101ms. And the mean for the userspace is 2.299ms.
There are sudden spikes of flow delay set up at various
intervals, these are due to flow timer expiration. The flows
in kernel modules are managed from the vswithd and there is
an associated cost in setting up flows due to the delegation of
control to external OpenFlow controller.

V. CONCLUSION & FUTURE RECOMMENDATIONS

OpenFlow networks are gradually deployed in current net-
works with most vendors providing support for the protocol
in their networking devices. There is a gap, however, between
these devices that are designed in a similar pattern to tradi-
tional network switches, and the requirements of a Software
Defined Network.

A. Future Recommendations

The control path delay incurred by packets are due to the
separation between control and data plane which is new to the
architecture of networking devices and processors. Possible
ways of accelerating flow forwarding in SDN are redesigning
the software stack of OpenFlow agent (OFA) and the architec-
ture of processors to have more power in handling control path
request. These will increase throughput and reduce latency by
enhancing flow processing and offloading at high rate.

Flow tables are memories that store flow entries. Hardware
devices have small TCAMs to store flow entries but forward
at line rate, however software switches have room for more
flow entries but forward at slow rate. These problems can be
alleviated in hardware devices by redesigning TCAMs to have
bigger memory space and increasing the management CPU
processing ability for the software switches.

Finally, the controller choice plays a major role in influ-
encing flow processing capability. Controllers such as Open-
Daylight, ONOS and Floodlight which are multi-threaded
have the ability to leverage multiple CPU cores in pro-
cessing flows. These make them scale as more flows are
processed.Controllers should be modular with multi-platform
support and whether distributed or centralised depending on
the network implementation.

REFERENCES

[1] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: a
retrospective on evolving sdn,” in Proceedings of the first workshop on
Hot topics in software defined networks. ACM, 2012, pp. 85–90.

[2] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity
switch models for software-defined network emulation,” Proceedings
of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pp. 43–48, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491185.2491188

[3] “Openvswitch,” 2015. [Online]. Available: http://openvswitch.org/
[4] S. Latifi, “Emulating E nterprise N etwork E nvironments for F ast T

ransition to Software-Defined Networking,” pp. 294–297, 2014.
[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, Others, and
S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” OSDI, Oct, pp. 1—-6, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924968

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254–265.

[9] A. Wang, S. Chen, and T. V. Lakshman, “Scotch : Elastically Scaling up
SDN Control-Plane using vSwitch based Overlay,” pp. 403–414, 2014.

[10] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference on. IEEE, 2014, pp. 120–125.

[11] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:
An open framework for openflow switch evaluation,” in Passive and
Active Measurement. Springer, 2012, pp. 85–95.

[12] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow switching:
Data plane performance,” IEEE International Conference on Communi-
cations, 2010.

[13] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assess-
ment,” Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN ’13, pp. 151–152, 2013.

[14] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “Fresco: Modular composable security services for software-
defined networks.” in NDSS, 2013, pp. 1–16.

[15] A. Shaikh and A. Greenberg, “Experience in black-box OSPF measure-
ment,” Proceedings of the First ACM SIGCOMM Workshop on Internet
Measurement Workshop IMW 01, pp. 113–125, 2001.

[16] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
pp. 1–6.

[17] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia on - CEE-SECR ’13, pp. 1–6, 2013.

[18] Intel, “Intel Inut Output Acceleration Technology,” 2014.
[Online]. Available: http://www.intel.com/content/www/us/en/wireless-
network/accel-technology.html

[19] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of soft-
ware packet forwarding using netmap,” Proceedings - IEEE INFOCOM,
no. 257422, pp. 2471–2479, 2012.

[20] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Implemen-
tation challenges for software-defined networks,” IEEE Communications
Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[21] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th USENIX symposium on
networked systems design and implementation (NSDI 15), 2015, pp.
117–130.

[22] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in International Conference on Passive and Active
Network Measurement. Springer, 2015, pp. 347–359.

[23] S. Hamadi, I. Snaiki, and O. Cherkaoui, “Fast path acceleration for open
vSwitch in overlay networks,” 2014 Global Information Infrastructure
and Networking Symposium (GIIS), pp. 1–5, sep 2014.

[24] B. Pfaff and B. Davie, “The open vswitch database management
protocol,” 2013. [Online]. Available: http://openvswitch.org/


