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Abstract 

Recent dual-process models of the word frequency mirror effect place absolute 

familiarity, an item’s baseline familiarity at a given time point, as responsible for false alarm 

differences and recollection for hit rate differences between high and low frequency items. One 

of the earliest dual-process propositions, however, posits an additional relative familiarity 

mechanism which is sensitive to recent presentation but relative to the absolute familiarity of a 

particular item (Mandler, G., Psychological Review, 87, 252-271, 1980). In this study, it was 

possible to map these three mechanisms onto known event-related potential (ERP) effects in an 

old/new recognition task with high and low frequency words. Contrasts between ERPs elicited by 

high and low frequency new items were assumed to index absolute familiarity, and the 

distribution of this effect from 300-600 ms was topographically distinct from a temporally-

overlapping midfrontally-distributed old/new effect which was larger for low than high frequency 

words, as would be expected from a relative familiarity mechanism. A later left parietal old/new 

effect, strongly linked to recollection, was only present for low frequency items. These 

frequency-sensitive amplitude differences for both old/new effects disappeared in a second 

recognition task in which old/new decisions were made under a time constraint, although the 

posterior absolute familiarity effect remained unaffected by the speeding of responses. The data 

support the assertion that three distinct recognition processes are affected by word frequency in 

recognition memory tasks, and the qualitatively distinct distributions associated with the two 

familiarity contrasts support the presence of two cognitively distinct familiarity mechanisms. 

Keywords: Absolute familiarity, Event-related potentials, FN400, Mirror Effect, N400, 

Recollection, Relative familiarity, Word frequency 
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1. Introduction 

 Familiarity refers to one of two independent processes which can be used to support 

recognition memory judgments, as is postulated by dual process-models of recognition memory 

(see Yonelinas, 2002). Familiarity is usually described as a sense or feeling of oldness; an 

experience which is qualitatively distinct from recollection, which supports the reinstatement of 

explicit contextual details associated with the encoding episode (although reports in which 

familiarity appears to contribute to contextual-like retrieval are accumulating; see Kriukova, 

Bridger & Mecklinger, 2013; Mollison & Curran, 2012 for recent examples; and Yonelinas, Aly, 

Wang & Koen, 2010 for a review). One criticism recently leveled at dual-process accounts is 

that, whereas the phenomenon of recollection-based remembering is relatively well-described, 

familiarity is not as clearly characterized, making it easier under some conditions to define 

familiarity on the basis of what it is not (i.e. recollection) rather than what it is (Leynes & Zish, 

2012; Voss, Lucas & Paller, 2012). In this study, the issue of characterizing familiarity will be 

addressed by re-focusing on two memory phenomena which have contributed some of the most 

important evidence for dual-process models to date: event-related potential (ERP) correlates of 

recognition and the word frequency mirror effect (Glanzer & Adams, 1990). 

The word frequency mirror effect describes the phenomenon by which, compared to high 

frequency words, low frequency items elicit more correct responses in recognition memory tasks 

both when they are old (an increase in hit rates) and new (a decrease in false alarm rates). This 

pattern is problematic for single-process signal-detection models, which presume the placement 

of an old/new decision criterion along a continuum of memory strength, because a simple 

strength mechanism cannot predict both the hit and false alarm rate without incorporating 

additional parameters which make these models unjustifiably complex (DeCarlo, 2007; 

Hintzman, 1994; Murdock, 1998). Dual-process models have dealt with this issue by positing that 
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the hit and false alarm rates reflect the respective contributions of recollection and familiarity 

(Joordens & Hockley, 2000; Reder, Nhouyvanisvong, Schunn, Ayers, Angstadt, & Hiraki, 2000). 

A greater level of pre-experimental familiarity for high frequency items is assumed to make it 

more likely that high frequency new items will fall above the old/new criterion and thus be 

incorrectly classified as old. At the same time, low frequency items are inherently more 

distinctive, in part as a consequence of the low number of contexts in which they have previously 

been experienced. This increases the likelihood in which the experimental context associated with 

a low frequency item is recollected during an experimental test phase which drives the increased 

hit rate for these items. This pattern tallies with a number of data points including those which 

show that low frequency hits are disproportionately supported by judgments associated with a 

feeling of remembering, thought to correspond with recollection (Reder et al., 2000). Of 

particular interest for the current report are data from experimental designs which have 

capitalized on the assumption that familiarity occurs faster than recollection-based remembering. 

When participants are required to respond at an early time point by which it should not be 

possible to make recollection-based responses, the hit advantage for low frequency items has 

been shown to be removed whilst the false alarm difference remains unchanged (Balota, Burgess, 

Cortese & Adams, 2002; Joordens & Hockley, 2000). 

In their recent paper, Coane, Balota, Dolan & Jacoby (2011) combined this dual-process 

model with another mechanism proposed to contribute to the word frequency mirror effect: a 

relative familiarity mechanism, which refers to the change in familiarity strength relative to its 

pre-experimental familiarity level after an item has been presented during the study phase of an 

experiment. A mechanism of this kind would necessarily elicit a greater feeling of familiarity for 

low than high frequency old items, because low frequency items would experience a greater 

change in strength following presentation than high frequency items, due to their relatively low 



5 

 

pre-experimental familiarity level. This characterization corresponds with Mandler’s (1980) 

original definition of incremental familiarity as it was termed in one of the earliest dual-process 

models of recognition. Mandler’s perspective provides a simple mechanism by which familiarity 

would be larger for low than high frequency words which is described in the following equation: 

Relative Familiarity = d / (d + F) 

where d is the incremental strength increase (following a single presentation), and F refers to the 

level of pre-experimental familiarity for a particular class of item (hereafter referred to as 

absolute familiarity in keeping with the terminology employed by Coane et al., 2011). The 

important aspect of this relative mechanism is that it necessarily presupposes the role of two 

distinct familiarity mechanisms, because (i) it depends mathematically upon an index of absolute 

familiarity and (ii) it cannot explain the increase in FA rates for high compared to low frequency 

new items because relative familiarity should always be greater for low frequency items. Thus, if 

a relative familiarity component does exist, it cannot do so in the absence of differences in 

absolute familiarity. 

To determine whether both absolute and relative familiarity contribute to recognition 

performance, Coane et al. (2011) adapted Jacoby’s (1991) two-list exclusion task in which only a 

proportion of old words presented at test are to be endorsed as old depending upon their study 

context. The particular experimental set-up ensured that the successful exclusion of those old 

items from a non-targeted study context depended upon recollection, such that failures to exclude 

these items (exclusion errors) would be considerably greater under speeded response conditions 

in which response decisions need to be made before recollection is thought to be available. At 

these earlier response times, only early familiarity-type mechanisms should be available on which 

to base recognition judgments. If these early recognition processes include a relative familiarity 
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mechanism, then the number of exclusion errors (old items which should have been excluded on 

the basis of their study context, but were not) should be significantly greater for low than high 

frequency old items. At the same time, if an additional absolute familiarity signal is present, the 

greater false alarm rate to high compared to low frequency new items should also be evident, in 

line with the standard mirror effect. Across two experiments with different response deadline 

implementations, Coane and colleagues observed significantly more exclusion errors for low than 

high frequency old words and a less reliable, but nonetheless broad trend for increased false 

alarms to new items for high than low frequency, as would be expected if two distinct familiarity 

mechanisms were contributing to response judgments in this paradigm. The finding that, under 

response conditions which ostensibly removed recollection, more exclusion errors were made to 

low than high frequency old items, provides the clearest behavioural demonstration that a relative 

familiarity-type signal contributes to recognition differences to high and low frequency words.  

 These outcomes are in line with the intriguing notion that word frequency manipulations 

can dissociate three distinct processes which contribute to recognition judgments: absolute 

familiarity for new items and relative familiarity and recollection for old items. It is worth 

bearing in mind, however, that this pattern was observed in Coane et al.’s study using a 

demanding exclusion/response-deadline task combination which differs somewhat from standard 

recognition conditions and which may in part be responsible for the fact that a robust increase in 

false alarms for high frequency items was not observed. One worthwhile approach towards 

providing convergent evidence for this pattern with more typical recognition task parameters 

would be to exploit the capacity of ERPs to index functionally distinct but temporally 

overlapping or contiguous processes. These characteristics have been successfully and robustly 

used to dissociate distinct ERP old/new effects (contrasts between ERPs elicited by correctly 

responded to old and new items) across a variety of recognition paradigms (Mecklinger et al., 
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2011; Rugg & Curran, 2007; Wilding & Herron, 2006). Of most interest for the current topic are 

dissociations between an early old/new effect which usually elicits a mid-frontal distribution 

from 300-500 ms post-stimulus and a later occurring old/new effect which is largest over left 

parietal sites around 500-700 ms. The earlier of the two effects, often referred to as the midfrontal 

old/new effect or the FN400, has been shown to operate in a way which is consistent with an 

index of familiarity. Examples of this are demonstrations that the effect varies with subjective 

familiarity strength (Woodruff et al., 2006; Yu & Rugg, 2010) but does not distinguish old items 

and semantic lures (Curran, 2000; Nessler et al, 2001; Rugg & Curran, 2007). The later left 

parietal effect has been shown to correlate reliably with recollection-based responding and the 

amount of information recollected (Vilberg & Rugg, 2009) and is significantly larger for 

responses associated with a correct compared to an incorrect source attribution (Wilding & Rugg, 

1996). These ERP effects cannot provide an exact 1:1 mapping of familiarity and recollection 

because other processes can elicit comparable functional modulations of these effects (see Voss, 

Lucas & Paller, 2012, for considerations of this kind). With these restrictions in mind, these 

effects can nonetheless be usefully employed as putative neural correlates of familiarity and 

recollection (Rugg & Curran, 2007) given those reports in which the two effects have been 

shown to doubly dissociate in a manner corresponding with dual-process models of recognition 

memory (Jäger, Mecklinger & Kipp, 2006; Stenberg, Hellman, Johansson & Rosén, 2009; 

Woodruff et al., 2006).  

A number of reports have previously investigated the impact of word frequency on ERP 

old/new effects. In a series of experiments, Rugg and colleagues (Rugg, 1990; Rugg, Cox, Doyle 

& Wells, 1995; Rugg & Doyle, 1992) reported a significant late old/new effect (which likely 

corresponds to what is now referred to as the left parietal old/new effect) only for low frequency 

words, in line with the prediction derived from dual-process models that recollection is more 
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likely to occur for these items. The pattern in the earlier time window in which familiarity-

processing is likely to have been measured is less clear: whereas in one study there was no 

obvious interaction with word frequency (Rugg & Doyle, 1992), in another, the early effects were 

only significant for low frequency items (Rugg, 1990). This latter finding is consistent with an 

index of relative familiarity but it was not possible to address the topography of this effect due to 

the small number of electrodes employed. Moreover, participants were not required to make 

recognition decisions in this task complicating subsequent interpretations. These patterns were 

observed before the bulk of evidence in favor of a dual-process interpretation of ERP old/new 

effects had been accumulated, and this, combined with the lack of topographical comparisons, 

makes it difficult to determine the extent to which these effects map onto those typically reported 

in episodic recognition tasks of this kind. In a more recent report, Stenberg and colleagues (2009) 

manipulated frequency using Swedish names and observed a robust early midfrontal old/new 

effect for less frequent (rare) but not for highly frequent (common) names. This finding provides 

some of the clearest evidence that the midfrontal old/new effect operates in a way which is 

consistent with relative familiarity. 

Not all early ERP old/new effects associated with familiarity-based responding have 

shown a midfrontal distribution. In one report, Mackenzie and Donaldson (2007) asked 

participants to learn a series of face-name associations before completing a recognition task in 

which they were required to say whether or not they remembered the name or any other 

information for old faces. The old/new effect which was associated with faces that were correctly 

recognized without the retrieval of any specific information (familiarity-based responding in the 

absence of recollection) exhibited a clear posterior distribution in the early time window. The 

authors suggested that this posterior effect might reflect the use of a distinct absolute familiarity 

mechanism for the recognition of faces compared to the relative familiarity effect observed in 
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studies in which word stimuli have been employed. This reasoning comes about by considering 

differences in absolute familiarity for words and faces: whereas all words associated with known 

concepts will fall somewhere upon the continuum of absolute familiarity with a considerable 

degree of variance, faces of unknown individuals are all likely to be low in absolute familiarity 

and to fall on similar or the same points on the scale. MacKenzie and Donaldson suggested that 

the very low level of absolute familiarity for faces might have enabled changes in absolute 

familiarity to be diagnostic of prior occurrence. Further support for the possibility that a distinct 

familiarity mechanism might be employed for the recognition of stimuli with no pre-experimental 

familiarity comes from a different paradigm, in which Bader, Mecklinger, Hoppstädter & Meyer 

(2010; see also Wiegand, Bader & Mecklinger, 2010) reported an early posterior old/new effect 

associated with the correct recognition of word pairs which had been introduced during study as 

novel compound words, such as smoke-apple (“a fruit maturing above flames”). Also noteworthy 

is the strong correspondence between these posterior old/new effects and the N400 correlate of 

semantic processing (Kutas & Federmeier, 2000). The N400 is a negative ERP component that 

peaks around 400 ms after stimulus onset and is most pronounced over posterior scalp sites. It is 

sensitive to the ease of processing semantic information and also larger for low than high 

frequency words when presented in isolation (Kutas & Federmeier, 2000; Young & Rugg, 1992; 

Van Petten & Kutas, 1990). 

To summarize, there is considerable evidence within the ERP literature of an early 

midfrontal old/new effect which operates in line with an index of relative familiarity and which 

dissociates both temporally and functionally from a later parietal effect associated with 

recollection. It is also the case that a topographically distinct posterior old/new effect occurs in a 

time window which overlaps with that of the early frontal effect. The functional significance of 

this posterior effect in recognition tasks has yet to be specified but it is observed in conditions in 
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which absolute familiarity might be more diagnostic of recent presentation and is similar in 

topography to the N400, which is sensitive to absolute word frequency. The goal of the current 

experiment was to bring together separate behavioural and ERP findings which implicate the 

presence of multiple familiarity signals, and to test for these signals by determining whether 

distinct ERP correlates of absolute familiarity and relative familiarity could be observed within a 

single recognition test containing a simple high and low word frequency manipulation. In a first 

study-test phase, participants completed a simple recognition test with standard old/new response 

requirements whilst EEG was recorded. In a second study-test phase, all parameters remained the 

same except that participants were required to make their old/new decisions within 750 ms of 

seeing the test item. This response manipulation was designed to reduce the extent to which 

recollection could contribute to recognition decisions in order to determine whether a hit 

advantage for low frequency old items would remain when recollection was no longer available, 

as would be expected if an early relative familiarity mechanism was also in operation for these 

words. A deadline of 750 ms was chosen because it is comparable to those used in a variety of 

behavioural reports in which a deadline manipulation has been shown to qualitatively influence 

the pattern of recognition responding in line with the selective removal of recollection-based 

responding (Bowles, Crupi, Mirsattari, Pigott, Parrent, Pruessner et al., 2007; Coane et al., 2011; 

Hintzman & Curran, 1994). 

- Insert Figure 1 around here   - 

In line with the logic described above (and depicted in Figure 1), absolute familiarity 

should be revealed by contrasting ERPs elicited by high and low frequency new items, whereas 

relative familiarity should be indexed by an old/new effect which is significantly larger for low 

than high frequency items and which is distinct from a later recollection old/new effect which 

should also be larger for low than high. If multiple early familiarity signals exist, then these 
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contrasts should reveal ERP effects with distinct scalp topographies within overlapping early 

time windows, in line with the assumption that non-overlapping scalp distributions reflect 

qualitatively distinct neural generators or neural configurations and thus represent functionally 

distinct cognitive processes (Rugg & Coles, 1995; Wilding, 2006).  

 

2. Methods 

2.1. Participants 

Twenty-two native German speakers were recruited from the student population of 

Saarland University. All except one participant were right-handed as assessed by the Edinburgh 

Handedness Inventory (laterality quotient > 50; Oldfield, 1971) and had no known neurological 

problems. Informed consent was required, payment was provided at a rate of €8/h, and 

participants were debriefed after the experiment. The experiment was approved by the local 

ethics committee of Saarland University. Data from 4 students were excluded from the final 

analyses either because there were less than 16 artefact-free trials which could contribute to each 

critical ERP average (n=1) or had a discrimination value (p[hit] - p[false alarm]) at or below zero 

in the speeded response condition (n=3). The mean age of the remaining 18 participants (7 male) 

was 22 years (range = 18-28 years). 

 

2.2. Stimuli and Design 

Stimuli were 480 high and low frequency German words all taken from the WebCelex 

database (Baayen, Piepenbrock & Gulikers, 1995) and between 4 and 14 characters in length. The 

final high and low frequency lists each comprised 60 nouns, 90 adjectives and 90 verbs. Example 

high frequency words (and English translations) are TEIL (‘part’), SPRECHEN (‘to speak’) and 
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FREI (‘free’), whereas representative low frequency examples are SICHEL (‘sickle’), MELKEN 

(‘to milk’) and SALOPP (‘sloppy’). Semantic repetitions across word categories were removed 

(e.g. the noun ‘muscle’ would be removed if the stimuli set already included the adjective 

‘muscular’) to minimize overlap between nouns, verbs and adjectives. Table 1 reports the 

frequency values for high and low frequency words, both according to WebCelex as well as for 

an alternative database (available at www.dlexdb.de; Heister, Würzner, Bubenzer, Pohl, 

Hanneforth, Geyken et al., 2011) which has recently been shown to better approximate lexical 

decision times than the older Celex corpus (Brysbaert, Buchmeier, Conrad, Jacobs, Bölte & Böhl, 

2011). Each frequency list was split into 4 lists of 60, each matched for word length, frequency 

and proportion of nouns, verbs and adjectives. In each study phase, participants were presented 

with 60 high and 60 low frequency words, which were re-presented at test along with another 60 

high and 60 low frequency words. Four counterbalanced lists ensured that items operated in both 

old and new and speeded and non-speeded conditions across participants. The program ensured 

that the order of presentation of items at study and test comprised a distinct randomised order for 

each participant. Stimuli were presented in the centre of the screen in black on a grey 

background. The vertical visual angle subtended 1.1º and the horizontal visual angle was between 

3.8º and 13.4º (at a viewing distance of 70 cm). All stimuli were presented using E-Prime 2.0 

(Psychology Software Tools). 

 

2.3. Procedure 

Each experimental session began with the fitting of the EEG cap (see parameters below). 

The experimental tasks began with a short practice phase to familiarize participants with the 

overall task construction, principally the study-test phase distinction. This practice task 

comprised a study phase with 10 high and low frequency words, a distractor task identical to that 
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in the experiment proper (see below) and a short test phase without any speeded instructions. 

Only half of the studied practice words were re-presented at this point, whilst the remainder were 

employed in a final practice test phase before the actual test phase. This was necessary in order to 

remind participants of the exact test requirements immediately before the critical test. During 

study, participants were informed that they would see a series of words presented on the screen 

and that they were to say each word aloud. Each study trial began with a fixation cross for 500 

ms which was replaced by a word presented for 1500 ms. The screen was then blanked for a 1500 

ms response interval, before the next trial began. Participants took a self-paced break midway 

through the study phase. 

After the study phase, participants completed a short distractor task, in which they were 

required to count backwards silently in threes from a randomly presented number for 30 seconds. 

Participants entered the final number reached into the computer at the end of this interval. The 

test phase was preceded by a short practice phase including the remaining words presented during 

the practice study phase. Test trials began with a fixation cross for 500 ms, which was replaced 

by the target word for 850 ms and a blank screen for 1400 ms, during which participants were 

required to make a simple old/new binary judgment. The next trial began 800 ms later. The 

mapping of old : new responses onto left : right (‘c’ : ‘m’) buttons was counterbalanced across 

participants. Participants took self-paced breaks every 40 trials. Piloting revealed that response 

times remained significantly shorter in the non-speeded condition for participants who began 

with the speeded condition. To avoid this and to keep the timing of responding distinct in the two 

conditions, participants always completed the non-speeded study-test phase first, and were not 

aware of the speeded response requirements until after the second study phase. All parameters 

were identical in the non-speeded and speeded blocks, except that participants were asked to 

make their response whilst the test item was on-screen in the speeded block (850 ms). If 
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participants made a response after 750 ms, they heard a warning tone and these responses were 

excluded from all further analyses. As was the case in the first study-test block, participants were 

given a short practice phase to acquaint them with this requirement.  

 

2.4. Electrophysiological Recording Parameters and Analyses 

Continuous EEG was recorded from 58 scalp locations based on the extended 

international 10-20 system (Jasper, 1958). EEG was acquired referenced to the left mastoid and 

re-referenced offline to the average of the mastoid signals. All offline and pre-processing of the 

data was conducted using EEProbe (ANT Software). EEG signals were band-pass filtered from 

DC-70 Hz and digitized at a sampling rate of 500 Hz. Electro-oculographic activity (EOG) was 

assessed using signals recorded from four additional electrodes above and below the right eye 

(vertical EOG) and on the outer canthi (horizontal EOG). Electrode impedances were kept below 

5 kΩ. Offline, a digital band-pass filter (0.03-30 Hz) was applied and epochs were created 

beginning 100 ms prior to and ending 1000 ms after the onset of stimulus presentation. 

Waveforms were corrected relative to the 100 ms pre-stimulus baseline period. EOG blink and 

movement artifacts were corrected using a modified linear regression algorithm (Gratton, Coles 

& Donchin, 1983) embedded in the EEProbe Software package. The mean number of artifact-free 

trials contributing to individual subject grand averages for each of the four non-speeded 

conditions was as follows: high frequency hits = 24 (range 17-35), high frequency correct 

rejections = 31 (17-44), low frequency hits = 27 (18-46), low frequency correct rejections = 33 

(19-48). The mean numbers of trials for each condition in the speeded response condition were as 

follows: high frequency hits = 24 (16-37), high frequency correct rejections = 27 (20-33), low 

frequency hits = 24 (16-36), low frequency correct rejections = 29 (18-43). To provide an 

indicator of effect sizes, partial eta squared is reported alongside outcomes from MANOVAs and 
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ANOVAs whilst Cohen’s d is reported for t-test outcomes, for analyses of both behavioural and 

ERP data. 

 

3. Results 

3.1. Behaviour 

Table 2 shows the proportion of hits and false alarms for high and low frequency words 

separately for the non-speeded and speeded conditions. As expected, the pattern in the non-

speeded condition comprises a typical word frequency mirror effect, with a greater proportion of 

hits for low than high frequency items, whilst the reverse pattern is evident for false alarms. The 

hit advantage for low frequency items is reduced considerably in the speeded condition, however. 

A 2 x 2 repeated measures ANOVA on hit responses with factors of Frequency (high, low) and 

Response Deadline (non-speeded, speeded) revealed a main effect of Frequency (F(1,17) = 9.49, 

p = .007, ƞp
2 = .358), a marginally significant effect of Response Deadline (F(1,17) = 4.24, p = 

.055, ƞp
2 = .200) and a significant interaction (F(1,17) = 6.17, p = .024, ƞp

2 = .266). Bonferroni-

corrected follow-up t-tests revealed that low frequency hits were significantly more likely in the 

non-speeded than the speeded condition (t(17) = 3.12, Bonferroni-corrected p = .024, d = .823), 

and that this low frequency hit advantage (relative to high frequency hits) was significant in the 

non-speeded (t(17) = 3.91, Bonferroni-corrected p = .004, d = .814) but not the speeded condition 

(p = .541). The pattern of high frequency hits did not change across the two response deadline 

conditions (p = .567). There was thus no evidence of a significant hit advantage in the speeded 

condition which would have been consistent with a behavioural indicator of relative familiarity in 

the speeded condition. The pattern of false alarms across both response deadlines showed the 

expected pattern, with the increase in high frequency false alarms (relative to low frequency false 
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alarms) also evident in the speeded condition, where the number of false alarms showed an 

overall increase. This pattern was confirmed by a second ANOVA on the proportion of false 

alarms which revealed only main effects of Frequency (F(1,17) = 48.82, p < .001, ƞp
2 = .742) and 

Response Deadline (F(1,17) = 14.78, p = .001, ƞp
2 = .465). 

Response bias was indexed using the Br parameter (False Alarms/[1-Pr]) specified by 

Snodgrass & Corwin (1988) for which .50 represents a neutral bias with values less than this 

representing a conservative bias. The average Br values for all critical conditions are shown in 

Table 2. A 2 x 2 ANOVA with factors of Response Deadline and Frequency, revealed a main 

effect of Frequency (F(1,17) = 8.64, p = .009, ƞp
2 = .337) and a marginally significant effect of 

Response Deadline (F(1,17) = 4.23, p = .055, ƞp
2 = .199), in line with a more conservative 

response bias for low than high frequency items and in the non-speeded than speeded condition.  

Table 3 shows the mean reaction times for hits and correct rejections for high and low 

frequency words separately for the non-speeded and speeded conditions. In line with the response 

deadline cut-off, correct responses were on average 300 ms faster in the speeded condition. In the 

non-speeded condition, responses were also approximately 30 ms faster for low than high 

frequency items. A 2 x 2 x 2 ANOVA with factors of Response Deadline, Frequency and Item-

Type (hit, correct rejection) revealed a main effect of Response Deadline (F(1,17) = 62.91, p < 

.001, ƞp
2 = .787), a marginally significant effect of Frequency (F(1,17) = 3.89, p =. 065, ƞp

2 = 

.186) and an interaction between Response Deadline and Frequency (F(1,17) = 9.28, p = .007, ƞp
2 

= .353). Subsequent analyses separated for the non-speeded and speeded conditions revealed a 

main effect of Frequency only in the non-speeded condition (F(1,17) = 6.40, p = .022, ƞp
2 = .274). 

On average, participants made 2.92 timeouts in the speeded response condition. An ANOVA on 

speeded timeouts with factors of Frequency and Item-Type revealed main effects of both factors 

(Frequency: F(1,17) = 7.67, p = .013, ƞp
2 = .311; Item-Type: F(1,17) = 4.922, p = .040, ƞp

2 = 
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.225) because participants made significantly more time outs to low frequency (M = 3.47, SD = 

1.85) than high frequency (M = 2.36, SD = 2.56) and to new (M = 3.31, SD = 2.53) than old 

items (M = 2.53, SD = 1.98). 

- Insert Figure 2 around here   - 

 

3.2. ERPs 

Figure 2 shows the grand average old/new effects for high and low frequency items in the 

non-speeded condition. Old/new effects for both classes of frequency begin from around 250 ms 

and remain until the end of the epoch but are markedly larger for low frequency items. 

Differences between high and low frequency correct rejections, the proposed index of absolute 

familiarity, are also apparent from approximately 300 until 600 ms, where high frequency new 

items are more positive going than low frequency new items. This latter difference extends across 

most sites but has a posterior maximum. From 300 ms, old/new effects show the characteristic 

morphological negativity and old/new differences for both contrasts are larger over frontal sites 

in line with the midfrontal old/new effect. The old/new effects retain their frontal maximum later 

in the epoch but from 500-800 ms, a large posterior positivity, the putative index of recollection, 

is evident for low but not high frequency hits. At the end of the recording epoch, both old and 

new high frequency items become relatively negative compared with low frequency items.  

- Insert Figure 3 around here   - 

Figure 3 shows these same contrasts for the speeded condition, where again old/new 

effects are evident from 250 ms onwards, but do not show such a marked difference in amplitude 

for the two classes of word frequency. As in the non-speeded condition, there are also differences 
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between high and low frequency correct rejections in this contrast; high frequency correct 

rejections are more positive than low frequency from 400-600 ms at posterior sites, but this 

difference reverses in polarity after 600 ms. This late relative negativity for high frequency new 

items is maximal over central and frontal sites. As in the non-speeded condition, the old/new 

effects in the early 350-550 ms window show a frontal maximum although the effects are 

comparable in amplitude for high and low frequency items. In direct contrast to the non-speeded 

condition, the posterior positivity for hits around 500-800 ms is equivalent for both high and low 

frequency items. Similarly, robust old/new effects appear at frontal sites until the end of the 

recording epoch, and these are comparable in amplitude for both classes of frequency, although 

low frequency words at these sites are generally more positive than high frequency words.  

 Mean amplitude data were taken from the 15 electrodes depicted in Figures 2 and 3. 

MANOVAs were employed because of their greater statistical power, and in line with the 

guidelines specified by Dien & Santuzzi (2005), data from five electrodes in each chain of 

electrodes at frontal (F), central (C) and parietal (P) sites, were thus averaged to create three 

levels of an anterior-posterior (AP) location factor. The five electrodes in each chain were left 

midlateral (3), left superior (1), midline (z), right superior (2) and right midlateral (4). This 

measure was used in order to reduce the number of levels of location factors and degrees of 

freedom by collapsing across adjacent electrodes which commonly covary. Old/new MANOVAs 

comprised factors of Response Deadline (non-speeded, speeded), Frequency (high, low), Item-

Type (hits, correct rejections) and AP (frontal, central, posterior). For the quantification of 

absolute familiarity, new item comparisons included factors of Response Deadline (non-speeded, 

speeded), Frequency (high, low) and AP (frontal, central, posterior). The two 200 ms time 

windows employed for the old/new contrasts were defined a priori so as to encompass the known 

peaks of the two effects (Mecklinger, 2006; Rugg & Curran, 2007) as well as to correspond with 
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time windows used in recent reports (e.g. Kriukova, Bridger & Mecklinger, 2013) and mean 

amplitudes for these analyses were thus taken from 350-550 and 550-750 ms post-stimulus. For 

the analyses of the ERPs to correctly rejected new items, for which the time course was not 

clearly defined a priori, analyses were conducted in a 300-600 ms time window selected via 

visual inspection of the grand average data, as well as in the 350-550 and 550-750ms time 

windows to aid comparison with the old/new effect analyses. 

 

3.2.1. Old/New ERP Contrasts 

3.2.1.1. 350-550 ms 

 A main effect of Item-Type (F(1,17) = 35.52, p < .001, ƞp
2 = .676) was observed in the 

350-550 ms window, but this was moderated by an interaction between Response Deadline, 

Frequency and Item-Type (F(1,17) = 6.82, p = .018, ƞp
2 = .286) and marginally significant 

interactions between Item-Type and AP (F(2,16) = 3.25, p = .065, ƞp
2 = .289) and between 

Response Deadline, Frequency, Item-Type and AP (F(2,16) = 3.57, p = .052, ƞp
2 = .308). 

Subsequent MANOVAs were thus separately conducted in the two response deadline conditions. 

The Item-Type main effect (F(1,17) = 45.23, p < .001, ƞp
2 = .727) was moderated by an 

interaction with Frequency (F(1,17) = 11.24, p = .004, ƞp
2 = .398) in the non-speeded condition. 

The Item-Type by AP interaction was also marginally significant (F(1,17) = 3.46, p = .056, ƞp
2 = 

.302). Separate contrasts for each frequency condition in the non-speeded condition revealed 

main effects of Item-Type for both levels of Frequency (high: F(1,17) = 13.79, p = .002, ƞp
2 = 

.448; low: F(1,17) = 55.20, p < .001, ƞp
2 = .765) and an Item-Type by AP interaction for low 

frequency items (F(2,16) = 4.18, p = .035, ƞp
2 = .343). Two (Item-Type) by two (adjacent levels 

of AP) MANOVAs for the low frequency items revealed an interaction only when central and 
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posterior sites were compared (F(1,17) = 4.90, p = .041, ƞp
2 = .224) in line with the maximum of 

this effect over frontal and central sites (see Figures 2 and 4). Old minus new difference values 

were calculated separately for the high and low frequency conditions over frontal and central 

sites. At both levels of AP, low frequency old/new effects were significantly bigger than high 

frequency old/new effects (F: t(17) = 3.24, p = .005, d = .660; C: t(17) = 3.37, p = .004, d = .832). 

These analyses thus reveal a fronto-centrally distributed early old/new effect that was robustly 

larger for low than high frequency items in the non-speeded condition. 

For the speeded condition, there was also a main effect of Item-Type (F(1,17) = 16.73, p 

= .001, ƞp
2 = .496) and a marginally significant three-way interaction between Frequency, Item-

Type and AP (F(2,16) = 3.61, p = .051, ƞp
2 = .311). Separate Item-Type by AP analyses 

conducted separately for the two Frequency conditions revealed main effects of Item-Type (high: 

F(1,17) = 13.86, p = .002, ƞp
2 = .449; low: F(1,17) = 11.18, p = .004, ƞp

2 = .397) but no 

interactions between Item-Type and AP in either instance. Follow-up Frequency by Item-Type 

analyses conducted separately for each level of the AP factor revealed significant main effects of 

Item-Type at all three AP levels (frontal: F(1,17) = 15.15, p = .001, ƞp
2 = .471; central: F(1,17) = 

13.34, p = .002, ƞp
2 = .440; parietal: (F(1,17) = 15.62, p = .001, ƞp

2 = .479) but no interactions 

between Frequency and Item-Type. Paired t-tests between high and low old/new differences 

revealed no significant differences at any level of AP (all ps > .257). The original marginal 

frequency, Item-Type by AP interaction is thus likely to reflect the generally more positive ERPs 

for high than low frequency items at posterior but not anterior sites. Robustly larger early 

old/new effects for low than high frequency items were thus not evident for the speeded condition 

in this time window.  
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3.2.1.2. 550-750 ms 

A main effect of Item-Type (F(1,17) = 45.65, p < .001, ƞp
2 = .729) was also observed in 

the 550-750 ms window, and was moderated by interactions between Frequency and Item-Type 

(F(1,17) = 11.93, p = .003, ƞp
2 = .412), Response Deadline, Frequency and Item-Type (F(1,17) = 

5.64, p = .030, ƞp
2 = .249) and a four-way Response Deadline, Frequency, Item-Type by AP 

interaction (F(2,16) = 7.73, p = .004, ƞp
2 = .491). Follow-up MANOVA in the non-speeded 

condition revealed a main effect of Item-Type (F(1,17) = 19.52, p < .001, ƞp
2 = .534), a 

Frequency by Item-Type interaction (F(1,17) = 20.39, p < .001, ƞp
2 = .545) and a marginally 

significant interaction between Frequency, Item-Type and AP (F(2,16) = 3.57, p = .052, ƞp
2 = 

.309). Separate contrasts for each frequency condition revealed a main effect of Item-Type for 

low frequency items (F(1,17) = 34.43, p < .001, ƞp
2 = .669) which was moderated by an Item-

Type by AP interaction (F(2,16) = 3.89, p = .042, ƞp
2 = .327). Two (Item-Type) by two (adjacent 

levels of AP) MANOVAs for the low frequency items revealed a trend for an interaction only 

when frontal and central sites were compared (F(1,17) = 3.10, p = .096, ƞp
2 = .154) in line with 

the maximum of this effect over central and posterior sites (see Figures 2 and 4). Only the Item-

Type by AP interaction was significant for high frequency items (F(2,16) = 4.48, p = .028, ƞp
2 = 

.359) and two (Item-Type) by two (adjacent levels of AP) MANOVAs revealed an interaction 

only when central and posterior sites were compared (F(1,17) = 8.29, p = .010, ƞp
2 = .328). These 

outcomes reveal a striking distinction between high and low frequency old/new effects in this 

time window: whereas a robust old/new effect was present at all sites and largest over central and 

posterior sites for low frequency items, the high frequency old/new effect was only significant at 

frontal sites. 
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In the speeded condition, only the main effect of Item-Type was significant (F(1,17) = 

24.00, p < .001, ƞp
2 = .585) in line with a broadly distributed old/new effect which was not 

modified by frequency type. 

  

3.2.2. New Item ERP Contrasts 

As noted above, inspection of Figures 2 and 3 also reveals a divergence between ERPs 

elicited by new items from approximately 300-600 ms in both response deadline conditions. This 

effect takes the form of a relative positivity for high frequency new items which is most obvious 

at posterior sites and is in line with the predicted ERP correlates of absolute familiarity. In order 

to test for the significance of this effect, additional MANOVAs on ERPs elicited by correct 

rejections were initially conducted with factors of Response Deadline, Frequency and AP in the 

same time windows as the preceding analyses. A main effect of Frequency (F(1,17) = 4.83, p = 

.042, ƞp
2 = .221) and an interaction between Frequency and AP (F(2,16) = 5.05, p = .020, ƞp

2 = 

.387) were observed in the early time window (350-550 ms). Follow-up analyses at each level of 

AP only revealed a main effect of Frequency at parietal sites (F(1,17) = 16.55, p = .001, ƞp
2 = 

.493). There were no significant effects of Frequency in the 550-750 ms time window. A final 

MANOVA was conducted on mean amplitude data from 300-600 ms which encompasses the 

entirety of the positive-going ERP effect for high frequency new items over posterior sites (see 

Figures 2 and 3). A main effect of Frequency (F(1,17) = 5.01, p = .039, ƞp
2 = .228) was again 

moderated by an interaction with AP (F(2,16) = 5.20, p = .018, ƞp
2 = .394). Follow-up analyses at 

each level of AP, revealed a main effect of Frequency at parietal sites (F(1,17) = 19.41, p = .001, 

ƞp
2 = .533) and a marginally significant main effect at central sites (F(1,17) = 3.88, p = .065, ƞp

2 = 

.186) only, again reflecting the posterior emphasis of this effect throughout the majority of this 

time window. 
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- Insert Figure 4 around here   - 

 

3.2.3. Analysis of Scalp Distributions 

The current ERP data thus reveal both a new item difference over posterior sites which 

did not vary across the speeded and non-speeded condition and a pattern of ERP old/new effects 

which did interact with response deadline condition. Under non-speeded response requirements, 

an early frontally-focused old/new effect was considerably larger for low than high frequency 

items; a pattern which remained in the subsequent later time window where the low frequency 

old/new effect showed a robust parietal old/new effect, which was not evident for high frequency 

items. This pattern is consistent with that predicted by dual-process models of the mirror effect, 

insofar as the ERP old/new effect generally thought to be associated with recollection was 

present for low but not for high frequency words and these models assume that recollection 

occurs only or to a considerably greater degree for low frequency words by virtue of their 

distinctiveness (e.g. Reder et al., 2000). Moreover, evidence that the earlier frontally distributed 

old/new effect was larger for low frequency than high frequency items is in line with the notion 

that this effect is an index of relative familiarity. Of additional interest is the fact that although 

the late parietal old/new effect was largest for low frequency items and not observed for high 

frequency in the non-speeded condition, it was of comparable amplitude for both frequency-types 

in the speeded test condition. 

In order to provide further support for the distinction between these three effects, a series 

of topographic analyses were conducted. Analyses of this kind are usually motivated to determine 

whether the scalp distribution of particular effects differ, in line with the claim that qualitatively 

distinct patterns of scalp topography can be used to infer the engagement of at least partially non-
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overlapping brain regions and thus functionally distinct cognitive processes (Wilding, 2006; 

Rugg & Coles, 1995). The current analyses were conducted on the difference scores for each of 

the effects which were then rescaled using the max-min method of normalisation to remove 

amplitude differences of the effects (McCarthy & Wood, 1985), and always comprised factors of 

Subtraction Contrast (two levels) and Electrode (all 58 levels were included). A significant 

interaction between these factors for amplitude normalized data is indicative of distinct scalp 

topographies and in line with this only the presence or absence of such interactions are reported 

here. The high number of levels precluded the use of a MANOVA, so all analyses were repeated 

measures ANOVAs with Greenhouse-Geisser corrections for sphericity, and corrected degrees of 

freedom are reported where necessary. For old/new subtractions, new ERPs were always 

subtracted from old, and for the new item subtractions, low frequency new was subtracted from 

high frequency new.  

 In a first analysis on the non-speeded data, high and low old/new effects in the early 350-

550 time window were compared to determine whether the assumption that these effects differed 

in amplitude but not distribution was justified. There was no significant interaction between 

Subtraction Contrast (high old/new subtraction, low old/new subtraction) and Electrode 

(F(3.28,55.68) = 1.16, p = .337). This same contrast in the subsequent 550-750 ms time window 

was significant, however, (F(4.27,72.62) = 5.23, p = .001, ƞp
2 = .235), in line with the differential 

engagement of late retrieval processes for high and low frequency items in this response deadline 

condition. To determine whether the early frontal old/new effect differed from the posterior new 

item effect in the same time window (350-550 ms), paired comparisons between high old/new vs. 

new item difference and low old/new vs. new item difference revealed significant Subtraction 

Contrast by Electrode interactions (high old/new vs. new: F(4.19,71.29) = 3.61, p = .009, ƞp
2 = 

.175, low old/new vs. new: F(4.22,71.80) = 6.33, p < .001, ƞp
2 = .271). These effects remained 
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significant when the new item difference from the entire 300-600 ms window was tested (high 

old/new vs. new: F(4.10,69.73) = 3.44, p = .012, ƞp
2 = .168, low old/new vs. new: F(3.98,67.72) 

= 5.92, p < .001, ƞp
2 = .258). The final comparisons focused on the scalp distributions of old/new 

effects across adjacent time windows (350-550 ms, 550-750 ms), in order to determine whether 

the current data indicate the engagement of distinct functional processes over time. Whereas the 

early vs. late effect contrast elicited a marginally significant interaction with Electrode location 

for low frequency items (F(2.89,49.15) = 2.44, p = .078, ƞp
2 = .125), this was not the case for 

high frequency items (F(4.62,78.46) = 1.25, p = .296, ƞp
2 = .068). 

In the speeded response condition, both the early and late effects showed comparable 

amplitudes for high and low frequency and there was no clear evidence that old/new effects were 

influenced by frequency. Although this outcome differs from the non-speeded condition, the 

pattern of topographic analyses in the early time window was nonetheless comparable for the two 

conditions. There was no evidence of a difference in distribution for the high and low early 

old/new effects (F(3.64,61.80) = .50, p = .718), whereas both these early effects differed from the 

new item effect when this was taken for the 350-550 ms (high old/new vs. new: F(3.83,65.15) = 

3.07, p = .024, ƞp
2 = .153; low old/new vs. new: F(3.79,64.35) = 5.75, p = .001, ƞp

2 = .253) and 

300-600 ms (high old/new vs. new: F(3.85,65.50) = 3.20, p = .020, ƞp
2 = .158; low old/new vs. 

new: F(3.79,64.51) = 6.07, p < .001, ƞp
2 = .263) time windows. In the late time window, however, 

there was no difference between the distribution of the high and low old/new effects 

(F(2.96,50.35) = 1.11, p = .354) in line with the engagement of comparable processes for high 

and low frequency items in this response deadline condition. In a pattern more comparable with 

the non-speeded condition, the early and late old/new effects differed over time for low frequency 

(F(4.57,77.69) = 2.99, p = .019, ƞp
2 = .150) but not for high frequency items (F(4.03,68.58) = .79, 

p = .537). 
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4. General Discussion 

 Based upon previous work and theoretical consideration of the word frequency mirror 

effect, the ERP data were expected to reveal two distinct types of familiarity, namely absolute 

and relative familiarity. In line with this prediction, the operationally defined contrasts shown in 

Figure 1 revealed temporally overlapping but qualitatively distinct early ERP effects. This pattern 

could be most clearly observed in the non-speeded condition: an early old/new effect with a 

midfrontal maximum was significantly larger for low than high frequency items and thus behaved 

in a manner concordant with an index of relative familiarity. This effect was topographically 

distinct from the difference between high and low frequency new items, assumed to index 

absolute familiarity, which was posteriorly distributed between 300-600 ms. This pattern 

provides evidence for the existence of functionally distinct early familiarity signals. Before 

discussing the functional interpretations of this finding, we turn to the impact of constraining the 

time window in which participants could make old/new decisions on both performance and the 

critical ERP effects. 

 

4.1. Speeded Response Demands Influence ERP Old/New Effects 

Both the current ERP and behavioural data differed robustly across the two response 

deadlines. The standard mirror effect was observed under non-speeded conditions whereas the 

greater hit rate for low frequency items was selectively removed under response deadline 

conditions. The selective elimination of the hit advantage whilst leaving the false alarm 

difference intact, replicates previous reports which have employed a response deadline 

manipulation (Balota et al., 2002) and is in line with the assumption that the hit advantage for low 



27 

 

frequency words depends upon a later-occurring recognition process than that responsible for the 

false alarm rate. The assumption made throughout is that this later process is recollection and that 

this cannot be employed under speeded response conditions. The ERP index of the engagement 

of recollective processing data in the current data, the left parietal old/new effect, cannot be 

straightforwardly incorporated into this account, however, for two reasons. Whereas the effect 

was only present for low frequency items in the non-speeded condition, as indicated by the 

different topographic distributions for high and low frequency old/new effects in the late time 

window, there was no evidence that the amplitude of this effect was reduced when a response 

deadline was imposed. Moreover, the effect was equivalent in amplitude for high and low 

frequency items under speeded conditions, in line with the comparable topographies in the 550-

750 ms time window for this response deadline. This pattern is most striking if one considers that 

the left parietal old/new effect was in fact larger for high frequency items in the speeded than the 

non-speeded condition.  

It is not possible to determine on the basis of old/new differences alone whether the 

process indexed by this effect actually contributed to the correct speeded judgments and it may be 

the case that participants experienced recollection but were unable to utilize the information it 

provided before they responded. One way to ascertain whether the process indexed by this effect 

actually contributed to old/new decisions is to analyze old items in the time window of interest 

separated according to whether they were given an old (hit) or new (miss) response. If the effect 

is larger for hits than misses this would imply that the process of interest contributes to making an 

old response. It was possible to test this post-hoc, using data from 11 participants who had a 

sufficient number of artifact-free trials (n >/= 13; see Addante, Ranganath & Yonelinas, 2012 and 

Gruber & Otten, 2010 for examples of reports in which a similar minimum trial number criterion 

has been employed) for misses in the speeded condition. A MANOVA with factors of Frequency 
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(high, low), Item-Type (hit, miss) and AP (frontal, central, posterior) in the 550-750 ms revealed 

a main effect of Item-Type (F(1,10) = 17.10, p=.002, ƞp
2 = .63) only, in line with the greater ERP 

amplitude for hits than misses in this time window. The larger ERP effects for hits than misses 

suggests that the current deadline of 750 ms was not sufficient to remove recollection for both 

item types in the speeded condition. This particular deadline was chosen to correspond with the 

principal ‘fast’ deadline of 800 ms implemented by Coane et al. (2011), but it may be that much 

shorter response deadlines of around 500 ms (cf. Balota et al., 2002) are necessary to ensure that 

recollection is entirely excluded. A further related point pertains to the possibility that the 750 ms 

deadline may have accentuated participants’ focus on recognition processes occurring at this 

point, which might go towards explaining the increase in amplitude of the left parietal old/new 

effect for high frequency items from the non-speeded to speeded condition, causing it to become 

equivalent in amplitude to that for low frequency items.  

Although the miss analysis clearly indicates that the speeded response condition did not 

elicit a reduction in the amplitude of the recollection effect, it nonetheless had a significant 

impact on the ERP old/new effects more generally, most obviously by removing any interactions 

between ERP old/new amplitude difference and frequency. Thus, the larger early and late 

old/new effects for low frequency words that were observed in the non-speeded condition were 

replaced by old/new effects of comparable amplitudes for high and low frequency items. Here we 

consider the possibility that the engagement of equivalent recognition processes for high and low 

frequency words, rather than the selective reduction of recollection for low frequency items, is 

the reason for the absence of the hit difference in the speeded response condition. An ensuing 

question is therefore: why would recognition processing of high and low frequency words be 

equivalent in the speeded condition? One possibility is that the initial non-speeded recognition 

test provided participants with sufficient insight into the phenomenological differences between 
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high and low frequency items that they were able to some extent to overcome these differences, 

perhaps by minimizing encoding differences in the second study phase. Reder and colleagues 

(Reder, Paynter, Diana, Ngiam & Dickison, 2007) recently updated their computational model of 

the mirror effect to incorporate the influence of attentional differences at encoding by including 

the additional assumption that working memory resources for encoding are limited and that low 

frequency items demand a greater proportion of these resources by virtue of their low absolute 

familiarity. It is conceivable that participants may have been able to reallocate these resources 

more equitably to high and low frequency items in the second study phase and that this may have 

reduced overall differences at retrieval. Irrespective of the exact cause of the unexpected pattern 

in the speeded task, by ensuring all participants initially completed the task with standard 

response instructions, the data from the non-speeded response condition can be considered 

representative of the way in which recognition processes differ for high and low frequency words 

under standard response requirements. These non-speeded ERP data show a striking 

correspondence with predictions derived from dual-process models, although it does also appear 

to be the case that particular task demands - in this case, reducing response time and/or 

familiarizing participants with a high/low recognition task - can overwrite this pattern and 

eliminate functional differences in the way in which high and low frequency items are 

recognized. 

 The considerations outlined above highlight the difficulty with which behavioural 

evidence for relative familiarity can be extracted. Another factor which may contribute to this is 

the possibility that lexical decision times are longer for low than high frequency words (e.g. 

Scarborough, Cortese & Scarborough, 1977). The greater likelihood of a timeout for low than 

high frequency time-outs in the current speeded condition does indeed indicate that lexical 

processing was generally slower for low frequency words in the current experiment. This might 
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suggest that, although relative familiarity is on average greater for these items, slower lexical 

processing might offset this relative benefit under speeded response conditions, leaving 

performance equivalent for high and low frequency items. It may be that more complex designs 

such as that derived from the two-list exclusion task employed by Coane and colleagues (2011) 

are the best way to provide evidence of the influence this process has on actual responding to 

high and low frequency items. The absence of robust behavioural measures of relative familiarity 

does not necessarily undermine the fact that an early old/new effect associated with familiarity 

behaved in a way consistent with a relative familiarity mechanism under standard mirror effect 

conditions. The current ERP data, however, do serve as a necessary cautionary reminder when 

making functional interpretations about the contribution of recollection across response deadline 

conditions based upon behavioural data alone. 

  

4.2. The Relationship between Absolute and Relative Familiarity 

Two ERP effects with distinct functional characterizations were observed in overlapping 

early time windows in the current experiment. As outlined and reasoned below, we favor 

interpretations which posit these effects to be distinct kinds of familiarity. This is not the first 

finding in which a functionally distinct posteriorly distributed ERP effect has been observed in 

the same time window as the early midfrontal old/new effect, however, and it is necessary to 

consider the extent to which the current posterior effect corresponds with those reported 

previously. In several reports, posterior recognition-related ERP effects have been related to 

implicit recognition processing (e.g. Rugg, Mark, Walla, Schloerscheidt, Birch & Allan, 1998; 

Voss & Paller, 2009). For example, Rugg et al. observed a posterior positivity from 300-500 ms 

for ERPs to misses relative to those elicited by correctly rejected items. Conversely, Voss & 
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Paller (2009; see also Ryals, Yadon, Nami & Cleary, 2011) report a slightly earlier (around 300 

ms) relative negativity over posterior sites for correct guesses. These findings comprise correlates 

for at least two distinct processes associated with previous presentation which are not consciously 

available. Critically, it is unlikely that the early posterior effect observed in the current paradigm 

corresponds with either kind of implicit process because it is observed when contrasting new 

items for which episodic implicit memory should be comparable. Another possible 

characterization of implicit memory which would be more likely to systematically vary between 

high and low frequency new items, however, is implicit conceptual fluency. The current contrasts 

cannot unequivocally inform whether the processing indexed by this contrast is consciously 

available. It is nonetheless interesting to note the correspondence between the amplitude of this 

effect and the false alarm rate, which might indicate that the strength of this signal relates to the 

likelihood that participants respond old to a new item (see end of this section for more on this 

argument). Reasoning of this kind would suggest that the processing reflected by this signal is 

explicitly available to participants.  

The polarity and spatial distribution of the effect elicited by the absolute familiarity 

contrast is consistent with what would be expected based upon previous work on the N400 index 

of semantic access for words presented in isolation (Kutas & Federmeier, 2000). One possibility 

is that the processes which give rise to the absolute familiarity effect are based on structures and 

operations which strongly overlap with those which give rise to the N400 index of semantic 

accessibility. Fundamental to most accounts of the frequency effect is the assumption that high 

frequency words, either because of a higher baseline level of activation and/or because they are 

associated with a greater variety of contexts, are on average more accessible than low frequency 

words (Cook, Marsh & Hicks, 2006; Reder et al., 2007). This would then be consistent with the 

current data, insofar as the N400 is always less pronounced for more semantically accessible 
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items and posterior ERPs to high frequency correct rejections in the relevant time window were 

significantly less negative than those to low frequency correct rejections. The posterior 

distribution of this effect also corresponds with functional interpretations put forward in reports 

in which an early old/new effect with a posterior distribution was observed (Bader et al., 2010; 

Mackenzie & Donaldson, 2007). In both these reports, it was considered feasible that the absence 

of pre-experimental absolute familiarity engendered by the particular stimuli employed might 

enable this familiarity mechanism to be more diagnostic of previous presentation than relative 

familiarity. Another way of understanding this might be to incorporate the power function with 

which Reder and colleagues (2007) have modeled absolute familiarity, which ensures that first 

exposures to an item contribute much more to the accumulation of absolute familiarity than later 

exposures. This would mean that for items which are presented for the very first time during the 

study phase of an experiment, absolute familiarity may respond in a way which is relatively 

diagnostic of previous occurrence in a simple study-test recognition task, but for previously 

encountered items (even those that are encountered relatively infrequently) this same mechanism 

would not be able to sufficiently discriminate recent (study phase) from general occurrences. In 

other words, absolute familiarity could only provide a diagnostic signal of previous occurrence 

for such items on their first (or perhaps second) ever repetition. A signal of this kind would be 

useful in tasks such as those used by MacKenzie & Donaldson (2007) and Bader et al. (2010) in 

which all stimuli are novel during learning, but it should not be diagnostic in the current task 

where all items are previously known (albeit with varying levels of familiarity). An additional 

relative familiarity mechanism which is more sensitive to the recent occurrence of previously 

known items would be required for these items. We take this to be the role of the process 

measured by the current early midfrontal old/new effect. 
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There is ongoing debate concerning the most appropriate functional interpretation of the 

midfrontal old/new effect (see Rugg & Curran, 2007, Voss, Lucas & Paller, 2012). The current 

data indicate that this midfrontal effect is distinct from an automatic semantic mechanism (albeit, 

likely dependent upon it; see below) and is consistent with the notion that it reflects familiarity 

driven by the recent presentation of a previously known item. In previous reports (Bridger et al., 

2012; Mecklinger, Frings & Rosburg, 2012, see also Rugg & Curran, 2007), we have favored an 

account which assumes that the midfrontal effect - and the process it reflects - is multiply 

determined. This could, for example, be as a consequence of differentially combining perceptual 

fluency and/or conceptual information (e.g. Leynes & Zish, 2012) or changes in the reliance of 

different kinds of information depending upon task demands (Ecker, Zimmer & Groh-Bordin, 

2007; Küper, Groh-Bordin, Zimmer & Ecker, 2012; Rosburg, Johansson & Mecklinger, 2013). 

Considered in light of the current data, this idea perhaps best resonates with Mandler’s original 

model of relative familiarity which posits at least two components: absolute familiarity and an 

increase in ‘integration of an item’ following recent presentation (termed constant d). Given that 

this model predicates that relative familiarity should increase as the value of absolute familiarity 

(F) decreases (assuming that d remains constant: see formula in the Introduction), a worthwhile 

enterprise might be to test such a model by determining, either across stimuli or participants, 

whether the relationship between absolute familiarity and d predicts relative familiarity estimates. 

Such an endeavor is, however, problematic for a number of reasons not least because of the 

difficulty of theoretically and practically operationalizing d. Another problem which likely 

precludes the possibility of using ERP signals to test such a model is the high degree of 

covariance between ERP signals (multicollinearity) which would confound any functional 

interpretations. The logic employed throughout here emphasizes the interdependence between the 

two mechanisms, however, and one aspect of the current data which might be perceived as 
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consistent with the idea that absolute familiarity contributes to relative familiarity is the slightly 

staggered time course of the two effects, in which the absolute familiarity effect was observable 

50 ms before the midfrontal effect was influenced by frequency in the non-speeded condition. 

- Insert Figure 5 around here   - 

ERP evidence of a relative familiarity mechanism was only observed in the non-speeded 

condition, whereas the difference between new item ERPs was not influenced by response 

deadline and remained comparable in size (at least over posterior sites) in the speeded condition. 

This disconnect across response deadlines reveals a crucial qualification of the preceding 

conclusion: variation in absolute familiarity may not inevitably lead to changes in relative 

familiarity, and other factors, such as attentional allocation during encoding, are likely to 

contribute to the extent to which recollection and familiarity differ for high and low frequency 

items at test. The absolute familiarity effect was alone out of the current effects in that it was the 

only ERP effect which was not influenced by response deadline, an observation which 

corresponds with the fact that the greater false alarm rate for high than low frequency words 

remained constant across response deadlines (although the false alarm rate did increase generally 

in the speeded condition). Figure 5 shows the strong correspondence between the pattern of false 

alarms and ERP amplitude over posterior sites in the early time window, across frequency and 

response deadlines. This pattern is compatible with Coane and colleagues’ assumption that this 

absolute familiarity signal to new items is what drives the difference in false alarm rates between 

high and low frequency items, and suggests a task-invariant process. By the same token, the 

old/new effects also correspond with performance, insofar as high and low frequency old/new 

effects were comparable in amplitude when the hit rate difference between high and low 

frequency was removed (in the speeded condition) but were larger for low frequency items when 
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there were more hits for these items (in the non-speeded condition).   

 

4.3. Summary 

 In summary, the present ERP data provide convergent evidence for the presence of two 

topographically distinct familiarity signals with overlapping time windows. A slightly earlier 

onsetting posteriorly distributed effect was observed when new high and low frequency items 

were contrasted to reveal differences in absolute familiarity, whereas a midfrontally distributed 

old/new effect was significantly larger for low than high frequency items under standard 

recognition conditions, as would be commensurate with a relative familiarity index. Together the 

data provide convergent support for recent claims based upon behavioural data (Coane et al. 

2011), that word frequency can modulate three recognition-related processes (absolute 

familiarity, relative familiarity and recollection). They also go some way towards a clearer 

characterization of the term familiarity by emphasizing the presence of two early familiarity 

processes with distinct but interwoven functional mechanisms.
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Table 1. Length and frequency characteristics for high and low frequency words. Frequency 

values represent the Mannheim lemma frequency (per Million) from the Celex database and 

normalized lemma frequency (per Million) for dlexdb. Three high frequency and 17 low 

frequency words were not available in the dlexdb database. Ranges (min-max) are shown in 

parentheses. 

 

 Length Celex dlexDB 

High 6.66 (4-14) 221.16 (82-605) 192 (16-1114) 

Low 6.77 (5-9) 1.97 (1-4) 2 (0-10) 

p-value .45 <.001 <.001 

 



Table 2. Mean proportions of hits and false alarms (FAs) for high and low frequency words separated according to response deadline 

condition. Standard deviations are in parentheses. 

 

 

  Non-speeded  Speeded  

Frequency Hits FAs Pr Br Hits FAs Pr Br 

High .55 (.14) .19 (.09) .36 (.11) .31 (.15) .52 (.16) .30 (.14) .22 (.11) .39 (.17) 

Low .66 (.13) .09 (.07) .57 (.13) .23 (.17) .54 (.16) .19 (.12) .35 (.13) .30 (.19) 

 



Table 3. Mean reaction times to hits and correct rejections (CRs) for high and low frequency 

words separated according to response deadline condition. Standard deviations are shown in 

parentheses. 

 

 Non-speeded Speeded 

Frequency Hits CRs Hits CRs 

High 906 (193) 909 (182) 592 (26) 586 (39) 

Low 871 (161) 887 (181) 601 (30) 587 (36) 
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List of Figures 

 

Figure 1. An illustration of the mirror effect with underlying normal distributions with equal 

variance. The critical ERP contrasts of interest are depicted as follows: differences between new 

items wherein high frequency items are more positive should index absolute familiarity, whereas 

old/new item effects which are significantly bigger for low than high frequency items index 

relative familiarity. 

Figure 2. Grand average ERPs elicited by hits and correct rejections (CR) for the non-speeded 

response condition. ERPs are separated according to word frequency. Data are shown for the 15 

electrode locations used in all analyses at frontal (F3, F1, Fz, F2, F4), central (C3, C1, Cz, C2, 

C4), and parietal (P3, P1, Pz, P2, P4) scalp sites. 

Figure 3. Grand average ERPs elicited by hits and correct rejections (CR) for the speeded 

response condition. ERPs are separated according to word frequency. 

Figure 4. Topographic maps showing the scalp distributions of the differences between ERPs 

associated with the critical contrasts. Contrasts from the non-speeded condition are shown on the 

left side and speeded contrasts are depicted on the right. Hits minus correct rejections (CR) 

comprise the upper row whereas new item contrasts are shown underneath. Maps are computed 

on the basis of the mean difference scores taken from the respective time windows (300-600, 

350-550 or 550-750 ms) and are all depicted along the same scale. 

Figure 5. Line plots showing the correspondence between false alarm rates and the ERP index of 

absolute familiarity, across frequency and response deadline condition. Left Panel: Mean false 

alarm rates. Right Panel: Mean amplitude of the ERP at electrode Pz between 300 and 600 ms 

post-stimulus. All error bars represent +/- 1 standard error of the mean. 
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