# AN EXAMINATION OF TRAUMATIC MANDIBULAR FRACTURE USING THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

## GLADSTONE ATHELSTONE EZRA BURKE

A thesis submitted in partial fulfilment of the requirements of Birmingham City University for the degree of Doctor of Philosophy

August 2014

Faculty of Health, Birmingham City University

## TABLE OF CONTENTS

| Title                                | iii  |
|--------------------------------------|------|
| Abstract                             | iii  |
| Acknowledgements                     | iv   |
| Published material related to thesis | iv   |
| List of chapter contents             | v    |
| List of figures                      | viii |
| List of tables                       | x    |
| List of graphs                       | x    |
| List of equations                    | xi   |
| Abbreviations                        | xii  |
| Orientation of the mandible          | xv   |

#### **Gladstone Athelstone Ezra Burke**

#### Title

## AN EXAMINATION OF TRAUMATIC MANDIBULAR FRACTURE USING THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

#### Abstract

The pattern of mandibular fractures is related to the magnitude, direction and duration of impact, which are features of the mechanism of injury. The multiplicity of injury mechanisms makes it difficult to determine if an anatomical sub-site has a greater propensity to fracture.

Traditionally biomechanical investigations on bony structures have involved cadaveric mechanical testing which is expensive, labour intensive and ethically questionable. Computer trauma modelling using three-dimensional finite element analysis has the advantage of avoiding such investigations. Such models have potential use in the medico-legal and forensic fields where they may aid in the determination of proximate and ultimate causation of injuries.

The main objectives of this research were threefold. Firstly, to develop a three-dimensional finite element model (3DFEM) of the adult human mandible, capable of simulating traumatic mandibular fracture resulting from impacts at various sites and angulations. Secondly, to use the 3DFEM to predict fracture sub-sites and temporal occurrence of mandibular fractures in a simplified traumatic simulation. Finally, the model was applied to possible clinical scenarios.

#### METHOD

A computed tomographic scan of the facial skeleton of a 17 yr-old male was used as a data source for the production of the finite element model. Finite element meshes were generated from the 3D reconstructed data. The assembled mandibular model was composed of 1183976 linear tetrahedral elements and 250523 nodes. The applied material properties were derived from the literature.

Finite element simulations were performed with the mandible loaded at various sites (symphysis, parasymphysis, body, angle and ramus) with varying angulations. Von Mises stress was used as a failure criterion. Static and dynamic 3D-finite element analyses of simplified loading situations were undertaken in order to predict the anatomical sub-site and temporal occurrence of fractures. The effect of localized changes in material properties was also modelled.

#### RESULTS

A 3DFEM of a human mandible was produced which allowed the examination of mandibular fracture under experimental loading conditions. Each load produced a unique cortical stress "signature". In simplified trauma situations, non-linear dynamic analyses were able to give the disposition and temporal occurrence of fractures. The model did not simulate all patterns of mandibular fracture. Several patterns, especially those, which are encountered clinically, are due to indirect contacts with other parts of the facial skeleton, which was not modelled in the simulations. The modelled fracture patterns and loads were similar to those encountered in mechanical testing of cadaveric mandibles published in the literature.

#### CONCLUSION

A 3DFEM used to study mandibular fracture was developed. The model was capable of studying the effect of impact magnitude, direction and duration on the mandibular fracture pattern. Although this was a simplified model, the principles involved in modelling bony fractures on a macroscopic scale may be of use in larger models of the facial skeleton. This would be of even greater clinical value. The mandibular model itself has the potential to provide useful biomechanical information for use in the forensic sciences and medico-legal practice.

#### Acknowledgements

I should like to say thank you to the following people:

Professor Betsy Dumont of the Department of Biology, University of Massachusetts, Amherst, the doyen of biological three-dimensional finite element analysis, for introducing me to the field and giving advice on how to approach this research area. I would also like to thank my supervisors Professors Robert L Ashford and Clive E Neal – Sturgess for arranging the facilities to embark on research in an area new to the Faculty of Health, also, Mr Aaron Latty (Strand7<sup>®</sup>, UK), Mr Carl Hitchens (formerly of Materialise, UK) and Mr Paul Booth (formerly of Birmingham City University) for providing access to software.

I also greatly appreciate those patients who gave consent for their radiographs to be used in this thesis. And finally, special thanks to the late Bruce Elson, formerly Principal Lecturer at Birmingham City University for facilitating this project.

#### Published material related to thesis

The contents of some of this thesis (principally Phase IIIa results) have been accepted for presentation at the XXV Congress of the International Society of Biomechanics in Glasgow, UK, July 2015. Copyright is assumed by ISB 2015 for publication of the abstracts on their website and Book of Abstracts.

iv

## LIST OF CHAPTER CONTENTS

| CHAPTER       | 1 INTRODUCTION                                                 | .1         |
|---------------|----------------------------------------------------------------|------------|
| 1 1           | RESEARCH AREA                                                  | 1          |
| 1.1           |                                                                | <u>-</u>   |
| 1.2           | RESEARCH RELEVANCE                                             | Z          |
| 1.3           | RESEARCH APPLICATION                                           | 3          |
| 1.3.1         | Possible research scenarios                                    | 5          |
| 1.4           | EXPECTED RESEARCH RESULTS                                      | 6          |
| 1.5           | RESEARCH SCOPE                                                 | 6          |
| 1.6           | LIST OF CHAPTERS                                               | 7          |
| CHAPTER       | 2 LITERATURE REVIEW                                            | 10         |
|               |                                                                |            |
| 2.1           | STRUCTURE                                                      | 10         |
| 2.2           | MECHANICAL LABORATORY STUDIES OF MANDIBULAR FRACTURE           | 11         |
| 2.3           | FINITE ELEMENT ANALYSIS IN THE STUDY OF THE MANDIBLE           | 16         |
| 2.3.1         | Introduction                                                   | 16         |
| 2.3.2         | Literature search strategy and aim                             | 16         |
| 2.3.3         | Eligibility criteria                                           | 16         |
| 2.3.4         | Information sources                                            | 16         |
| 2.3.5         | Search                                                         | 18         |
| 2.3.6         | Study selection                                                | 19         |
| 2.3.7         | Search strategy results                                        | 19         |
| 2.3.8         | Review of modelling techniques used - general conclusions      | 24         |
| 2.3           | 8.1 Analysis type                                              | 24         |
| 2.3           | 8.3 Element type                                               | . 25       |
| 2.3           | 8.4 Element resolution                                         | . 26       |
| 2.3           | 8.5 Boundary conditions                                        | . 26       |
| 2.3.9         | Review of studies                                              | 26         |
| 2.3.10        | Conclusions                                                    | 33         |
| 2.4           | THE PREVALENCE OF MANDIBULAR SUB-SITE FRACTURES                | 35         |
| 2.4.1         | Introduction and rationale                                     | 35         |
| 2.4.2         | Objective                                                      | 35         |
| 2.4.3         | Method                                                         | .36        |
| 2.4           | 3.1 Eligibility criteria                                       | . 36<br>26 |
| 2.4           | 3.2 Information sources                                        | 30         |
| 2.4.4         | Results                                                        | 40         |
| 2.4           | 4.1 Summary of studies deemed suitable for meta-analysis       | . 48       |
| 2.4           | 4.2 Bias assessment                                            | . 49       |
| 2.4           | 4.3 Heterogeneity                                              | . 50       |
| 2.4           | 4.4 Condyle                                                    | . 51       |
| 2.4.5         | Summary results                                                | 53         |
| 2.4.0         | Conclusion                                                     | 55         |
| 2.4.7         |                                                                | 57         |
| 2.5           | Introduction and aim                                           | 57         |
| 2.5.1         | Mathad                                                         | 57         |
| 2.5.2         | Results                                                        | 57         |
| 2.5.5         | THE EFFECT OF THIRD MOLADS ON THE INCIDENCE OF ANCLE FRACTURES | 61         |
| 2.0           | Introduction and aim                                           | 61<br>61   |
| 2.0.1<br>26 2 | Method                                                         | 61         |
| 2.0.2         | Results                                                        | 64         |
| 2.0.5         | 3.1 Review of Studies                                          | . 64       |
| 2.6           | 3.2 Conclusion                                                 | .72        |
| CHAPTER       | 3 METHODOLOGY                                                  | 73         |
|               |                                                                |            |
| 3.1           | INTRODUCTION                                                   | 73         |
| 3.2           | Re-statement of research question                              | 73         |

| 75                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75                                                                                                                                                                                                                                          |
| 75                                                                                                                                                                                                                                          |
| 76<br>76                                                                                                                                                                                                                                    |
| 76<br>76                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| 78<br>78                                                                                                                                                                                                                                    |
| 80<br>80                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| 83                                                                                                                                                                                                                                          |
| 83<br>83                                                                                                                                                                                                                                    |
| 05<br>۸                                                                                                                                                                                                                                     |
| +0<br>۶۶                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| 96                                                                                                                                                                                                                                          |
| 00                                                                                                                                                                                                                                          |
| 80<br>                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                             |
| 87                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             |
| 87<br>87                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                             |
| 88                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| 88<br>90<br>91<br>91<br>91<br>91<br>92<br>92<br>92<br>93<br>93<br>96<br>96<br>96                                                                                                                                                            |
| 88<br>90<br>91<br>91<br>91<br>91<br>92<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96                                                                                                                                                      |
| 88<br>90<br>91<br>91<br>91<br>91<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96                                                                                                                                                |
| 88<br>90<br>91<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97                                                                                                                                    |
| 88<br>90<br>91<br>91<br>91<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98                                                                                                                              |
| 88<br>90<br>91<br>91<br>92<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>98<br>98                                                                                                                              |
| 88<br>90<br>91<br>91<br>91<br>92<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98<br>98<br>99<br>99<br>101                                                                                                     |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>98<br>99<br>99<br>101                                                                                   |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105                                                                                       |
| 88<br>90<br>91<br>91<br>92<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105<br>                                                                                   |
| 88<br>90<br>91<br>91<br>92<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>102<br>102<br>105<br>105                                                                          |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105                                                                                    |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105<br>105                                                                             |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                        |
| 88<br>90<br>91<br>91<br>92<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                             |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                                                                              |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105 |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                              |
| 88<br>90<br>91<br>91<br>92<br>92<br>93<br>96<br>96<br>96<br>96<br>96<br>97<br>97<br>97<br>98<br>98<br>99<br>101<br>102<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                              |
|                                                                                                                                                                                                                                             |

| 1225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108                                                                                                                                                                                                                                                                                                                         |
| 4.3.2.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis 1: The effect of the muscles of musclearload reardibular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                             |
| 4.3.2.5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis 2: The effect of tooth loss on the loaded manabular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             |
| 4.3.2.5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis 3: The effect of load position on the manalbular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |
| 4.3.2.5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis 4: The effect of load angulation on the mandibular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |
| 4.3.2.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 Analysis 5: The effect of material properties on stress in the loaded mandible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                                                                                                                                                                                                                                                                                                                         |
| 4.4 Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IIB: STATIC NON-LINEAR ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112                                                                                                                                                                                                                                                                                                                         |
| 441 Aim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112                                                                                                                                                                                                                                                                                                                         |
| 4.4.2 Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | thad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117                                                                                                                                                                                                                                                                                                                         |
| 4.4.2 IVIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| 4.4.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             |
| 4.4.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load and boundary conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113                                                                                                                                                                                                                                                                                                                         |
| 4.4.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The solver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113                                                                                                                                                                                                                                                                                                                         |
| 4.4.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post-processing (displaying results)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114                                                                                                                                                                                                                                                                                                                         |
| 4.4.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 114                                                                                                                                                                                                                                                                                                                         |
| 4.4.2.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis 6: Non-linear analysis with a physiological load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114                                                                                                                                                                                                                                                                                                                         |
| 4.4.2.5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 Analysis 7: Non-linear analysis with a failure load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 114                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IIIA. BASIC NON-LINEAR DVNAMIC ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115                                                                                                                                                                                                                                                                                                                         |
| 4.J THASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THA. DASIC NON-LINEAR DINAMIC ANALISES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
| 4.5.1 Aim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115                                                                                                                                                                                                                                                                                                                         |
| 4.5.2 Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Load and boundary conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Failure criteria and strain rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post-processing (displaying results)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                             |
| 4525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| 4.5.2.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis 8: The relationship of impact Site with fracture distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                         |
| 4.5.2.5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Andrysis 5. The relationship of impact KE with fracture pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| 4.5.2.5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                             |
| 4.6 Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IIIB: APPLIED NON-LINEAR DYNAMIC ANALYSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             |
| 4.6.1 Aim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121                                                                                                                                                                                                                                                                                                                         |
| 462 Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | thad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121                                                                                                                                                                                                                                                                                                                         |
| 4.0.2 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122                                                                                                                                                                                                                                                                                                                         |
| 4.0.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis 11, 15, 15, 15, 15, 15, 15, 15, 15, 15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |
| 4.0.2.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis 11. Influence of localized changes in material properties on manaloular angle fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25-1122                                                                                                                                                                                                                                                                                                                     |
| 4.6.2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\lambda = \lambda n n n n n n n n n n n n n n n n n $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25-2                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysis 12. Influence of localized changes in material properties on manabalar angle fractare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125                                                                                                                                                                                                                                                                                                                         |
| CHAPTER 5 FINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125                                                                                                                                                                                                                                                                                                                         |
| CHAPTER 5 FINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125                                                                                                                                                                                                                                                                                                                         |
| <b>CHAPTER 5 FINI</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>125                                                                                                                                                                                                                                                                                                           |
| CHAPTER 5 FINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>125                                                                                                                                                                                                                                                                                                           |
| <b>CHAPTER 5 FINI</b><br>5.1 FINDIN<br>5.1.1 Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>125<br><i>125</i>                                                                                                                                                                                                                                                                                             |
| CHAPTER 5 FINI     5.1   FINDIN     5.1.1   Mes     5.1.2   Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DINGS AND CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>125<br>125<br>126                                                                                                                                                                                                                                                                                             |
| CHAPTER 5 FINI     5.1   FINDIN     5.1.1   Mes     5.1.2   Mos     5.1.2.1   Mos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DINGS AND CONCLUSIONS<br>IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>125</b><br>125<br><i>125</i><br><i>126</i><br>126                                                                                                                                                                                                                                                                        |
| S.1   FINDIN     5.1.1   Mes     5.1.2   Mod     5.1.2.1   5.1.2.1     5.1.2.2   State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IGS. PHASE IB: MODEL VERIFICATION   sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>125</b><br>125<br>125<br>126<br>126<br>126<br>127                                                                                                                                                                                                                                                                        |
| CHAPTER 5 FINI<br>5.1.1 Mes<br>5.1.2 Mot<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125<br>125<br>126<br>126<br>126<br>126<br>127<br>                                                                                                                                                                                                                                                                           |
| CHAPTER 5 FINI<br>5.1.1 Mes<br>5.1.2 Mot<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>125<br>126<br>126<br>126<br>126<br>127<br>                                                                                                                                                                                                                                                                           |
| 5.1   FINDIN     5.1.1   Mes     5.1.2   Mod     5.1.2.1   5.1.2.1     5.1.2.3   5.1.2.3     5.2   PHASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>125<br>126<br>126<br>126<br>126<br>127<br>128<br>129                                                                                                                                                                                                                                                                 |
| S.1   FINDIN     5.1.1   Mes     5.1.2   Mod     5.1.2.1   5.1.2.1     5.1.2.3   5.1.2.3     5.2   PHASE     5.3   FINDIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>125<br>126<br>126<br>126<br>126<br>127<br>129<br>129<br>130                                                                                                                                                                                                                                                          |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>125<br>126<br>126<br>126<br>126<br>129<br>129<br>130<br>130                                                                                                                                                                                                                                                          |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IGS. PHASE IB: MODEL VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>129<br>130<br>130<br>136                                                                                                                                                                                                                                            |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indexes 12: Influence of localized changes in Induction properties of Inductional unper Proceeder   DINGS AND CONCLUSIONS   IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>136<br>136                                                                                                                                                                                                                                            |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Met<br>5.1.2 Mot<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Pec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Indexes of notalized changes in indexial properties of manufacture of potenties of potent | 125<br>125<br>126<br>126<br>126<br>126<br>120<br>120<br>130<br>130<br>130<br>136<br>136<br>                                                                                                                                                                                                                                 |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mon<br>5.1.2 Mon<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DINGS AND CONCLUSIONS   NGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125<br>125<br>125<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br>126<br> |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mod<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>136<br>136<br>136<br>139                                                                                                                                                                                                                |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mod<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3.2<br>5.3.3.1<br>5.3.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The parasymphyseal load   The parasymphyseal load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>136<br>136<br>139<br>139                                                                                                                                                                                                         |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mod<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3.2<br>5.3.3.1<br>5.3.3.2<br>5.3.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The body load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>136<br>136<br>139<br>139<br>139                                                                                                                                                                                                         |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mod<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3.2<br>5.3.3.1<br>5.3.3.2<br>5.3.3.3<br>5.3.3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The body load   The angle load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>136<br>136<br>136<br>139<br>139<br>141<br>142                                                                                                                                                                                           |
| S.1   FINDIN     5.1.1   Mer     5.1.2   Mor     5.1.2.1   5.1.2.1     5.1.2.3   S.1.2.3     5.2   PHASE     5.3   FINDIN     5.3.1   Res     5.3.2   Res     5.3.3.1   S.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.4     5.3.3.5   S.3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The parasymphyseal load   The angle load   The ramus load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>136<br>136<br>139<br>139<br>141<br>142<br>144                                                                                                                                                                                           |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3<br>5.3.3.4<br>5.3.3.5<br>5.3.4 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DINGS AND CONCLUSIONS   NGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The body load   The angle load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>136<br>136<br>139<br>139<br>141<br>142<br>144<br>145                                                                                                                                                                                           |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3<br>5.3.3.4<br>5.3.3.5<br>5.3.4 Res<br>5.3.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DINGS AND CONCLUSIONS   NGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IIGS. PHASE IIA: STATIC LINEAR ANALYSES   Nults 1: The effect of musculature on mandibular cortical stress and strain   Nults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   Nults 3: The effect of load position on the mandibular cortex   The body load   The angle load   The ramus load   Nodel   Notes   Symphyseal load   Stree effect of load angulation on the mandibular cortex   Stree symphyseal load   Stree symphyseal load   Stree symphyseal load   Stree symphyseal load   Symphyseal load   Symphyseal load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>139<br>139<br>139<br>139<br>141<br>141<br>142<br>144<br>145<br>                                                                                                                                                                         |
| CHAPTER 5 FINI<br>5.1.1 Mer<br>5.1.2 Mor<br>5.1.2 Mor<br>5.1.2.1<br>5.1.2.2<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3<br>5.3.3<br>5.3.3.4<br>5.3.3.5<br>5.3.4 Res<br>5.3.4.1<br>5.3.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DINGS AND CONCLUSIONS   NGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The angle load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>139<br>141<br>142<br>144<br>145<br>150<br>150                                                                                                                                                                                           |
| CHAPTER 5 FINI<br>5.1 FINDIN<br>5.1.1 Mes<br>5.1.2 Mon<br>5.1.2 Mon<br>5.1.2.3<br>5.2 PHASE<br>5.3 FINDIN<br>5.3.1 Res<br>5.3.2 Res<br>5.3.2.1<br>5.3.3 Res<br>5.3.3.1<br>5.3.3.2<br>5.3.3.4<br>5.3.3.5<br>5.3.4 Res<br>5.3.4 Res<br>5.3.4.1<br>5.3.4.2<br>5.3.5 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal loading   Body loading   ults 5: The effect of load angulation on the mandibular cortex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>136<br>136<br>139<br>139<br>141<br>142<br>144<br>145<br>150<br>153<br>155                                                                                                                                                        |
| S.1   FINDIN     5.1.1   Mes     5.1.2   Mod     5.1.2   Mod     5.1.2   Mod     5.1.2   Mod     5.1.2   Mod     5.1.2   Sile     5.1.2   Mod     5.1.2   Sile     5.1.2   Sile     5.3   FINDIN     5.3.1   Res     5.3.2   Res     5.3.3.1   Sile     5.3.3   Res     5.3.3.1   Sile     5.3.3.1   Sile     5.3.3.1   Sile     5.3.3.4   Sile     5.3.4.1   Sile     5.3.5   Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IGS. PHASE IB: MODEL VERIFICATION   IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   II CONCLUSIONS   IIGS. PHASE IIA: STATIC LINEAR ANALYSES   III STATIC of musculature on mandibular cortical stress and strain   III STATIC of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   IIIts 3: The effect of load position on the mandibular cortex   The symphyseal load   The angle load   The ramus load   IIIts 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   IIIts 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   IIIts 5: The effect of load angulation on the mandibular cortex   Symphyseal loading   Body loading   IIIts 5: The effect of material properties on stress in the loaded mandible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>136<br>136<br>139<br>139<br>139<br>139<br>141<br>142<br>144<br>145<br>150<br>153<br>156                                                                                                                                   |
| CHAPTER 5 FINI<br>5.1.1 Mes<br>5.1.2 Mod<br>5.1.2 Mod<br>5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 5.1.2 | DINGS AND CONCLUSIONS   IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   Jults 1: The effect of musculature on mandibular cortical stress and strain   Jults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   Jults 3: The effect of load position on the mandibular cortex   The symphyseal load   The angle load   The ramus load   Jults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   Jults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   Jults 5: The effect of load angulation on the mandibular cortex   Symphyseal load   The angle load   The symphyseal load   The symphyseal load   The angle load   The ramus load   Jults 4: The effect of load angulation on the mandibular cortex   Symphyseal loading </td <td>125<br/>125<br/>125<br/>126<br/>126<br/>126<br/>126<br/>128<br/>129<br/>129<br/>130<br/>130<br/>130<br/>158</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125<br>125<br>125<br>126<br>126<br>126<br>126<br>128<br>129<br>129<br>130<br>130<br>130<br>158                                                                                                                                                                                                                              |
| 5.1 FINDIN   5.1.1 Mer   5.1.2 Mor   5.1.2 Mor   5.1.2 Sile   5.3 Findix   5.3.1 Res   5.3.2 Res   5.3.3.1 Sile   5.3.3 Res   5.3.4 Res   5.3.4 Findix   5.4 Findix   5.4.1 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DINGS AND CONCLUSIONS   JGS. PHASE IB: MODEL VERIFICATION   Sch quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The parasymphyseal load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The angle load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The angle load   Symphyseal loading   Body loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125<br>125<br>125<br>126<br>126<br>126<br>126<br>126<br>126<br>128<br>130<br>130<br>130<br>130<br>130<br>144<br>150<br>158<br>158<br>158                                                                                                                                                                                    |
| S.1   FINDIN     5.1.1   Mer     5.1.2   Mor     5.1.2.1   5.1.2.1     5.1.2.1   5.1.2.1     5.1.2.3   5.1.2.3     5.2   PHASE     5.3   FINDIN     5.3.1   Res     5.3.2   Res     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.1   5.3.3.1     5.3.3.4   5.3.3.4     5.3.4   Res     5.3.5   Res     5.4   FINDIN     5.4.1   Res     5.4.2   Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DINGS AND CONCLUSIONS   JGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   JULS 1: The effect of musculature on mandibular cortical stress and strain   JULS 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   JULS 3: The effect of load position on the mandibular cortex   The body load   The parasymphyseal load   The angle load   The angle load   The angle load   The angle load   Strate ffect of load angulation on the mandibular cortex   Symphyseal load   The symphyseal load   The angle load   The angle load   The symphyseal load   The angle load   The angle load   The angle load   The supphyseal loading   Body loading   Body loading   Body loading   Body loading   Body loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>139<br>139<br>141<br>142<br>144<br>145<br>150<br>150<br>153<br>156<br>158<br>158<br>158                                                                                                                                          |
| 5.1 FINDIN   5.1.1 Mer   5.1.2 Mor   5.1.2.1 5.1.2.1   5.1.2.1 5.1.2.1   5.1.2.3 5.2   5.2 PHASE   5.3 FINDIN   5.3.1 Res   5.3.2 Res   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.3.1 5.3.3.1   5.3.4 Res   5.3.4.1 5.3.4.1   5.3.5 Res   5.4 FINDIN   5.4.1 Res   5.4.2 Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DINGS AND CONCLUSIONS   JIGS. PHASE IB: MODEL VERIFICATION   Sch quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IIGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The angle load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   ults 4: The effect of load angulation on the mandibular cortex   Symphyseal load   The ramus load   ults 5: The effect of load angulation on the mandibular cortex   Symphyseal loading   Body loading   Body loading   Body loading   Body loading   Body loading   Body loading   Symphyseal loading   Symphyseal loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>136<br>139<br>141<br>142<br>144<br>145<br>150<br>153<br>156<br>158<br>158<br>158                                                                                                                                                               |
| 5.1 FINDIN   5.1.1 Mer   5.1.2 Mor   5.1.2 Mor   5.1.2 Sile   5.3 Findix   5.3.1 Res   5.3.2 Res   5.3.3 Sile   5.3.3 Sile   5.3.3 Sile   5.3.4 Res   5.3.5 Res   5.4.1 Res   5.4.2 Res   5.4.2.1 Sile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Individual of the optical and t | 125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139<br>139                                                                                                                                                               |
| 5.1 FINDIN   5.1.1 Mer   5.1.2 Mor   5.1.2 Solution   5.3.2 PHASE   5.3.3 FINDIN   5.3.3 Res   5.3.3.1 Solution   5.3.3 Res   5.3.3.1 Solution   5.3.3 Solution   5.3.3.1 Solution   5.3.3 Solution   5.3.4 Res   5.3.5 Res   5.4.1 Res   5.4.2 Res   5.4.2 Res   5.4.2.1 Solution   5.4.2.3 Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Individual of the product of notable of notabl | 125<br>125<br>125<br>126<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>136<br>136<br>139<br>141<br>142<br>144<br>145<br>150<br>153<br>153<br>156<br>158<br>158<br>158<br>158                                                                                                                     |
| 5.1 FINDIN   5.1.1 Mer   5.1.2 Mor   5.1.2 Mor   5.1.2 Sile   5.3 Findix   5.3.1 Res   5.3.2.1 Sile   5.3.3 File   5.3.3 Res   5.3.3.1 Sile   5.3.3 Sile   5.3.4 Res   5.3.5 Res   5.4.1 Res   5.4.2 Res   5.4.2 Res   5.4.2 Res   5.4.2 Sile   5.4.2 Sile   5.4.2 Sile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Individual of the product of notable of notabl | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>139<br>141<br>142<br>144<br>145<br>150<br>153<br>155<br>158<br>158<br>158<br>161<br>161                                                                                                                                          |
| 5.1 FINDIN   5.1.1 Mee   5.1.2 Moi   5.1.2 Moi   5.1.2 Sile   5.3 Findix   5.3.1 Res   5.3.2 Res   5.3.3 Sile   5.3.3 Res   5.3.3.4 Sile   5.3.4 Findix   5.3.5 Res   5.4.1 Res   5.4.2 Res   5.4.2 Res   5.4.2 Res   5.4.2 Sile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Andrysis 12: Influence of localized changes in Indendu Diple Processon in Analouad ungle fraction   DINGS AND CONCLUSIONS   IGS. PHASE IB: MODEL VERIFICATION   Sh quality analysis results   del verification and validation   Visual verification   Software convergence and increased local element resolution   Model validation   I CONCLUSIONS   IGS. PHASE IIA: STATIC LINEAR ANALYSES   ults 1: The effect of musculature on mandibular cortical stress and strain   ults 2: The effect of tooth loss on the loaded mandibular cortex   The dentate and edentulous mandible   ults 3: The effect of load position on the mandibular cortex   The symphyseal load   The parasymphyseal load   The angle load   The angle load   The angle load   The angle load   Ults 4: The effect of load angulation on the mandibular cortex   Symphyseal loading   Body loading   Ults 5: The effect of material properties on stress in the loaded mandible   Ults 5: The effect of material properties on stress in the loaded mandible   Ults 5: Non-linear analysis with a failure load   Symphyseal loading   Parasymphyseal loading   Parasymphyseal loading<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125<br>125<br>125<br>126<br>126<br>127<br>128<br>129<br>130<br>130<br>130<br>130<br>130<br>139<br>139<br>141<br>142<br>144<br>145<br>150<br>150<br>153<br>156<br>158<br>158<br>158<br>158<br>158<br>161<br>162<br>162                                                                                                       |

| 5.6   | Fin     | DINGS. PHASE IIIA: BASIC DYNAMIC NON-LINEAR ANALYSES                                      | 174           |
|-------|---------|-------------------------------------------------------------------------------------------|---------------|
| 5.    | 6.1     | Results 8: The relationship of impact site with fracture distribution                     |               |
|       | 5.6.1.1 | Impact at ramus (Element deletion algorithm).                                             |               |
|       | 5.6.1.2 | Impact at parasymphysis (Element deletion algorithm)                                      | 178           |
|       | 5.6.1.3 | Impact at symphysis (Element deletion algorithm)                                          |               |
| 5.    | 6.2     | Results 9: The relationship of impact KE with fracture pattern                            |               |
|       | 5.6.2.1 | Symphyseal impact                                                                         |               |
|       | 5.6.2.2 | Ramus impact                                                                              | 187           |
| 5.    | 6.3     | Results 10: The relationship between strain rate and fracture sub-site                    |               |
| 5.7   | Fin     | DINGS. PHASE IIIB: APPLIED NON-LINEAR DYNAMIC ANALYSES                                    |               |
| 5.    | 7.1     | Results 11: Influence of localized changes in material properties on mandibular angle fra | ctures- 1 194 |
| 5.    | 7.2     | Results 12: Influence of localized changes in material properties on mandibular angle fra | ctures- 2 198 |
| 5.8   | PH.     | ASE III CONCLUSIONS                                                                       |               |
| 5.9   | RES     | SEARCH SUMMARY                                                                            |               |
| 0.0   |         |                                                                                           |               |
| CHAPT | FER 6 L | IMITATIONS AND FUTURE RESEARCH                                                            | 212           |
|       |         |                                                                                           |               |
| 6.1   | Ge      | NERAL PROJECT LIMITATIONS                                                                 |               |
| 6.2   | RES     | SEARCH LIMITATIONS                                                                        |               |
| 6.    | 2.1     | Modelling limitations                                                                     | 213           |
| -     | 6.2.1.1 | Data                                                                                      |               |
|       | 6.2.1.2 | Model complexity                                                                          |               |
|       | 6.2.1.3 | Muscles                                                                                   |               |
|       | 6.2.1.4 | Ligaments                                                                                 |               |
|       | 6.2.1.5 | Biomechanical parameters                                                                  | 219           |
|       | 6.2.1.6 | Validation                                                                                | 219           |
| 6.    | 2.2     | Limitations of the analyses                                                               | 220           |
|       | 6.2.2.1 | Load position and angulation                                                              | 220           |
|       | 6.2.2.2 | Material properties                                                                       | 220           |
|       | 6.2.2.3 | Non-linear analyses                                                                       | 220           |
|       | 6.2.2.4 | Impacting objects                                                                         | 221           |
| 6.3   | FU      | TURE WORK                                                                                 |               |
| Bibl  | IOGRAPI | нγ                                                                                        |               |
| Αρρι  | ENDICES |                                                                                           |               |
|       |         |                                                                                           |               |

## LIST OF FIGURES

| Figure 1.1 Thesis structure                                                           | 9    |
|---------------------------------------------------------------------------------------|------|
| Figure 2.1 The structure of the literature review                                     | . 10 |
| Figure 2.2 Search strategy for mandibular 3DFEA studies related to fracture or trauma | . 20 |
| Figure 2.3 The fracture sub-site classification used for the meta-analysis            | . 37 |
| Figure 2.4 Flow chart of selection process for article review                         | . 39 |
| Figure 2.5 Right angle, left parasymphysis fracture combination                       | . 58 |
| Figure 2.6 Right condyle, left parasymphysis fracture combination                     | . 59 |
| Figure 2.7 Left body condyle and left angle fracture combination                      | . 59 |
| Figure 2.8 Bilateral condyles, left parasymphysis fracture combination                | . 60 |
| Figure 2.9 Literature review search strategy                                          | . 63 |
| Figure 2.10 Fracture of the right angle of the mandible                               | . 68 |
| Figure 2.11 Fracture of the right angle of the mandible                               | . 69 |
| Figure 3.1 Research methodology                                                       | . 85 |
| Figure 4.1 The thresholding segmentation process                                      | . 88 |
| Figure 4.2 Creation of the mandibular mask                                            | . 89 |
| Figure 4.3 Cross-section of segmented mandibular volumes                              | . 90 |
| Figure 4.4 Meshing protocol                                                           | . 94 |
| Figure 4.5 The final meshed mandibular model                                          | . 95 |
| Figure 4.6 The final volume mesh for the clenched fist model                          | . 95 |

| Figure 4.7 Condylar restraints (static analyses).                                           | 98    |
|---------------------------------------------------------------------------------------------|-------|
| Figure 4.8 Assembled model with muscular forces assigned as vectors.                        | . 101 |
| Figure 4.9 Lingual cortical sampling zones                                                  | . 103 |
| Figure 4.11 Buccal cortical sampling zones                                                  | . 104 |
| Figure 4.12 The edentulous model of the mandible                                            | . 109 |
| Figure 4.13 Load positions for the static analysis.                                         | . 110 |
| Figure 4.14 Load angle and local axis for a symphyseal load                                 | . 111 |
| Figure 4.15 Display showing the incremental-iterative process.                              | . 114 |
| Figure 4.16 An illustration of a cross-section of the mandibular model                      | . 122 |
| Figure 4.17 The relationship of the lingual sampling zone to the third molar area           | . 123 |
| Figure 4.18 Sampling zone for posterior condylar neck stress                                | . 123 |
| Figure 4.19 Sampling zone for lingual angle cortical stress.                                | . 123 |
| Figure 4.20 A cross-section of the mandibular model showing cystic cavities                 | . 124 |
| Figure 5.1 Graphical representation of mesh quality                                         | . 125 |
| Figure 5.2 A model with an element resolution of 350000 tetrahedral elements                | . 126 |
| Figure 5.3 A model with a higher element resolution of 458000                               | . 127 |
| Figure 5.4 Increased resolution in the condylar region to verify the response               | . 128 |
| Figure 5.5 Colour contour maps of the right mandibular condyle.                             | . 130 |
| Figure 5.6 Colour contour map showing von Mises stress variation over the cortex            | . 131 |
| Figure 5.7 Alveolar strain comparison between the dentate and edentulous mandible           | . 136 |
| Figure 5.8 Colour contour maps of von Mises strain                                          | . 137 |
| Figure 5.9 Colour contour maps of von Mises strain                                          | . 137 |
| Figure 5.10 A mandibular cross-section at the symphysis.                                    | . 139 |
| Figure 5.11 Colour contour maps of von Mises strain showing the symphyseal region           | . 140 |
| Figure 5.12 Contour map showing tensile and compressive stress on symphyseal loading        | . 140 |
| Figure 5.13 Colour contour maps of von Mises strain showing the parasymphyseal region       | . 141 |
| Figure 5.14 Contour map showing tensile and compressive stress on parasymphyseal loading.   | . 142 |
| Figure 5.15 Colour contour maps of von Mises strain showing the body region.                | . 143 |
| Figure 5.16 Contour map showing tensile and compressive stress on body loading              | . 143 |
| Figure 5.17 Colour contour maps of von Mises strain showing the angle region                | . 144 |
| Figure 5.18 Contour map showing tensile and compressive stress on angle loading             | . 145 |
| Figure 5.19 Colour contour maps of von Mises strain showing the ramus region                | . 146 |
| Figure 5.20 Contour map showing tensile and compressive stress on ramus loading             | . 146 |
| Figure 5.21 Colour contour map of the mandible in response to a symphyseal failure load     | . 161 |
| Figure 5.22 Colour contour map of the mandible in response to a parasymphyseal failure load | 162   |
| Figure 5.23 Colour contour map of the mandible in response to a body failure load           | . 163 |
| Figure 5.24 Colour contour map of the mandible in response to a ramus failure load          | . 164 |
| Figure 5.25 Computer simulation of a high KE punch to the right mandibular ramus            | . 174 |
| Figure 5.26 Computer simulation of a high KE punch to the right mandibular parasymphysis    | . 178 |
| Figure 5.27 Computer simulation of a high KE punch to the right mandibular body             | . 181 |
| Figure 5.28 Impacts at the mandibular symphysis energy from punches of different KE         | . 185 |
| Figure 5.29 Impacts at the right mandibular ramus energy from punches of different KE       | . 188 |
| Figure 5.30 Change in strain rate over time on symphyseal impact                            | . 192 |
| Figure 5.31 Colour contour map of the mandible following a symphyseal impact                | . 193 |
| Figure 5.32 Colour contour map of the mandible following a symphyseal impact                | . 193 |
| Figure 5.33 Computer simulation of an angle impact in a mandibl                             | . 195 |
| Figure 5.34 Computer simulation of an angle impact in a mandible with impacted tooth        | . 197 |
| Figure 5.35 Computer simulation of an angle impact in a cystic mandible                     | . 199 |
|                                                                                             |       |

## LIST OF TABLES

| Table 2.1 Exclusion criteria for literature review.                                           | . 17 |
|-----------------------------------------------------------------------------------------------|------|
| Table 2.2 Electronic databases, search strategy, medical subject headings (MeSH) and results  | . 18 |
| Table 2.3 Factors for study review.                                                           | . 19 |
| Table 2.4 Summary of characteristics of 3DFEA studies                                         | . 23 |
| Table 2.5 Areas of mandibular study employing finite element analysis                         | . 24 |
| Table 2.6 Search strategies employed in the prevalence meta-analysis                          | . 38 |
| Table 2.7 Articles assessed for meta-analysis eligibility                                     | . 47 |
| Table 2.8 Tabulated event data                                                                | . 48 |
| Table 2.11 Combined bias calculations for each mandibular sub-site                            | . 49 |
| Table 2.12 Condyle results.                                                                   | . 51 |
| Table 2.13 Summary prevalence for mandibular fracture sub-sites.                              | . 53 |
| Table 2.14 Reported multifocal mandibular fracture incidences.                                | . 57 |
| Table 2.15 Mandibular fracture combinations reported in the literature with frequencies       | . 58 |
| Table 2.14 Search strategies employed in the prevalence meta-analysis                         | . 62 |
| Table 2.15 Summary of clinical papers                                                         | . 72 |
| Table 3.1 Research objectives                                                                 | . 74 |
| Table 3.2 Models required for analyses                                                        | . 81 |
| Table 3.3 Verification checks                                                                 | . 82 |
| Table 4.1 3-dimensional models produced.                                                      | . 90 |
| Table 4.2 Smoothing and reduction parameters applied to modes prior to meshing                | . 91 |
| Table 4.3 Material property assumptions used in the finite element model                      | 107  |
| Table 5.7 Values of energy absorbed by the mandible following fist impact at the symphysis    | 185  |
| Table 5.8 Values of energy absorbed by the mandible following fist impact at the right ramus. | 189  |
| Table 5.9 Values of energy absorbed by the mandible following fist impact at the right ramus. | 200  |
| Table 5.10 Intial research aims                                                               | 207  |
|                                                                                               |      |

## LIST OF GRAPHS

| Graph 2.1 Condyle bias assessment plot                                                                      | 51    |
|-------------------------------------------------------------------------------------------------------------|-------|
| Graph 2.2 Condyle Forest plot (random effects).                                                             | 52    |
| Graph 4.1 Static tensile material properties of human tibial cortical bone                                  | . 113 |
| Graph 5.1 A comparison of experimental and 3DFEA results                                                    | . 129 |
| Graph 5.2 The effect of muscular contraction on buccal cortical stress                                      | . 132 |
| Graph 5.3 The effect of muscular contraction on buccal cortical strain                                      | . 133 |
| Graph 5.4 The effect of muscular contraction on lingual cortical strain                                     | . 134 |
| Graph 5.5 The effect of muscular contraction on lingual cortical stress                                     | . 135 |
| Graph 5.6 A comparison of buccal cortical strain in the edentulous and dentate state                        | . 138 |
| Graph 5.7 A comparision of lingual cortical strain in the edentulous and dentate state                      | . 138 |
| Graph 5.8 The effect of load position on buccal cortical strain                                             | . 148 |
| Graph 5.9 Graph of the effect of load position on lingual cortical strain                                   | . 149 |
| Graph 5.10 Buccal cortical strain plotted for different impact angles                                       | . 151 |
| Graph 5.11 Lingual cortical strain plotted for different impact angles                                      | . 152 |
| Graph 5.12 Buccal cortical strain plotted for different impact angles                                       | . 154 |
| Graph 5.13 Lingual cortical strain plotted for different impact angles                                      | . 155 |
| Graph 5.14 Buccal cortical stress on symphyseal impact                                                      | . 156 |
| Graph 5.15 Buccal cortical stress on symphyseal impact (osteogenesis imperfecta)                            | . 157 |
| Graph 5.16 Buccal cortical stress on symphyseal impact (steel mandible)                                     | . 157 |
| Graph 5.17 Buccal cortical strain plotted against node position for a physiological load at 90 $^{\circ}$ . | . 159 |
| Graph 5.18 Lingual cortical strain plotted against node position for a physiological load at 90 $^{\circ}$  | 160   |
| Graph 5.19 Combined buccal cortical strains plotted against node position for failure loads                 | . 165 |

| Graph 5.20 Combined lingual cortical strains plotted against node position for failure loads160         |
|---------------------------------------------------------------------------------------------------------|
| Graph 5.21 Combined buccal cortical stress plotted against node position for failure loads 16.          |
| Graph 5.22 Combined lingual cortical stress plotted against node position for failure loads 166         |
| Graph 5.23 The variation of lingual cortical stress with time following ramus impact                    |
| Graph 5.24 The variation of strain energy density with time following ramus of impact                   |
| Graph 5.25 The variation of lingual cortical stress with time following parasymphyseal impact 17        |
| Graph 5.26 The variation of strain energy density with time following parasymphysis impact 18           |
| Graph 5.27 The variation of lingual/posterior cortical stress following symphyseal impact 18.           |
| Graph 5.28 The variation of strain energy density with time following symphyseal impact 18.             |
| Graph 5.29 The variation of lingual/posterior cortical stress with time and KE for symphyseal impact 18 |
| Graph 5.30 The variation of lingual cortical stress with time and KE for ramus impact                   |
| Graph 5.31 The variation of lingual strain rate with time19.                                            |
| Graph 5.32 The variation of right medial condylar cortical stress following angle impact 20.            |
| Graph 5.33 The variation of right lingual angle cortical stress following symphyseal impact 20.         |

## LIST OF EQUATIONS

| Equation 3.1 von Mises equivalent stress             |     |
|------------------------------------------------------|-----|
| Equation 3.2 von Mises equivalent strain where       |     |
| Equation 4.1 Calculating muscle forces and vectors   |     |
| Equation 4.2 Calculating the resultant force vector. |     |
| Equation 4.3 Equations for determining load path     | 110 |
| Equation 4.4 Percentage energy absorbed.             |     |
|                                                      |     |

### Abbreviations

| $\mu\epsilon_{vm}$ | von Mises micro strain                                                           |
|--------------------|----------------------------------------------------------------------------------|
| 3DFEA              | Three-dimensional finite element analyses                                        |
| 3DFEM              | Three-dimensional finite element model                                           |
| A <sub>m</sub>     | Muscle cross-sectional area                                                      |
| ASCII              | American Standard Code for Information Interchange                               |
| CAD                | Computer-aided design                                                            |
| CAM                | Computer-aided modelling                                                         |
| СВСТ               | Cone-beam computed tomography                                                    |
| CR <sub>m</sub>    | Muscle contraction ratio                                                         |
| СТ                 | Computed tomography                                                              |
| DICOM              | Digital Imaging and Communications in Medicine                                   |
| E <sub>f</sub>     | Final energy                                                                     |
| E <sub>fr</sub>    | Frictional energy                                                                |
| Ei                 | Initial energy                                                                   |
| E <sub>km</sub>    | Kinetic energy of the mandible                                                   |
| Es                 | Strain energy                                                                    |
| F <sub>m</sub>     | Muscular force                                                                   |
| F <sub>v</sub>     | Resultant muscle force vectors                                                   |
| GPa                | Giga Pascals                                                                     |
| HU                 | Hounsfield Units                                                                 |
| ICD                | International Statistical Classification of Diseases and Related Health Problems |
| IGES               | Initial Graphics Exchange Specification                                          |
| JPEG               | Joint Picture Expert Group                                                       |
| К                  | Skeletal muscle constant                                                         |

| KE                | Kinetic Energy                            |
|-------------------|-------------------------------------------|
| MeSH              | Medical Subject Heading                   |
| MPa               | Mega Pascals                              |
| MRI               | Magnetic resonance imaging                |
| n                 | Total number of subjects in study         |
| NLM               | National Library of Medicine              |
| NURBS             | Non-uniform Rational B-Spline             |
| OPCS              | Office of Population Censuses and Surveys |
| r                 | Number of subjects with outcome           |
| R <sub>c</sub>    | Resultant of orthogonal components        |
| ROI               | Region of interest                        |
| STL               | Standard Tessellation Language            |
| ТМЈ               | Temporomandibular joint                   |
| V <sub>f</sub>    | Final velocity                            |
| Vi                | Initial velocity                          |
| VM                | von Mises                                 |
| VRML              | Virtual reality mark-up language          |
| WHO               | World Health Organization                 |
| W <sub>net</sub>  | Net work                                  |
| $\Delta E_{kf}$   | Difference in kinetic energy of the fist  |
| ε <sub>1</sub>    | Maximum principal strain                  |
| ε <sub>3</sub>    | Minimum principal strain                  |
| $\epsilon_{lat}$  | Lateral strain                            |
| ε <sub>long</sub> | Longitudinal strain                       |
| $\epsilon_{vm}$   | von Mises strain                          |
| εγ                | Estimated yield strain                    |

| Ė                     | Strain rate              |
|-----------------------|--------------------------|
| σ                     | Stress vector            |
| $\sigma_1$            | Maximum principal stress |
| σ <sub>3</sub>        | Minimum principal stress |
| σ <sub>c</sub>        | Compressive stress       |
| $\sigma_{\text{max}}$ | Maximum stress           |
| σ <sub>t</sub>        | Tensile stress           |
| $\sigma_{VM}$         | Von Mises stress         |

## Orientation of the mandible



#### **Chapter 1 Introduction**

#### 1.1 Research area

The aim of this thesis is to research the application of a computational method, namely three-dimensional finite element analysis (3DFEA), to mandibular biomechanics, with particular emphasis on the evolution and examination of fractures resulting from physical trauma.

Until fairly recently, most information regarding the response of the mandible to traumatic loading was derived from laboratory experiments involving cadaveric material or anthropometric dummies. The experiments of Nahum, (1975) and Schneider et al. (1974) provide data which is still used today to derive tolerance thresholds for mandibular bone.

Mechanical laboratory studies, whether using animals, human cadavers or dummies, have proved to be expensive, difficult to conduct with a great deal of precision or accuracy, and of dubious value biomechanically when compared to live human cases. Additionally, in many societies ethical issues preclude physical traumatic experimentation of humans and animals. As a consequence, mechanical laboratory studies are currently the gold standard for investigation of fracture thresholds in humans.

Finite element analysis was developed as a computational technique by Courant in the 1940s and applied by Turner, Clough, Martin and Topp in the late 1950s to study material stiffness. Initially its use was limited to the automotive, aeronautical, nuclear, and defence industries to evaluate stress or temperature distribution in mechanical components; perform deflection, vibration and fatigue analyses; and kinematic and/or dynamic responses of components in failure prediction. The relatively large computing power required at the time limited its widespread use. Today the declining cost of computing means that such analyses may be performed on relatively low cost personal computers. 3DFEA is now used in the biological sciences to study extant and extinct organisms. It is possible to model the distribution of stress, strain and deformation throughout anatomical structures. Currently 3DFEA is not routinely used in medical or forensic practice. The lengthy modelling process and long computation times have limited its utility. However, the potential for measuring biological performance in modelled traumatic situations is appealing.

Head impact biomechanical simulations using 3DFEA have been used in the past as forensic tools for reconstructing brain injuries (Motherway et al., 2009) and as part of expert witness evidence in medico-legal cases (De Santis Klinich, K.D., and Hulbert, G. M., 2002), however, as of yet, no mandibular models have been produced and used with the same effect.

This thesis will aim to study structural performance of the mandible with the main aspect being structural failure resulting in fracture. The results required to do this will include the effect of magnitude, direction, duration and physical geometry of impact forces on the geometry and severity of mandibular injuries.

#### 1.2 Research relevance

As previously mentioned, the majority of mechanical tests on biological structures are undertaken in the laboratory setting. The tissues of explanted human or animal tissue must undergo complex preparation procedures before being fit for investigation. This may affect the ability of the tissues to satisfactorily reproduce the in vivo response. There are additional issues when the biomechanical responses required relate to tissues which have unique or rare properties. In such cases there will be insufficient material to test mechanically. At present, logical extrapolation of current normal data offers the only solution.

Computer modelling of biological structures may be a solution to these problems. If a suitable model could be produced that was capable of replicating the response of the mandible under certain conditions then there would be little need for human or animal models. With the ability to change material properties and model rare conditions there would be supporting evidence for theoretical extrapolations. There would also be a commensurate reduction in time and expense, making the modelling of multiple scenarios a possibility, aiding the determination of potential mechanisms of injury.

#### 1.3 Research application

The mandible is the second most commonly fractured bone in the facial skeleton. The leading cause of fracture is mechanical impact. The most commonly reported impact sources are interpersonal violence, road traffic accidents, falls and sporting injuries, although the relative frequencies of each source vary between studies. In many situations where bodily injuries result there may appear to be a straightforward relationship between the assumed mechanism and the resulting injuries found on examination. However, the assumed cause of injuries is open to misinterpretation, with similar injury patterns found on routine investigations resulting from different mechanisms and vice versa (Gordon and Shapiro, 1975).

In the field of forensic science the elucidation and prediction of the biomechanics of the mandible can aid the understanding of fracture mechanisms resulting from physical trauma. Results such as the derivation of relative fracture thresholds are particularly important.

Medical expert witnesses are frequently asked questions regarding the likelihood of a particular mechanism of injury, or the magnitude of force required to produce the injury. Biomechanical data may be used to support or refute a potential mechanism of injury in addition to being used to produce computer simulations which may be used to explain a mechanism of injury to a jury.

At present, few authors have published finite element studies attempting to simulate traumatic impacts on the mandible. Models have described the stress distribution on the mandibular cortex; however, fracture patterns and temporal occurrence have not been modelled. The effects of muscles, teeth, material properties and strain rate have also not been modelled. This research hypothesizes that these deficiencies may be addressed by producing a model that can simulate the biomechanical behaviour of the mandible under load and predict the occurrence of fractures in laboratory and selected clinical situations.

The finite-element method, has been successfully used to study stress, strain and material fracture in the field of engineering, and theoretically may be used to model fractures in biological structures. This is based on the premise that the laws of physics and Newtonian mechanics are universal. As the veracity of this premise has yet to be disproved, one might hypothesize that the research goal is possible, subject to the availability of the required input parameters.

The initial model which this thesis aims to produce and test should be relatively rudimentary, relying on simplified analyses. The final model should be scalable and allow investigation beyond the scope of the initial research area.

#### 1.3.1 Possible research scenarios

Examples of scenarios envisaged for this research include two cases presented below.

- a) A dentist extracted a right molar tooth in a young man. Apparently the procedure was routine and completed without complication. A week later the patient complained of a pain in the contralateral parasymphysis of the mandible. After radiographic examination of the area, it was found that there was an ectopic tooth with a minimally enlarged follicle in the area of the fracture. The patient decided to take legal action and an expert witness was asked to provide information on whether the dentist had used excessive force or improper technique during the extraction or whether the ectopic tooth had made the mandible susceptible to fracture.
- b) Forensic science deals with the relationship between medicine and law, and whilst much of the work is performed post mortem (Gordon and Shapiro, 1975) the ability to demonstrate the correlation between an assault weapon and injury in live patients is often the requirement of an expert witness. At their best, an expert can only suggest a possible cause of an injury and differentiating between assaults with a foot, a fist, an elbow, a forehead or indeed any other blunt or sharp weapon resulting in a mandibular fracture may be difficult. Any additional supporting evidence would strengthen an opinion.

For the expert witnesses to give the court relevant information, the data required would include:

- The nature of the impacting object
- An estimation of the applied force
- An estimation of the expected strength of a normal mandible
- An estimation of the expected strength of the affected mandible

#### • A determination of the risk of fracture

The research will be expected to provide sufficient information to answer these questions. The two cases will be reviewed at the end of the research to see how well the research has satisfied these requirements.

#### 1.4 Expected research results

The results of this research will provide data on the forces, displacements, stresses, strains and strain rates associated with mandibular deformation and failure. These values may be used as a measure of performance. Performance is a term borrowed from engineering, but frequently applied to biological systems. It refers to the mechanical efficiency or strength of a specific system. In reference to biological structures such as bone it can refer to the stress which can be withstood without deformation (which may cause system failure) or catastrophic material failure.

The applied use of this research will be to provide a problem-solving environment in which traumatic mechanisms of injury may be investigated whilst changing individual variables such as material properties (local or general), or uncommon conditions resulting in bony failure due to changes in the structural properties of bone, may be studied.

#### 1.5 Research scope

The scope of this research will be limited. This will be necessary due to time and resource constraints. Financial constraints arise from two sources. Firstly, if this research is to be of value to forensic scientists or clinicians undertaking medico-legal work it should be based on equipment that would be within the budget of such professionals. Therefore modest computing equipment is to be used. Whilst software may be prohibitively expensive if purchased outright, most companies have more reasonable licence leasing schemes at a reduced cost.

Simplified loading scenarios will be examined. Impacts will only be examined in the horizontal plane and the number of impact sites will be reduced. As a consequence of this, it is not expected that all mandibular fracture patterns will be modelled as these may have an indirect contact component. However, most previous mandibular cadaveric laboratory experiments (the current gold standard) should be capable of reproduction. This should also allow a level of model validation.

Finally, the model produced will be an idealized generic model rather than a patientspecific model, thus generalized conclusions will be drawn, however, the level of generalization will not be so broad as to reduce the value of the research.

#### 1.6 List of chapters

This thesis is divided into six chapters. This chapter has introduced the research area and discussed its relevance. The research scope has also been discussed. Chapter 2 reviews the literature associated with this thesis. It is divided into three sections. The first section discusses the mechanical laboratory studies which the product of this thesis aims to replace. The third section looks at the pattern of fractures encountered clinically. Clinical experience is what most medical expert witnesses will draw upon when determining whether an injury fits a particular mechanism and therefore the prevalence of sub-site fractures, the multifocal mandibular fracture pattern and the effect of localized changes in material properties such as un-erupted third molar teeth, are discussed. A second purpose of this section is to provide a form of clinical validation for the research findings. The intervening second section discusses previous attempts to bridge the gap between laboratory experiments and clinical findings using 3DFEA.

Information gained from this section will also inform Phase Ia of the research – the production of the 3DFEA model.

Chapter 3 describes the methodology to be used throughout the research. Any deviations from the methodology are described in chapter 4 which describes the six research phases undertaken. Research findings and conclusions are found in chapter 5. The thesis itself ends at chapter 6 where limitations and future research are discussed. The bibliography and appendices appear in their respective sections after chapter 6. The appendices contain information regarding the use of the companion disc in addition to basic information on mandibular anatomy, mandibular fracture classifications and engineering principals that will aid the understanding of the thesis. Tabulated raw data from analyses and review protocols are also present. The thesis structure is given in figure 1.1

8

9



Figure 1.1 Thesis structure

#### **Chapter 2 Literature review**

### 2.1 Structure

This research aims to occupy an area between cadaveric laboratory study of mandibular fractures and epidemiological findings of clinical cases resulting from trauma using the computer modelling technique of three-dimensional finite element analysis. As such the relevant literature is drawn from three areas (see diagram below).



Figure 2.1 The structure of the literature review

#### 2.2 Laboratory mechanical cadaveric studies of mandibular fracture

Several authors have been instrumental in the elucidation of the dynamic responses of the mandible. The pioneering studies of Swearingen (1965), Hodgson (1967), Nahum (1968), Schneider et al. (1974), Reitzik et al. (1978), Huelke et al. (1983), and Unnewher et al (2003) are well-known. They are frequently quoted in the literature when information regarding mandibular deformation and fracture tolerance is required. Several of these studies are discussed below along with their weaknesses. Whilst there are other published studies, the principles of mechanical material testing are grossly similar. Methods of measuring strain and the determination of fracture may have improved but mechanical tests suffer from the limitations of using cadaveric material and therefore little is to be gained from more extensive discussion.

#### 2.2.1 Animal cadaveric studies

Reitzik, et al. (1978) performed a mechanical analysis comparing the forces required to fracture the mandible of *Cercopithecus aethiops* (vervet monkey) through the region of the anatomical angle when third molar teeth were either present or absent. The source population was 10 monkeys with third molar teeth present and 10 without.

No note was made of the degree of eruption of the third molar teeth or the presence of pathology. It does not appear that these details formed part of any exclusion criteria for cases or controls. It was also noted that the age of the monkeys was unknown. The monkeys without third molars could have been much younger, with no evidence of third molar growth or older with congenitally missing third molars. No details of the medical or nutritional status of the monkeys were known. With such small sample sizes, these details could significantly affect the validity of the study, making a direct clinical correlation difficult. The specimens were stored at minus 30 degrees Celsius for an unspecified period before being thawed and having the soft tissue removed. After halving, forty hemi-mandibles were available.

In order to perform loading the entire ascending ramus of each hemi-mandible was embedded in an acrylic block. This block was angled at 45 degrees to the lower border of the mandible. A tensile force was applied by means of a wire loop placed around the mandible distal to the canine tooth. The loop was mounted in an Instron tensiometer. As a result all fractures occurred at the angle of the mandible. The authors concluded, "Under the experimental conditions used, monkey mandibles containing un-erupted third molars fractured at approximately 60% of the force required to fracture the mandible containing erupted third molars" (Reitzik et al., 1978).

The authors were very clear in their conclusions that these results were applicable only under the experimental conditions i.e. when applied to the mandibles of vervet monkeys loaded in a particular fashion. Monkeys have a different mandibular geometry and their bones have different material properties to humans. The manner of mandibular loading was different to that which would occur under any clinical condition in a human. In normal function, it would be difficult to deform the mandible to a degree sufficient to fracture without first bodily moving the mandible before the maxillary teeth were contacted.

The authors reviewed the literature and concluded that the storage of the mandible at minus 30 degrees Celsius had no effect on the mechanical properties of bone (Chamay, 1970 and Sammarco, et al., 1971). Bearing in mind the use of a hemi-mandible; the abnormal loading pattern; the absent effect of the mandibular condyles; the lack of differentiation between the degree of eruption of the third molar teeth; the lack of knowledge of the age and nutritional state of the monkeys; it cannot be said that, in isolation, this study is strong evidence that the non-pathological third molar tooth significantly reduces the resistance of the angle of the mandible to fracture in the clinical situation in humans. Despite this, a majority of authors who have published on the effect of third molar teeth on mandibular angle fractures have quoted this paper as evidence in support of their theories on clinical findings (see section 2.6).

#### 2.2.2 Human cadaveric studies

Nahum (1974) studied the impact tolerance of the mandible in an attempt to simulate clinical trauma conditions. Both embalmed and unembalmed specimens were used. A drop-weight assembly was used to impact various locations of the mandible with varying forces. The impact area was composed of a one inch squared circular disk made of crushable nickel foam.

The temporomandibular joints were approximated using semi-rigid fixation. The joints were pinned at the free ends. To avoid potential instability on symphyseal loading, anterior/submental-vertical impacts were chosen. Lateral impacts were in the region of the body of the mandible. In total, eight specimens were used for lateral impacts and nine were used for symphyseal impacts.

As is clear from the research, the number of specimens studied was relatively small. There was no standardization possible in terms of specimen age, gender, pre-morbid state, size and shape, making interpretation of the results difficult. Nahum claimed that embalming had little effect on the results, but this was difficult to determine with so few specimens. One point that was noted was that the thickness of the overlying tissues had a significant effect on the genesis of fractures, with the force required to fracture the mandible being significantly less when no soft-tissue was present.

13

Unnewehr et al. (2003) aimed to determine the fracture properties of the human mandible. They used a total of seven adult human mandibles (five male, two female). In contrast to Nahum, Unnewehr et al. exarticulated the mandible, removed the soft tissue and stored the specimen at minus 18 degrees. Before testing, the specimens were rehydrated in 0.9% saline for 1 hour. A 20kg mass suspended from the coronoid process was used to represent occlusal force. Semi-rigid elastic fixation was applied at temporomandibular joints in order to better simulate the physiological state. Impacts were produced by a pendulum mass. No details of the impact surface area were given. All specimens were subjected to a low force impact before each high force impact experiment in an attempt to eliminate the effect of micro-fractures. Cortical deformation was measured with strain gauges. They authors noted that the properties of the temporomandibular joint were crucial in the generation of fractures. They also felt that the lack of soft-tissue had little effect the fracture thresholds. In terms of the study of the biomechanics of the mandible, the use of the strain gauges was an improvement on the studies by Nahum; however, the readings were limited to the position of the gauges.

In general, all authors found that patterns of fracture were fairly constant, regardless of age, gender and mandible size. This might be due to the same form of impacts being studied. The range of fracture thresholds varied significantly between authors.

Whilst these studies (and those that followed them) have provided data for forensic and medico-legal use, they have limitations. As may be seen, there can be no consistency in bone material properties, mandibular size, and impact site between two specimens.

| Author           | Year | Impact direction (site)       | Fracture  |
|------------------|------|-------------------------------|-----------|
|                  |      |                               | (N)       |
| Hodgson          | 1967 | Various                       | 1598-2664 |
| Nahum            | 1968 | Antero-posterior (symphyseal) | 1890-4120 |
|                  |      | Lateral                       | 820-3400  |
| Schneider et al. | 1974 | Antero-posterior (symphyseal) | 1780      |
|                  |      | Lateral                       | 890       |
| Huelke et al.    | 1968 | Antero-posterior (symphyseal) | 2442-3996 |
|                  |      | Lateral                       | 1332-3330 |
| Unnewehr et al.  | 2003 | Antero-posterior (symphyseal) | 2465-3122 |
|                  |      | Lateral                       | 633-763   |

The study of rare conditions such as the osteogenesis imperfecta (brittle bone disease) or the effect of lesions within the bone on fracture thresholds cannot be determined with any confidence from these studies. The ability to study a change in any single variable is made difficult by the fact that no two mandibles are the same and large numbers of cadaveric specimens are difficult to acquire. These studies are not suitable for simulating clinical situations; however, they do provide information that has been extrapolated to answer clinical and forensic questions. How effective they are at doing this is debatable due to the small numbers of specimens in the laboratory studies and the large number of uncontrollable variables.

2.3 Three dimensional finite element analysis in the study of the mandible

#### 2.3.1 Introduction

The biological modelling literature is sparsely populated with 3DFEA mandibular models aimed at the study of fractures, therefore this literature review includes 3DFEA studies not directly related to the study of fractures but which have a direct influence on the first phase of the research i.e. the production of the finite element model.

2.3.2 Literature search strategy and aim

A search of electronic databases was performed to identify studies employing 3DFEA to study the mandible in relation to fracture or trauma.

#### 2.3.3 Eligibility criteria

Studies suitable for review included 3DFEA related to mandibular trauma which required the production of a model of at least a hemi-mandible. A hemi-mandible was defined as a portion extending from the mandibular symphysis to the mandibular angle, including the whole ascending ramus and condyle. All studies should have been published in peerreviewed journals. Studies were not limited with regard to study date, however, it was understood that three-dimensional studies related to the mandible before 1994 were unlikely to be found. The studies were limited to human subjects and to the English language.

#### 2.3.4 Information sources

Ovid Medline<sup>®</sup>, Embase<sup>®</sup> and PubMed<sup>®</sup> databases were interrogated. Exclusion criteria are summarized in table 2.1. The Medical Subject Heading (MeSH) terms employed in the search are outlined in table 2.2. Manual searching was employed when appropriate references were listed in retrieved articles.

16

#### **Exclusion criteria**

Studies employing two-dimensional finite element analysis

Studies modelling less than a hemi-mandible

Studies unrelated to trauma or mandibular trauma

Studies not published in the English language

Review articles which contained no actual finite element analysis

Papers reporting only clinical outcomes

Studies using the same model in multiple publications

Table 2.1 Exclusion criteria for literature review.

### 2.3.5 Search

| Electronic Databases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No. Hits |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | per      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Database |
| Database: Ovid MEDLINE(R) In-Process and Other Non-Indexed Citations<br>and Ovid MEDLINE(R) <1946 to Present>, Ovid OLDMEDLINE(R) <1946 to<br>1965>, Embase Classic+Embase <1947 to 2014 April 08>Search Strategy:                                                                                                                                                                                                                                                                                                                             | 105      |
| "finite element".mp. [mp=ti, ab, ot, nm, hw, kf, px, rx, ui, an, sh, tn, dm,<br>mf, dv, kw] (35372)                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| mandible.mp. [mp=ti, ab, ot, nm, hw, kf, px, rx, ui, an, sh, tn, dm, mf, dv,<br>kw] (123964)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| trauma.mp. [mp=ti, ab, ot, nm, hw, kf, px, rx, ui, an, sh, tn, dm, mf, dv, kw]<br>(415895)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| fracture.mp. [mp=ti, ab, ot, nm, hw, kf, px, rx, ui, an, sh, tn, dm, mf, dv,<br>kw] (410304)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| limit to English language                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Database: PubMed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90       |
| Search Strategy: finite and element and mandible (trauma or fracture) and bone                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Query Translation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| finite[All Fields] AND ("elements"[MeSH Terms] OR "elements"[All Fields]<br>OR "element"[All Fields]) AND ("mandible"[MeSH Terms] OR<br>"mandible"[All Fields]) AND ("injuries"[Subheading] OR "injuries"[All<br>Fields] OR "trauma"[All Fields] OR "wounds and injuries"[MeSH Terms] OR<br>("wounds"[All Fields] AND "injuries"[All Fields]) OR "wounds and<br>injuries"[All Fields]) AND ("fractures, bone"[MeSH Terms] OR<br>("fractures"[All Fields] AND "bone"[All Fields]) OR "bone fractures"[All<br>Fields] OR "fracture"[All Fields]) |          |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 195      |

Table 2.2 Electronic databases, search strategy, medical subject headings (MeSH) and results.

18

#### 2.3.6 Study selection

Papers were reviewed concerning reproducibility of the study, accuracy of the finite element model and conclusions drawn. Reproducibility factors included those study details that would allow a researcher to produce similar results. The factors related to reproducibility and model accuracy are shown in table 2.3.

| Model accuracy                     | Study reproducibility |  |
|------------------------------------|-----------------------|--|
| Mesh convergence                   | Analysis type         |  |
| Mesh quality                       | Geometry acquisition  |  |
| Validation                         | Element type          |  |
|                                    | Element resolution    |  |
|                                    | Mechanical behaviour  |  |
|                                    | Boundary conditions   |  |
|                                    | Outcome variables     |  |
| Table 2.2 Factors for study review |                       |  |

Table 2.3 Factors for study review.

#### 2.3.7 Search strategy results

The search resulted in 195 abstracts of which, 82 were potentially relevant. Once duplicated entries were removed, 44 articles were retrieved and examined in full. Seven papers were rejected and a single paper was obtained from the reference list of articles retrieved. A summary of the articles selected for review are found in Table 2.4.



Figure 2.2 Search strategy for mandibular finite element studies related to fracture or trauma.
| netry Element Element/ Mechanical Behaviour Mesh<br>type node Convergence<br>resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Element/ Mechanical Behaviour Mesh<br>node<br>resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mechanical Behaviour Mesh<br>Convergence                                                                     | Mesh<br>Convergence                            |                                                    | Mesh<br>Quality | Restraints                                                                                                                 | Validation                                                                                                                            | Outcome<br>variable                                              | Study area                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|
| TET;TRI 100218; Isotropic, linearly elastic, NS   15927/22388 homogeneous NS NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100218; Isotropic, linearly elastic, NS<br>15927/22288 homogeneeus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isotropic, linearly elastic, NS<br>homogeneous                                                               | NS                                             |                                                    | NS              | Superior condyles.<br>111,111                                                                                              | NS                                                                                                                                    | đ <sub>VM</sub>                                                  | Osteosynthesis<br>(prophylactic) |
| TET10 NS Orthotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VS Orthotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Orthotropic, linearly elastic, NS<br>homogeneous                                                             | NS                                             |                                                    | NS              | Superior condyles,<br>111,000                                                                                              | NS                                                                                                                                    | avm                                                              | Reconstruction                   |
| TET/TRI 524927 (Max - Isotropic, linearly elastic, NS<br>bone) homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52927 (Max - Isotropic, linearly elastic, NS<br>bone) homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isotropic, linearly elastic, NS homogeneous                                                                  | NS                                             |                                                    | NS              | Posterior superior<br>condyle, 111,111                                                                                     | NS                                                                                                                                    | Øvm                                                              | Third molar<br>removal           |
| aver) NS 14141/30319, NS 114667/30105, NS 14567/30105, 14567/30105, 14567/30105, 14567/30105, NS 14697/30105, NS 14697/3005, NS 14697/30057/30057/3005, NS 14697/30057/30057/30057/30057 | (41411/30319, NS<br>(45675/31019,<br>†emi-mandible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS                                                                                                           | NS                                             |                                                    | NS              | Superior condyles,<br>111,000                                                                                              | NS                                                                                                                                    | σ <sub>1</sub> , σ <sub>3</sub> ,ε <sub>1</sub> , ε <sub>3</sub> | Reconstruction                   |
| TET10 9285/45301,<br>9023/32345 Isotropic, linearly elastic,<br>homogeneous Referen<br>to comy<br>studies   9023/32345 Model only cortical bone) studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2285/46301, Isotropic, Iinearly elastic, Referen<br>3023/32345 homogeneous to convi<br>0023/32345 (Model only cortical bone) studies<br>authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Isotropic, linearly elastic, Referen<br>homogeneous to comy<br>(Model only cortical bone) studies<br>authors | Referen<br>to conv<br>studies<br>authors       | ce made<br>ergence<br>by other                     | NS              | Superior condyles.<br>111,111                                                                                              | NS                                                                                                                                    | đ <sub>vM</sub>                                                  | Reconstruction                   |
| TET 640137/451532 Orthotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 940137/451532 Orthotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Orthotropic, linearly elastic, NS homogeneous                                                                | NS                                             |                                                    | NS              | Superior condyles,<br>111,111                                                                                              | NS                                                                                                                                    | σ <sub>VM</sub>                                                  | Osteosynthesis                   |
| nese HEX8 26644/27522 Isotropic, linearly elastic, NS<br>Human) homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26644/27522 Isotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Isotropic, linearly elastic, NS<br>homogeneous                                                               | NS                                             |                                                    | NS              | Superior condyles.<br>111,011                                                                                              | NO                                                                                                                                    | ØVM                                                              | Trauma                           |
| TET 40831 Isotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10831 Isotropic, linearly elastic, NS<br>homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Isotropic, linearly elastic, NS homogeneous                                                                  | NS                                             |                                                    | NS              | Muscles of<br>mastication and<br>TMJ modelled                                                                              | YES                                                                                                                                   | σ <sub>VM</sub> ,<br>displacement                                | TMJ examination                  |
| M HEX8 NS Isotropic, linearly elastic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VS Isotropic, Inearly elsstic, NS homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Isotropic, linearly elastic, NS homogeneous                                                                  | SN                                             |                                                    | S               | Superior condyles,<br>111,000<br>(Cadaveric model<br>constrained over<br>entire ramus,<br>condyle and<br>coronoid process) | Experimental<br>cadaveric<br>model<br>constrained in<br>different<br>manner to FE<br>manner to FE<br>model,<br>therefore not<br>valid | Qum                                                              | Mandibular<br>resection          |
| AD TET4 71280 Isotropic, linearly elastic, Referration of homogeneous studied of the studied of  | 1280 Isotropic, linearly elastic, Reference homogeneous studio authore authore authore authore and a studio authore au | Isotropic, linearly elastic, Refe<br>homogeneous to co<br>studio                                             | Refer<br>to co<br>studi<br>auth                | ence made<br>nvergence<br>es by other<br>ors       | SN              | Superior condyles,<br>111,000                                                                                              | Indirect,<br>against the<br>work of other<br>authors but<br>different study                                                           | EVM                                                              | TMJ prosthesis                   |
| mthetic TET4 100000 (including Isotropic, linearly elastic, NS<br>NURBS) distraction device) homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000 (including Isotropic, linearly elastic, NS<br>distraction device) homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Isotropic, linearly elastic, NS homogeneous                                                                  | NS                                             |                                                    | NS              | Ramus                                                                                                                      | NS                                                                                                                                    | đ <sub>VM</sub>                                                  | Distraction                      |
| TET4 NS. Final analysis Isotropic, linearly elastic, NS<br>only used a homogeneous<br>section of the initial model initial model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VS. Final analysis Isotropic, linearly elastic, NS<br>any used a homogeneous<br>ection of the intellimodel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isotropic, Imearly elastic, NS homogeneous                                                                   | NS                                             |                                                    | SN              | SN                                                                                                                         | NS                                                                                                                                    | σ <sub>vM</sub>                                                  | Orthodontic<br>movement          |
| s) NS NS Referred to Lovald et al., 2009 Region<br>of inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VS Referred to Lovald et al., 2009 Region<br>of inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Referred to Lovald et al., 2009 Region<br>of inve                                                            | Regior<br>of inve                              | ial – at area<br>estigation.                       | NS              | Superior condyles,<br>111,000                                                                                              | NS                                                                                                                                    | σ <sub>VM</sub> , ε <sub>1</sub>                                 | Osteosynthesis                   |
| NS 75407-101029 Isotropic, linearly elastic, Region<br>(including homogeneous of inv<br>osteosynthesis conve<br>plates) polates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55407-101029 Isotropic, linearly elastic, Region<br>including homogeneous of invu-<br>steosynthesis homogeneous conve<br>within<br>Jates) pointin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isotropic, linearly elastic, Region<br>homogeneous<br>Conve<br>within                                        | Region<br>of inve<br>Conve<br>within<br>points | nal — at area<br>estigation.<br>rgence<br>"a few % | SN              | Referred to Lovald<br>et al, 2009                                                                                          | NS                                                                                                                                    | 0 <sub>VM</sub> , 01, E1                                         | Osteosynthesis                   |
| AD TET4 71280 Isotropic, linearly elastic, Refere<br>of homogeneous to con-<br>ric ender<br>of author                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1280 Isotropic, linearly elastic, Refere<br>homogeneous to con<br>studie<br>autho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Isotropic, linearly elastic, Refere<br>homogeneous studie<br>autho                                           | Refere<br>to con<br>studie<br>authoi           | ince made<br>vergence<br>s by other<br>rs          | SN              | Incisor teeth fixed,<br>111,000                                                                                            | Model<br>previously used<br>and validated<br>by Mensard,<br>2006                                                                      | Evin                                                             | TMJ prosthesis                   |

| Investigators                        | Analysis<br>type | Geometry                                            | Element<br>type | Element/<br>node<br>resolution            | Mechanical Behaviour                                                   | Mesh<br>Convergence                                                                 | Mesh<br>Quality                           | Restraints                                                            | Validation                               | Outcome<br>variable                               | Study area                        |
|--------------------------------------|------------------|-----------------------------------------------------|-----------------|-------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|-----------------------------------|
| Tang, et al., 2012                   | Dynamic          | CT (Chinese<br>Virtual Human)                       | TET<br>HEX      | 275216/1387101<br>30024 TET<br>245192 HEX | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | Maximu<br>m<br>element<br>aspect<br>ratio | Condyles,<br>111,000                                                  | NS                                       | Kinetic Energy<br>Stress                          | Trauma                            |
| Choi, et al., 2010                   | Static*          | cr                                                  | NS              | SN                                        | NS                                                                     | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | Maximum<br>equivalent<br>stress                   | Osteosynthesis                    |
| Szucs, et al., 2010*                 | Static*          | CBCT                                                | TET             | 742412/148181                             | Linearly elastic                                                       | NS                                                                                  | NS                                        | Molar teeth                                                           | NS                                       | $\sigma_{VM}, \sigma_1, \sigma_3$                 | Third molar<br>removal            |
| Wang, et al., 2010                   | Static*          | ct                                                  | TET10           | 235000/375000                             | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | σ <sub>VM</sub>                                   | Osteosynthesis                    |
| Ming-Yih, et al., 2010               | Static*          | cī                                                  | TET10           | 353626/67837                              | Isotropic, linearly elastic,<br>homogeneous                            | YES – midline<br>displacement (5%)                                                  | NS                                        | Condyle seat                                                          | NS                                       | đ <sub>VIM</sub>                                  | Osteosynthesis                    |
| Ji, et al., 2010                     | Static*          | cī                                                  | NS              | SN                                        | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | ØVIM                                              | Osteosynthesis                    |
| Lovald, et al., 2009(1) <sup>v</sup> | Static*          | CT(IGES)                                            | TET             | 47525/72899                               | Orthotropic, linearly elastic,<br>homogeneous                          | Regional- at area<br>of investigation.<br>Convergence<br>within "a few %<br>points" | SN                                        | Superior condyles,<br>111,111                                         | NS                                       | ε <sub>1</sub> , σ <sub>1</sub> , σ <sub>VM</sub> | Osteosynthesis                    |
| Lovald, et al., 2009(2) <sup>V</sup> | Static*          | CT (IGES)                                           | TET10           | 125295/189497                             | Orthotropic, linearly elastic,<br>homogeneous                          | Regional— at area<br>of investigation.<br>Convergence<br>within "a few %<br>points" | NS                                        | Superior condyles,<br>111,000                                         | SN                                       | ε <sub>1</sub> , σ <sub>1</sub> , σ <sub>VM</sub> | Osteosynthesis                    |
| Parascandolo, et al., 2010           | Static*          | VRML<br>triangulation of<br>surface model           | QUAD            | 4560                                      | Anisotropic properties claimed<br>but no data given on how<br>achieved | SN                                                                                  | NS                                        | Spring elements<br>on condylar heads<br>active in<br>compression only | SN                                       | σ <sub>c</sub> , σ <sub>t</sub>                   | Osteosynthesis                    |
| Schuller-Götzburg, et al.,<br>2009   | Static*          | Sectioned<br>mandible<br>photographed<br>and traced | НЕХ8            | 20000                                     | Isotropic, linearly elastic,<br>homogeneous                            | SN                                                                                  | SN                                        | SN                                                                    | SN                                       | Øvm                                               | Osteosynthesis/<br>Reconstruction |
| Sugiura, et al., 2009                | Static*          | CT, axial scans<br>traced.                          | HEX8            | 4713-4993/6789-<br>7255                   | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles.<br>111,111                                         | NS                                       | $\sigma_c, \sigma_t, \sigma_{VM}$                 | Osteosynthesis                    |
| Kavanagh, et al., 2008               | Static*          | CT (altered)                                        | TET             | 35300/8340                                | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | σ,<br>Displacement                                | Osteosynthesis                    |
| Arbag, et al., 2008 <sup>a</sup>     | Static*          | CT (dried skull),<br>axial scans<br>traced.         | нех20           | NS (mirrored<br>hemi-mandible)            | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | Displacement                                      | Osteosynthesis                    |
| Kromka & Milewski, 2007              | Static*          | NS                                                  | SN              | SN                                        | NS                                                                     | NS                                                                                  | NS                                        | Different<br>constraints for<br>mechanical and FE<br>set-up           | Mechanical<br>validation not<br>achieved | E1, E2                                            | Osteosynthesis                    |
| Korkmaz, 2007                        | Static*          | CT (dried skull),<br>axial scans<br>traced.         | NS              | NS                                        | NS                                                                     | NS                                                                                  | NS                                        | NS                                                                    | NS                                       | ε1                                                | Osteosynthesis                    |
| Boccaccio, et al., 2007              | Static*          | CT of synthetic<br>model (VRML)                     | HEX8            | 17767                                     | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Ramus                                                                 | NS                                       | σ <sub>VM</sub>                                   | Distraction<br>osteogenesis       |
| Korkmaz, 2007(2) <sup>a</sup>        | Static*          | CT (dried skull),<br>axial scans<br>traced.         | HEX20           | NS (mirrored<br>hemi-mandible)            | Isotropic, linearly elastic,<br>homogeneous                            | NS                                                                                  | NS                                        | Superior condyles,<br>111,000                                         | NS                                       | Displacement                                      | Osteosynthesis                    |

| Investigators                                     | Analysis | Geometry                                         | Element | Element/                    | Mechanical Behaviour                                     | Mesh        | Mesh    | Restraints                    | Validation | Outcome                         | Study area     |
|---------------------------------------------------|----------|--------------------------------------------------|---------|-----------------------------|----------------------------------------------------------|-------------|---------|-------------------------------|------------|---------------------------------|----------------|
| 24                                                | type     |                                                  | type    | node<br>resolution          |                                                          | Convergence | Quality |                               |            | variable                        |                |
| Knoll, et al., 2006                               | Static*  | NS                                               | NS      | NS                          | Isotropic, linearly elastic,<br>homogeneous              | NS          | NS      | NS                            | NS         | ØVM                             | Osteosynthesis |
| Choi, et al., 2005                                | Static*  | Traced<br>sectioned<br>cortical bone<br>outlines | НЕХ     | 258/1635                    | Transversely isotropic, linearly<br>elastic, homogeneous | SN          | SN      | SN                            | Comparison | σ <sub>c</sub> , σ <sub>t</sub> | Occlusion      |
| Gallas Torreira &<br>Fernandez, 2004 <sup>8</sup> | Dynamic  | Surface mesh<br>obtained from<br>3rd party       | TET     | 30119/7073                  | Isotropic, linearly elastic,<br>homogeneous              | NS          | SN      | NS                            | NS         | σ <sub>VM</sub>                 | Trauma         |
| Cox, et al., 2003                                 | Static*  | Commercial<br>model                              | HEX8    | NS<br>Hemi-mandible<br>used | Regionally orthotropic, linearly<br>elastic, homogeneous | SN          | NS      | Superior condyles,<br>111,000 | NS         | σ <sub>vM</sub>                 | Osteosynthesis |
| Fernández, et al., 2003 <sup>8</sup>              | Static*  | NS                                               | TET4    | NS                          | Isotropic, linearly elastic,<br>homogeneous              | NS          | NS      | Superior condyles             | NS         | ØVM                             | Osteosynthesis |
| Wagner, et al., 2002                              | Static*  | Traced axial CT<br>scans                         | NS      | NS                          | NS                                                       | NS          | NS      | Mandibular joint,<br>111,000  | NS         | ØVM                             | Osteosynthesis |
|                                                   |          |                                                  |         |                             |                                                          |             |         |                               |            |                                 |                |

# Table 2.4 Summary of the characteristics of 3DFEA studies

|   | eme  |   |
|---|------|---|
|   | ar e |   |
|   | angl | 0 |
| 1 | -    |   |
|   |      |   |
|   |      |   |
|   |      |   |
|   |      |   |

- Tetrahedral elements with unknown node number
- Tetrahedral elements with four nodes (linear element)
- Tetrahedral elements with ten nodes (quadratic element) Tet Tet4 Tet10 Hex Hex8 Hex20 NS Static<sup>\*</sup> ε<sub>3</sub> σ<sub>VM</sub>
- Hexahedral elements with unknown node number Hexahedral elements with eight nodes (linear element)
- Hexahedral elements with twenty nodes (quadratic element)
  - Not specified in text as to whether
    - Not specified but assumed from methodology First principal strain
      - - Third principal strain
          - von Mises stress
- Compressive stress ŏ
  - **Tensile stress**
  - Third principal stress a a a
- x,y,z,,x,y,z, where a value of 1 implies restriction and 0 implies free movement. t=translation and r=rotation First principal stress Constraints

Studies, which have used the same model, have similar superscript

# 2.3.8 Review of modelling techniques used - general conclusions

Table 2.5 shows the breakdown of biological studies employing 3DFEA mandibular models to study the management of fractures and traumatic injuries.

| Area of study                               | No. articles |
|---------------------------------------------|--------------|
| Osteosynthesis                              | 21           |
| Third molar removal in relation to fracture | 2            |
| Mandibular reconstruction                   | 4            |
| Temporomandibular joints                    | 3            |
| Mandibular trauma                           | 3            |
| Distraction osteogenesis                    | 2            |
| Orthodontic treatment                       | 1            |
| The study of dental occlusion               | 1            |

Table 2.5 Areas of mandibular study employing finite element analysis.

# 2.3.8.1 Analysis type

Study analyses were either static or dynamic, although in many cases this was not explicitly stated and was inferred from the methodology. Linear mechanics were used throughout all studies.

### 2.3.8.2 Geometry

Accurate geometry is essential to reproduce the characteristics of the system under investigation and most of the studies performed within the last 8 years utilized clinical CT scans, either conventional or cone-beam (CBCT). How the data was used varied between studies. CT data of plastic models has been used (Mesnard, et al., 2011; Boccaccio, et al., 2011), as well as dried skulls (Arbag, et al., 2008; Korkmaz, et al., 2007), cadavers (Ertem, et al., 2013), and lately, three-dimensional reconstructions directly from either clinical conventional CT (Narra, et al., 2014; Li, et al., 2013; Vajgel, et al., 2013; Savoldelli, et al., 2012; Gaball, et al., 2011; Kimsal, et al., 2011; Choi, et al., 2010), or CBCT data (Murakami, et al., 2014; Bezerra, et al., 2013; Anmar, et al., 2011; Szucs, et al., 2010). Those techniques which utilized micro CT ( $\mu$ CT) examination of dried skulls were able to re-produce hard tissue most accurately; however, this level of ionizing radiation exposure is not used clinically.

# 2.3.8.3 Element type

Finite elements are mathematical representations of simple shapes that can be used to convert forces, displacements and stiffness into values of stress and strain (Adams, 2008). They generally have 3 forms; line, shell and solid. The most common solid elements used in biological 3DFEA are tetrahedral, hexahedral or occasionally pentahedral.

Few of the authors gave justification for their element choice. In the case of earlier studies this may have been due to the lack of element choice with analysis software.

#### 2.3.8.4 Element resolution

Element resolution is vital to the accuracy of the solution. A wide range of element resolutions were used for similar studies, ranging from 4500 to 740000. Whether a model has sufficient resolution to give a mathematically accurate solution may be confirmed with a convergence study. Some authors assumed that once a model had converged at one element resolution, then all roughly similar models with the same resolution would also result in a converged solution (Mesnard, et al., 2011). This is not always true, making comparison between studies difficult. The required resolution to produce an accurate result is dependent on the answer being sought, the element type chosen and the individual geometry.

#### 2.3.8.5 Boundary conditions

Boundary conditions, i.e. loads, restraints and contacts, are idealized representations of modelled and non-modelled parts of a system (Adams, 2008). The correct application is therefore critical to the accuracy of any analysis. Loads may be applied to model nodes directly as forces or to elements as pressure, or to the whole body as accelerations and velocity.

Restraints are used to eliminate unwanted degrees of freedom in a model. In most mandibular models reviewed, the superior condylar heads were restrained, simulating the effect of the temporomandibular joint (TMJ). One of the unwanted effects of the restraints is to produce areas of high stress and strain locally. None of the authors made reference to this effect when interpreting their results.

# 2.3.9 Review of studies

Mandibular 3DFEA models have been used frequently used to study plate osteosynthesis in the management of trauma. These studies have concentrated on

either an assessment of the ideal positioning of the plates or determining whether a plate is able to bear a specific load without failure.

An early study by Wagner, et al. (2002) involved the biomechanical behaviour of the mandible and plate osteosynthesis in the treatment of condylar fractures. The authors constructed a finite element model utilizing the traced cortical outlines from axial CT scans and CAD/CAM software to produce a three-dimensional model. Using only the outer cortical outline, sub-cortical structure could not be reproduced. Cancellous bone was not modelled. No details of element resolution were given. Material properties (unspecified) were applied following the conversion of CT Hounsfield units into density values and then into the elastic modulus. This process required calibration, but no mention of this was made in the paper. The boundary conditions included temporalis, masseter and medial pterygoid muscles. These were modelled as load vectors bilaterally. It was not possible from the description to determine whether the muscle forces were applied as single resultant vectors applied to a point on the mandibular cortex or whether the load was split over the anatomical insertion point of each muscle. Displacement constraints were placed in the mandibular joint. The authors stated that lateral pterygoid was not modelled due to its direction of action. The outcome measure of the study was von Mises stress in the osteosynthesis plate and the mandible.

Cox, et al. (2003) also studied osteosynthesis plates, this time comparing resorbable polymer plates and screws for fixation of fractures. To produce the mandibular geometry, a meshed surface model was purchased and its dimensions were compared to a plastic replica mandible. The surface accuracy of the model was therefore limited by the accuracy of the plastic replica. The cortical thickness was determined from cortical measurements taken at six points from the axial CT scans of an unrelated patient. These were transposed to the model geometry. Unlike the study of Wagner, et al. (2002) these authors modelled cancellous bone volume. This was defined as the space deep to the cortex. The mandibular canal was not modelled in either cortical or cancellous bone. The authors assigned orthotropic properties to three different areas of the cortical bone in the model. This theoretically improved the accuracy of the material properties. It was postulated that the model would have been more accurate if the bone was assigned "gradual and continuously changing local orthotropic properties in hundreds or thousands of micro-regions around the mandibular arch" (Cox, et al., 2003). Cancellous bone was modelled as isotropic despite being highly anisotropic. No details of model element resolution or mesh convergence were given, making assessing model accuracy difficult. With no comparison of results available, it is difficult to determine whether the use of orthotropic cortical bone properties was an improvement over the use of isotropic properties either mechanically or clinically. In addition, the solution time was difficult determine not given, making it to whether the accuracy improvement/processing time ratio would make the change unreasonable.

The 3DFEA model produced by Lovald, et al. (2009) was an incrementally better model from an anatomical point of view. Clinical CT data was reconstructed to produce the geometry using IGES line contours, which were subsequently "skinned" to produce volumes. The final volume mesh contained over 125000 quadratic tetrahedra. Mesh convergence was achieved within "a few percentage points" according to the authors. Regional orthotropic material properties were assigned in 12 cortical bone volumes, an increase over the model of Cox, et al. (2003), however, both buccal and lingual cortices used the same values of elastic modulus in contrast to the natural situation (Schwartz-Dabney and Dechow, 2003). In line with other studies, translational restraints were placed on the condylar heads. These were sufficiently distant from the area of interest to make little difference to the interpretation of the results. Muscle force vectors were applied (after Korioth, et al. (1992)) to produce incisal and unilateral molar loading conditions. This complex model enabled the evaluation of osteosynthesis plates under simulated loading conditions. The main problem with the modelling technique was that the analysis was performed statically whereas the true loading condition would be dynamic. No mechanical model validation was performed.

Many other authors have investigated the use osteosynthesis plates using 3DFEA using mandibular models, including Korkmaz, et al. (2007); Kromka, et al. (2007); Arbag, et al. (2008); Kavanagh, et al. (2008); Schuller-Götzburg, et al. (2009); Lovald, et al. (2009); Parascandolo, et al. (2010); Ji, et al. (2010); Ming-Yih, et al. (2010); Wang, et al. (2010); Choi, et al. (2010); Kimsal, et al. (2011); Gaball, et al. (2011); Vajgel, et al. (2013); and Murakami, et al. (2014). The most advanced of these studies, have produced their mandibular geometry directly from conventional or cone-beam CT scans of the mandible. No authors attempted to assign anisotropic properties to the mandible. Few authors have segmented the mandibular teeth in their analyses, even when the teeth were used to load the mandible.

The work of Ashman and Van Buskirk (1987) suggested that mandibular bone might be reasonably considered to behave orthotropically and as previously stated, it was assumed that the regionally orthotropic models of Lovald, et al. (2009) and Vajgel, et al. (2013) would provide greater accuracy, although little evidence has been found to support this in clinical studies. Lovald, et al. (2009) and Kimsal, et al. (2011) stated that mesh convergence had been reached at element resolutions ranging from 75000-125000 for their mandibular models despite using linear rather than quadratic tetrahedra. These would appear to be very low element resolutions, compared to other authors who used the same modelling technique (Vajgel, et al., 2013), for models that were anatomically quite detailed.

All analyses reviewed to this point were performed statically, despite the fact that they were used to study situations that were clearly dynamic in nature.

The paper of Gallas Torreira and Fernandez, (2004) described one of the first attempts to study traumatic insults to the mandible using dynamic 3DFEA. This paper gave few details on how the geometry was modelled; except that it was obtained from the work of a third party who laser scanned an object and used a CAD/CAM application to produce a digital model. It was not stated how sub-cortical structures were modelled. The individual teeth were not modelled as separate volumes. The model was composed of 30119 tetrahedra with 7073 nodes. No convergence details or mesh quality measures were mentioned. The temporomandibular joints were modelled with a "unilateral contact condition on the upper surface of the condyles within the glenoid fossa" (Gallas Torreira and Fernandez, 2004). No muscles were modelled or equivalent forces applied to the model. Isotropic model properties were used for both cortical and cancellous bone. The load chosen for the analysis was  $1 \times 10^7$  Nm<sup>-2</sup>, which was large enough to produce a fracture (Krüger, 1986); however, the use of a load that by definition would be outside the elastic limit of bone would seem to preclude the use of linearly elastic mechanics. The model was examined after an impact of one second. This seems a long contact time for an impact as a result of inter-personal violence. One would normally consider this to be in the order of milliseconds. Two impact scenarios were analysed, symphyseal and body. Von Mises stress was used as the indicator of bone failure. The authors felt that their study verified clinical observations by identifying potentially weak areas of the mandibular geometry such as the condylar neck and the mandibular angles. Despite being a dynamic analysis, no information was given regarding the temporal appearance of areas of high stress. If areas of high stress were to be associated with the appearance of fractures then the temporal appearance of stress would give information concerning the fracture order.

The second dynamic 3DFEA study related to mandibular trauma was produced by Tang, et al. (2011) in order to investigate ballistic injuries to the human mandible. This study was related to a previous study of the same authors, which modelled ballistic injuries in the pig mandible. The Chinese Visible Human (<u>chinesevisiblehuman.com</u>) formed the digital dataset for the mesh. Cortical and cancellous bone was modelled but teeth and associated structures were omitted, suggesting that the dataset was altered during 3D reconstruction. No muscles were modelled. The final volume mesh was composed of a mixture of tetrahedral and hexahedral elements. The resolution was 275216 elements and 1387101 nodes. Constraints were placed in the superior condylar regions, as in most papers. This paper was the first to mention a mesh quality assessment, ensuring that the maximum element ratio of the mesh did not exceed five. As high velocity impacts were being studied, the full simulation time was 500µs resulting in a computation time of 38-40 hours on a well-specified computer.

A similar paper from the same institution investigated blast injuries to the mandible (Lei, et al., 2012). The general modelling technique was the same; however, the model had a much lower element resolution. Von Mises stress was used as the indicator of failure. Stress and strain patterns in their study had different patterns both spatially and temporally. In acknowledging the limitations of their study, the authors noted the use of isotropic, homogeneous properties, the lack of validation and verification due to ethical and practical reasons. They argued that the results of their previous study of gunshot injuries to a pig mandible (Chen, et al., 2010) using 3DFEA produced results that were considered accurate and that as this study utilised the same technique, and as the model had similar material properties, the results should also be considered accurate. This might not be as reasonable a conclusion as it appears as the mechanisms of injury were different (i.e. rifle shot vs. blast injury) meaning that the model was loaded in a different manner and the geometry of the mandible in both cases differed significantly. The final study related to trauma is that of Bezerra, et al. (2014). The aim of the study was to determine whether erupted third molars weaken the mandible, when subjected to impacts in the symphyseal region. Mandibular geometry was reproduced using CBCT scans of a normal mandible. The 3DFEA mesh was constructed by separating 'masks' of mandibular structures using a thresholding technique whereby pixels of pre-defined Hounsfield values were eliminated from the axial scans. The masks were then reconstructed, producing a 3D model where each voxel was directly converted into a finite element. One drawback of this technique is that the resolution of the resulting model was determined by the resolution of the scan. Tetrahedral elements and triangular elements were used, although it is not clear where the 2-dimensional triangular elements were used. Material properties were once again to isotropic and linearly elastic. 524927 elements were used in constructing the bony structures. Masticatory muscles were reproduced using spring elements and condyles were constrained in all degrees of freedom at the most posterior superior part of the condyles rather than the more traditional position of the superior condylar head. The load was applied perpendicular to the frontal plane. Closer examination of the Bezerra study shows a flaw of the voxel-transformation technique which could affect the analysis results. The mandibular model showed that the teeth were incompletely segmented, fused to each other. This meant that in terms of action the teeth acted as a single unit rather than individually. Therefore, the influence of the erupted third molar was not examined in isolation and the conclusion of the analysis results could be in doubt. Whether a dentition with sufficiently tight contact points or significant crowding would produce the same effect as the FEA model remains untested.

#### 2.3.10 Conclusions

The preceding review gave a useful insight into modelling techniques previously used by authors studying the mandible in clinical situations. In evaluating the techniques used it would seem that modelling traumatic injuries to the mandible should be theoretically possible. The following points should be observed when producing a suitable 3DFEA model.

- Static or dynamic analyses may be used; however, the research question must be appropriately phrased.
- CT scans seem to be the best source of data to reproduce the geometry of the mandible most accurately. Of the choice of conventional clinical CT, cone-beam CT and μCT, the best resolution would be gained from a μCT scan; however, this would require a dried human skull.
- 3. Element resolution is important to calculation accuracy. The final resolution should be decided following a mesh convergence study if the analysis software does not perform this automatically. Although only a single study used a meshquality parameter this is to be recommended to ensure accuracy of the mesh.
- 4. The use of either isotropic or orthotropic properties for cortical bone may be used; however, no real benefit of one over another has been shown in a study.
- Although all studies reviewed used linear mechanics and claimed that results were comparable with clinical situations. This may not be the case in non-linear situations such as bony fracture.
- 6. In most studies, condyles were restrained on the superior surface of the head. This has widely been accepted as a reasonable approximation of the temporomandibular joint as long as the restrained area is away from the area under investigation.

- Outcome variables such as von Mises stress may be a reasonable first approximation of failure for a material such as bone that can fail in a ductile or quasi brittle manner.
- Validation of models using human subjects is not possible due to ethical considerations; however, experimental mechanical studies, comparison and trend studies are still possible.

#### 2.4 Clinical patterns of mandibular fracture

2.4.1 The prevalence of mandibular sub-site fractures: Introduction and rationale

The mandible is the largest and strongest bone of the facial skeleton (Haug, et al., 1990; Hogg and Horswell, 2006; Vetter, et al., 1991; Oikarinen, et al., 1993), and been and after the nasal bones is the second most traumatically injured bone in the adult facial skeleton.

Mandibular fractures may be uni- or multifocal. There is little consensus regarding which site fractures most frequently. The predominant fracture site has been variously identified as the condyle (Al Ahmed, et al., 2004; Bormann, et al., 2009; Brasileiro and Passeri, 2006; Christiaens and Reychler, 2002; de Matos, et al., 2010), the angle (Antoun and Lee, 2008; Anyanechi and Saheeb, 2011; Ogundare, et al., 2003), the body (Adebayo, et al., 2003; Adekeye, 1980; Adi, et al., 1990; Chambers and Scully, 1987; Mwaniki and Guthua, 1990), and parasymphysis (Abdullah, et al., 2013; Goldberg and Williams, 1969). Fracture sub-site preference might be due to an inherent weakness associated with the mandibular geometry, the material properties, the traumatic aetiology or a combination of the three.

# 2.4.1.1 Objective

To review the existing, peer-reviewed literature which reported the prevalence of mandibular fractures with the aim of determining which anatomical fracture sub-site featured predominantly.

#### 2.4.1.2 Method

A protocol for the analysis and the study inclusion criteria were devised before the data collection phase. The protocol may be found in appendix 17.

### 2.4.1.2.1 Eligibility criteria

Eligible studies were prospective or retrospective, reporting the prevalence of nonpathological fractures of the mandible in humans. Such cases presenting to medical establishments for either surgical or non-surgical treatment must have been consecutive patients within a defined time period.

# 2.4.1.2.2 Information sources

Electronic and manual literature searches were performed to identify studies reporting the incidence of mandibular fractures. Ovid Medline, Embase, PubMed, Scirus and Scopus databases were interrogated. The Medical Subject Heading (MeSH) terms employed are outlined in table 2.6. The search was limited between the years 1963 and 2013 and to human subjects when such options were available in the database. No language restrictions were employed. Manual searching was employed when appropriate references were found in retrieved articles.

#### 2.4.1.2.3 Study selection

An eligibility assessment was performed by a single reviewer. It was realized that this could introduce bias and errors so in an attempt to reduce the errors the eligibility assessment was performed on four occasions separated by three months. Journal abstracts were reviewed for all search results where they were available. In cases where there was no abstract and the title was not clear with respect to the exclusion criteria, a decision whether or not to exclude the article was made following retrieval. All papers

selected must have classified mandibular fracture according to the Dingman and Natvig classification. Figure 2.3 shows the anatomical boundaries used for classification of subsites.



Figure 2.3 The fracture sub-site classification used for the meta-analysis. The ramus was combined with the coronoid process forming the ascending ramus for analysis purposes.

Qualitative and quantitative data were entered into a spreadsheet (Excel 2010, Microsoft©). Authors, publication date, site and relative frequency of mandibular fracture, age group studied, study type, study period and country of study origin were recorded from articles included in the study. Where a study was not specifically related to mandibular fractures, but contained sufficient related raw data, this was extracted and frequencies calculated manually. Authors were also contacted to provide clarification on their data where this was not clear in the published article. The retrieved articles that were deemed suitable for meta-analysis were analysed using StatsDirect<sup>®</sup>. Bias was assessed using a funnel plot (Sterne and Egger, 2001). Evidence of asymmetry was based on p<0.05. Heterogeneity statistics (non-combinability statistics), Cochran Q and I<sup>2</sup> (Higgins and Thompson, 2002; Higgins, et al., 2003), were also calculated. A prevalence meta-analysis was performed. Other papers pertinent to mandibular fracture

sub-sites, but using a classification unsuitable for the meta-analysis were also reviewed

for other information that was related to mandibular fracture patterns (see section 2.5).

| Search Strategy                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             | No. Hits<br>per<br>Database |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Database: Ovid MEDLINE(R) In-Process ar<br>and Ovid MEDLINE(R) <1946 to Present>,<br>1965>, Embase Classic+Embase <1947 to 2                                                                                                                                                                                                                                      | nd Other Non-Indexed Citations<br>Ovid OLDMEDLINE(R) <1946 to<br>2013 March 29>                                                                                                             | 1130                        |
| Search Strategy:                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                             |
| ((mandible or mandibular) and fracture a<br>nm, hw, kf, ps, rs, ui, an, sh, tn, dm, mf, d                                                                                                                                                                                                                                                                         | nd trauma).mp. [mp=ti, ab, ot,<br>v, kw] (1942)                                                                                                                                             |                             |
| Limit to human (1664)                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                             |                             |
| Limit to yr= "1963- Current" (1663)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                             |                             |
| remove duplicates (1130)                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             |                             |
| Database: PubMed                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             | 6604                        |
| Search Strategy: ((mandible or mandibula                                                                                                                                                                                                                                                                                                                          | r) and fracture and trauma)                                                                                                                                                                 |                             |
| Query Translation:                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                             |                             |
| (("mandible"[MeSH Terms] OR "mandible<br>("mandible"[MeSH Terms] OR "mandible<br>"mandibular"[All Fields])) AND (("fracture<br>("fractures"[All Fields] AND "bone"[All Fiel<br>Fields] OR "fracture"[All Fields]) AND ("in<br>"injuries"[All Fields] OR "trauma"[All Fiel<br>injuries"[MeSH Terms] OR ("wounds"[All<br>Fields]) OR "wounds and injuries"[All Fiel | e"[All Fields]) OR<br>"[All Fields] OR<br>es, bone"[MeSH Terms] OR<br>elds]) OR "bone fractures"[All<br>juries"[Subheading] OR<br>ds] OR "wounds and<br>Fields] AND "injuries"[All<br>ds])) |                             |
| Scirus                                                                                                                                                                                                                                                                                                                                                            | (mandible or mandibular )AND<br>(fracture or fractures) in title                                                                                                                            | 6                           |
| Scopus                                                                                                                                                                                                                                                                                                                                                            | (mandible or mandibular )AND<br>(fracture or fractures) in title                                                                                                                            | 771                         |
| Total                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                             | 8511                        |

Table 2.6 Search strategies employed in the prevalence meta-analysis.



Figure 2.4 Flow chart of selection process for article review.

39

# 2.4.1.3 Results

The search strategy outlined in the method yielded 8511 studies, which were initially identified for examination. After applying the selection process Figure 2.4, of the 351 full-length articles retrieved, 251 did not meet the exclusion criteria (see appendix 20) 100 articles remained which were fully assessed. Thirty-two studies were deemed suitable for meta-analysis. Of the 32 studies included, 2 had a very small sample size. The study by Le, et al. (2001) was confined to facial fractures presenting in domestic violence victims who presented to the emergency room where the fist was the most common means of assault. In this study there were only 30 mandibular fractures in total. The second study (Oji, 1998) only included 42 mandibular fractures.

A large multicentre study which included 5196 mandibular fractures (Boole, et al., 2001) was excluded due to the methodology. In this study of active duty army soldiers the number of fractures at mandibular sub-sites was retrieved from an army database which included all body injuries, however, the authors did not verify the data in any way i.e. neither radiographs or medical notes were reviewed. The study by Copcu, et al. (2004) was also excluded as they did not include patients treated under local anaesthesia in an area of the world where this is a common treatment modality for minimally displaced fractures. These fractures were most likely to have been condylar fractures. The exclusion of such fractures would have significantly altered their results. Two authors contacted provided clarification of their results (Eskitaşcıoğlu, et al., 2013; Zachariades, et al., 1990).

|                             |             |           |             |             | Articles ass     | essed for    | meta-an     | ialysis eli | gibility    |                 |               |               |                      |
|-----------------------------|-------------|-----------|-------------|-------------|------------------|--------------|-------------|-------------|-------------|-----------------|---------------|---------------|----------------------|
|                             | A           | natomica  | ıl site an  | d relativ   | e frequency o    | f mandibult  | ar fracture | Sa          |             |                 |               |               |                      |
|                             |             | (% is     | the sup     | erior nu    | mber, r is the i | inferior nun | nber)       |             |             |                 |               |               |                      |
| Authors                     | Condyle     | Ramus     | Angle       | Body        | Parasymphysis    | Symphysis    | Alveolus    | Coronoid    | Age         | Number of       | Study         | Study type    | Country              |
|                             |             |           |             |             |                  |              |             |             | range       | cases/fractures | Period        |               |                      |
| Abdullah, et al., 2013      | 22.2<br>42  | 1.1<br>2  | 17.5<br>33  | 15.9<br>30  | 29.6<br>56       | 6.4<br>12    | 5.8<br>11   | 1.6<br>3    | AII         | */189           | 2007-<br>2011 | Retrospective | Saudi Arabia, Riyadh |
| Adebayo, et al., 2003       | 5.8<br>27   | 4.7       | 18.5<br>86  | 51<br>238   | * *              | 12.3<br>57   | 7.3<br>34   |             | 5y-65y      | 443/465         | 1991-<br>2000 | Retrospective | Nigeria, Kaduna      |
| Adekeye, 1980               | 11 *        | * *       | 16<br>*     | 47<br>*     | 26<br>*          | ; * *        | * *         | · + *       | AII         | */1615          | 1973-<br>1978 | Prospective   | Nigeria, Kaduna      |
| Adi, et al., 1990†          | 26.1<br>165 | 3.6<br>23 | 19.5<br>123 | 26.3<br>166 | 19.1<br>121      | PS<br>PS     | 3.5<br>22   | 1.9<br>12   | AII         | 378/632         | 1977-<br>1985 | Retrospective | Scotland, Dundee     |
| Ajagbe, et al., 1977        | 20<br>*     | * *       | 15<br>*     | 51<br>*     | 0 *              | 13<br>*      | * *         | + ۲         | AII         | */152           | 1965-<br>1975 | Retrospective | Nigeria, Ibadan      |
| Aksoy, et al., 2002         | 15.3<br>*   | 1.8<br>*  | 15.3<br>*   | 10.0<br>*   | 36.5<br>*        | 21.2<br>*    | * *         | * *         | AII         | 417/*           | 1994-<br>2001 | Retrospective | Turkey, Ankara       |
| Al Ahmed, et al., 2004      | 25.3<br>38  | 4.0<br>6  | 23.3<br>35  | 20.0<br>30  | 18.0<br>27       | PS<br>PS     | 8.0<br>12   | 1.3<br>2    | AII         | */150           | 1999-<br>2002 | Retrospective | UAE, Sharjah         |
| Al-Aboosi & Perriman, 1976  | 24.1<br>33  | 0.7<br>1  | 16.1<br>22  | 13.9<br>19  | 33.6<br>46       | 11.7<br>16   | * *         | * *         | NS          | 100/137         | 1965-<br>1970 | Retrospective | Iraq, Baghdad        |
| Al-Khateeb & Abdullah, 2007 | 12.2<br>33  | 4.1<br>11 | 17.4<br>47  | 39.6<br>107 | * *              | 15.6<br>42   | 10.0<br>27  | 1.1<br>3    | AII         | 203/270         | 1995-<br>2003 | Retrospective | UAE                  |
| Anderson, 1995              | 41.7<br>20  | * *       | * *         | 22.9<br>11  | 10.4<br>5        | 8.3<br>4     | 16.7<br>8   | * *         | NS          | 33/48           | 1983-<br>1992 | Retrospective | Scotland, Edinburgh  |
| Andersson, et al., 1984     | 43.3<br>406 | 1.7<br>16 | 13.5<br>126 | 23.2<br>217 | 11.8<br>110      | PS<br>*      | 5.0<br>47   | 1.5<br>14   | AII         | 795/936         | 1978-<br>1980 | Retrospective | Sweden, Stockholm    |
| Ansari, 2004                | 27.2<br>325 | 0.3<br>4  | 18.3<br>218 | 30.5<br>364 | * *              | 23.2<br>277  | * *         | 0.5<br>6    | AII         | /*1194          | 1987-<br>2001 | Retrospective | Iran, Hamedan        |
| Anyanechi & Saheeb, 2011    | 27.1<br>*   | * *       | 31.3<br>*   | 12.7<br>*   | * ک              | 22.9<br>*    | * *         | * *         | 15y-<br>42y | 73/*            | 2005-<br>2008 | Prospective   | Nigeria, Calabar     |
| Antoun & Lee, 2008          | 25.5<br>75  | 2.4<br>7  | 35.0<br>103 | 13.9<br>41  | 17.3<br>51       | 5.8<br>17    | * *         | * *         | All         | */294           | 1996-<br>2006 | Retrospective | New Zealand          |

| Authors                           | Condyle     | Ramus      | Angle       | Body        | Parasymphysis | Symphysis   | Alveolus   | Coronoid | Age         | Number of            | Study         | Study type    | Country                |
|-----------------------------------|-------------|------------|-------------|-------------|---------------|-------------|------------|----------|-------------|----------------------|---------------|---------------|------------------------|
|                                   |             |            |             |             |               |             |            |          | range       | cases/fractures      | Period        |               |                        |
| Arvind, et al., 2013              | ပ္ပ ,       | * •        | * :         | * :         | PS ,          | * :         | * •        | ყ,       | 6y-16y      | n/n                  | 2008-         | Retrospective | India, Nadu            |
|                                   | *           | ÷          | 5           | 5           | *             | 5           | *          | •        |             |                      | 2012          |               |                        |
| Bamjee, et al., 1996              | 14.2        | 3.6        | 32.8        | 19.2<br>Cr  | 22.2<br>75    | 7.4         | * *        | 0.6<br>J | <18y        | */338                | 1989-         | Retrospective | South Africa,          |
|                                   | 40          | 77         | 777         | 6           | c/ +          | c7 .        |            | <b>√</b> | :           |                      | 7227          |               | Jonannespurg           |
| Bataineh, 1998                    | 14.1<br>59  | 22.7<br>95 | 24.8<br>104 | 32<br>134   | * *           | 4.1         | * *        | 2.4      | All         | 584/419              | 1992-<br>1997 | Retrospective | Jordan                 |
| Bither, et al., 2008              | 16.7        | 5.4        | 19.8        | 13.6        | 39.3          | 1.4         | 3.3        | 0.6      | 3v-67v      | 324/486              | 2003-         | Retrospective | India. Maharashtra     |
|                                   | 81          | 26         | 96          | 99          | 191           | 7           | 16         | m        |             |                      | 2007          |               |                        |
| Boole, et al., 2001               | 23.3        | 4.5        | 35.6        | 12.7        | PS            | 20.1        | 2.7        | 1        | AII         | 2344/3078            | 1980-         | Retrospective | Honolulu, Hawaii       |
|                                   | 716         | 140        | 1096        | 392         | PS            | 620         | 84         | 30       |             |                      | 1998          |               |                        |
| Bormann, et al., 2009             | 41.8        | 2.4        | 20.3        | 14.5        | 20.7          | PS<br>*     | * *        | 0.3      | 10y-<br>06y | 444/696              | 2000-<br>2005 | Retrospective | Germany                |
|                                   | 167         | , , ,      | 141         | 101         | t *           | 1           | *          | ۰<br>۲   | Anc         | 411/101              | 0001          |               |                        |
| Brasileiro & Passeri, 2006        | 28.8<br>162 | 2.3<br>13  | 20.1<br>113 | 23./<br>133 | • *           | 24.7<br>139 | *          | 0.4<br>2 | All         | 423/202              | 2004          | Ketrospective | brazii, sao rauio      |
| Breeze, et al., 2011              | 9.4         | RA         | 24.8        | 29.2        | *             | 36.8        | *          | *        | AII         | 60/106               | 2004-         | Retrospective | Birmingham, UK         |
|                                   | 10          | *          | 26          | 31          | *             | 39          | *          | *        |             |                      | 2009          |               |                        |
| Chambers & Scully, 1987           | 16.5        | 9.1        | 22.7        | 27.8        | 10.2          | 10.8        | *          | 2.8      | NS          | 124/176              | 1944-         | Retrospective | India, Trimalgherry-   |
|                                   | 29          | 16         | 40          | 49          | 18            | 19          | *          | 5        |             |                      | 1945          | %             | Deccan                 |
| Christiaens & Reychler, 2002      | 30.6        | 2.3        | 15.6        | 24.8        | 16.7          | 8.6         | *          | 1.3      | AII         | 1198/1425            | 2000-         | Retrospective | Brazil, Belo Horizonte |
|                                   | 436         | 33         | 223         | 353         | 238           | 123         | *          | 19       |             |                      | 2002          |               |                        |
| Copcu, et al., 2004               | 18.7        | 3.7        | 23.4        | 26.2        | 19.6          | PS          | 6.5        | 1.9      | AII         | 218/107 <sup>v</sup> | 1996-         | Prospective   | Turkey, Izmir          |
|                                   | 20          | 4          | 25          | 28          | 21            | PS          | 7          | 2        |             |                      | 2002          |               |                        |
| de Matos, et al., 2010            | 28.3        | 4.0        | 18.4        | 24.9        | *             | 22.4        | * ·        | 2        | All         | 126/201              | 2002-         | Retrospective | Brazil, Sao Paulo      |
|                                   | 57          | ∞          | 37          | 50          | *             | 45          | *          | 4        |             |                      | 2005          |               |                        |
| Dongas & Hall, 2002               | 24.1<br>*   | 1.8<br>*   | 32<br>*     | 17.7<br>*   | 15.6<br>*     | 3.6<br>*    | 2.1<br>*   | 1.5<br>* | All         | 251/385N             | 1993-<br>1999 | Retrospective | Australia, Tasmania    |
| Elgehani & Orafi, 2009            | 18.6        | 2.0        | 21.8        | 19.2        | 27.0          | 5.6         | 4.4        | 1.4      | 8mnth-      | 493/666 <b>A</b>     | 2000-         | Retrospective | Benghazi, Libva        |
|                                   | 124         | 13         | 145         | 128         | 180           | 37          | 29         | 9        | 72y         |                      | 2006          |               |                        |
| Ellis 3rd, et al., 1985           | 29.1        | 2.7        | 23.3        | 32.9        | PB            | 8.7         | 1.1        | 2.1      | NS          | 1946/3124            | 1974-         | Retrospective | Scotland, Canniesburn  |
|                                   | 910         | 85         | 729         | 1029        | *             | 272         | 34         | 65       |             | 8                    | 1983          | 50<br>1       | 10                     |
| Emshoff, et al., 1997 <b>†</b>    | 39.5        | 4.7        | 13.9        | 24.3        | NC            | 17.2        | *          | 0.3      | 4y-74y      | 712/296              | 1984-         | Retrospective | Austria, Innsbruck     |
|                                   | 117         | 14         | 41          | 72          |               | 51          | *          | 1        |             |                      | 1993          |               |                        |
| Eggensperger Wymann, et al., 2008 | 11.5        | *          | 23.1        | 34.6        | 30.8          | PS          | *          | *        | AII         | */26                 | 2000-         | Retrospective | Switzerland, Bern      |
|                                   | с           | *          | 9           | 6           | ∞             | *           | *          | *        |             |                      | 2002          |               |                        |
| Eskitaşcıoğlu, et al., 2009       | 19.2<br>64  | 1.5<br>5   | 10.5<br>35  | 13.2<br>44  | 34.8<br>116   | 9.0<br>30   | 11.7<br>39 | * *      | 0y-16y      | 235/333              | 1987-<br>2007 | Retrospective | Turkey, Kayseri        |
|                                   | 10          | n          | 20          | <b>†</b>    | OTT           | nc          | 50         |          |             |                      | 1007          |               |                        |

| Country       |                 | Turkey, Kayseri             | Portugal, Porto        | Nigeria, Ibadan      | USA, Iowa              | India, Punjab        | India, Aurangabad    | Israel, Be'er-Sheva  | USA, Harlem               | USA, New York        | Australia, Melbourne | Sweden, Malmö         | UK, Bradford       | New York, USA      | Japan, Osaka       | Germany, Heidelberg | USA                   | Spain, Seville               | Maharashtra, India  |
|---------------|-----------------|-----------------------------|------------------------|----------------------|------------------------|----------------------|----------------------|----------------------|---------------------------|----------------------|----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|-----------------------|------------------------------|---------------------|
| Study type    |                 | Retrospective               | Retrospective          | Retrospective        | Retrospective          | Retrospective        | Prospective          | Retrospective        | Retrospective             | Retrospective        | Retrospective        | Retrospective         | Prospective        | Retrospective      | Retrospective      | Retrospective       | Retrospective         | Retrospective                | Retrospective       |
| Study         | Period          | 1992-<br>2011               | 1993-<br>2002          | 1984-<br>1998        | 1979-<br>1989          | 2006-<br>2010        | 2008-<br>2009        | 1993-<br>2010        | 1964-<br>1967             | 1984-<br>1987        | 1956-<br>1969        | 1993-<br>2003         | 1979-<br>1983      | 1997-<br>2001      | 1981-<br>1996      | 1997-<br>2001       | 2001-<br>2005         | 1988-<br>1990                | 2005-<br>2010       |
| Number of     | cases/fractures | 753/1090                    | 521/681                | */51                 | 1067/1515N             | 324/479              | 35/49                | 61/85                | 202/305                   | 116/176              | */116                | */434                 | 214/*              | 85/127             | 955/1508           | 226/354             | */4169П               | 59/99                        | */98                |
| Age           | range           | 17yr-<br>90yr               | <18yr                  | All                  | All                    | All                  | 1yr-<br>70yr         | All                  | NS                        | NS                   | <16yr                | All                   | All                | 6yr-<br>64yr       | All                | All                 | 0-18yr                | <16y                         | 1y-15y              |
| Coronoid      |                 | 0.4<br>4                    | 0.3<br>2               | * *                  | 1.3                    | * *                  | 2.0<br>1             | * *                  | * *                       | * *                  | * *                  | 1.2<br>5              | 2.8<br>*           | * *                | 0.6<br>9           | 1.1<br>4            | 0.9<br>*              | 0 *                          | 1.0<br>1            |
| Alveolus      |                 | 5.0<br>55                   | 11.2<br>76             | * *                  | 1.1                    | 7.3<br>35            | * *                  | * *                  | * *                       | 2.8<br>5             | * *                  | * *                   | * *                | * *                | * *                | * *                 | 4.7<br>*              | * *                          | 10.2<br>10          |
| Symphysis     |                 | 7.3<br>80                   | 7.9<br>54              | 23.5<br>12           | PS N                   | 49.5<br>237          | 10.2<br>5            | * *                  | 10.5<br>32                | 4.0<br>7             | * *                  | 5.8<br>25             | * *                | 15.7<br>20         | 8.6<br>129         | 2.0<br>7            | 16.6<br>*             | 24.3<br>24                   | S *                 |
| Parasymphysis |                 | 28.6<br>312                 | 13.1<br>89             | PS *                 | 23.6<br>*              | * *                  | 20.4<br>10           | 25.9<br>22           | 27.5<br>84                | 10.3<br>18           | * *                  | PB<br>PB              | 8.3<br>*           | * *                | 21.7<br>327        | 8B<br>*             | S *                   | * *                          | 24.5<br>24          |
| Body          |                 | 19.7<br>215                 | 13.2<br>90             | 60.8<br>31           | 11.3<br>*              | 9.8<br>47            | 22.5<br>11           | 8.2<br>7             | 20.3<br>62                | 46.0<br>81           | 63.8<br>74           | 37.3<br>162           | 38.9<br>*          | 28.3<br>36         | 10.4<br>152        | 34.2<br>121         | 12.1<br>*             | 12.3<br>12                   | 14.3<br>14          |
| Angle         |                 | 16.7<br>182                 | 16.0<br>109            | 11.8<br>6            | 26.7<br>*              | 18.4<br>88           | 6.1<br>3             | 21.2<br>18           | 26.6<br>81                | 22.2<br>39           | * *                  | 16.8<br>73            | 33.3<br>*          | 30.7<br>39         | 21.7<br>327        | 21.8<br>77          | 13.9<br>*             | 20.3<br>20                   | 5.1<br>5            |
| Ramus         |                 | 2.5<br>27                   | 7.3<br>50              | * *                  | 2.2<br>*               | 0.6<br>3             | * *                  | * *                  | 1.6<br>5                  | 2.8<br>5             | * *                  | 6.0<br>26             | 2.8<br>*           | 1.6<br>2           | 3.8<br>57          | 2.8<br>10           | 6.5<br>*              | 0 *                          | 4.1<br>4            |
| Condyle       |                 | 19.7<br>215                 | 31.0<br>211            | 3.9                  | 26<br>*                | 14.4<br>69           | 38.8<br>19           | 44.7<br>38           | 13.4<br>41                | 11.9<br>21           | 36.2<br>42           | 32.9<br>143           | 13.9<br>*          | 23.6<br>30         | 33.6<br>507        | 38.1<br>135         | 21.2<br>*             | 43.3<br>43                   | 40.8<br>40          |
| Authors       |                 | Eskitaşcıoğlu, et al., 2013 | Ferreira, et al., 2004 | Fasola, et al., 2003 | Fridrich, et al., 1992 | Gandhi, et al., 2011 | Ghodke, et al., 2013 | Glazer, et al., 2011 | Goldberg & Williams, 1969 | Hall & Ofodile, 1991 | Hall, 1972           | Hallmer, et al., 2010 | Hill, et al., 1984 | Hung, et al., 2004 | lida, et al., 2001 | lida, et al., 2003  | Imahara, et al., 2008 | Infante Cossio, et al., 1994 | Joshi, et al., 2013 |

| Authors                 | Condyle     | Ramus     | Angle       | Body        | Parasymphysis | Symphysis   | Alveolus   | Coronoid  | Age    | Number of            | Study         | Study type    | Country                      |
|-------------------------|-------------|-----------|-------------|-------------|---------------|-------------|------------|-----------|--------|----------------------|---------------|---------------|------------------------------|
|                         |             |           |             |             |               |             |            |           | range  | cases/fractures      | Period        |               |                              |
| Kadkhodaie, 2006        | 25.6<br>790 | 1.3<br>40 | 16.4<br>506 | 30.5<br>942 | 16.7<br>515   | 4.9<br>151  | 4.3<br>133 | 0.4<br>12 | AII    | */3089               | 2001-<br>2004 | Retrospective | Iran, Gilan                  |
| King, et al., 2004      | * 18        | 10.3<br>* | 26.9<br>*   | 25.6<br>*   | 19.2<br>*     | * *         | 0 *        | * *       | AII    |                      | 7 years       | Retrospective | USA, Illinois                |
| King, et al., 2004      | 23.5<br>*   | 6.3<br>*  | 10.9<br>*   | 10.9<br>*   | 45.3<br>*     | * *         | 3.1<br>*   | * *       | AII    |                      | 7 years       | Retrospective | USA, Illinois                |
| King, et al., 2004      | 2.8<br>*    | 11.1<br>* | 5.6<br>*    | 36.1<br>*   | 44.4<br>*     | * *         | 0 *        | * *       | All    | 300/100              | 7 years       | Retrospective | USA, Illinois                |
| King, et al., 2004      | 34.4<br>*   | 0 *       | 9.4<br>*    | 25<br>*     | 28.1<br>*     | * *         | 3.1<br>*   | * *       | All    | C77/ <del>4</del> CT | 7 years       | Retrospective | USA, Illinois                |
| King, et al., 2004      | 50<br>*     | 0 *       | 0 *         | 12.5<br>*   | 37.5<br>*     | * *         | 0 *        | * *       | All    | _                    | 7 years       | Retrospective | USA, Illinois                |
| Kiong, et al., 2007     | 17<br>*     | * 1       | 12<br>*     | 27<br>*     | 20<br>*       | 13<br>*     | 10<br>*    | * *       | <15y   | */*                  | 2002-<br>2003 | Retrospective | Malaysia, Johor Bahru        |
| Kyrgidis, et al., 2013  | 34.2<br>460 | * *       | 22.4<br>301 | 30.0<br>376 | 15.5<br>208   | PS<br>*     | * *        | * *       | All    | 795/1345             | 1998-<br>2008 | Retrospective | Greece, Thessaloniki         |
| Le, et al., 2001        | 32.0<br>8   | 4.0<br>1  | 28.0<br>7   | 12.0<br>3   | 16.0<br>4     | PS<br>*     | 8.0<br>2   | 0 *       | AII    | */25                 | 1992-<br>1996 | Retrospective | USA, Oregon                  |
| Lee & Chou, 2010        | 15.6<br>*   | 0 *       | 50<br>*     | 3.1<br>*    | * *           | 28.1<br>*   | * *        | 3.1<br>*  | All    | 21/*                 | 1996-<br>2006 | Retrospective | New Zealand,<br>Christchurch |
| Lee, 2009               | 24.8<br>358 | 3.5<br>51 | 33.7<br>486 | 15.3<br>221 | 16.2<br>234   | 6.4<br>92   | * *        | * *       | 2y-95y | 1045/1442            |               | Retrospective | New Zealand,<br>Christchurch |
| Lee, et al., 2010       | 15.6<br>5   | 0 0       | 50.0<br>16  | 3.1<br>1    | * *           | 28.1<br>9   | * *        | 3.1<br>1  | AII    | 21/32                | 2003-<br>2007 | Retrospective | Korea, Jeju                  |
| Lindqvist, et al., 1986 | 68<br>*     | * 1       | * ک         | 11<br>*     | 11<br>*       | * *         | 4 *        | 0 *       | All    | 93/*                 | 1981-<br>1983 | Retrospective | Finland, Helsinki            |
| Linn, et al., 1986      | 55.1<br>38  | 1.5<br>1  | 13<br>9     | 8.7<br>6    | 15.9<br>11    | 5.8<br>4    | * *        | * *       | All    | 69/*                 | 1971-<br>1978 | Retrospective | Netherlands                  |
| Madhi & Ali, 2013       | 6           | 44        | 33<br>33    | 42<br>42    | ςς ες         | 11          | * *        |           | All    | */100                | 2005-<br>2006 | Retrospective | Iraq, Baghdad                |
| Madhi & Ali, 2013       | 18.7<br>28  | 6.7<br>10 | 27.3<br>41  | 17.3<br>26  | 21.3<br>32    | 7.3<br>11   | * *        | 1.3<br>2  | AII    | */150                | 1995-<br>1996 | Retrospective | Iraq, Baghdad                |
| Martins, et al., 2011   | 22.1<br>33  | 1.4<br>2  | 18.5<br>27  | 15.1<br>22  | 26.0<br>38    | 14.4<br>21  | 2.1<br>3   | 0 0       | AII    | 95/146               | 2007-<br>2008 | Retrospective | Brazil, Rio de Janeiro       |
| Mijiti, et al., 2014    | 19.9<br>125 | 6.7<br>42 | 12.3<br>77  | 35.2<br>221 | PS *          | 19.9<br>125 | 5.1<br>32  | 0.8<br>5  | 0-91y  | */627                | 2006-<br>2010 | Retrospective | Xinjiang, China              |

| Authors                        | Condyle     | Ramus       | Angle       | Body        | Parasymphysis | Symphysis | Alveolus | Coronoid  | Age    | Number of       | Study         | Study type     | Country                |
|--------------------------------|-------------|-------------|-------------|-------------|---------------|-----------|----------|-----------|--------|-----------------|---------------|----------------|------------------------|
|                                |             |             |             |             |               |           |          |           | range  | cases/fractures | Period        |                |                        |
| Müller, 1969                   | 28          | ε<br>Ω      | 26          | 43          | * :           | * :       | * :      | * :       | All    | */2582          | 1961-         | Retrospective  | Germany, Halle         |
|                                | *           | *           | ×           | *           | *             | *         | ×        | *         |        |                 | 1966          |                |                        |
| Muñante-Cárdenas, et al., 2010 | 43.2<br>60  | 1.4<br>2    | 15.1<br>21  | 15.1<br>21  | 18.7<br>26    | 6.5<br>9  | * *      | * *       | <16y   | 112/139         | 1999-<br>2008 | Retrospective  | Brazil, Sao Paulo      |
| Mussiki 8. Guthus 1000         |             | 0 1         | 76 5        | C CV        | *             | 30 5      | 0        | *         | ۷II    | */*             | 1001          | Dotrochoctivo  | Vouro Nairohi          |
| ואואמוווגו א סענווממ, בססט     | n *         | t. *        | C.02<br>*   | *           | *             | C.D7<br>* | n *      | *         | Ē      | /               | 1986<br>1986  | עבנו מאמברנועב | Neliya, Nali UDI       |
| Ogundare, et al., 2003         | 16.6        | 2.2         | 36.3        | 21.2        | 17.8          | 4.3       | 1        | *         | All    | */*             | 1990-         | Retrospective  | Washington DC          |
|                                | *           | *           | *           | *           | *             | *         | *        | *         |        |                 | 1999          |                |                        |
| Oji, 1998                      | 31.0        | * ·         | 11.9        | 21.4        | 14.3          | 9.5       | 11.9     | 0         | <11y   | */42            | 1985-         | Retrospective  | Nigeria, Enugu         |
|                                | 13          | *           | S           | 6           | 9             | 4         | 2        | *         |        |                 | 1996          |                |                        |
| Oji, 1999                      | 26<br>*     | 2.1<br>*    | 17.4<br>*   | 36.2<br>*   | 15.3<br>*     | * *       | * 2      | 0.2<br>*  | All    | 481/900         | 1985-<br>1995 | Retrospective  | Nigeria, Enugu         |
| Ólafsson, 1984                 | 32.6        | 3.4         | 20.3        | 28.2        | *             | 12.4      | 1.6      | 1.6       | All    | 238/380         | 1970-         | Retrospective  | Iceland, Reykjavik     |
|                                | 124         | 13          | 77          | 107         | *             | 47        | 9        | 9         |        |                 | 1979          | 1              | 20 No 12               |
| Olasoji, et al., 2002          | 11.4        | *           | 4.4         | 56.8        | 7.3           | 20.1      | *        | 0         | 1y-62y | 203/273         | 1996-         | Prospective    | Nigeria, Maiduguri     |
|                                | 31          | *           | 12          | 155         | 20            | 55        | *        | *         |        |                 | 1999          |                |                        |
| Olson, et al., 1982            | 29.1        | 1.7         | 24.5        | 16          | 22            | PS        | 3.1      | 1.3       | All    | 580/8           | 1972-         | Retrospective  | USA, Iowa              |
|                                | ×           | *           | ×           | *           | ×             | *         | *        | *         |        |                 | 1978          |                |                        |
| Ortakoğlu, et al., 2004        | 26.1        | 1.86        | 17.4        | 30.4        | PS            | 24.2      | *        | *         | *      | 126/161         | 1994-         | Retrospective  | Turkey, Ankara         |
|                                | 42          | ю           | 28          | 49          | PS            | 39        | *        | *         |        |                 | 1999          |                |                        |
| Qudah, et al., 2005            | 38.4        | 11.6        | 13.9        | 16.2        | 18.1          | * 1       | * 1      | 1.9       | All    | 203/216         | 1993-         | Retrospective  | Jordan, Irbid          |
|                                | 83          | 25          | 30          | 35          | 39            | *         | *        | 4         |        |                 | 2002          |                |                        |
| Qudah, et al., 2005            | 15.3<br>104 | 20.9<br>142 | 24.7<br>168 | 31.8<br>216 | 4.6<br>31     | * *       | * *      | 2.8<br>19 | AII    | 497/680         | 1993-<br>2002 | Retrospective  | Jordan, Irbid          |
| Ramli, et al., 2008            | 11.4        | *           | 29.5        | 18.2        | 31.8          | 9.1       | *        | *         | All    | */44            | 2004-         | Retrospective  | Malaysia, Kuala Lumpur |
|                                | 5           | *           | 13          | 8           | 14            | 4         | *        | *         |        |                 | 2005          |                |                        |
| Sakr, et al., 2006             | 19.1        | 1.5         | 22.1        | 21.1        | 21.5          | 8.2       | 5.4      | 1.1       | All    | 509/743         | 1991-         | Retrospective  | Egypt, Alexandria      |
|                                | 142         | 1           | 104         | /cT         | TPO           | 10        | 40       | ø         |        |                 | 7000          |                |                        |
| Salem, et al., 1968            | 21.0        | 4.2         | 21.3        | 15.4        | 15.9          | 13.3      | 8.0      | 0.7       | All    | 523/803         | 1966-         | Retrospective  | USA, California        |
|                                | 169         | 34          | 171         | 124         | 128           | 107       | 64       | 9         |        |                 | 1967          |                |                        |
| Sane, et al., 1988             | 43.1        | 1.5         | 27.7        | 10.8        | 6.2           | 6.2       | *        | 4.6       | All    | */65            | 1981-         | Retrospective  | Finland, Helsinki      |
|                                | 28          | 1           | 18          | 7           | 4             | 4         | *        | ю         |        |                 | 1985          |                |                        |
| Sasaki, et al., 2012           | 26.         | 2.9         | 23.8        | 13.6        | *             | 32.4      | *        | 1.0       | All    | */910           | 2000-         | Retrospective  | Japan, Tokyo           |
|                                | 239         | 26          | 217         | 124         | *             | 295       | *        | 6         |        |                 | 2004          |                |                        |

| Condyle     | Ramus            | Angle       | Body        | Parasymphysis | Symphysis   | Alveolus   | Coronoid  | Age         | NU    | mber of    | Study         | Study type    | Country               |
|-------------|------------------|-------------|-------------|---------------|-------------|------------|-----------|-------------|-------|------------|---------------|---------------|-----------------------|
|             |                  |             |             |               |             |            |           | range       | cases | /fractures | Period        |               |                       |
| 22<br>*     | <del>с</del> і * | 24<br>*     | 20<br>*     | * *           | 33<br>*     | * *        | 0 *       | 2y-80y      | 1     | 23/*       | 1982-<br>1983 | Retrospective | India, Chandigarh     |
| 9.1<br>14   | 5.2<br>8         | 42.9<br>66  | 26.0<br>40  | 16.2<br>25    | PS *        | * *        | 0.6<br>1  | AII         | 11    | 4/154      | 1995          | Retrospective | Australia, Townsville |
| 24<br>*     | * 4              | 20<br>*     | 52<br>*     | * *           | * *         | * *        | * *       | AII         | 6     | 22/*       | 1958-<br>1963 | Retrospective | Germany, Hamburg      |
| 15.9<br>40  | 3.6<br>9         | 27.4<br>69  | 29.0<br>73  | * *           | 22.6<br>57  | 1.6<br>4   | * *       | 3у-79у      | 21    | 0/252      | 1991-<br>2000 | Retrospective | Turkey, Ankara        |
| 18.9<br>197 | 3.9<br>41        | 27.6<br>287 | 23.1<br>240 | * *           | 25.7<br>268 | 0.8<br>8   | * *       | 3y-87y      | 665   | 5/1041     | 1991-<br>2000 | Retrospective | USA, Virginia         |
| 46.3<br>57  | 1.6<br>2         | 5.7<br>7    | 38.2<br>47  | * *           | * *         | 8.1<br>10  | * *       | All         | 6     | 2/123      | 1980-<br>1987 | Retrospective | Greece, Athens        |
| 18.8<br>96  | 4.7<br>24        | 11.7<br>60  | 8.2<br>42   | 30.5<br>156   | 10.5<br>54  | 11.1<br>57 | 4.5<br>23 | AII         | *     | /512       | 1999-<br>2005 | Retrospective | India, Chennai        |
| 22.1<br>98  | 2.7<br>12        | 11.5<br>51  | 5.9<br>26   | 35.2<br>156   | 10.4<br>46  | 10.8<br>48 | 1.4<br>6  | 6y-89y      | 23    | 8/443      | 2000-<br>2004 | Retrospective | India, Chennai        |
| 76.0<br>*   | 0 *              | 4.0<br>*    | o *         | * *           | 8.0         | 12.0<br>*  | * *       | 0y-5y       | 19    |            | 1980-<br>1989 | Retrospective | Finland, Helsinki     |
| 63.6<br>*   | 0 *              | 3.6<br>*    | 9.1<br>*    | * *           | 18.2<br>*   | 5.4<br>*   | * *       | 6y-9y       | 38    | Ĩ          | 1980-<br>1989 | Retrospective | Finland, Helsinki     |
| 63.8<br>*   | 1.7<br>*         | 8.6<br>*    | 10.3<br>*   | * *           | 12.1<br>*   | 3.4<br>*   | * *       | 10y-<br>12y | 41    | 220        | 1980-<br>1989 | Retrospective | Finland, Helsinki     |
| 50<br>*     | 3.7<br>*         | 17.1<br>*   | 11 *        | * *           | 15.5<br>*   | 2.4<br>*   | * *       | 13y-<br>15y | 59    |            | 1980-<br>1989 | Retrospective | Finland, Helsinki     |
| 60.8<br>236 | 1.5<br>6         | 10.3<br>40  | 7.2<br>28   | PS *          | 20.1<br>78  | * *        | * *       | NS          | *     | /388       | 1993-<br>2002 | Retrospective | Finland, Helsinki     |
| 46.1<br>610 | 1.9<br>25        | 13.6<br>180 | 38.4<br>509 | * *           | * *         | * *        | * *       | AII         | 823   | 2/1324     | 1960-<br>1974 | Retrospective | Netherlands           |
| 44.8<br>532 | 2.8<br>33        | 13.7<br>163 | 38.7<br>459 | * *           | * *         | * *        | * *       | AII         | 202   | 7/1187     | 1975-<br>1987 | Retrospective | Netherlands           |
| 46.4<br>583 | 1.2<br>15        | 14.1<br>177 | 10.2<br>128 | 14.2<br>178   | 13.2<br>166 | * *        | 0.7<br>9  | AII         | 197   | 7/1256     | 1960-<br>1974 | Retrospective | Netherlands           |
| 24.7<br>80  | * *              | 12.7<br>41  | 11.1<br>36  | 51.5<br>167   | * *         | * *        | * *       | 14y-<br>65y | 10    | 8/324      | 2004-<br>2008 | Retrospective | India, New Delhi      |

| Authors                                                          | Condyle     | Ramus        | Angle     | Body       | Parasymphysis | Symphysis   | Alveolus | Coronoid | Age   | Number of       | Study  | Study type    | Country           |
|------------------------------------------------------------------|-------------|--------------|-----------|------------|---------------|-------------|----------|----------|-------|-----------------|--------|---------------|-------------------|
|                                                                  |             |              |           |            |               |             |          |          | range | cases/fractures | Period |               |                   |
| Walden, et al., 1956                                             | 19.0        | 5.0          | 23.6      | 42.1       | *             | 9.2         | 0.1      | *        | AII   | 466/715         | 1950-  | Retrospective | USA, New York     |
|                                                                  | 136         | 36           | 169       | 301        | *             | 66          | 7        | *        |       |                 | 1954   |               |                   |
| Yamamoto, et al., 2010                                           | 55.9        | 2.4          | 6.2       | 12.2       | *             | 17.0        | 6.4      | *        | AII   | */501           | 1981-  | Retrospective | Japan, Nara       |
|                                                                  | 280         | 12           | 31        | 61         | *             | 85          | 32       | *        |       |                 | 2007   | 1             |                   |
| Yamamoto, et al., 2011                                           | 38.2        | 4.5          | 13.5      | 10.1       | *             | 27.0        | 4.5      | 2.2      | AII   | 62/89           | 1982-  | Retrospective | Japan, Nara       |
|                                                                  | 34          | 4            | 12        | б          | *             | 24          | 4        | 2        |       |                 | 2008   |               |                   |
| Zachar, et al., 2013                                             | 21.2        | *            | 33.4      | 19.6       | 13.2          | PS          | 5.7      | 6.9      | AII   | 391/618         | 2001-  | Retrospective | Afghanistan       |
|                                                                  | *           | *            | *         | *          | *             | *           | *        | *        |       | 2               | 2011   | 14            |                   |
| Zachariades, et al., 1983                                        | 21          | 8.9          | *         | 32.3       | *             | 26.6        | 10.1     | 1.2      | AII   | 694/*           | 1970-  | Retrospective | Greece, Athens    |
|                                                                  | *           | *            | *         | *          | *             | *           | *        | *        |       |                 | 1980   |               |                   |
| Zachariades, et al., $1983^{\alpha}$                             | 42.3        | RA           | 21.1      | 25.0       | *             | 11.5        | *        | *        | AII   | 62/104          | 1970-  | Retrospective | Greece, Athens    |
|                                                                  | 44          | *            | 22        | 26         | *             | 12          | *        | *        |       |                 | 1980   |               |                   |
| Zachariades & Papavassiliou, 1990 <sup><math>\alpha</math></sup> | 26          | 4.4          | 6.8       | 16         | *             | 17.2        | 29.6     | *        | <14y  | */250           | 1960-  | Retrospective | Greece, Athens    |
|                                                                  | 65          | 11           | 17        | 40         | *             | 43          | 74       | *        |       |                 | 1984   | 6             | 2                 |
| Zachariades & Papavassiliou, 1990 <sup><math>\alpha</math></sup> | 23.9        | 7.4          | 15.4      | 21.1       | *             | 23.5        | 8.6      | *        | AII   | */4838          | 1960-  | Retrospective | Greece, Athens    |
|                                                                  | 1155        | 360          | 747       | 1021       | *             | 1141        | 414      | *        |       |                 | 1984   |               |                   |
| Zachariades & Papavassiliou, 1990 <sup><math>\alpha</math></sup> | 23.8        | 7.3          | 15.4      | 20.5       | *             | 23.6        | 8.5      | 1.1      | NS    | */4780          | 1960-  | Retrospective | Greece, Athens    |
|                                                                  | 1140        | 349          | 736       | 968        | *             | 1129        | 406      | 52       |       | 2               | 1984   |               |                   |
| Zhou, et al., 2013                                               | 54.2        | 0.3          | 7.6       | 14.9       | *             | 21.5        | 1        | 0.3      | <18y  | 192/288         | 2000-  | Retrospective | China, Wuhan      |
|                                                                  | 156         | 1            | 22        | 43         | *             | 62          | 3        | 1        |       |                 | 2009   |               |                   |
| Zix, et al., 2011                                                | 42.7        | 0.7          | 12.3      | 7.5        | PS            | 34.7        | *        | 1.8      | 16y-  | 420/709         | 2000-  | Retrospective | Switzerland, Bern |
|                                                                  | 303         | 5            | 87        | 53         | PS            | 246         | *        | 13       | 97γ   |                 | 2007   |               |                   |
| Table 2.7 Articles assessed for meta-a                           | nalysis eli | gibility. Sh | haded stu | dies were  | excluded from | the meta-ai | nalysis. |          |       |                 |        |               |                   |
|                                                                  |             |              |           | LILL COUNT |               |             |          |          |       |                 |        |               |                   |

KEY. PS=Parasymphysis and symphysis combined in study; PB=parasymphysis and body combined in study; RA=ramus and angle combined in study. CC, condyle and coronoid combined in study. \*=No data in study. +=Classification into anterior and posterior body. NC= not in classification. α= Studies derived from same dataset. U = unclear from data given. NS= not specified in study. γ= only single site fractures included. Δ, one study was excluded due to the inability to identify the fracture type as the mandible was lost in gunshot wound. Studies with multiple data sets are recorded under the same author and the same year. Π= Raw data as presented in study did not match author calculations.

# 2.4.1.3.1 Summary of studies deemed suitable for meta-analysis

The table below shows the tabulated event data for the 32 studies used in each metaanalysis. The value *n* represents the total number of fractures reported in the study and *r* represents the number of fractures of the required outcome i.e. fracture sub-site.

| Author                       | Cor  | ndyle | Asc | ending | A   | ngle  | В    | ody   | Parasy | ymphysis | Alv | eolus |
|------------------------------|------|-------|-----|--------|-----|-------|------|-------|--------|----------|-----|-------|
|                              |      |       | ra  | mus    |     |       |      | I     |        | 1        |     |       |
|                              | r    | Total | r   | Total  | r   | Total | r    | Total | r      | Total    | r   | Total |
|                              |      | (n)   | _   | (n)    |     | (n)   |      | (n)   |        | (n)      |     | (n)   |
| Abdullah, et al.,<br>2013    | 42   | 189   | 5   | 189    | 33  | 189   | 30   | 189   | 68     | 189      | 11  | 189   |
| Adebayo, et al.,<br>2003     | 27   | 465   | 23  | 465    | 86  | 465   | 238  | 465   | 57     | 465      | 34  | 465   |
| Adi, et al., 1990            | 165  | 632   | 35  | 632    | 123 | 632   | 166  | 632   | 121    | 632      | 22  | 632   |
| Al Ahmed, et al.,<br>2004    | 38   | 150   | 8   | 150    | 35  | 150   | 30   | 150   | 27     | 150      | 12  | 150   |
| Al-Khateeb and               | 33   | 270   | 14  | 270    | 47  | 270   | 107  | 270   | 42     | 270      | 27  | 270   |
| Andersson, et al.,           | 406  | 936   | 30  | 936    | 126 | 936   | 217  | 936   | 110    | 936      | 47  | 936   |
| Bither, et al.,              | 81   | 486   | 29  | 486    | 96  | 486   | 66   | 486   | 198    | 486      | 16  | 486   |
| Elgehani, et al.,            | 124  | 665   | 22  | 665    | 145 | 665   | 128  | 665   | 217    | 665      | 29  | 665   |
| Ellis. et al., 1985          | 910  | 3124  | 150 | 3124   | 729 | 3124  | 1029 | 3124  | 272    | 3124     | 34  | 3124  |
| Eskitaşcıoğlu, et            | 64   | 333   | 5   | 333    | 35  | 333   | 44   | 333   | 146    | 333      | 39  | 333   |
| Eskitaşcıoğlu, et            | 215  | 1090  | 31  | 1090   | 182 | 1090  | 215  | 1090  | 392    | 1090     | 55  | 1090  |
| Ferreira, et al.,            | 211  | 681   | 52  | 681    | 109 | 681   | 90   | 681   | 143    | 681      | 76  | 681   |
| Gandhi, et al.,              | 69   | 479   | 3   | 479    | 88  | 479   | 47   | 479   | 237    | 479      | 35  | 479   |
| Hall and Ofodile,            | 21   | 176   | 5   | 176    | 39  | 176   | 81   | 176   | 25     | 176      | 5   | 176   |
| 1991                         | 40   | 00    | -   | 00     | -   | 00    | 14   | 00    | 24     | 00       | 10  | 00    |
| Kadkhodaio                   | 40   | 30    | 5   | 30     | 5   | 30    | 14   | 3080  | 24     | 30       | 10  | 98    |
| 2006                         | 790  | 3089  | 52  | 3089   | 506 | 3089  | 942  | 3089  | 000    | 3089     | 133 | 3089  |
| Le, et al., 2001             | 8    | 25    | 1   | 25     | 7   | 25    | 3    | 25    | 4      | 25       | 2   | 25    |
| Martins, et al.,<br>2011     | 33   | 146   | 2   | 146    | 27  | 146   | 22   | 146   | 59     | 146      | 3   | 146   |
| Mijiti, et al., 2014         | 125  | 627   | 47  | 627    | 77  | 627   | 221  | 627   | 125    | 627      | 32  | 627   |
| Oji, 1998                    | 13   | 42    | 0   | 42     | 5   | 42    | 9    | 42    | 10     | 42       | 5   | 42    |
| Olafsson, 1984               | 124  | 380   | 19  | 380    | 77  | 380   | 107  | 380   | 47     | 380      | 6   | 380   |
| Sakr, et al., 2006           | 142  | 743   | 19  | 743    | 164 | 743   | 157  | 743   | 221    | 743      | 40  | 743   |
| Salem, et al.,<br>1968       | 169  | 803   | 40  | 803    | 171 | 803   | 124  | 803   | 235    | 803      | 64  | 803   |
| Simsek, et al.,<br>2007 (a)  | 40   | 252   | 9   | 252    | 69  | 252   | 73   | 252   | 57     | 252      | 4   | 252   |
| Simsek, et al.,<br>2007 (b)  | 197  | 1041  | 41  | 1041   | 287 | 1041  | 240  | 1041  | 268    | 1041     | 8   | 1041  |
| Subhashraj, et<br>al., 2007  | 96   | 512   | 47  | 512    | 60  | 512   | 42   | 512   | 210    | 512      | 57  | 512   |
| Subhashraj, et<br>al., 2008  | 98   | 443   | 18  | 443    | 51  | 443   | 26   | 443   | 202    | 443      | 48  | 443   |
| Walden, et al.,<br>1956      | 136  | 715   | 36  | 715    | 169 | 715   | 301  | 715   | 66     | 715      | 7   | 715   |
| Yamamoto K et<br>al. 2010    | 280  | 501   | 12  | 501    | 31  | 501   | 61   | 501   | 85     | 501      | 32  | 501   |
| Yamamoto, et<br>al., 2011    | 34   | 89    | 6   | 89     | 12  | 89    | 9    | 89    | 24     | 89       | 4   | 89    |
| Zachariades, et<br>al., 1990 | 1155 | 4838  | 360 | 4838   | 747 | 4838  | 1021 | 4838  | 1141   | 4838     | 414 | 4838  |
| Zhou, et al., 2013           | 156  | 288   | 2   | 288    | 22  | 288   | 43   | 288   | 62     | 288      | 3   | 288   |

Table 2.8 Tabulated event data.

#### 2.4.1.3.2 Bias assessment

The bias assessment plots show sub-site fracture prevalence on the horizontal axis as a proportion, and the precision of the estimated effect on the vertical axis. The precision is the inverse of the standard error. As may be seen, the "funnel" is inverted with a precision of zero on the vertical axis inferiorly. Each study is represented by a red dot. The least precise studies are found at the bottom of the plot. The orange vertical line which lies between the 95% confidence interval curves (blue) represents the overall prevalence estimate. In cases where there is no significant bias the funnel plot is symmetrical about the overall prevalence estimate line (Higgins, et al., 2003). The funnel plot for the mandibular condyle is shown in section 2.4.1.3.4.; the remaining funnel and Forest plots are found in appendix 7. As visual assessment of asymmetry, and hence bias, is difficult and somewhat unreliable, statistical bias assessments were undertaken. The null hypothesis for Egger's test is that the funnel plot is symmetrical, with the alternate being funnel asymmetry. The value of P for Egger's test was less than 0.05 for fractures of the parasymphysis and alveolus and therefore there was evidence to reject the null hypothesis and accept the alternate at the 5% level of significance. Therefore these studies showed significant bias.

|                        | Condyle     | Ascending   | Angle       | Body        | Parasymphysis    | Alveolus   |
|------------------------|-------------|-------------|-------------|-------------|------------------|------------|
|                        |             | ramus       |             |             |                  |            |
| Non-combinability      | of studies  | _           |             | -           | -                | -          |
| Cochran Q              | 910.0045    | 308.5647    | 386.679809  | 1156.094052 | 1460.611714      | 604.6960   |
|                        | (df = 31)        | (df = 31)  |
|                        | P < 0.0001       | P < 0.0001 |
| <sup>2</sup>           | 96.6%       | 90%         | 92%         | 97.3%       | 97.9%            | 94.9%      |
| (inconsistency)        | (95% CI =   | (95% CI =   | (95% CI =   | (95% CI =   | (95% Cl = 97.6%  | (95% CI =  |
|                        | 96.1% to    | 87.3% to    | 90.1% to    | 97% to      | to 98.1%)        | 94% to     |
|                        | 97%)        | 91.8%)      | 93.3%)      | 97.6%)      |                  | 95.6%)     |
| <b>Bias indicators</b> |             |             |             |             |                  |            |
| Egger                  | 1.094624    | 1.626406    | 0.5098      | -0.0672     | 6.0081           | 3.9679     |
|                        | (95% CI = - | (95% CI = - | (95% Cl = - | (95% Cl = - | (95% Cl = 1.9948 | (95% CI =  |
|                        | 3.0424 to   | 0.4968 to   | 2.1569 to   | 4.9468 to   | to 10.0215)      | 1.8524 to  |
|                        | 5.2317)     | 3.7496)     | 3.1765)     | 4.8123)     |                  | 6.0833)    |
|                        | P = 0.5929  | P = 0.1282  | P = 0.699   | P = 0.9777  | P = 0.0047       | P = 0.0006 |

Table 2.9 Combined bias calculations for each mandibular sub-site.

In addition to the meta-analysis data, the forest plots give a graphical representation of the results of the meta-analysis. For the 32 studies, the authors are displayed on the left and the estimated prevalence with the associated confidence interval is displayed on the right as a proportion. The study prevalence is represented by a blue square and its associated confidence interval by the associated horizontal line. The overall combined prevalence is indicated by the orange diamond. An assessment of the variation between the study estimates was made.

#### 2.4.1.3.3 Heterogeneity

Although Cochran Q aims to determine the degree of heterogeneity (i.e. whether there are real differences between study results), its calculation method (chi-squared distribution with k-1 degrees of freedom) renders it susceptible to error due to the number of studies. The number of studies included was relatively high and therefore the effects should have been minimized. Nevertheless, it was included so that the inconsistency ( $I^2$ ) could be calculated.  $I^2$  does not depend on the number of studies and has values between 0% and 100%, with a value of 0% representing no heterogeneity (Higgins, et al., 2003). The null hypothesis for this test is that homogeneity existed, with the alternate being that heterogeneity was present. Significant heterogeneity is suggested if  $I^2 \ge 50\%$ . It may be seen that there was significant statistical heterogeneity present amongst the studies of all analyses and therefore the random effects model was considered to be the most appropriate, despite giving a slightly less accurate combined effect size with a wider confidence interval. The fixed effect results may be found in appendix 7 for comparison.



Graph 2.1 Condyle bias assessment plot.

| Author                      | Effect Size (Pro | % Weight    |             |          |
|-----------------------------|------------------|-------------|-------------|----------|
|                             | (exact)          |             |             |          |
|                             | Point Estimate   | Lower Limit | Upper Limit | Random   |
| Abdullah, et al., 2013      | 0.222222         | 0.165099    | 0.288274    | 3.027431 |
| Adebayo, et al., 2003       | 0.058065         | 0.03861     | 0.083359    | 3.253832 |
| Adi, et al., 1990           | 0.261076         | 0.227225    | 0.297176    | 3.298634 |
| Al Ahmed, et al., 2004      | 0.253333         | 0.18593     | 0.330744    | 2.938277 |
| Al-Khateeb and Abdullah,    | 0.122222         | 0.085645    | 0.167346    | 3.137604 |
| 2007                        |                  |             |             |          |
| Andersson, et al., 1984     | 0.433761         | 0.401728    | 0.466211    | 3.340272 |
| Bither, et al., 2008        | 0.166667         | 0.134617    | 0.202835    | 3.261072 |
| Elgehani, et al., 2009      | 0.186466         | 0.157557    | 0.218189    | 3.304926 |
| Ellis, et al., 1985         | 0.291293         | 0.275402    | 0.307576    | 3.402894 |
| Eskitaşcıoğlu, et al., 2009 | 0.192192         | 0.151273    | 0.238684    | 3.18895  |
| Eskitaşcıoğlu, et al., 2013 | 0.197248         | 0.174009    | 0.222133    | 3.35271  |
| Ferreira, et al., 2004      | 0.309838         | 0.275261    | 0.346073    | 3.307765 |
| Gandhi, et al., 2011        | 0.14405          | 0.113839    | 0.178734    | 3.258725 |
| Hall and Ofodile, 1991      | 0.119318         | 0.075398    | 0.176593    | 3.001533 |
| Joshi, et al., 2013         | 0.408163         | 0.309923    | 0.512107    | 2.732374 |
| Kadkhodaie, 2006            | 0.255746         | 0.240436    | 0.27152     | 3.402584 |
| Le, et al., 2001            | 0.32             | 0.149495    | 0.535001    | 1.738882 |
| Martins, et al., 2011       | 0.226027         | 0.160983    | 0.302523    | 2.926851 |
| Mijiti, et al., 2014        | 0.199362         | 0.168769    | 0.232816    | 3.297625 |
| Oji, 1998                   | 0.309524         | 0.176221    | 0.470861    | 2.15996  |
| Olafsson, 1984              | 0.326316         | 0.279373    | 0.37599     | 3.216885 |
| Sakr, et al., 2006          | 0.191117         | 0.163445    | 0.221266    | 3.317652 |
| Salem, et al., 1968         | 0.210461         | 0.182749    | 0.240316    | 3.325812 |
| Simsek, et al., 2007 (a)    | 0.15873          | 0.115885    | 0.209811    | 3.118664 |
| Simsek, et al., 2007 (b)    | 0.189241         | 0.165872    | 0.214382    | 3.349142 |
| Subhashraj, et al., 2007    | 0.1875           | 0.154601    | 0.224055    | 3.269252 |
| Subhashraj, et al., 2008    | 0.221219         | 0.183411    | 0.262796    | 3.245553 |
| Walden, et al., 1956        | 0.19021          | 0.16207     | 0.220932    | 3.313392 |
| Yamamoto K et al. 2010      | 0.558882         | 0.514167    | 0.602899    | 3.26589  |
| Yamamoto, et al., 2011      | 0.382022         | 0.281       | 0.49113     | 2.677881 |
| Zachariades, et al., 1990   | 0.238735         | 0.226779    | 0.251007    | 3.412599 |
| Zhou, et al., 2013          | 0.541667         | 0.48221     | 0.600257    | 3.154375 |

Table 2.10 Condyle results.



Proportion meta-analysis plot [random effects]

Graph 2.2 Condyle Forest plot (random effects).

| Anatomical location of<br>fracture | Effect size<br>(Prevalence) | 95% Confidence<br>interval<br>Random effects | Analysis set (k) |
|------------------------------------|-----------------------------|----------------------------------------------|------------------|
| Angle                              | 0.172                       | (0.154 - 0.190)                              | 32               |
| Body                               | 0.214                       | (0.181 - 0.248)                              | 32               |
| Condyle                            | 0.243                       | (0.212 - 0.275)                              | 32               |
| Dentoalveolar                      | 0.053                       | (0.041 - 0.068)                              | 32               |
| Symphyseal/Parasymphyseal          | 0.247                       | (0.209 - 0.287)                              | 32               |
| Ascending ramus                    | 0.040                       | (0.032 - 0.049)                              | 32               |

#### 2.4.1.4 Summary results

Table 2.11 Summary prevalence for mandibular fracture sub-sites.

#### 2.4.1.5 Discussion

There are limitations to this analysis, several intrinsic to meta-analyses. Publication bias is always a problem as studies which support a particular theory regarding sub-site prevalence are more likely to be published in readily accessible journals. Other sources included, language bias, particularly concerning the English language. Even in an electronic database search, studies in the English language are more likely to be published. There may also have been some citation bias as studies were usually accompanied with an explanation for the findings and those authors that found that their studies agreed with the prevailing opinion at the time were more likely to be cited and therefore picked up on an electronic search. As suggested, multiple publication bias is a problem when authors have used the same or similar data in multiple publications. This is particularly a problem when the data of a previous analysis is later combined with newer data and published in another journal without the author specifically stating that some of the data had been previously used in publication.

Differences in methodological quality may result in heterogeneity. Many studies included non-uniform definitions as to the position of anatomical sub-sites. Although, the Dingman and Natvig classification was chosen for the study the classification itself may not have been sufficiently accurate to define the anatomical sub-site. There are

frequently different interpretations of the anatomical boundary or regions such as the condylar region, the angle of the mandible and the symphysis. This problem is accentuated when there has been tooth loss. These problems should have been minimized in the combining regions such as the parasymphysis/symphysis and the ramus/coronoid. Studies which did not use the Dingman and Natvig classification were excluded; however, these could have included pertinent information.

Most of the studies were retrospective in nature and involved a re-examination of pertinent plain radiographs of variable quality. Studies have shown that plain radiographs, particularly dental panoramic tomographs, are less accurate, less sensitive and less specific for the diagnosis of mandibular fractures when compared to computed tomography (Roth, et al., 2005; Wilson, et al., 2001); therefore the incidence of mandibular fractures, especially condylar fractures may be higher than reported. Those studies performed earlier (e.g. Walden, et al., 1956) would have diagnosed fractures using different and less accurate means i.e. from the examination of two oblique lateral views rather than the use of the dental panoramic radiograph which was became common much later on and was itself superceded by conventional or cone-beam CT in some centres.

Studies involving children were not excluded by many investigators and many authors differed in their classification of a child (e.g. Oji, 1998 (<11 years old); Ugboko, et al., 2000 (< 14 years old); Olasoji, et al., 2002 (< 15 years old)). Whether the change in mandibular form with age was significant enough to affect the prevalence of certain fractures remains unsure.

When the total number of fractures is considered, and this is irrespective of the number of fractures sustained in any single patient, it is difficult to determine which anatomical sub-site is fractured most frequently from the results of this meta-analysis as the effect size for the condyle, parasymphysis/symphysis and angle are similar, showing significant dispersion.

Despite all of the limitations of the various forms of bias and the degree of statistical heterogeneity, one must consider the alternative method of attempting to synthesize the prevalence data found in the literature search i.e. the narrative review. Many of the same forms of bias would be present; however, as this would not be quantified in a narrative review there would be a tendency to ignore it. The strict criterion for study eligibility in the meta-analysis is an advantage that is not always present in a narrative review or if it is present, it is not formally stated. The reason for including a study in a purely narrative review may introduce a reviewer bias in a very non-transparent way that makes it difficult to interpret, whereas the meta-analysis details all studies and the procedures of inclusion and exclusion, allowing quantification of bias. Additionally, the weight given to a particular study in a narrative review is at the discretion of the author whereas the weighting system for a meta-analysis is described in the report.

In the same way that bias was addressed, so was heterogeneity. This was quantified and steps taken to minimize the effect, e.g. by the use of the random effect model. The narrative review has no common equivalent. Therefore it can be said that the use of a meta-analysis was the best way to synthesize the prevalence data.

### 2.4.1.6 Conclusion

The mandible has unique geometry, which result in areas inherently susceptible to fracture. It is reasonable to assume that fractures in these areas should occur more frequently than would be expected by chance alone and this should be reflected in the incidence and pattern of fractures. The meta-analysis has given some insight into areas of the mandible that are more frequently fractured with more accuracy all reported studies thus far. It may give a suggestion that certain sites have an increased propensity over others, but gives no real indication as to the reason for this, although the mechanism of injury may be a significant factor. Where the mandibular anatomy is significantly different or integrity of the bone is compromised due to the presence of a local change in material properties, such as an un-erupted third molar tooth, the pattern of fracture may differ. No studies specifically took this factor into account when reporting prevalence. The overall prevalence of mandibular sub-site fractures therefore does not give the full picture regarding the "weak" (Halazonetis, 1968) regions of the mandible. Epidemiological prevalence studies are useful in planning treatment need and the organization of services; however, difficulties arise when using these studies to determine the "weak" areas of the mandible. Traumatic forces that result in fractures may present to a particular mandibular sub-site more than others. Those who have a more prognathic chin (i.e. have a class III skeletal base) may be expected to experience more chin trauma compared with those with a retrognathic profile (class II skeletal base) where the chin is relatively more protected by the cranio-facial skeleton. None of the articles reviewed for the meta-analysis took into account the skeletal relationship when determining the fracture sub-site frequency. What the meta-analysis does suggest is that most impacts to the mandible occur in the anterior region, which, depending on the impact force and contact area may result in fractures in the condylar region or the symphyseal/parasymphyseal region.
#### 2.4.2 Multifocal fractures

# 2.4.2.1 Introduction and aim

Multifocal fractures occur at more than one site. This section aims to review the

reported range of multifocality in the literature and identify consistent fracture patterns.

#### 2.4.2.2 Method

The studies identified in section 2.4 were reviewed to determine any studies that also

reported the pattern of multiple mandibular fractures.

# 2.4.2.3 Results

Eleven studies gave details of mandibular fracture combinations.

| Author                   | Multifocal fracture |
|--------------------------|---------------------|
|                          | frequency           |
| Ferreira, et al., 2004   | 26.1%               |
| Elgehani, et al., 2009   | 37.2%               |
| lida, et al., 2001       | 48.5%               |
| Adebayo, et al., 2003    | 49.5%               |
| Van Hoof et al., 1977    | 49.8%               |
| Ellis 3rd, et al., 1985  | 51.4 %              |
| Ólafsson, 1984           | 51.7%               |
| Adi, et al., 1990        | 52.9%               |
| Subhashraj, et al., 2008 | 54.6%               |
| King, et al., 2004       | 67.9%               |
| Greene, et al., 1997     | 69.8%               |

Table 2.12 Reported multifocal mandibular fracture incidences.

Five studies also gave details of the sub-site pattern of multiple fractures. None of the authors differentiated between sides concerning fracture patterns. Some common fracture patterns reported are seen in Figures 2.5 to 2.8.

|                              |    | Author and multifocal fracture pattern frequency |      |                                       |    |                                       |      |                           |    |
|------------------------------|----|--------------------------------------------------|------|---------------------------------------|----|---------------------------------------|------|---------------------------|----|
| Schön, et al.,<br>2001       | %  | Adekeye,<br>1980                                 | %    | Goldberg<br>and<br>Williams,<br>1969  | %  | Muñante-<br>Cárdenas, et al.,<br>2010 | %    | Copcu, et al.,<br>2004    | %  |
| Parasymphysis,<br>angle      | 17 | Bilateral<br>body                                | 58.5 | Bilateral<br>body                     | 27 | Angle, body                           | 18.5 | Angle,<br>parasymphysis   | 33 |
| Parasymphysis,<br>subcondyle | 12 | Right<br>angle, left<br>body                     | 19.0 | Symphysis,<br>body                    | 7  | Angle,<br>parasymphysis               | 18.5 | Angle, body               | 15 |
| Body,<br>subcondyle          | 15 | Left angle,<br>right body                        | 9.5  | Symphysis,<br>subcondyle              | 3  | Parasymphysis, subcondyle             | 18.5 | Parasymphysis, subcondyle | 10 |
| Angle, body                  | 40 | Left<br>condyle,<br>right body                   | 8.7  | Symphysis,<br>bilateral<br>subcondyle | 1  | Symphysis,<br>subcondyle              | 14.8 | Bilateral<br>subcondyle   | 10 |
|                              |    | Bilateral<br>angle                               | 2.6  | Bilateral subcondyle                  | 2  | Body,<br>subcondyle                   | 18.5 | Body,<br>subcondyle       | 7  |
|                              |    | Bilateral condyle                                | 1.8  | Body,<br>subcondyle                   | 5  | Body, symphysis                       | 11   | Bilateral angle           | 6  |
|                              |    |                                                  |      | Body,<br>bilateral<br>subcondyle      | 1  |                                       |      | Angle,<br>subcondyle      | 5  |
|                              |    |                                                  |      | Ramus and other                       | 2  |                                       |      | Bilateral body            | 4  |

Table 2.13 Mandibular fracture combinations reported in the literature with frequencies.



Figure 2.5 Right angle, left parasymphysis fracture combination. (Adapted from Colton, et al., 2014)



Figure 2.6 Right condyle, left parasymphysis fracture combination. (Adapted from Colton, et al., 2014)



Figure 2.7 Left body condyle and left angle fracture combination. (Adapted from Colton, et al., 2014)



Figure 2.8 Bilateral condyles, left parasymphysis fracture combination. (Adapted from Colton, et al., 2014)

# 2.5.4 Discussion

Multifocal fractures of the mandible appear to be at least as common as uni-focal. The vast majority of the retrospective studies reviewed plain radiographs. Neither sagittal fractures nor sub-clinical damage such as compression fracture of the condylar head can be seen on plain radiographs and therefore are frequently undiagnosed (Rhea, et al., 1999). This suggests that the incidence of these fractures may be even higher than the 24.3% suggested in the meta-analysis (see table 2.13).

60

#### 2.4.3 The effect of third molars on the incidence of angle fractures

# 2.4.3.1 Introduction and aim

Many papers have found that the angle of the mandible is fractured most frequently (although this was not found in the meta-analysis in section 2.4.1.4). This may be related to the presence of un-erupted or partially erupted third molar teeth. The purpose of this section was to assess the evidence for the proposition that the presence of third molar teeth increases the risk of fractures at the angle of the mandible.

#### 2.4.3.2 Method

An electronic search of EMBASE, PubMed and MEDLINE databases was performed. The Medical Subject Headings (MeSH) and search strategies used are shown in table 2.14. The search yielded 352 articles. These were reviewed by abstract and title. The inclusion criteria included studies relating mandibular angle fractures and the presence of third molar teeth in humans. Two-hundred and ninety four abstracts were rejected due to failure to reach the inclusion criteria. There were no exclusions due to language. Once duplicate studies were removed, twenty-eight articles were available for review. The flow chart for the selection process is shown in figure 2.8.

| Electronic Databases and Search Strategy                                | No. Hits<br>per |
|-------------------------------------------------------------------------|-----------------|
|                                                                         | Database        |
| Database: Ovid MEDLINE(R) In-Process and Other Non-Indexed Citations    | 156             |
| and Ovid MEDLINE(R) <1946 to Present>, Ovid OLDMEDLINE(R) <1946 to      |                 |
| 1965>, Embase Classic+Embase <1947 to 2014 May 21>                      |                 |
| Search Strategy:                                                        |                 |
| (mandible and fracture and third molar).mp. [mp=ti, ab, ot, nm, hw, kf, |                 |
| ps, rs, ui, an, sh, tn, dm, mf, dv, kw] (156)                           |                 |
| Database: PubMed                                                        | 196             |
| Search Strategy: ((mandible or mandibular) and fracture and third       |                 |
| molar)                                                                  |                 |
| Query Translation:                                                      |                 |
| ("mandibular fractures"[MeSH Terms] OR ("mandibular"[All Fields] AND    |                 |
| "fractures"[All Fields]) OR "mandibular fractures"[All Fields] OR       |                 |
| ("mandible"[All Fields] AND "fracture"[All Fields]) OR "mandible        |                 |
| fracture"[All Fields]) AND ("molar, third"[MeSH Terms] OR ("molar"[All  |                 |
| Fields] AND "third"[All Fields]) OR "third molar"[All Fields] OR        |                 |
| ("third"[All Fields] AND "molar"[All Fields]))                          |                 |
|                                                                         |                 |

Total

352

Table 2.14 Search strategies employed in the prevalence meta-analysis.



Figure 2.9 Literature review search strategy.

#### 2.4.3.3 Results

The conclusion summaries of the studies are found in table 2.15.

# 2.4.3.3.1 Review of Studies

Four retrospective studies aimed to measure associations between mandibular third molar position and the risk of angle fracture (Tevepaugh and Dodson, 1995; Lee and Dodson, 2000; Fuselier, et al., 2002; Halmos, et al., 2004). These papers are of interest as they all have a common co-author, and all, in part or in entirety, utilize the cohort of patients admitted to the Grady Memorial Hospital, between January 1993 and February 1994. In the case of Tevepaugh, et al. (1995), data was used over the period January 1993 to February 1994. Lee, et al. (2000) added data, increasing the data collection period to February 1998. Fuselier, et al. (2002), added data from Parkland Memorial Hospital, Dallas, TX (period 1990 to 2000) to the data of the Tevepaugh and Lee studies, and finally, Halmos, et al., utilized the two previous data sources and added data from Massachusetts General Hospital, Boston, MA, between 1993 and 2001, to increase their sample size.

The use of the same data source in multiple publications is fraught with the potential for bias. Any bias that was introduced in the initial study would be present in all of the other studies, thus weakening their validity. As with many such studies, all of the patients in the cohort suffered from selection bias. Retrospective studies that are based on inpatient records only take into account those patients who required inpatient management. Many minimally displaced angle fractures may have been managed nonsurgically and therefore such cases would not be identified. Additionally, the decision on whether to manage an angle fracture non-surgically may well be influenced by the presence of an impacted third molar tooth. The methodology of the four papers was the same. The Pell and Gregory classification (Pell and Gregory, 1942) was used to classify the position of third molar position after the fracture had occurred. The post-fracture position could be significantly different to the pre-morbid condition making position measurements inaccurate. No system was used to classify the impacted tooth itself i.e. whether or not there was any associated bone resorption, tooth follicle enlargement or apical pathology. In addition, as radiographs are 2-dimensional representations of 3dimensional objects, no account of bucco-lingual displacement of the tooth. This could be as important a factor for fracture development. In Tevepaugh's study, 105 mandibular fractures were found, 73 fractures were associated with third molars and 32 had no associated third molars. The authors calculated the relative risk of suffering an angle fracture with a third molar present to be 3.8. Their proposed mechanism for this was that the third molar weakened the mandible by reducing the cross-sectional area of bone. No association was found between the position or angulation of the tooth and the presence of the angle fracture.

Lee, et al. (2000) concluded that mandibles with the most deeply impacted third molar teeth had a 50% decrease in angle fracture risk compared to superficially placed third molars. The overall relative risk was calculated as 1.9. The *Halmos* study also compared fracture risk and third molar depth. The adjusted odds ratio was calculated as 2.8 with a 95% confidence interval of 2.3 to 3.4. The authors were unable to find a theory, which fitted their findings. The conclusions of all four studies were similar i.e. patients with third molar teeth present had a significantly increased likelihood of an angle fracture. Additionally, they concluded that the risk for an angle fracture was variable and depended on third molar position.

Two studies were only presented as papers at different conferences and therefore it was not possible to examine their methodology in detail (Milzman, et al., 2013; Weiner, et al., 2012). However, it is clear from the abstracts that the three presentations referred to exactly the patient population, used the same methodology, produced identical results and had the same conclusions. All studies used electronic chart abstraction by a third party who was blinded to the study hypothesis. Five-hundred and sixty-nine patients were identified of which 34 were excluded due to incomplete data. The authors calculated an odds ratio of 5.6 (although the 95% confidence interval was wide at 2.6 - 13.8), suggesting that the presence of a third molar significantly increased the risk of an angle fracture.

There seems to be almost consensus that an impacted third molar may be associated with an increase in angle fractures, however, the mechanism by which this occurs has not been proven. Safdar, et al. (1995) scored third molar impaction using a system based on measurements from two-dimensional panoramic radiographs (Safdar and Meechan, 1995). The influence of bucco-lingual angulation of the tooth was again not accounted for. Third molars were not differentiated on grounds of pathology. The authors felt that the impacted third molar would "weaken the mandibular angle both quantitatively and qualitatively". They proposed that there was a linear relationship between the degree of impaction and angle fracture susceptibility. It was assumed that the degree of impaction represented the amount of bony space occupied by the tooth. However, no measurement of the volume occupied by the third molars was made. Therefore, the quantitative weakness theory was not formally proven in their study.

Ugboko, et al. (2000), were lone dissenting voices regarding the effect of the third molar on mandibular fracture. Their study population of 490 patients included mostly fractures resulting from inter-personal violence. Sixteen per cent of patients whose third molars were present had angle fractures as opposed to 13% with fractures who did not have third molars (p=0.57). Of the patients whose lower third molars were not erupted, 31% had angle fractures compared with 16% in whom the lower third molars were erupted (p=0.002). The authors reported a relative risk of an angle fracture with a third molar present as 1.2, suggesting that the presence of the third molar tooth minimally increases the risk of mandibular angle fracture. It was also found that mandibular fracture was more likely in the patient with an un-erupted third molar tooth than in the patient with an erupted third molar.

There was no consensus as to whether the depth of impaction increases or decreases the risk of angle fracture. Naghipur, et al. (2013) found no relationship between position and angulation and mandibular angle fracture whereas lida, et al. (2003) found that if a third molar was close to the inferior border of the mandible there was a high risk of angle fracture. Meisami, et al. (2002) on the other hand found that deep impactions were not associated with an increased risk for angle fracture. Halmos, et al. (2004) concurred in a later study. Angulation of the tooth (as measured in its post-fracture position) was found to have no influence on mandibular angle fractures by Gaddipati, et al. (2014).

The impacted third molar tooth has also been found to influence fractures of the mandibular condyle. Iida, et al. (2002) found that partially erupted third molars decreased the likelihood of ipsilateral condylar fractures. Duan, et al. (2008) also found that the presence of third molars were protective against mandibular condyle fractures, although no distinction was made between deeply impacted and the degree of partial eruption. These studies have been supported by others (Gaddipati, et al., (2014); Naghipur, et al., (2013); Luria, et al. (2013); Thangavelu, et al., (2010); Choi, et al., (2011); Patil, et al., (2011) and Inaoka, et al., (2009)).

Retrospective studies which attempt to find a causal relationship between third molar presence and angle fractures from patient records will always suffer from some form of selection bias. In the studies reviewed above, only fractures which required treatment were included. No distinction was made in most studies between the mechanisms of injury. One would expect that magnitude, area of impact and direction of force would affect the likelihood of injuries at the mandibular angle (Ugboko, et al. (2000)). Additionally, most studies assumed that the incidence of third molar presence is the same in all population. This is not necessarily the case. Also impacted third molar teeth as a group are heterogeneous. The tooth itself could be ankylosed or could be associated with cystic change which would reduce the amount of cortical or cancellous bone. One would suppose that it would be the reduction in the cortical bone that would have the most significant effect on bony strength in the region of the angle. The only way to determine the effect of un-erupted or partially erupted teeth on the propensity of the mandible to fracture under loading would be to examine geometrically identical mandibles subjected to identical loading conditions with and without the present of an impacted tooth. Unfortunately, this is not possible clinically.



Figure 2.10 Fracture of the right angle of the mandible. Note the un-erupted third molar tooth with a slightly enlarged follicle around the crown. (Radiograph used with permission of the patient.)



Figure 2.11 Fracture of the right angle of the mandible. Note that the third molar tooth is partially erupted. (Radiograph used with permission of the patient).

| Investigators/Year           | Study type    | Aim or Title                                                                                                                                                                                                              | Authors' conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gaddipati, et al.,<br>2014   | Retrospective | "Impacted mandibular third<br>molars and their influence on<br>mandibular angle and<br>condyle fractures - A<br>retrospective study."                                                                                     | "The presence of impacted third molar<br>predisposes the angle to fracture and reduces<br>the risk of a concomitant condylar fracture.<br>There is no significant relationship, concerning<br>ramus position and angulation of impacted<br>mandibular third molars with the angle<br>fracture."                                                                                                                                                                                                                                                                                                                                                                |
| Milzman, et al.,<br>2013*∆a) | Retrospective | "To determine if the presence<br>of third molars, specifically<br>impacted teeth, is associated<br>with an increased risk of<br>mandibular fracture<br>compared to patients with an<br>already extracted third<br>molar." | "The presence of a third molar increases the<br>likelihood of a mandible angle fracture<br>following trauma."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Naghipur, et al.,<br>2013Δ   | Retrospective | "The effect of lower third<br>molar presence and position<br>on fracture of the mandibular<br>angle and condyle."                                                                                                         | "The incidence of mandibular angle fracture<br>was significantly higher in both patients and<br>mandible sides with an impacted third molar.<br>The rate of condylar fracture was significantly<br>higher in both patients and mandible sides<br>lacking an impacted third molar. A relationship<br>between the position and angulation of third<br>molar in relation to incidence of angle and<br>condylar fractures could not be demonstrated.<br>We also found that patients with a normally<br>erupted third molar were at increased risk of<br>angle fracture and a decreased risk of condylar<br>fracture, compared to patients with no third<br>molar." |
| Milzman, et al.,<br>2013∆b)  | Retrospective | "To determine if the presence<br>of third molars, specifically<br>impacted teeth, is associated<br>with an increased risk of<br>mandibular fracture<br>compared to patients with an<br>already extracted third<br>molar." | "The presence of a third molar increases the<br>likelihood of a mandible angle fracture<br>following trauma."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Luria and<br>Campbell, 2013∆ | Retrospective | "To assess any correlation<br>between mandibular fracture<br>patterns, specifically in the<br>region of the angle or<br>condyle/ sub-condyle, and<br>the presence or absence of<br>mandibular third molars."              | "There is a twofold decrease in the risk of<br>condylar/sub-condylar fracture if a third molar<br>is present on the same side, suggesting that<br>retained third molars may serve a "protective"<br>function against condylar and condylar neck<br>fractures."                                                                                                                                                                                                                                                                                                                                                                                                 |
| Abbasi, et al., 2012         | Retrospective | "To assess the frequency of<br>un-erupted mandibular third<br>molar in mandibular angle<br>fractures."                                                                                                                    | "The presence of un-erupted mandibular third<br>molar is associated with an increased risk for<br>mandibular angle fracture."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weiner, et al.,<br>2012Δ     | Retrospective | "To determine if the presence<br>of third molars, particularly<br>impacted teeth, creates an<br>increased risk for mandible<br>fracture compared to persons<br>with an already extracted<br>third molar."                 | "The presence of a third molar increases the<br>likelihood of a mandible angle fracture<br>following trauma."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Choi, et al., 2011           | Retrospective | "We attempt to characterize<br>the effect of a third molar on<br>the incidence of mandibular<br>angle and condylar<br>fractures."                                                                                         | "The presence and the state of the lower third<br>molar affect the risk of future mandibular angle<br>and condylar fracture."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Patil, 2012                  |               | "To assess the influence of<br>the presence and state of<br>impaction of mandibular<br>third molars on the incidence<br>of fractures of the<br>mandibular angle and<br>condyle."                                          | "An incompletely erupted third molar reduces<br>the risk of condylar fractures and increases the<br>risk of fractures of the mandibular angle."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Investigators/Year            | Study type    | Aim or Title                                                                                                                                                                  | Authors' conclusions                                                                                                                                                                                                                                                   |
|-------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bezerra, et al.,<br>2011      | Retrospective | "To estimate how is the<br>magnitude of the impact of a<br>mandibular third molar on<br>the mandibular angle<br>stiffness."                                                   | "The presence of a third molar may double the<br>risk of an angle fracture of the mandible to<br>occur."                                                                                                                                                               |
| Thangavelu, et al.,<br>2010   | Retrospective | <i>"Impact of impacted mandibular third molars in mandibular angle and condylar fractures."</i>                                                                               | "Patients with impacted third molars were<br>three times more likely to develop angle<br>fractures and less likely to develop condylar<br>fractures than those without impacted third<br>molars."                                                                      |
| Inaoka, et al., 2009          | Retrospective | "To relate the condylar and<br>angle fracture with an un-<br>erupted lower third molar,<br>taking into account the<br>position of the tooth."                                 | "The absence of an impacted third molar may<br>increase the risk of condylar fractures and<br>decrease the prevalence of mandibular angle<br>fractures."                                                                                                               |
| Subhashraj, 2009              | Retrospective | "A Study on the Impact of<br>Mandibular Third Molars on<br>Angle Fractures."                                                                                                  | "There is an increased risk of angle fractures in<br>the presence of a lower third molar, as well as a<br>variable risk for angle fracture, depending on<br>the third molar's position."                                                                               |
| Rajkumar, et al.,<br>2009     | Retrospective | "To evaluate the presence of<br>mandibular third molars as a<br>risk factor for angle fractures<br>in patients with fractured<br>mandibles."                                  | "The results of this study demonstrate that<br>patients with fractured mandibles and<br>mandibular third molars are nearly 2.2 times<br>more likely to have an angle fracture than<br>patients without mandibular third molars."                                       |
| Duan and Zhang,<br>2008       | Retrospective | "Does the presence of<br>mandibular third molars<br>increase the risk of angle<br>fracture and simultaneously<br>decrease the risk of condylar<br>fracture?"                  | "Third molars were a dominant factor for<br>developing a mandibular angle fracture and<br>preventing condylar fracture."                                                                                                                                               |
| lida, et al., 2003            | Retrospective | "To clarify the influence of<br>the eruption status of<br>incompletely erupted<br>mandibular third molars on<br>the incidence of mandibular<br>angle fractures."              | "The results of this investigation showed that<br>incompletely erupted mandibular third molars<br>close to the inferior border of the mandible<br>have a high risk of angle fractures."                                                                                |
| Halmos, et al.,<br>2004†      | Retrospective | "To measure associations<br>between mandibular third<br>molar status/position and risk<br>for angle fracture."                                                                | "The presence of third molars was associated<br>with a 2.8-fold increased risk for angle<br>fractures. Third molar position was associated<br>with a variable risk for angle fracture. Deep<br>impactions were not associated with an<br>increased risk for fracture." |
| Hanson, et al.,<br>2004       | Retrospective | "To estimate the relative risk<br>of mandibular angle fractures<br>among people with a lower<br>third molar compared with<br>those without a lower third<br>molar."           | "The presence of a lower third molar may<br>double the risk of an angle fracture of the<br>mandible."                                                                                                                                                                  |
| lida, et al., 2004            | Retrospective | "Influence of the incompletely<br>erupted lower third molar on<br>mandibular angle and<br>condylar fractures."                                                                | "The result of this retrospective investigation<br>shows that an incompletely erupted third molar<br>decreases the risk of condylar fractures and<br>increases the risk of mandibular angle<br>fractures."                                                             |
| Fuselier, et al.,<br>2002†    | Retrospective | <i>"Do mandibular third molars<br/>alter the risk of angle<br/>fracture?"</i>                                                                                                 | "In patients who sustain a mandible fracture,<br>the presence of third molars significantly<br>increases the likelihood of an angle fracture. In<br>addition, the risk for an angle fracture depends<br>on third molar position."                                      |
| Meisami, et al.,<br>2002      | Retrospective | "To assess the influence of<br>the presence, position, and<br>severity of impaction of the<br>mandibular third molars, on<br>the incidence of mandibular<br>angle fractures." | "Patients with retained impacted third molars<br>are significantly more susceptible to angle<br>fracture than those without. The risk for angle<br>fracture, however, does not seem to be<br>influenced by the severity of impaction."                                 |
| Ma'alta and<br>Alwrikat, 2000 | Retrospective | of waluate the association<br>of mandibular angle fractures<br>with the presence and state<br>of the eruption of the<br>mandibular third molar."                              | impacted third molar is more susceptible to<br>fracture when exposed to an impact than an<br>angle without a third molar."                                                                                                                                             |

| Investigators/Year             | Study type    | Aim or Title                                                                                                                              | Authors' conclusions                                                                                                                                                                                                                                                    |
|--------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meechan, 2000                  | Opinion       | "The effect of mandibular<br>third molar presence and<br>position on the risk of an<br>angle fracture."                                   | Three papers reviewed, two non-clinical, one opinion. No original data produced, no clear conclusion drawn.                                                                                                                                                             |
| Lee and Dodson,<br>2000†       | Retrospective | "The effect of mandibular<br>third molar presence and<br>position on the risk of an<br>angle fracture."                                   | "Patients with third molar present have an<br>increased risk for angle fractures. The risk for an<br>angle fracture varied depending on third molar<br>position."                                                                                                       |
| Ugboko, et al.,<br>2000.       | Retrospective | "An investigation into the<br>relationship between<br>mandibular third molars and<br>angle fractures in Nigerians."                       | "The presence of a lower third molar does not<br>necessarily predispose to fractures of the angle<br>of the mandible. However, angle fractures are<br>more likely to occur in people with un-erupted<br>lower third molars than in those in whom they<br>have erupted." |
| Yamada, et al.,<br>1998        | Retrospective | "A study of sports-related<br>mandibular angle fracture:<br>relation to the position of the<br>third molars."                             | "Mandibular angle fractures are influenced by<br>the presence and characteristics of the third<br>molar in sports-related injuries."                                                                                                                                    |
| Safdar and<br>Meechan, 1995    | Retrospective | "To relate the incidence of<br>fractures at the mandibular<br>angle with the presence and<br>state of eruption of lower<br>third molars." | "Un-erupted third molar teeth weaken the mandibular angle both quantitatively and qualitatively."                                                                                                                                                                       |
| Tevepaugh and<br>Dodson, 1995† | Retrospective | "To evaluate mandibular<br>third molars as risk factors for<br>angle fractures in a patient<br>sample with fractured<br>mandibles."       | "Patients with fractured mandibles and<br>mandibular third molars are 3.8 times more<br>likely to have an angle fracture than patients<br>without mandibular third molars."                                                                                             |

 Table 2.15 Summary of clinical papers. The aim or title and authors' conclusions are direct quotations from the associated clinical paper.

\*Denotes that the same paper was presented at three different conferences with identical data and results. †Denotes four studies that have used entirely or partially the same dataset. Titles of the paper appear in italics where no specific aim is stated in the paper.  $\Delta$  Denotes a poster or conference presentation.

# 2.4.3.3.2 Conclusion

The effect of the un-erupted third molar tooth on the propensity of the angle of the

mandible to fracture remains unclear from the reviewed studies due to the

heterogeneity of the third molar group. One of the aims of the 3DFEA studies is to

address questions that cannot be fully answered using epidemiological data.

# Chapter 3 Methodology

#### 3.1 Introduction

This chapter describes the methodology that will be employed throughout this research.

#### 3.2 Re-statement of research question

The primary purpose of this research is to determine if an anatomically and geometrically accurate finite element model of the mandible can be produced. The computer model should be capable of accurately simulating the biomechanical effects of loading and additionally simulating fractures encountered in experimental mechanical studies, with the potential to extrapolate the findings to clinical situations.

# 3.3 Research questions

# The research objective, general and specific research questions are shown in table 3.1

| Research objective                                                                                                               | General research question                                                                                               | Specific research question                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  | Can a validated mandibular                                                                                              | What are the effects of the<br>muscles of mastication on the<br>biomechanical response of the<br>mandible under load?     |
|                                                                                                                                  | 3DFEA model be produced which<br>is capable of reproducing the<br>biomechanical response of the<br>mandible under load? | What is the effect of tooth loss on<br>the mandible under direct<br>loading?                                              |
| To develop a finite element<br>model capable of reproducing the<br>biomechanical response of the<br>mandible to physical trauma. |                                                                                                                         | What are the effects of<br>generalized material property<br>changes on the mandible under<br>load?                        |
|                                                                                                                                  | How does the mandible respond                                                                                           | What is the effect of load site on the mandible?                                                                          |
|                                                                                                                                  | to static physiological loading?                                                                                        | What is the effect of load angulation on the mandible?                                                                    |
|                                                                                                                                  | How does the mandible respond to static loading?                                                                        | Are the patterns of mandibular<br>stress and strain similar under<br>physiological and loading?                           |
|                                                                                                                                  | How does the mandible respond to dynamic loading?                                                                       | What is the effect of deformation rate on mandibular fracture?                                                            |
|                                                                                                                                  | How do localized changes in material properties (i.e. bony                                                              | What is the effect of cystic lesions<br>at the angle of the mandible on<br>fracture propensity?                           |
|                                                                                                                                  | lesions) in the mandible change<br>the dynamic response to loading?                                                     | What is the effect of solid at the<br>angle of the mandible (un-<br>erupted third molar teeth) on<br>fracture propensity? |

Table 3.1 Research objectives

# 3.4 Required tools

The most important tool required to fulfil the requirements of this research is a 3DFEA model of the mandible which has been verified and validated where possible. It is understood that true clinical validation will not be possible and therefore the closest form of validation will be employed. At the time of undertaking this research there are no existing models suitable for answering the specific research questions and no models are available that may be easily converted for the purpose. As a result, part of this research will be the production of a 3DFEA model. In order to produce the model and perform the research several other tools will be required. The specifications of these tools are outlined below.

# 3.4.1 Computational resources

As the aim of this research is to produce a simulation model that has value in the laboratory and the medico-legal office situations, the computational and software resources used must be within the scope of that which would be considered reasonable expense for such situations. At the time of planning this research reasonable expense has been estimated as £1500. This would acquire a well-specified computer capable of running the required software. Although the budget of the hardware will remain the same, it is envisaged that at the end of the research this will acquire a significantly more powerful computer.

# 3.4.2 Software and file formats

File incompatibilities amongst software packages tend to be common even when standardized export formats are used. Where possible it is intended that open-source software will be used, however, file incompatibilities are even more common in such packages, therefore several software packages and file formats will have to be trialled in combination before the final software is decided upon. It is anticipated that this will be a time consuming process. Software cost will also be a limiting factor with the best high quality software, costing many thousands of pounds, being out of the range of the research budget. Specialized software will be licenced for the period of the research where possible. This will reduce cost.

3.4.3 Image processing

The standard tools for producing finite element models in the field of engineering are usually computer-aided design packages or the pre-processors of finite element analysis packages. As organic structures have a much more complex form than those of manmade structures, routine CAD/CAM software will be inadequate for producing FE models. The most efficient way of generating organic structures is to utilize the serial images from CT, magnetic resonance, or histological preparations. In this research the CT scans of patients taken for therapeutic reasons will be used with consent, therefore image processing software will be required.

### 3.4.4 Pre-processing

The pre-processing phase of analysis will involve the setting up of the simulation conditions. This will include the application of boundary conditions, muscle forces and material properties. Many analysis packages have built-in pre-processors, but this is not always the case, therefore, specific pre-processors will be required where they are not available in the analysis software.

#### 3.4.5 Analysis software

The analysis software will require the following capabilities:

• The ability to perform linear and non-linear analyses

- The ability to perform static analyses
- The ability to perform dynamic analyses

#### 3.5 Required data

The data required to answer the research questions will come in the form of calculations designed to measure performance. As mentioned previously, performance may refer to the mechanical efficiency or strength of a specific system. Failure of the system i.e. bony failure will be determined by the use of the von Mises formula.

The von Mises formula was developed to predict yielding of isotropic ductile materials such as metals (see equation 3.1). Under this criterion, failure occurs when the von Mises stress equals the ultimate stress of the material. Cortical bone has been described as ductile in fracture (Nalla, et al., 2003) although Hansen, et al. (2008) noted a ductileto-brittle transition, which was strain-rate related, in tensile and compressive tests to failure.

Some authors have suggested that this criterion is not very realistic for determining failure in bone (Doblaré, et al., 2004) von Mises stress (also referred to as the equivalent stress) has been used throughout biological literature to predict bony failure. Keyak and Rossi (2000) found that when isotropic material properties were used, von Mises criterion was the most accurate for fracture location prediction in cortical bone. This was even the case when the differences in compressive and tensile stress were accounted for. This same accuracy was not found in cancellous bone (Fenech and Keaveny, 1999). The equation frequently used to determine von Mises stress is found below.

$$\sigma_{vm} = \sqrt{\frac{1}{2}[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]}$$

Equation 3.1 von Mises equivalent stress where  $\sigma_1$ ,  $\sigma_2$ ,  $\sigma_3$  are principal stresses such that  $\sigma_1 < \sigma_2 < \sigma_3$ .

A similar equation has been used to define von Mises strain.

$$\varepsilon_{vm} = \sqrt{\frac{1}{2} \left[ (\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \right]}$$

Equation 3.2 von Mises equivalent strain where  $\varepsilon_1$ ,  $\varepsilon_2$ ,  $\varepsilon_3$  are principal stresses such that  $\varepsilon_1 < \varepsilon_2 < \varepsilon_3$ .

This research will use von Mises stress and strain, along with strain rate as determinants of bony failure for two main reasons. Firstly to allow comparison with previous research and secondly as 3DFEA studies of bony fractures in other parts of the body have shown good comparison with clinical findings when these parameters have been used.

#### 3.6 Appropriateness of the research design

This research will follow a type-2 design-based methodology as defined by Richey et al. (2004). This will be supplemented by the use of a modified error tracking system based upon the SAFESA (Safe Structural Analysis) approach developed by Cranfield University for controlling finite-element idealization errors (Morris, 1996; Vignjevic, et al., 1998). The modelling protocols of National Agency for Finite Element Method and Standards (NAFEMS) which are designed to establish the best practice for 3DFEA simulation will be followed as closely as possible.

# 3.7 Technique of data analysis

Finite element analyses tend to produce large quantities of data, therefore a method of post-processing results will be required that can simplify this in an understandable manner. The choices available to display the results include, colour contour maps (3-

78

dimensional), vector maps (3-dimensional), and graphical representation of data. It is anticipated that all display options will be used in this research.

#### 3.8 Research structure

The research will have three distinct phases namely:

- 1. Phase I The development of the finite element model
  - Ia Model production
  - Ib Model verification
- 2. Phase II Static analyses
  - Ila Linear static analyses
  - IIb Non-linear static analyses
- 3. Phase III Dynamic analyses
  - IIIa Basic non-linear dynamic analyses
  - IIIb Applied non-linear dynamic analyses

The iterative nature of finite element analysis requires a step-wise progression through the phases, with the results of each phase informing the next. The result will be that some modelling and analysis techniques that are employed in earlier phases will be absent in later phases if they are found to be computationally inefficient or unnecessary.

# 3.9 Phase Ia: Model production

In the type-2 design research methodology the development process is generally constructed by reference to a number of methods including survey of previous successful modellers within the field, review of models in the literature and the use of an iterative model design process whereby the model is verified by a number of methods. The literature review in chapter 2 has already reviewed the work of the published authors in the field (and where appropriate related modelling techniques) therefore in this phase the model production itself will be addressed.

The aim will be the production of an anatomically and geometrically accurate 3dimensional model of an adult human mandible. The model will not aim to be a reproduction of the entire biological system under investigation (i.e. the mandible and its supporting tissues) in computer terms. An entirely accurate model would require complete knowledge of the functioning and material properties of the system under investigation, which is unavailable, and the ability to accurately model those properties in computing terms, which is also unavailable. Additionally, the computing power required to solve such a complex model would be significant and beyond the reach of most investigators. Therefore, where information is incomplete, reasonable assumptions will have to be made in order to perform an analysis.

In order to answer all of the research questions three functional models will be required (see table 3.2).

| Model                     | Purpose                                         |
|---------------------------|-------------------------------------------------|
| Dentate adult mandible    | Static and dynamic analyses                     |
| Edentulous adult mandible | Static and dynamic analyses –comparison studies |
| Adult fist                | Dynamic analyses                                |

Table 3.2 Models required for analyses

# 3.9.1 Model data source

The literature review revealed that the most anatomically accurate mandibular models could be produced from CT data. It is possible to derive this from three sources, namely, clinical data i.e. that previously obtained from a therapeutic scan of a consenting patient; volunteer data, and cadaveric data. Whilst data derived from volunteers would seem to be acceptable, the non-therapeutic use of ionizing radiation would be unethical. Data should therefore be utilized from either the therapeutic scans of consenting patients or scans derived from cadaveric material (again with consent where applicable).

# 3.10 Phase Ib: Model verification

The finite element model will require verification. The methods of verification adopted will be those recommended the NAFEMS. This is an independent association for the international engineering community which sets and maintains standards for finite element modelling (NAFEMS mission statement).

Verification will include the following tests:

| Pre-analysis checks:      | Convergence checks:           |
|---------------------------|-------------------------------|
| Mesh inspection           | Relative convergence          |
| Boundary condition checks | Error estimates               |
| Material property checks  | Visual examination            |
| Model mass checks         |                               |
|                           | Table 3.3 Verification checks |

It will also be necessary to perform model validation. As true validation against a human subject will be impossible in most cases (certainly for the study of mandibular fractures) validation against laboratory mechanical tests, which is currently the standard in forensic biomechanics, will be employed. Data will be obtained from reported studies in the literature.

# 3.11 Phase IIa: Static linear analysis

As this is the simplest form of finite element analysis this will form the basis of biomechanical deformation studies and prediction of fracture site initiation.

This series of investigations will need to investigate the following effects.

- Effect of muscles
- Effect of modelling teeth
- Effect of load position
- Effect of load angulation
- Effect of material properties

The outcome variables for these investigations will be von Mises stress and strain. In addition to giving information regarding the biomechanics of the mandible, these

82

analyses will also be used to give an indication of which anatomical features need to be modelled to achieve the desired aim of traumatic fracture simulation. As the least computationally expensive analysis it will also give an indication of the required run time, which should also inform the researcher regarding the utility of this method of analysis in a clinical/scientific situation, when compared to traditional methods of investigation. A "physiological load" will be defined as one which is within the elastic load of the mandibular cortical bone.

# 3.12 Phase IIb: Static non-linear analysis

Although some studies of the mandible under load have found that linear analyses provide deformation results that show good correlation with mechanical and clinical studies, this is not universal. Whether or not this non-linearity manifests itself in a way that would be significant to a forensic scientist or medico-legal investigator is important therefore non-linear analyses will be required. The main difference between the phase Ila and phase Ilb investigations will be the use of a load sufficient to fracture the mandible and the use of non-linear analysis. This will be defined as the "nonphysiological load". Results will be displayed in a similar manner to the static linear results and conclusions from these analyses will be fed into the design of the dynamic analyses.

#### 3.13 Phase IIIa: Basic dynamic non-linear analyses

The first analyses in this series will aim to investigate the effect of two factors that can influence the nature of fracture patterns i.e. the impact kinetic energy and the mandibular strain rate. Additionally, an attempt will be made to model the pattern individual fractures, rather than purely identifying the site of initiation. The fracture patterns observed will be compared with those discovered in the literature review (section 2.5). It is understood that all fracture patterns are unlikely to be represented, however, common fracture patterns (as opposed to fracture initiation sites) should be found.

As fractures are influenced by impact site, impact kinetic energy and strain rate, the effect of these on fracture pattern will also be investigated.

A dynamic solver will be required for these analyses from which vast quantities of data are generated for each analysis. Simulations will be presented graphically at the last time step of the simulation, which will be 1ms. This limitation is imposed as the general fracture pattern should have manifested itself by this time (as opposed to displacement of fractures). The computation time has been estimated at approximately 48hrs. Videos of the full dynamic simulation will be available on a companion disc.

#### 3.14 Phase IIIb: Applied non-linear dynamic analyses

Phase IIIb will be the culmination of the research. The final analyses will be used to investigate features of a clinical problem related to traumatic mandibular fractures which presents in clinical practice.

In the literature review (section 2.6) current research was reviewed regarding the effect of impacted third molar teeth on mandibular fractures. There was almost consensus amongst the various authors (Ugboko, et al., 2000 dissenting) that the impacted third molar tooth is associated with an increase in mandibular angle fractures and a reduction in ispilateral condylar fractures, although authors could not agree on a mechanism action. This research will attempt to test this commonly held theory, using the research model produced and 3DFEA. Models will be produced that only differ by the presence or absence of un-erupted third molar teeth. An un-erupted third molar tooth is effectively a local change in material properties of the mandible. The material properties of the unerupted tooth will be varied to extremes to understand the range of effects.

# 3.15 Research summary

This research will involve the production of a 3DFEA model produced using the guidelines of NAFEMS. The model will be verified and validated as far as possible within ethical guidelines. Specific research questions (see section 3.3) will be answered using data derived from research phases II and III. The flow diagram for the research methodology is shown in figure 3.1.



Figure 3.1 Research methodology

Any deviations from the methodology will be reported in the chapter 4 which details the execution of the research.

# **Chapter 4 Research**

4.1 Phase Ia: Model production

4.1.1 Aim

This section describes the completion of Phase I, the production of anatomically and geometrically accurate finite element models and their validation. The stages involved data capture; construction of mandibular geometry, the creation of finite element meshes; mesh quality analysis; material property assignment and the application of boundary conditions.

#### 4.1.2 Method

#### 4.1.2.1 Stage 1: Data capture

Models were developed from an open-source CT data archive. The dataset was obtained from a radiographic archive at the University Hospital Geneva (available at <u>http://www.osirix-viewer.com/datasets</u>) from which the "INCISIX" sample dataset was used. This anonymized public dataset which licensed exclusively for research and teaching. At the time of model production the manager of the archive was contacted, and confirmed that the appropriate consent was obtained from patients who donated their CT data.

The "INCISIX" dataset consisted of contiguous 750µm axial slices obtained as 8-bit images in Digital Imaging and Communications in Medicine (DICOM) format.

86

#### 4.1.2.2 Stage 2: Data import

# 4.1.2.2.1 The INCISIX dataset

CT data of the complete skull and upper cervical vertebrae was imported from the INCISIX CT dataset into the Mimics<sup>®</sup> Innovation Suite (Materialise NV, 2011) as a DICOM image stack of sequentially numbered axial images. Image orientation was performed such that the image slices corresponded to their anatomical position.

#### 4.1.2.3 Stage 3: Construction of mandibular geometry

#### 4.1.2.3.1 Geometry-based model production

A geometry-based approach rather than voxel-based approach was adopted to reproduce the mandibular anatomy. The rationale behind this decision was that as the resolution of the model produced by the voxel-based approach was largely determined by the resolution of the CT scan and the direct conversion of voxels into finite elements was limited to hexahedral elements with the software available at the time. The geometry-based approach involved using the acquired image stack to produce hollow, watertight, three-dimensional objects composed of interconnected polygons. These were then converted into surfaces composed of triangular elements.

#### 4.1.2.3.2 Thresholding

Thresholding is a method of digital image processing that allows subtraction of pixels lying outside a predetermined threshold value. When applied to the radiographic region of interest (ROI) on a CT it results in image segmentation i.e. separation of the ROI from the remaining data. The thresholding value used was determined with reference to the Hounsfield values for enamel, dentine, cancellous and cortical bone. The thresholding algorithm within the Mimics Innovation Suite <sup>®</sup> did not directly use Hounsfield Units

8

(HU) to perform the segmentation; rather it used its own related greyscale of 4094 values (-1023 to 3071). The thresholding range chosen was between -452 and 3071. This produced a segmentation mask consisting of only bone and teeth in each slice of the image stack (see figure 4.1).



Figure 4.1 The thresholding segmentation process in Mimics 13.1°. Hard tissue (green) was segmented form the surrounding hard tissue

# 4.1.2.3.3 Mask creation

Once the ROI (i.e. the mandible) had been defined it was necessary to segment out the remaining hard tissues. This could not be performed with standard thresholding as the maxillary bone has a similar greyscale range to the mandibular bone; therefore the Region Grow algorithm within Mimics<sup>®</sup> was employed. This allowed selection of pixels which had similar greyscale values representing same tissue. The accuracy of the segmentation relied on the homogeneity of the ROI. Cortical bone, dentine and enamel appeared relatively homogeneous and therefore selection was relatively simple (see figure 4.2).



Figure 4.2 Creation of the mandibular mask

Whilst the automated routines performed a rough segmentation, the resulting masks were still inadequate for model production; therefore, further manual adjustment was required. The mandible was manually separated from the maxilla by the deletion of one pixel outside the required segmentation area on each slice of the CT scan. This was performed in the axial, sagittal and coronal planes. Following this, the Region Grow algorithm was re-employed over all of the slices. The resulting segmented regions constituted the mandibular mask. The teeth, cancellous bone and cortical bone were further segmented using Boolean operations on the various masks. At the end of the process there were three different hard tissue masks, namely the mandibular cortex, the cancellous bone and the teeth (see figure 4.3).



Figure 4.3 Cross-section of segmented mandibular volumes. Mandible with segmented cortical (purple) and cancellous (light blue) bone.

4.1.2.3.4 Model formation

The individual mandibular masks (cortical bone, cancellous bone and teeth) were converted into individual 3-dimensional models using 3-Matic <sup>®</sup> (Materialise NV, 2011) and then exported in the Standard Tessellation Language (STL) format.

| Model 1: | Mandibular cortex alone                                      |
|----------|--------------------------------------------------------------|
| Model 2: | Mandibular cancellous bone alone                             |
| Model 3: | Mandibular teeth                                             |
| Model 4: | Assembled edentulous model (cortical and cancellous bone)    |
| Model 5: | Assembled dentate model (cortical cancellous bone and teeth) |
| Model 6: | Clenched fist                                                |

Table 4.1 3-dimensional models produced.

Of the two STL variations, the binary STL format was used throughout the modelling stage rather than the ASCII version. Five final models were produced as STL surface meshes.

# 4.1.2.3.5 Additional model

A further model was produced for the analyses using a commercial CAD/CAM surface mesh of a clenched fist under a royalty-free licence (see Appendix 16). This was also converted into STL format and resized to produce a fist of normal proportions.

# 4.1.2.3.6 Model refinement

The models were refined using a modified protocol for biological 3DFEA (Grosse, et al., 2007), after they were inspected to ensure that they were composed of topologically closed surfaces. This was a requirement of the meshing algorithm within 3-Matic<sup>®</sup> (Materialise NV, 2011).

## 4.1.2.3.7 Complexity reduction

The imported STL model files were subjected to a preliminary meshing using 3-Matic<sup>®</sup>. This produced a surface mesh of reduced complexity in terms of the triangle number. The meshing settings used for this initial procedure are found in Table 4.2. The resulting files were re-saved in the STL format.

#### Smoothing parameters

#### **Reduction parameters**

| Smoothing method     | Laplacian | Flip threshold angle | 15°  |
|----------------------|-----------|----------------------|------|
| Smoothing factor     | 0.7       | Geometric error      | 0.05 |
| Number of iterations | 3         | Number of iterations | 3    |

Table 4.2 Smoothing and reduction parameters applied to modes prior to meshing

#### 4.1.2.3.8 Digital shape sampling and processing

The resulting STL files proved inadequate for producing a finite element mesh; therefore, they were imported into Geomagic Studio 11<sup>®</sup> for manual adjustment. The remaining artefacts were removed and the model re-smoothed. The two procedures were repeated until anatomically acceptable models were produced using the least number of triangles.

At this stage the model co-ordinate system was also aligned so that the yz-plane was aligned parallel with the medial sagittal plane. Finally, the models were 'cleaned', exported from Geomagic Studio 11<sup>®</sup> as STL files and re-imported into 3-matic<sup>®</sup> for final meshing.

# 4.1.2.4 Stage 4. Creating the finite element meshes

#### 4.1.2.4.1 Element choice

Having used a geometry-based method of finite element model production, element choice was not restricted to hexahedral elements. In line with the majority of biological, mandibular finite element models (see chapter 2); tetrahedral elements were used in this study. These elements were chosen for their better ability to conform to the intricate geometry of biological structures without the need to resort to excessively high element resolutions. At the volume meshing stage, 4-noded (linear) tetrahedra were chosen rather than 10-noded (quadratic) tetrahedra as analyses were comparatively less computationally expensive, even though a higher element count was required to achieve the equivalent accuracy in the result. It has been suggested that at element resolutions of less than 252000, (in the analysis of the complete facial skeletons of bats), the difference between 4-noded tetrahedra and 10 noded tetrahedra is approximately 10% (Dumont, et al., 2005).
#### 4.1.2.4.2 Re-meshing protocol

Using a modified protocol originally devised by Dumont, (2009), 3-Matic<sup>®</sup> was chosen to perform the surface and volume meshing of the model. A shape quality threshold of 0.3 with a maximum geometric error of 0.02 was selected for the initial surface meshing. When surface meshing was successfully completed the mesh was manually checked for errors. The models then underwent a quality preserving triangle reduction and finally volume discretization i.e. the conversion of the surface meshed model into a volume of finite elements. The full meshing protocol is summarized in figure 4.4.



Figure 4.4 Meshing protocol



Figure 4.5 The final meshed mandibular model (model 5). All parts of the model are assembled.



Figure 4.6 The final volume mesh for the clenched fist model used in the dynamic analyses (model 6). This model was composed of 27836 four-noded tetrahedra and 6143 nodes. Note the increased mesh density at the area of contact

#### 4.1.2.5 Stage 5. Mesh quality analysis

In order to confirm the quality of the resulting model mesh and hence the mathematical accuracy, the models underwent mesh quality analyses using the absolute edge ratio (max/min) shape measure as the quality indicator. A shape quality threshold of 10 was chosen. A maximum of 10 in 500000 poor quality elements i.e. those that fell below the shape quality threshold of 10, were allowed for all of the models. These unsatisfactory elements were only allowed if they were not close to each other or the specific area under investigation.

#### 4.1.2.6 Stage 6. Model export

All sets of models were exported as Nastran Bulk Files (Nastran), ready for importing into the finite element analysis packages.

#### 4.1.2.7 Stage 7. Assigning material properties to the model

# 4.1.2.7.1 Introduction

Several methods of material property assignment were trialled; however, the mask method of assignment was finally used throughout the investigations. This method involved directly assigning material properties to each of the three-dimensional masks which were produced in section 4.1.2.3.4.

#### 4.1.2.7.2 Modelling compromises

Although anatomically the dentinal components of the roots of teeth are covered with a thin covering of cementum (see appendix 4), this was not modelled, rather teeth were modelled as being entirely composed of dentine. The periodontal ligament was also not modelled. The rationale for these modelling simplifications was that neither of them were the object of the investigations and the element resolution required to accurately model these structures would have resulted in a huge increase in processing time with no analysis benefit. The published material properties for the periodontal ligament available during this investigation varied widely, sometimes by two and three orders of magnitude (Dorin Ruse, 2008; Fill, et al., 2012). Failing to model the periodontal ligament has been reported to provide a negligible difference in cortical strains (Goussard, et al., 2010). In order to attach the teeth to the alveolar bone rigid links were used after a method described by Goussard, et al. (2010).

#### 4.1.2.7.3 Isotropism, orthotropism and anisotropism

Accurate modelling of the mandibular bone presented a number of problems. It has been demonstrated that the elastic properties of the mandible vary continuously and significantly in numerical terms, according to region (Schwartz-Dabney and Dechow, 2003). The mandible is also highly anisotropic therefore modelling its exact properties accurately was impractical. Vollmer, et al. (2000) found a high correlation between results predicted using finite element analysis and in vitro biomechanical studies on mandibular specimens even when the mandible was modelled as isotropic. This approach was taken in this study.

#### 4.1.2.8 Stage 8. Application of boundary conditions

The boundary conditions were the mandible, its muscular insertions, its articulation at the temporomandibular joint, and the external forces acting on them. The temporomandibular joints were not directly modelled and were represented by restraints – see figure 4.7.

# 4.1.2.8.1 Application of restraints

Restraints were placed at the condylar heads, inhibiting translation but allowing rotational movement in all three axes.

|                          | Tra   | Translational |   | Rotational |   | nal |
|--------------------------|-------|---------------|---|------------|---|-----|
|                          | x y z |               | х | у          | z |     |
| Left mandibular condyle  | •     | •             | • | 0          | 0 | 0   |
| Right mandibular condyle | •     | •             | • | 0          | 0 | 0   |
| <br>                     |       |               |   |            |   |     |

 Table 4.3 Fixed and rotational restraints used for the condylar head on the mandibular model. •=constrained

 O=unconstrained



Figure 4.7 Condylar restraints (static analyses). Translational restraints are seen on the condylar heads in pink. Translation was prevented in the global perpendicular x, y and z directions

#### 4.1.2.8.2 Application of muscular forces

In determining the relationship between mandibular morphology and sub-site patterns of mandibular fracture, only the muscles of mastication i.e. those producing the greatest potential load on the mandible were initially modelled.

The muscles were modelled as load vectors applied from the insertion point. They were modelled to provide half of their maximum contraction force in humans. This was considered to be a more natural situation than using values for maximum contraction. Additionally, all muscle groups were considered to be recruited simultaneously rather than in any particular pattern as patterns were considered to be unique to the particular function being performed at the time.

The work of Nelson, (1986) provided the basis for modelling muscle forces. Eight muscle groups were modelled, namely superficial and deep masseters; anterior, middle and posterior temporalis; superior and inferior lateral pterygoid; and medial pterygoid. The insertion sites for each muscle group were determined from the work of Baron and Debussy, (1979).

The muscle forces and vectors were derived from the work of Weijs and Hillen, (1985b) and were calculated using the formula in equation 4.1 where  $A_m$  was the cross-sectional area of the muscle in question (cm<sup>2</sup>), K was a constant for skeletal muscle (Ncm<sup>-2</sup>) and CR<sub>m</sub> was the ratio of muscle contraction relative to the maximal response. The value of K was estimated as 40Ncm<sup>-2</sup> (Weijs and Hillen, 1985b).

 $F_m = [A_m.K].CR_m$ 

Equation 4.1 Calculating muscle forces and vectors. A<sub>m</sub> = muscle cross-sectional area, K= skeletal muscle constant, CR<sub>m</sub> = muscle contraction ratio. The product of A<sub>m</sub> and K is also known as the weighting factor for the given muscle.

| Muscle group               | Cross-sectional area (cm <sup>2</sup> ) | Muscle group weight |
|----------------------------|-----------------------------------------|---------------------|
|                            | A <sub>m</sub>                          | [A <sub>m</sub> .K] |
| Deep Masseter              | 2.04                                    | 81.6                |
| Superficial Masseter       | 4.76                                    | 190.4               |
| Medial pterygoid           | 4.37                                    | 174.8               |
| Anterior temporalis        | 3.95                                    | 158.0               |
| Mid temporalis             | 2.39                                    | 95.5                |
| Posterior temporalis       | 1.89                                    | 75.6                |
| Inferior lateral pterygoid | 1.67                                    | 66.9                |
| Superior lateral pterygoid | 0.72                                    | 28.7                |

Table 4.4 Muscle groups and cross-sectional area (Weijs and Hillen, 1984a) (Nelson, 1986).

| Muscle orthogonal components |                 |       |       |       |       |       |  |  |
|------------------------------|-----------------|-------|-------|-------|-------|-------|--|--|
| Muscle group                 | Maximum opening |       |       |       |       |       |  |  |
|                              |                 | Right |       |       | Left  |       |  |  |
|                              | Х               | Y     | Z     | х     | Y     | Z     |  |  |
| Deep Masseter                | 0.10            | 0.15  | 0.21  | -0.10 | 0.15  | 0.21  |  |  |
| Superficial Masseter         | 0.69            | 0.34  | 1.44  | -0.69 | 0.34  | 1.44  |  |  |
| Medial pterygoid             | -0.53           | -0.69 | 1.12  | 0.53  | -0.69 | 1.12  |  |  |
| Anterior temporalis          | -0.01           | 4.71  | 3.12  | 0.01  | 4.71  | 3.12  |  |  |
| Mid temporalis               | 0.65            | 0.30  | 1.09  | -0.65 | 0.30  | 1.09  |  |  |
| Posterior temporalis         | 1.13            | 0.28  | 0.63  | -1.13 | 0.28  | 0.63  |  |  |
| Inferior lateral pterygoid   | -7.60           | -6.30 | -1.75 | 7.60  | -6.30 | -1.75 |  |  |
| Superior lateral pterygoid   | -3.52           | -4.15 | 0.40  | 3.52  | -4.15 | 0.40  |  |  |

Table 4.5 Muscle groups and orthogonal components (Nelson, 1986).

Resultant muscle force vectors ( $F_v$ ) were calculated using the equation 4.2.

# $F_v = F_m \cdot R_c$

Equation 4.2 Calculating the resultant force vector.  $F_m$  = muscle force,  $R_c$  = resultant of orthogonal components

The final model (including vectors) appeared as in figure 4.8.



Figure 4.8 Assembled model with muscular forces assigned as vectors (brown).

# 4.1.2.9 Final model details

The final details of the two models used throughout the study are displayed below.

|                 | Mass (kg)   | Volume (m <sup>3</sup> ) | Brick<br>Count | Node<br>count | Number<br>of links | Material  |
|-----------------|-------------|--------------------------|----------------|---------------|--------------------|-----------|
| Cancellous bone | 0.01526095  | 2.18013e-05              | 217176         | 48898         | N/A                | Isotropic |
| Cortical bone   | 0.067639933 | 3.88735e-05              | 484837         | 112273        | N/A                | Isotropic |
| Teeth           | 0.015547444 | 7.26516e-06              | 481963         | 115039        | 3982               | Isotropic |
| Total           | 0.0984483   | 6.794e-5                 | 1183976        | 276210        | 3982               |           |

Table 4.6 Details of the assembled mandibular model. All bricks were 4-noded linear tetrahedra.

|                                                                                                | Mass (kg) | Volume<br>(mm³) | Brick<br>Count | Node<br>count | Number<br>of links | Material  |
|------------------------------------------------------------------------------------------------|-----------|-----------------|----------------|---------------|--------------------|-----------|
| Cortical bone                                                                                  | 0.0595968 | 34251.3         | 163670         | 40400         | N/A                | Isotropic |
| Table 4.7 Details of the atrophic mandibular model. All bricks were 4-noded linear tetrahedra. |           |                 |                |               |                    |           |

|                                                                                          | Mass (kg) | Volume<br>(mm³) | Brick<br>Count | Node<br>count | Number<br>of links | Material  |
|------------------------------------------------------------------------------------------|-----------|-----------------|----------------|---------------|--------------------|-----------|
| Fist                                                                                     | 0.479752  | 275719          | 27836          | 6143          | N/A                | Isotropic |
| Table 4.0 Details of the first (foregroups, All briefs were 4 and alling an totach adapt |           |                 |                |               |                    |           |

Table 4.8 Details of the fist/forearm. All bricks were 4-noded linear tetrahedra.

101

#### 4.1.2.10 Cortical node sampling areas for post-processing

As part of the analyses, it was decided that cortical strain and stress would be determined at equivalent points on the model under different loads. A predetermined number of buccal and cortical nodes were selected at approximately the mid-point between the tip of the alveolar crest and the lower border of the mandible in symphyseal, parasymphyseal, body and angle regions and between the anterior and posterior border of the mandible in the region of the ramus. In the region of the condyle, samples were taken at a midpoint on the cortex between the anterior and posterior border of the condylar neck. The positions of the nodes sampled and the subsite they represented are shown in figures 4.9-4.10 and tables 4.9-4.10.

| Lingual nodes Approximate anatomical position |                   |  |  |  |  |  |  |
|-----------------------------------------------|-------------------|--|--|--|--|--|--|
| 1-7 Right Condyle                             |                   |  |  |  |  |  |  |
| 8-16                                          | Right Ramus       |  |  |  |  |  |  |
| 17-21                                         | 17-21 Right Angle |  |  |  |  |  |  |
| 22-30 Right Body                              |                   |  |  |  |  |  |  |
| 31-34 Right Parasymphysis                     |                   |  |  |  |  |  |  |
| 35-37 Symphysis                               |                   |  |  |  |  |  |  |
| 38-42 Left Parasymphysis                      |                   |  |  |  |  |  |  |
| 43-51                                         | 43-51 Left Body   |  |  |  |  |  |  |
| 52-56 Left Angle                              |                   |  |  |  |  |  |  |
| 57-66 Left Ramus                              |                   |  |  |  |  |  |  |
| 67-74                                         | Left Condyle      |  |  |  |  |  |  |
| Table 4.9 Lingual node positions.             |                   |  |  |  |  |  |  |





Figure 4.9 Lingual cortical sampling zones. Nodes are in brown with various positions labelled

| Buccal nodes                      |                     |  |  |  |  |
|-----------------------------------|---------------------|--|--|--|--|
| 1-4                               | Right Condyle       |  |  |  |  |
| 5-10                              | Right Ramus         |  |  |  |  |
| 11-15                             | Right Angle         |  |  |  |  |
| 16-18                             | Right Body          |  |  |  |  |
| 19 Right Incisive foramen         |                     |  |  |  |  |
| 20-23                             | Right Parasymphysis |  |  |  |  |
| 24-25                             | Symphysis           |  |  |  |  |
| 26-30                             | Left Parasymphysis  |  |  |  |  |
| 31 Left Incisive foramen          |                     |  |  |  |  |
| 32-34 Left Body                   |                     |  |  |  |  |
| 35-37                             | Left Angle          |  |  |  |  |
| 38-44                             | Left Ramus          |  |  |  |  |
| 45-49                             | Left Condyle        |  |  |  |  |
| Table 4.10 Buccal node positions. |                     |  |  |  |  |

# Approximate anatomical position



Figure 4.10 Buccal cortical sampling zones. Nodes are in brown with various positions labelled

#### 4.2 Phase Ib: Model verification

#### 4.2.1 Aim

Model verification involved checking the mathematical accuracy of the finite element mesh and was an important step before any analysis was performed. Several steps were taken to verify the mesh accuracy at the resolutions used.

#### 4.2.2 Method

#### 4.2.2.1 Visual examination

Much of this study was based on making a visual assessment of the distribution of areas of high stress or strain therefore this form of verification was appropriate. To perform this assessment models were produced at different element resolutions and subjected to a test load of 100N which was well within the elastic limit of cortical bone. A static linear analysis was performed. When there was no perceptible difference in the distribution of areas of high stress, and convergence was assumed have occurred.

# 4.2.2.2 Software convergence (relative convergence)

The Strand7<sup>®</sup> analysis software was capable of giving an automated h-adaptive convergence study with a custom algorithm. The finite element mesh was refined until there was less than 5% error between successive iterations.

#### 4.2.2.3 Increased local element resolution

The element resolution only needed to be high in areas of the mesh where the stresses and strains were high or changed quickly over a small cortical distance therefore, when such areas were encountered, the element resolution was increased by up to eight times to check that the captured response was correct. A response difference of <5% was considered acceptable.

# 4.2.2.4 Model validation

In order to perform mechanical validation of the model used in the static linear analysis, the results of loading the model were compared with the experimental results of Vollmer, et al. (2000). In these experiments, explanted, hydrated human mandibles were fixed at the TMJs in specially designed apparatus. Strain guages were applied along the buccal surface. Mastication forces were simulated by the application of forces (130N) at the coronoid processes. Forces were applied to the mandibular body and the resulting strains recorded by a personal computer.

Model 5 was used to mimic the experimental set-up of Vollmer et al. Condylar restraints were placed similarly. Forces of increasing magnitude up to 140N were applied to the body of the mandible and the resultant strain calculated using finite element analysis. The calculated results were compared with the strain results of Vollmer et al. using the Pearson product-moment correlation coefficient (r). This was calculated using Micorsoft Excel<sup>®</sup> (2010). The analysis time was approximately 14 minutes for each run.

#### 4.3 Phase IIa: Static linear analysis

The methods of the first series of analyses, aimed at investigating the effect of physiological loads on the mandible, are shown below. A physiological load was defined as one within the elastic limit of both cortical and cancellous bone.

4.3.1 Aim

The aims of these analyses were to determine what features of the model would significantly influence mandibular cortical strain and secondly, to use the model to determine the effect of global changes in material properties on the distribution of cortical stress and strain. Finally, to determine the effect of load position and angulation on the distribution of cortical stress and strain.

# 4.3.2 Method

#### 4.3.2.1 Material properties

Materials were assumed to be homogeneous, linearly elastic and isotropic. The values for Young's Modulus and Poisson's ratio used are shown in table 4.3.

|                 | Elastic Modulus (E) MPa | Poisson's Ratio (v) |
|-----------------|-------------------------|---------------------|
| Cortical bone   | 13700                   | 0.30                |
| Cancellous bone | 7930                    | 0.30                |
| Dentine         | 18600                   | 0.31                |

Table 4.3 Material property assumptions used in the finite element model (static analyses only). Material properties for cortical and cancellous bone were obtained from the literature (Carter and Spengler, 1978; Carter, et al., 1980).

#### 4.3.2.2 Load and boundary conditions

A physiological load of 1000Pa was applied at defined points on the mandibular cortex. The boundary conditions were as described in section 4.1.2.8.1. Forces representing the activated muscles were present throughout.

4.3.2.3 Solver

A linear static solver was used for the analyses.

#### 4.3.2.4 Post-processing

Results were displayed using colour contour maps of the entire cortical bone under load. Lingual and buccal mid-cortical node stress and strain were plotted against node position.

#### 4.3.2.5 Analysis

4.3.2.5.1 Analysis 1: The effect of the muscles of mastication on the mandibular cortex

Model 5 (dentate model) was used to examine the effect of the muscles of mastication on the lingual and buccal cortical strain patterns. All muscles were 'activated' simultaneously with the appropriate vector (see table 4.1.2.8.2). It was decided that 50% of the estimated maximal contractile force would be used in this analysis initially. In most cases unexpected loading of the mandible (such as a traumatic insult) would result in less occlusal force. As this was a linear analysis, scaling the response was a simple matter. No additional external load was placed on the model. Bone and dentine material properties were as in table 4.4.

#### 4.3.2.5.2 Analysis 2: The effect of tooth loss on the loaded mandibular cortex

Two models (4 and 5), which represented two clinical states i.e. the early post-extraction state (model 4), and the fully dentate state (model 5), were utilized for this analysis. The muscles of mastication were "inactivated" on all models. Utilizing a local co-ordinate system a static global face pressure of 1000Pa was applied over a buccal cortical area of approximately 1cm<sup>2</sup> in the symphyseal region (see figure 4.11).

Linear static analysis was carried out using Strand 7<sup>®</sup> finite element analysis system.



Figure 4.11 The edentulous model of the mandible showing the local axis, load area and applied symphyseal load (orange arrows). The load in this case is applied at 90 degrees to the x-axis in the horizontal plane

4.3.2.5.3 Analysis 3: The effect of load position on the mandibular cortex

Each model was loaded at five individual places (A to E) representing the symphysis, parasymphysis, body, angle and ramus of the mandible. Physiological loads were applied over a cortical element area of approximately 1cm<sup>2</sup> at 90 degrees to the face area, using a local axis in each area (see Figure 4.12). Muscles were activated.

| Equation 1         | Equation 2         | Equation 3         |
|--------------------|--------------------|--------------------|
| x = (L*cos (θ))/TA | x = 0              | x = 0              |
| y = (L*sin (θ))/TA | y = (L*sin (θ))/TA | y = (L*sin (θ))/TA |
| z = 0              | z = (L*cos (θ))/TA | z = (L*cos (θ))/TA |

Equation 4.3 Equations for determining load path. L= load in Pascals, ϑ=angulation in degrees at local axis, and TA= total area over which the load was applied.



Figure 4.12 Load positions for the static analysis. The anatomical positions of the loads were; A (ramus), B (angle), C (Body), D (parasymphysis) and E (symphysis).

4.3.2.5.4 Analysis 4: The effect of load angulation on the mandibular

cortex

Loads at each site were placed at 45, 90 or 135 degrees in the horizontal plane (see figure 4.13). A physiological load was applied over the identical cortical load area as in section 4.3.2.5.1. Muscles were once again activated.



Figure 4.13 Load angle and local axis for a symphyseal load

4.3.2.5.5 Analysis 5: The effect of material properties on stress in the loaded mandible

The material properties of model 5 were adjusted to those of a patient with osteogenesis imperfecta and those of a mandible composed entirely of steel for comparison. The properties used for steel (structural steel AS 4100-1998) were a Young's Modulus of 200GPa and a Poisson's ratio of 0.25. For osteogenesis imperfecta (type III) the material properties were Young's Moduli of 19.7 and 19.2 for cortical and cancellous bone respectively and a Poisson's ratio of 0.3. A physiological load in the area of the symphysis was applied. The results from section 4.3.2.5.3 were used as a comparison.

Phase IIb: Static non-linear analyses

#### 4.4.1 Aim

The use of linearly elastic material properties placed theoretical limitations, which may have affected the scope of the previous investigations in an adverse manner. Fractures occur in a non-linear fashion and therefore non-linear material properties were employed in the analyses in this section. A failure load of 200MPa was used. This exceeded the elastic limit of the cortical and cancellous bone.

#### 4.4.2 Method

Material non-linearity was introduced into the model using an elastic-plastic material. Model 5 was used for these analyses. The muscles of mastication were activated.

#### 4.4.2.1 Material properties

A stress vs. strain curve of bone was employed to derive the non-linear behaviour of bone. This was obtained from the work of Kemper, et al. (2007). Although this curve referred to human tibial bone, it was considered close enough to mandibular bone to make a generalised comparison. Cortical and cancellous bone material properties were considered as homogeneous and isotropic.

112

4.4



Graph 4.1 Static tensile material properties of human tibial cortical bone taken from the work of Kemper et al., 2007. Specimens were taken from unembalmed, fresh frozen male human cadavers. Both stress and strain refer to the engineering variants.

4.4.2.2 Load and boundary conditions

Models loads were applied in a similar manner to Phase IIa. Both physiological and failure loads were employed for comparison. Muscles were activated.

# 4.4.2.3 The solver

An incremental-iterative process, (automatic load stepping) was employed. The displacement changes between consecutive iterations were used to indicate convergence of the solution (see figure 4.14). The mean run time for analyses was 28 hours and 14 minutes.



Figure 4.14 Computer display showing the incremental-iterative process. The blue vertical lines represent displacement norm (tolerance 1x10<sup>-4</sup>) and the vertical red lines represent force/moment norm (tolerance 1x10<sup>-3</sup>). Convergence was achieved when the solution changed minimally, with respect to the defined tolerances, between iterations

# 4.4.2.4 Post-processing (displaying results)

Von Mises stress and strain were plotted against node cortical position; additionally a stress colour contour map was plotted.

#### 4.4.2.5 Analyses

#### 4.4.2.5.1 Analysis 6: Non-linear analysis with a physiological load

This analysis was a non-linear re-run of analysis 3. This was necessary for comparison as

different material properties were used in these analyses. The loading protocols were

the same as in section 4.3.2.5.1.

#### 4.4.2.5.2 Analysis 7: Non-linear analysis with a failure load

This analysis was a re-run of analysis 6, the only difference being a change to a failure load was made.

4.5 Phase IIIa: Basic non-linear dynamic analyses

# 4.5.1 Aim

Phase IIIa describes the series of dynamic of analyses, which aimed at characterizing the effect of a failure load on the mandible. In these analyses, the impact object was a calibrated fist (model 6). This was given various kinetic energies in the simulations. As with the previous static analyses, only direct impacts to the mandible were modelled.

The specific aims in this series of analyses were:

- a) To simulate the pattern and anatomical sub-site of mandibular fractures.
- b) To determine the temporal arrangement of traumatically induced mandibular fractures.
- c) To determine the effect of increased impact kinetic energy on the nature of mandibular fractures.

# 4.5.2 Method

This series of analyses used model 4 and model 6 to simulate a punch to the mandible. The muscles of mastication were not activated.

#### 4.5.2.1 Material properties

In the dynamic analyses the material properties were slightly altered as was the behaviour of the elements used. An elastic-plastic material capable of taking into account strain-rate effects with a defined stress vs. strain curve was used. The yield point for bone was estimated directly from the stress vs. strain curve (graph 4.2). Failure based on a pre-determined plastic strain was selected.



Graph 4.2 Stress vs. strain curve for bone. The dashed black line parallel to the linear portion of the curve (blue) intersects at the assumed yield point (0.2% proof stress). Data taken from the work of Kemper, et al., 2007.

#### 4.5.2.2 Load and boundary conditions

As this series of analyses was dynamic the load was applied to the mandible via a modelled fist of differing kinetic energies. The condylar restraints were changed to encompass the entire condylar head. These changes were made to simulate the set up of mechanical cadaveric studies in the literature, allowing comparison of results. This change was also closer to the anatomical arrangement. Muscles were inactivated.

#### 4.5.2.3 Failure criteria and strain rate

The ultimate strain value used was 0.02, at a mean strain rate of 2.2s<sup>-1</sup> (see Kemper, et al., 2007). A yield stress of 120MPa was used as the value for cortical bone in tension (graph 4.2). Strain rate effects were accounted for using two methods initially. Firstly, a table of curves was defined for three different strain rates. Effective plastic strain vs. yield stress curves for mean strain rates of 0.046s<sup>-1</sup>, 0.584s<sup>-1</sup> and 6.027s<sup>-1</sup> were input into

the analysis software (data obtained from the work of Kemper, et al. (2007)). The yield stress was then determined by the software interpolation (Livermore Software Technology Corporation (LSTC), February 2013). This method was eventually abandoned as strain rate data was only available for cortical bone, as opposed to cancellous bone, at the time. Therefore yield stress was calculated using the Cowper and Symonds model (Cowper and Symonds, 1957). Using this model, the initial yield stress ( $\sigma_{\nu}^{0}$ ) was scaled as in equation 4.1, where  $\dot{\varepsilon}$  was the strain rate and the constants for the particular material were C and p.

$$\sigma_{y} = \sigma_{y}^{0} \left( 1 + \left(\frac{\dot{\varepsilon}}{C}\right)^{1/p} \right)$$

Equation 4.1 Equation for calculating the yield stress using the Cowper and Symonds model (Livermore Software Technology Corporation (LSTC), February 2013). The initial yield stress is denoted by  $\sigma_{\nu}^{0}$ .

$$\dot{\varepsilon} = \sqrt{\dot{\varepsilon}_{ij}\dot{\varepsilon}_{ij}}$$

Equation 4.2 The definition of strain rate ( $\dot{\epsilon}$ ).

4.5.2.4 Post-processing (displaying results)

Post-processing was performed using LS-pre-post. Colour contour maps of von Mises stress, strain and strain rate were produced. A deletion algorithm was employed whereby elements were removed from the calculation when the strain reached at predetermined value. Analyses focussed on the lingual aspect of the mandible as failure commonly occurs on the side of tension, (Reilly and Burstein, 1975).

#### 4.5.2.5 Analyses

# 4.5.2.5.1 Analysis 8: The relationship of impact site with fracture distribution

This series of analyses used models 4 and 6. Two impact sites were used, the ramus, and the symphysis. These represented anterior and posterior impacts in the horizontal plane. In order to model a scenario involving a punch, a number of modelling assumptions were made.

#### Assumption 1

An amateur pugilist would be able to engage 3-5% of their body weight when punching (Gorman, 2009). Assuming the weight of the average man to be approximately 70kg this would mean that the mass engaged during the punch would be 2.8kg (assuming 4% engagement).

#### Assumption 2

A professional pugilist would be able to maximally engage 10% of their body weight (i.e. using shoulder, arm and fist) whilst punching (Gorman, 2009). Again, assuming the weight of the average man was approximately 70kg this would mean that the mass engaged during the punch would be 7kg (assuming 10% engagement).

#### Assumption 3

An amateur pugilist would be able to generate a punch with an impact speed of 5ms<sup>-1</sup> (Gorman, 2009).

#### Assumption 4

A professional pugilist would be able to generate a punch with an impact speed of approximately 10ms<sup>-1</sup>(Gorman, 2009).

Utilizing the assumptions above the energy delivered by non-professional (low energy) and professional (high energy) punches was calculated as shown below. Higher punch velocities have been recorded in karate experts (Gorman, 2009).

Kinetic energy for low energy punch =  $\frac{1}{2}$  mv<sup>2</sup>

 $=0.5 \times 2.8 \times (5)^2$ 

=35J

Kinetic energy for high energy punch =  $\frac{1}{2}$  mv<sup>2</sup>

 $=0.5 \times 7.0 \times (10)^2$ 

=350J

The fist model initial kinetic energies (E<sub>i</sub>) were therefore scaled between 35J and 400J.

The actual kinetic energies were:

| 384J |
|------|
| 188J |
| 35J  |
|      |

4.5.2.5.2 Analysis 9: The relationship of impact KE with fracture pattern

In these simulations, two sites were investigated, the symphysis and ramus. Impacts were varied from low kinetic energy to high kinetic energy, noting the change in predicted injuries.

The change in kinetic energy of the fist model was equal to the net work done on the fist model by the mandible. This enabled the calculation of mean force delivered, kinetic energy absorbed by the mandible. The energy absorbed ( $\Delta E_{kf}$ ) was calculated as the difference in the initial kinetic energy of the fist ( $E_i$ ) and final kinetic energy ( $E_f$ ). This was calculated as shown in equation 4.3 where *m* was the mass of the fist,  $v_i$  the initial velocity of the fist and  $v_f$  the final velocity.

$$\Delta E_{kf} = E_i - E_f = \frac{1}{2}m(v_i^2 - v_f^2)$$

Equation 4.3 Energy absorbed.

The percentage energy absorbed was calculated as:

$$\Delta E_{kf}(\%) = \frac{E_i - E_f}{E_i} \times 100 = \frac{v_i^2 - v_f^2}{v_i^2} \times 100$$

Equation 4.4 Percentage energy absorbed.

The energy absorbed was  $\Delta E_{kf}$ , and the time was t. The time for each punch was 1ms.

The work required to reduce the fist kinetic energy was equal to:

$$F_{avg}d = -\Delta E_{kf}$$

Equation 4.5 Calculating the average impact force ( $F_{avg}$ ) where d is the distance travelled by the fist at 1ms.

4.5.2.5.3 Analysis 10: The relationship between strain rate and fracture sub-site

The biomechanical properties of bone have generally been evaluated at relatively low strain rates; however, traumatic fractures may occur at relatively high strain rates. Hansen, et al. (2008) reported that there was a simple linear relationship between yield properties and strain rate in human cortical bone, with stress and strain decreased for strain rates greater than 1s<sup>-1</sup> in tension and compression. The aim of this analysis was to compare symphyseal impacts at two strain rates. The Cowper-Symonds equation was

used with two sets of strain rate parameters to scale the yield stress (see equation 4.1). Strain rate parameters for human bone have been variously reported as being between C=2.5, p=7 (Li, et al., 2010), in reference to rib cortical and cancellous bone, and C=360.7, p=4.605 (Iwamoto, et al., 2005) when referring to all bones in the lower leg. Models 4 and 6 were used to determine the effect of strain rate changes on fracture characteristics of a symphyseal impact. The two sets of strain rate parameters chosen for this study were C=40 and p=5 (for high strain rate) and C=2.5 and p=7 (for low strain rate).

#### 4.6 Phase IIIb: Applied non-linear dynamic analyses

4.6.1 Aim

The aim of these analyses was to apply the model to a clinical problem. The problems were deliberately chosen to test the properties of the mandible. These scenarios would not normally involve maxillary teeth. The two problems were:

- a) What is the effect of impacted third molar teeth on the susceptibility of the mandible to fracture?
- b) What is the effect of cystic lesions in the jaw on the susceptibility of the mandible to fracture?

# 4.6.2 Method

The material properties, boundary conditions, failure criteria and post-processing were the same as in section 4.5.2.

#### 4.6.2.4 Analyses

# 4.6.2.4.1 Analysis 11: Influence of localized changes in material properties on mandibular angle fractures- 1

Model 4 was used for this simulation however; an area of cancellous bone with the same volume and shape and position as an un-erupted third molar tooth had its material properties changed to those of enamel, to simulate an un-erupted third molar tooth. The tooth was assumed to have no associated periodontal ligament and no cystic change associated with the crown. The modelling technique more closely approximated an ankylosed tooth. The tooth was also entirely enclosed in cancellous bone and the thickness of the surrounding cortical bone was unaffected. High kinetic energy symphyseal impacts were modelled. Cortical stress was recorded over the posterior surface of the condylar neck from lateral to medial along the path shown in figure 4.17 symphyseal impacts. Cortical stress on the lingual aspect of the third molar region on the right was measured from posterior to anterior for both impacts.



Figure 4.15 An illustration of a cross-section of the mandibular model showing the position of the impacted mandibular molar teeth in red. Note that the teeth were completely contained within the cancellous bone and the cortical thickness was not reduced in this case.



Figure 4.16 Diagram showing the relationship of the lingual angle-sampling zone (in black) to the third molar area



Figure 4.17 Sampling zone for posterior condylar neck stress (in yellow). Measurements were taken from lateral to medial.



Figure 4.18 Sampling zone for lingual angle cortical stress (in yellow). Measurements were taken from posterior to anterior.

4.6.2.4.2 Analysis 12: Influence of localized changes in material properties on mandibular angle fractures- 2

Model 4 was used for this analysis. In this case an area of cancellous bone was deleted from the model. The area was the same as that occupied by the un-erupted third molar tooth in analysis 11. There was no change in the cortical bone thickness. Analyses were performed with respect to strain energy density and effective stress.



Figure 4.19 An illustration of a cross-section of the mandibular model showing cystic cavities completely contained within the cancellous bone. The cortical thickness was not reduced in this case

# **Chapter 5 Findings and conclusions**

- 5.1 Findings. Phase Ib: model verification
- 5.1.1 Mesh quality analysis results

The results of the model mesh quality analysis process are shown below. The threshold value was 0.3 (min/max aspect ratio). Figure 5.1 shows that very few of the elements failed to achieve this value and that the main problem areas were around the mental foramen, however, these were acceptable. Overall the mesh quality reached the standard for analysis.



Figure 5.1 Graphical representation of mesh quality. The chosen index was the minimum/maximum edge length ratio.

#### 5.1.2 Model verification and validation

The results of the model verification and validation process are given below.

#### 5.1.2.1 Visual verification

The two models in figures 5.2 and 5.3 show element resolutions of 350000 and 458000 respectively. As can be seen, the distributions of high strain (red areas) on the two models were almost identical suggesting that the model had almost converged. The white areas on the condylar heads and the in the canine region represent the point restraints for this particular analysis.



Figure 5.2 A model with an element resolution of 350000 tetrahedral elements. Compare the strain contour with the higher element resolution figure 5.3.



Figure 5.3 A model with a higher element resolution of 458000. Note the minimal difference in strain contour. 5.1.2.2 Software convergence and increased local element resolution

Whilst the analysis software was able to perform h-adaptive convergence, the element resolution only needed to be high in areas of the mesh where the stresses and strains were high or changed quickly over a small cortical distance. When such areas were encountered, the element resolution was increased by up to eight times to check that the captured response was correct. Figure 5.4 shows the model with increased resolution in the right condylar region. In all cases, increased local element resolution showed that an acceptable response had been recorded, usually with a response difference of <5%.



Figure 5.4 The analysis model with increased resolution in the condylar region to verify the response.

# 5.1.2.3 Model validation

Graph 5.1 shows a Pearson product-moment correlation curve comparing the experimental results of Vollmer et al. (1992) and the phase Ib 3DFEA results. As can be seen, there was good correlation (0.9998) between the experimental mechanical results of Vollmer et al. (in blue) and the calculated 3DFEA results (in red). As laboratory cadaveric experiments are the current gold standard for the determination of fracture thresholds in humans, this result suggests that the 3DFEA model was at least as accurate as the cadaveric biomechanical experiments, within the elastic limit of bone.

128


#### 5.2 Phase I conclusions

The aim of phase Ib was to verify the 3DFEA model produced in phase Ia as far as possible, within the parameters set out in the methodology. The mesh quality analysis showed that the final model would be sufficient to capture the stresses of interest. Whilst the 3DFEA results were found to be comparable with those of Vollmer et al., it is understood that cadaveric mechanical results themselves are not an accurate representation of the natural situation. Cadaveric material has different material properties to live bodily tissue. Normal muscular tone is lost in cadaveric experiments. This results in a change in the forces acting on the mandible. Whether or not these forces play a significant role in the initiation of fractures has been debated in the literature. The model produced has an additional feature in the ability to replicate the site of action of muscular forces and to some degree the magnitude. This gives the 3DFEA model an advantage over the cadaveric models that have been used in the past to provide data on fracture thresholds and mandibular deformation. Additionally, the 3DFEA model can calculate stress and strain in any area non-invasively without affecting the derived results.

### 5.3 Findings. Phase IIa: Static linear analyses

5.3.1 Results 1: The effect of musculature on mandibular cortical stress and strain

Von Mises stress and strain (hereafter referred to as stress and strain respectively) were calculated. The superior surface of the condylar heads showed the highest stress and strain (see figure 5.5). These were constrained areas of the model representing the glenoid fossa at the base of the skull. Stress was increased in the areas with the smallest cross-sectional area, namely the condylar necks anteriorly. Examination of graphs 5.2 and 5.3 show that the magnitude of strain was over 15 times greater at the condylar neck compared to the mandibular symphysis (see appendix 10 for the tabulated data). A similar pattern was noted on examination of the cortical stress graphs.

In terms of the magnitude, even with the abnormal situation of simultaneous, synchronous muscular contraction, the values of cortical stress and strain were extremely low.

The stress required to cause bony fracture has been calculated at 140MPa in tension. The values of stress estimated in this study were orders of magnitude lower.



Figure 5.5 Colour contour maps of the right mandibular condyle. Strain is mapped on the left and stress on the right.



Figure 5.6 Colour contour map showing von Mises stress variation over the cortex. High strain is red.

















## 5.3.2 Results 2: The effect of tooth loss on the loaded mandibular cortex

## 5.3.2.1 The dentate and edentulous mandible

Examination of the colour contour plots for models 4 and 5 following loading of the mandibular body (figures 5.8 and 5.9) show that the cortical strain was increased at the loading site on the right buccal aspect, the ipsilateral condylar neck buccally and on the condylar heads bilaterally (although these were also constrained sites). The cortical stress and strain signatures mirrored each other.

The graphs of buccal and lingual cortical strain for the edentulous and dentate mandibles showed little variation between each other in terms of the cortical signature, i.e. the pattern of peaks and troughs on cortical strain graphs, were similar. The calculated Pearson product-moment correlation coefficients for the lingual and buccal samples and were found to be 0.9988 and 0.9998 respectively, indicating strong relationships. This suggests that there were no significant local effects, at the sample level, on tooth removal. In terms of magnitude of strain on loading, the maximum difference was approximately 100µε and in most cases much less. This was much less than the estimated yield strain of cortical bone.



Figure 5.7 Alveolar strain comparison between the dentate and edentulous mandible. The edentulous mandible is on the right and the dentate mandible on the left (teeth removed to demonstrate the alveolar bone). The same contour scale is used for both.



Figure 5.8 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 4. Area of load is contained within the orange rectangle. Displacements are exaggerated by 10%.



Figure 5.9 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. Area of load is contained within the orange rectangle. Displacements are exaggerated by 10%.

The most significant changes in cortical stress and strain were noted at the alveolar crest. This would be expected as this is an area with a small cross-sectional. The overall effect was minimal.



Graph 5.6 A comparison of buccal cortical strain in the edentulous and dentate state.



Graph 5.7 A comparision of lingual cortical strain in the edentulous and dentate state.

## 5.3.3 Results 3: The effect of load position on the mandibular cortex

## 5.3.3.1 The symphyseal load

Symphyseal loading resulted in increased strain and stress at the condylar head and neck both lingual and buccally. There was also increased stress and strain on the lingual aspect of the mandible in the midline, although this was to a much lesser extent. The midline, although being the loading site, registered a lesser change in the cortical stress and strain which was most likely due increased cortical bone width in that region. Lateral to this bridge the strain was significantly increased.



Figure 5.10 A cross section of the mandibular cortex showing a bridge of bone between the buccal and lingual cortices at the symphysis.

The cancellous bone which was sandwiched between the buccal and lingual cortices was

capable of undergoing considerably more strain than the cortical bone.



Figure 5.11 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. Area of load is contained within the orange rectangle. The global face load was 1000Pa along the y-axis of the local axis in the symphyseal region. Displacements are exaggerated by 10%.



Figure 5.12 Mandibular map showing areas of tensile stress (red) and compressive (yellow) stress, following symphyseal loading.

#### 5.3.3.2 The parasymphyseal load

Parasymphyseal loading resulted in increased stress and strain at the ipsilateral and contralateral condylar head and neck, with the ipsilateral side being greater. Increased stress and strain occurred at the loading site, although, values were considerably less than those encountered at the condyles. The cortical strain signature showed peaks at nodes 3, 19 and 49 (right condyle, left condyle and right incisive foramen respectively). Node 19 was of interest as it was not on the direct load path; however, it did represent an anatomical feature, a bony foramen, which would be prone to high stress on loading. Figure 5.14 shows the compressive and tensile stress map for the same analysis.



Figure 5.13 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. Area of load is contained within the orange rectangle. The global face load was 1000Pa along the y-axis of the local axis in the parasymphyseal region. Displacements are exaggerated by 10%.



Figure 5.14 Mandibular map showing areas of tensile stress (red) and compressive (yellow) stress, following parasymphyseal loading.

# 5.3.3.3 The body load

Body loading resulted in increased buccal cortical strain in the right condylar neck, the left condylar neck, the right body (loading site) and the right parasymphyseal regions, in decreasing order of magnitude. On the lingual aspect, the greatest tensile strain occurred in the region of the right body/right parasymphysis. A second lingual peak in tensile strain occurred between nodes 37 and 53 on the left, peaking at node 44 in the left body of the mandible. The lingual cortical strain signature showed that, at mid-cortical level, the greatest strain was no longer at mandibular condyles, but at the loading area.



Figure 5.15 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. Area of load is contained within the orange rectangle. The global face load was 1000Pa along the y-axis of the local axis in the body region. Displacements are exaggerated by 10%.



Figure 5.16 Mandibular map showing areas of tensile stress (red) and compressive (yellow) stress, following body loading.

## 5.3.3.4 The angle load

Right angle loading resulted in increased strain at the ipsilateral condyle neck and the contralateral parasymphysis buccally and lingually. The buccal cortical strain signature showed peaks at nodes 2, 8, 19, 27 and 48. The lingual cortical strain signature only showed one significant peak, other than the condylar peaks. This was at node 12. Compressive stress was mainly found at the left parasymphyseal region lingually (see figures 5.17 and 5.18).



Figure 5.17 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. The global face load was 1000Pa along the y-axis of the local axis in the angle region. Displacements are exaggerated by 10%.



Figure 5.18 Mandibular map showing areas of tensile stress (red) and compressive (yellow) stress, following angle loading.

5.3.3.5 The ramus load

Loading the ramus of the mandible resulted in main peaks at nodes 2, 8 and 48. These were similar to those on loading the angle of the mandible. This would be expected as the ramus load was in approximately the same antero-posterior position as the angle but varied in the supero-inferior position. There was significant compressive strain in the parasymphyseal region lingually; the loading area, the condylar neck and the retromolar area on the contralateral side (see figure 5.20).



Figure 5.19 Colour contour maps of von Mises strain showing the buccal and lingual aspects of cortex of model 5. The global face load was 1000Pa along the y-axis of the local axis in the ramus region. Displacements are exaggerated by 10%.



Figure 5.20 Mandibular map showing areas of tensile stress (red) and compressive (yellow) stress, following ramus loading..

The combined cortical signatures for the ramus, angle, body, parasymphysis and symphyseal loading are shown in graphs 5.9 and 5.10. As fractures are more likely to occur in an area of bone under tension rather than an area of compression, the lingual surface was of most interest. In general, as the load area moved from the anterior region (symphysis) to the posterior region (ramus) the stress on the condylar region reduced contralaterally. The ipsilateral parasymphyseal and body regions also experienced a reduction in stress. There was then a rise sharply at the angle and body.









Areas of increased stress are likely to be the site where fractures initiate. Whether they propagate cannot be determined from these analyses. Propagation may result in a fracture which eventually enters a different anatomical sub-site, resulting in it being classified as a fracture of the new sub-site. As such, the areas identified in these analyses may differ from clinical fracture patterns.

## 5.3.4 Results 4: The effect of load angulation on the mandibular cortex

### 5.3.4.1 Symphyseal loading

On symphyseal loading, the change in the angulation of the load resulted in a change in the magnitude of buccal strain. Peaks in strain at nodes 4, 47, 23 and 27 on the 90 degree buccal cortical signature were also present on the 135 degree and 45 degree signatures, however, the magnitude of the peaks changed (see graph 5.10). Loading at 45 degrees increased the strain on the left side of the mandible and diminished those on the right. Loading at 135 degrees had the opposite effect i.e. shifting the main loading peak to the right and diminishing strain values on the left.

Lingually, the effect of change in angulation on calculated strain was more significant, shifting the symphyseal peak of the lingual cortical signature to the right of the graph on loading at 45 degrees and to the left on loading at 135 degrees. Lingual symphyseal strain peaks were also increased in magnitude on angulation. Loading at 45 degrees increased the strain magnitude on the left and loading at 135 degrees increased it on the right. Strain in the condylar region was decreased at any angulation less than 90 degrees in the horizontal plane.









## 5.3.4.2 Body loading

Graph 5.13 shows the variation in load angulation and cortical strain at various node positions following body loading of the buccal cortex. On the buccal aspect increasing the load angulation to 135 degrees increased the right condylar strain significantly. The strain at the buccal load site was also increased (by approximately 43% compared to 90 degree loading), although this was not as significant as in the condylar region. The strain in the left parasymphyseal region was minimally changed. On the lingual aspect peaks in strain remained in approximately the same position. With a load at 135 degrees the right lingual parasymphyseal remained at approximately the same magnitude, however, the left lingual parasymphyseal strain was reduced by approximately 50%. The reverse patten occurred on loading at 45 degrees.









5.3.5 Results 5: The effect of material properties on stress in the loaded mandible

On loading it can be seen that despite the significant change in material properties, the cortical signatures of the two loading scenarios show significant similarity in form. The condylar peaks, (nodes 4 and 5 and 47) appear in the same position in graphs 5.14, 5.15 and 5.16 although the ratio of the maximal buccal condylar stress to maximal buccal symphyseal stress was greater for the steel model than the bone model. This may be explained by the fact that the steel model was modelled as a solid object with no cancellous bone substitute. The calculated correlation coefficient for the steel and bone in graphs 5.14 and 5.15 was 0.997 showing that the curves were strongly related.



Graph 5.14 showing buccal cortical stress plotted against node position for a symphyseal impact on model 5. Material properties are those of normal cortical bone.

These results reinforce the findings of previous analyses that areas of mandibular susceptibility are predominantly determined by geometry rather than material properties, assuming that there is no significant local material property difference in the structure.



Graph 5.15 showing buccal cortical stress plotted against node position for a symphyseal impact on model 5. Material properties are those of a patient with osteogenesis imperfecta.



Graph 5.16 showing buccal cortical stress plotted against node position for a symphyseal impact on model 5. Material properties are those of steel.

## 5.4 Findings. Phase IIb: Static non-linear analyses

## 5.4.1 Results 6: Non-linear analysis with a physiological load

With the physiological load one would have expected the cortical strain signatures to be similar, and this was the case. However, there were differences in the magnitude of the peaks within each signature. The largest buccal peak in the linear analysis occurred at the right condyle on angle loading whereas this was only the third highest peak in the non-linear analysis. Body loading resulted in the lowest overall stress and strain magnitudes of all the cortical signatures.







#### 5.4.2 Results 7: Non-linear analysis with a failure load

## 5.4.2.1 Symphyseal loading

Symphyseal loading resulted in increased stress in three areas, the loading site, and the left and right condylar regions. The stress at the right condylar region was greater than the left. Examination of the cortical signature graphs (see graphs 5.19 and 5.20) showed similar patterns to the linear analyses, with increased stress and strain in the condylar and symphyseal regions on the buccal and lingual aspects. The magnitudes of stress and strain were obviously different due to the different load employed and the difference in material properties; however, they still mirrored each other with respect to regions of increased stress.



Figure 5.21 Stress colour contour map of the mandible in response to a failure load of 200MPa at the mandibular symphysis. Only elements that show stress greater than 140MPa are coloured (other than grey). High stress areas are in red.

### 5.4.2.2 Parasymphyseal loading

Parasymphyseal loading resulted in increased stress in three areas, namely the impact site and the left and right condylar regions. The stress at the left condylar region was greater than the right. There was no significant difference noted between the linear and non-linear sub-sites showing high stress on loading (see figure 5.22).



Figure 5.22 Stress colour contour map of the mandible in response to a failure load of 200MPa at the mandibular parasymphysis. Only elements that show stress greater than 140MPa are coloured (other than grey). High stress areas are in red.

# 5.4.2.3 Body loading

Body loading resulted in increased stress in four areas, namely the loading site, and the left and right condylar regions, with the stress at the right condylar region being greater than the left. There was also increased stress over a significant area at the ipsilateral parasymphyseal area (see figure 5.23).



Figure 5.23 Stress colour contour map of the mandible in response to a failure load of 200MPa at the mandibular body. Only elements that show stress greater than 140MPa are coloured (other than grey). High stress areas are in red.

# 5.4.2.4 Ramus loading

Ramus loading resulted in increased stress in four areas, namely, the loading area, the left and right condylar regions, and increased stress over a significant area at the contralateral parasymphyseal area.



Figure 5.24 Stress colour contour map of the mandible in response to a failure load of 200MPa at the mandibular ramus. Only elements that show stress greater than 140MPa are coloured (other than grey). High stress areas are in red.
















# 5.5 Phase II conclusions

A number of important conclusions may be drawn from the phase II results. The investigation of the effect of the muscles of mastication on the cortical stress and strain suggests that muscular contraction plays a minimal part in mandibular deformation or initiation of fractures. As movers of the mandible, this is clearly the most desirable outcome. The unusual muscular contraction pattern modelled in these investigations (i.e. bilateral synchronous contraction of all muscles groups) would likely represent a greater net contractile force (in the form of mandibular elevation) than would be encountered in the normal situation. As direct muscular contraction is unlikely to provide sufficient force to fracture the mandible, therefore, in a fracture scenario muscular contraction need not be modelled for direct impacts. In clinical situations where the mandible has been fractured during an epileptic seizure (Costa et al. 2011; Aragon and Burneo, 2007; Nakken and Lossius, 1993) it is rarely the direct effect of muscular contraction that caused the fracture. The most likely cause is the indirect effect of the maxillary teeth, objects within the oral cavity or direct trauma from an external force resulting in areas of localized high stress in. In rare cases, where muscle is inserted into a very small cross-sectional area, such as the coronoid process, very high stresses may cause avulsion fractures.

Tooth loss does not significantly waeken the mandible when the mandibular height is not significantly reduced. There was minimal effect on the cortical signature at the sampled level. This should be true as long as the alveolar sockets themselves were modelled and the teeth were not loaded. Smith, (1983) suggested that failure to incorporate, or account for teeth and the associated periodontal ligament in primate models could lead to significant errors in stress and strain distributions throughout the model. Whilst some researchers have included the periodontal ligament in craniofacial finite element studies (Gröning, et al., 2011; Kupczik, et al., 2007; Panagiotopoulou, et al., 2011) many studies have not done so due to either difficulty in obtaining scan data of sufficient resolution or due to the very large increase in element resolution required to accurately model the ligament. As it was not the purpose of the analyses to understand the stress and strain patterns in the alveolar process, accurate modelling of the tooth and periodontal ligament was deemed unnecessary. Rigidly linked teeth were used in the analyses, resulting in over-stiffening of the alveolus (Daegling, et al., 2008). However, as may be concluded from the comparison with the edentulous mandible, the difference between a rigidly linked tooth and an absent tooth on the alveolar crest was minimal when the mandibular cortex was loaded directly in the horizontal plane. This is consistent with findings obtained by Wood, et al. (2011) who performed finite element modelling analyses. Panagiotopoulou, et al. (2011) combined their computational analyses with ex-vivo bending tests and measured strain using digital speckled pattern interferometry on models of primate jaws, and found that the differences in modelling the periodontal ligament and modelling the teeth continuously with the bone were minimal. The effect on the global stress and strain patterns across mandibular cortex can therefore be considered minimal in relation to deformation. The results presented here are inconsistent with the results of Gröning, et al. (2011) who examined the effect of the periodontal ligament on the stiffness of the mandible and found significant differences in the magnitude of stress and strain over mandibular body depending on when the ligament was either present or absent. The effect of rigidly linked teeth (as in this study) must therefore only be local. This would be in agreement with the work of Marinescu, et al. (2005) and Grosse, et al. (2012) who hypothesized that the contradictory findings of Gröning, et al. (2011) and Panagiotopoulou, et al. (2011) might be explained by 'the size of the tooth roots relative the height of the mandible could make [the] effect significant on a global level.' The clinical relevance of these finding is

that the extraction of teeth should not make the mandible significantly weaker or more prone to fracture than normal as long as the alveolar height remains the same i.e. in the immediate post-extraction phase. Of course, the natural response of the body is resorption of bone in areas that are not under load and therefore in time the mandible will become increasingly prone to fracture in this area.

As far as predicting fracture, sub-sites are concerned; the sites of high stress and strain identified on static analysis do not necessarily identify the whole fracture area, only areas where fractures could initiate. A fracture line starting in one sub-site may travel in to another.

The results of the loading analyses lead to important conclusions. Each loading site resulted in a unique cortical signature. From this it was possible to identify sites prone to fracture. Unfortunately, due to the limitations of static analyses it was not possible to identify more than primary fracture initiation site i.e. the site with the highest stress under load. Static analyses rely on the assumption that the load path remains constant throughout the analysis. This would not be the case once the load had caused the mandible to fail. Therefore, other high stress sites present on static analysis may not exist dynamically.

In the normal anatomical condition, an articular disc lies between the mandibular condyle and the glenoid fossa, reducing the stress at the condylar head. The maxillary teeth limit the rotation and superior displacement of the mandible. The condylar restraints will have artificially increased the stress at the condylar heads on loading, however, according to St. Venant's principle this should have little influence on stress at the condylar neck. The analyses suggest that condylar fractures are most likely on anterior impact, whereas lateral impacts, cause significant strain in the contralateral parasymphyseal region and ipsilateral condylar neck.

Impact angulation did not change the fracture prone areas of the mandible significantly, however, the magnitude of stress at each weak area varied, again suggesting that a static analysis is sufficient to determine potentially weak areas but insufficient to determine fracture pattern.

The final conclusion in this section relates to the effect of generalized material properties on the weak areas of the mandible. The results show that even when the material properties were varied widely the areas of high stress remained identical when load sites remained the same. The magnitude of the stress varied according to the material suggesting that fractures would be initiated at differing levels of force. Clinically one would not expect an osteoporotic mandible to fracture at different sites unless there was a change in the geometry.

The findings of phase II are summarized below.

- a. The effect of the muscles of mastication in vivo may not be as pronounced as the model suggested as the synchronous muscle group recruitment was employed was non-physiological.
- b. The cortical stress and strain effects of the muscles of mastication were found to be minimal when compared to the magnitudes required to cause bony fracture, therefore muscular contraction is unlikely to be a major cause of mandibular fracture in the normal mandible.
- c. The muscles of mastication may reasonable be excluded from future analyses which aim at determining the site of fracture initiation. Their role is more likely to be in fracture displacement.
- d. The removal of the teeth from the finite element model had minimal effect on the buccal and lingual cortical signatures in the sample zone therefore it is reasonable to remove the teeth from the model in future analyses in involving

direct bone loading. The clinical relevance of this is that the mandible is unlikely to be significantly weakened in the immediate post-extraction state.

- e. The full cortical response is unique for each load. The signatures within the sample zone differed enough to enable identification of the load position in the horizontal plane. Load angulation appeared to primarily change the magnitude of the stress response rather than significantly changing the pattern.
- f. The gross geometry of the mandible appeared to be the main determinant of the pattern of cortical stress and strain, whereas the effect of generalized material properties was minimal.
- g. The cortical signatures for the static non-linear and linear analyses did differ in magnitude from each other; however, this did not seem to translate into a significant difference in the disposition of areas of high stress or strain. The effect of material non-linearity, however, may have been hampered by the use of static analyses.

- 5.6 Findings. Phase IIIa: Basic dynamic non-linear analyses
- 5.6.1 Results 8: The relationship of impact site with fracture distribution

High kinetic-energy impacts were modelled at three sites, the ramus, parasymphysis and symphysis. The impact simulation at 1ms is shown in figure 5.25 first, followed by graphical examination of lingual cortical stress and strain energy density.

5.6.1.1 Impact at ramus (Element deletion algorithm).

# Impact with high kinetic energy fist



Figure 5.25 The figure shows the results of the computer simulation of a high kinetic energy punch to the right mandibular ramus. An element deletion algorithm was used to simulate the fracture. The impact time was 1ms.

Figure 5.25 shows that the analysis predicted fractures at both condylar necks. The right condylar neck was significantly displaced, whereas the left condylar head was minimally displaced. The reduction in inter-condylar distance (as measured between the necks of the condyle) resulted in an increase in stress and strain at the left parasymphysis. Eventually failure occurred resulting in a third predicted fracture. A small breach of the lingual cortex was also visible at the left parasymphysis. This did not extend to the buccal cortex.

Graph 5.24 confirms the pictorial impression. Stress was raised rapidly in the nodes sampled at the right condylar neck. There was an associated slow rise in the left parasymphyseal region. The right condylar neck was predicted to fracture at approximately 0.16ms. The calculated nodal stress did not return to zero as values from adjacent elements were included. Later, at about approximately 0.49ms, the stress in the right parasymphysis dropped rapidly as the associated element was deleted. The final fracture occurred at 0.62ms in the left condylar neck. The change in strain energy density mirrored the change in von Mises stress.









5.6.1.2 Impact at parasymphysis (Element deletion algorithm)

# Impact with high kinetic energy fist



Figure 5.26 The figure shows the result of the computer simulation of a high energy punch to the right mandibular parasymphysis. An element deletion algorithm was used to simulate the fracture. The impact time was 1ms.

Figure 5.26 shows the computer prediction following a modelled impact at the right parasymphyseal region. Fractures were predicted at the impact site with a minimally displaced right condylar neck fracture and a significantly displaced left condylar neck fracture. The fractures of the left and right mandibular condyles and the impact zone occurred at 0.39ms, 0.68ms and 0.56ms respectively. Again the change strain energy density mirrored the change in von Mises stress.









# 5.6.1.3 Impact at symphysis (Element deletion algorithm)

The simulated impact of the fist at the mandibular symphysis is shown pictorially in figure 5.27. Three fractures were predicted. Right and left condylar necks were fractured along with the mandibular symphysis. Impact at the symphysis resulted in bilateral displacement of the angles of the mandible initially.

# Impact with high kinetic energy fist

Figure 5.27 The figure shows the results of the computer simulation of a high energy punch to the right mandibular body. An element deletion algorithm was used to simulate the fracture. The impact time was 1ms.

The lingual cortical stress (graph 5.26) and strain energy density (graph 5.27) suggest that the right condylar neck failed at approximately 0.48ms, followed by the left condyle at 0.5ms. Stress at the mandibular symphysis began to fall at 0.72ms, and by 0.8ms the element had been completely deleted indicating fracture. The right condyle may have failed first due to either the non-central impact site, the angulation of the impact or asymmetry of the mandible itself. However, if the mandible was symmetrical, and the impact in the midline, one would expect the condyles to simultaneously fracture.









# 5.6.2 Results 9: The relationship of impact KE with fracture pattern

The simulation suggested that increasing the kinetic energy of the impact resulted in increased damage to the mandible. Furthermore, when the fist kinetic energy was very high, increased fragmentation appeared at the impact site. In terms of weak areas of the mandible, the simulation was in agreement with the clinical impression that an impact in the symphyseal region is likely to result in bilateral fractures of the condylar neck and occasionally the symphysis itself.

# 5.6.2.1 Symphyseal impact

**Pictorial results** 

Picture A



Picture B



Picture C



Figure 5.28 Impacts at the mandibular symphysis energy from punches with kinetic energies of 35J (Picture A), 188J (Picture B) and 384J (Picture B). Impact at 1ms is shown. The deleted elements are shown.

|                                   | E <sub>i</sub> (J) | E <sub>f</sub> (J) | ∆E <sub>kf</sub> (J) | ∆E <sub>kf</sub> (%) | d (m)/           | F (N) |
|-----------------------------------|--------------------|--------------------|----------------------|----------------------|------------------|-------|
|                                   |                    |                    |                      |                      | ms               |       |
| Low kinetic energy                | 35                 | 19                 | 16                   | 45                   | 0.009<br>(0.8)   | 1778  |
| High kinetic energy               | 138                | 85                 | 53                   | 38                   | 0.0109<br>(0.47) | 4862  |
| Very high kinetic energy (karate) | 384                | 266                | 118                  | 31                   | 0.0018<br>(0.3)  | 10000 |

Table 5.1 Values of energy absorbed ( $\Delta E_{kf}(J)$ ) by the mandible following fist impact at 1ms at the symphysis.  $\Delta E_{kf}(J)$  represents the percentage energy absorbed. Note that values have been rounded to the nearest whole number. The fracture time (ms) is in brackets under the distance the fist had travelled.





# 5.6.2.2 Ramus impact

**Pictorial results** 

Pictures A and B





Picture C



Picture D



Figure 5.29 Impacts at the right mandibular ramus energy from punches with kinetic energies of 35J (Pictures A and B), 188J (Picture C) and 384J (Picture D). Picture b shows the displacement view. Impact at 1ms was shown. The deleted elements are shown.

Impacts at the ramus of the mandible showed a similar pattern to the impacts at the symphysis i.e. increased impact kinetic energy resulted in an increase in the number of predicted fractures in the mandible as a whole, in addition to fragmentation at the impact site. Fractures occurred in the right condylar region at low fist kinetic energy. There was also damage to the left condyle but this was not sufficient to cause a displaced fracture (compare pictures A and B which show the simulation with deleted elements and displaced fractures respectively). A fracture such as the simulated left condyle viewed using plain radiography might not be visible.

At high fist kinetic energy, in addition to right and left condylar neck, fractures occurred at the left parasymphysis with some damage at the lingual aspect of the right parasymphysis. The fracture pattern was different at very high impact kinetic energy when a comminuted fracture occurred at the right angle in addition to the condylar necks. The parasymphyseal fracture in this case occurred at the right parasymphysis.

Graph 5.29 suggests that in all cases the mandibular condyle would fracture first on loading. When the impact area is very small one would expect that local damage would occur first as when the cross-sectional area is very small the local stress will be high.

|                                   | E <sub>i</sub> (J) | E <sub>f</sub> (J) | ∆E <sub>kf</sub> (J) | ∆E <sub>kf</sub> (%) | d(m)   | F (N) |
|-----------------------------------|--------------------|--------------------|----------------------|----------------------|--------|-------|
|                                   |                    |                    |                      |                      | ms     |       |
| Low kinetic energy                | 35                 | 25                 | 10                   | 29                   | 0.0101 | 990   |
|                                   |                    |                    |                      |                      | (0.23) |       |
| High kinetic energy               | 138                | 109                | 29                   | 21                   | 0.0221 | 1312  |
|                                   |                    |                    |                      |                      | (0.16) |       |
| Very high kinetic energy (karate) | 384                | 327                | 57                   | 15                   | 0.0377 | 1511  |
|                                   |                    |                    |                      |                      | (0.14) |       |

Table 5.2 Values of energy absorbed ( $\Delta E_{kf}(J)$ ) by the mandible following fist impact at 1ms at the right ramus.  $\Delta E_{kf}(J)$  represents the percentage energy absorbed. Note that values have been rounded to the nearest whole number. The fracture time (ms) is in brackets under the distance the fist had travelled.



Graph 5.30 The variation of lingual cortical stress with time for eleven nodes (the first deleted node at each mandibular sub-site in each case) on the lingual aspect of the mandible following impact at the right ramus of the mandible by a punch of varying kinetic energies. K denotes a karate high kinetic energy punch (3841), H denotes a high kinetic energy punch (1381), L denotes a low kinetic energy punch (351).

### 5.6.3 Results 10: The relationship between strain rate and fracture sub-site

Figure 5.30 shows sequential snap shots of a colour contour map of the mandible where strain rate is displayed following a symphyseal punch. Observing the lingual aspect, at 0.1ms, strain waves were observed radiating from the lingual aspect of the symphysis, along the mandibular body to the ramus of the mandible. On reaching the condylar head they were reflected down the neck of the condyle bilaterally. The areas of highest strain rate (coloured red) coincided with the appearance of fractures on the lingual aspect of the mandible or posterior condyle.



Graph 5.31 The figure shows the variation of lingual strain rate with time for the first deleted node at the symphysis of the mandible

Graph 5.30 shows the strain rate plotted against time for both low and high strain rate models sampled at the fracture site on the lingual aspect of the symphysis. Reviewing graph 5.28, the predicted fracture occured at about 0.8ms. Graph 5.30 shows that the strain rate reached just over 14s<sup>-1</sup> in the high strain rate model (red).



Figure 5.30 Change in strain rate over time on symphyseal impact. Red areas indicate the highest strain rate and blue the lowest. The strain rate parameters were C=40 and p=5.

In the low strain rate model (orange), the strain rate never rose above 1s<sup>-1</sup> and the element was not deleted, suggesting no fracture occurred in that area. With the different strain rate model the pattern of symphyseal fractures differed. With the low strain rate model the fracture began on the right of the genial tubercles superiorly and only reached half way down the lingualaspect over the analysis time. In the high strain rate model the lingual fracture occurred to the left of the genial tubercles and traversed the cortical surface superiorly to inferiorly (compare figures 5.31 and 5.32).



Figure 5.31 Colour contour map of the mandible following a symphyseal impact. Here the lower scaled strain rate model is used.



Figure 5.32 Colour contour map of the mandible following a symphyseal impact. Here the higher scaled strain rate model is used.

# 5.7 Findings. Phase IIIb: Applied non-linear dynamic analyses

# 5.7.1 Results 11: Influence of localized changes in material properties on mandibular angle fractures- 1

Figure 5.33 shows the effect of a simulated punch to the right angle of the mandible. The element deletion algorithm was used and the predicted displacement of fragments is as shown. There were fractures at the right condylar neck, the left parasymphysis with a minimally displaced fracture at the left condylar head. No fracture was seen at the lingual aspect of the impact zone at the right angle of the mandible. The dispacements shown are unlikely to be any more than indications of the direction of movement of fragments due to the 1ms run time and the lack of muscular action. The results for symphyseal impacts are similar to those of the angle impact and are found in the found in appendix 18.

# No lesion, no impacted third molar tooth right angle of mandible

Picture A



Picture B



Picture C



Figure 5.33 Sequence of pictures showing the computer simulation of a punch to the right angle of the mandible in a mandible with no impacted tooth in the third molar region. The kinetic energy of the fist was 188J

# Un-erupted third molar tooth

Examination of the simulation sequence (see figure 5.34), which included an un-erupted third molar tooth, showed a predicted fracture of the right condylar neck, a minimally displaced left condylar neck, a fracture of the right parasymphysis and a fracture of the left lingual plate in the parasymphyseal region.

Figure 5.34 seems to suggest that the presence of a deeply impacted third molar tooth does not necessarily make a fracture more likely at the angle of the mandible. The increased stiffness in the area may have increased the likelihood of a fracture in the region of the right parasymphysis.

Picture A



Picture B



Picture C



Figure 5.34 Sequence of pictures showing the computer simulation of a punch to the right angle of the mandible in a mandible with impacted the third molar teeth. The kinetic energy of the fist was 188J.

# 5.7.2 Results 12: Influence of localized changes in material properties on mandibular angle fractures- 2

The result of an impact in a mandible with a cystic lesion at the angle of showed a clear weakness in that region. The impact was in exactly the same position as in section 5.7.1 and the fist had the same kinetic energy. The difference in damage was significant. There were predicted fractures at the right and left condylar necks, (with the left being relatively undisplaced), the right angle of the mandible, the left parasymphysis. The right condylar neck was significantly displaced.

# Sequence showing impact with cystic lesion at right angle of the mandible







Figure 5.35 Sequence of pictures showing the computer simulation of a punch to the right angle of the mandible in a mandible with a cystic lesion in the third molar region. The kinetic energy of the fist was 188J.

As may be seen from table 5.9, similar energy is absorbed by the mandible when the impacted third molar is in situ as with no un-erupted tooth. Less kinetic energy was lost from the fist when there was an intra-bony cystic lesion at the impact site and proportionally less energy was absorbed by the mandible. Examining the cortical stress at the lingual aspect of the impact site showed that with an un-erupted third molar tooth less stress occurred compared to the tooth-free state. The stress on the lingual cortex when there was a cystic lesion present initially rose as in the normal case, dropped slightly, then rose again rapidly until the lingual cortex failed

 $E_i(J) \quad E_f(J) \quad \Delta E_{kf}(J) \quad \Delta E_{kf}(\%)$ 

| Un-erupted third molar | 188 | 151 | 37 | 20 |
|------------------------|-----|-----|----|----|
| No un-erupted tooth    | 188 | 151 | 37 | 20 |
| Cystic lesion at angle | 188 | 155 | 33 | 18 |

Table 5.3 Values of energy absorbed ( $\Delta E_{sf}(J)$ ) by the mandible following fist impact at 1ms at the right ramus.  $\Delta E_{sf}(J)$  represents the percentage energy absorbed. Note that values have been rounded to the nearest whole number.

Graphs 5.32 shows the effect of angle impacts on medial condylar neck cortical stress. It can be seen that at the right condyle (which was predicted to fracture at about 0.25ms) the medial cortical stress was always significantly lower for the un-erupted tooth, and slightly lower for the cystic lesion, when compared to the model without un-erupted teeth. The cystic lesion and the un-erupted tooth had exactly the same volume and position. The suggestion is that the un-erupted third molar tooth, as modelled, did not increase the risk of fracture at the angle on impact.


Graph 5.32 The variation of right medial condylar cortical stress  $(\sigma_{vm})$ (GPa) for the node set following impact at the angle of the mandible. Three cases are considered, as shown. The sample takes place at 0.23ms (i.e. just before the condylar neck fractures).



Graph 5.33 The figure shows the variation of right lingual angle cortical stress ( $\sigma_{vm}$ )(GPa) for the node set following impact at the symphysis of the mandible. Three cases are considered, as shown. The same sample set is used in each case. The sample takes place at 0.2ms (i.e. just before the condylar neck fractures).

5.8 Phase III conclusions

## **Fracture patterns**

The basic dynamic non-linear analyses and associated simulations seemed to predict fractures (as a result of direct impact to the mandible) in patterns similar to those that are encountered in laboratory cadaveric studies and selected clinical situations. Rather than merely the fracture initiation sites, which were predicted in the static analyses, the actual form and direction of fractures were simulated using an element deletion algorithm. This algorithm is an imperfect method of fracture simulation. The main problem is that the algorithm deletes elements when the stress or strain reaches a predefined value. This alters the mass of the model and thus affects the remaining calculations. In a real fracture, tissue is not simply lost. One would hope that the small number of elements deleted would not significantly affect the results. Despite the problems mentioned, the non-linear dynamic analyses offered an improvement over both the static analyses in terms of simulation.

The calculated fracture forces (see tables 5.8) were slightly lower than those derived from reported mechanical testing. Huelke and Compton, (1983) experimentally measured the fracture threshold to be 2442N. It has been shown that the facial soft tissues can absorb significant energy from the impact resulting in less energy to produce mandibular fracture. In such cases, the mandible may fracture at significantly greater load. Nahum, (1975) found that single condylar factures could be experimentally induced with forces of between 2383N and 2443N whereas bilateral condylar fractures with the symphysis would require 3816N to 4120N. The values calculated in the simulation represent a force at which the mandible would fracture when impacted over the surface area of the simulated fist. These forces are not fracture threshold values and differ due to the different impacted objects used in the mechanical experiments above. Once the effect of impact surface area (i.e.stress is calculated) is eliminated, the results are similar. Another reason for the difference in values most likely lies in the definition a fracture. In this dynamic study a fracture was deemed to have occurred once the first element on the posterior surface of the condylar neck had been deleted. This would equate with a crack on the cortex under tension. A crack does not always propage and produce a fracture and thus this artificial threshold is likely to occur before mechanical failure and may not have a detectable experimental mechanical equivalent.

# Impact kinetic energy

Increased kinetic energy seemed to be related to the degree of bony fragmentation at the impact site when assessed qualitatively. Additionally, the number of fractures increased, although the fractures still occurred in the same susceptible sites when the energy increase was moderate. At very high energies, there was increased fragmentation at the impact site in addition to linear fractures at other sites. These results agree with the clinical finding that high-energy injuries are associated with greater degrees of soft and hard tissue trauma.

Impact kinetic energy alone would not be a suitable method for the determination of fracture threshold in a real patient. As the work of Schneider and Nahum (1974) suggested, significant impact energy may be absorbed by soft tissues, thus reducing the likelihood of fracture. This means that the modelled fractures were calculated at a lower threshold than the cadaveric experiments of Schneider and Nahum.

### Strain rate

The mechanical behaviour of bone is strain rate dependant. Physiological strain rates in humans have been reported to be between 0.004s<sup>-1</sup> and 0.05s<sup>-1</sup> (Lanyon, et al., 1975; Burr, et al., 1996). Hansen, et al. (2008) reported that in traumatic events, such as falls from a significant height and road traffic accidents, the strain rate of cortical bone may reach 25s<sup>-1</sup>. It would seem that the results obtained here are comparable to a relatively low energy injury. Bone becomes stiffer and is able to sustain a higher load before failure as the strain rate increases, however, there is a corresponding reduction in fracture toughness (Zimmermann, et al., 2014). The modelling techniques used to capture the shift in yield stress with strain rate did not seem to have any significant effect on the results qualitatively. There seemed to be only an effect on a few elements at the initial impact site. This would be in line with the work of Mukherjee, et al. (2011) who reported similar results on investigation the mechanical properties of human shoulder bone at the strain rates associated with automotive impacts. The strain rate encountered in the automotive impact scenario would be significantly greater than those encountered in interpersonal violence.

### Localized changes in material properties (lesions at the angle of the mandible)

As previously mentioned in section 2.6, all of the clinical studies investigating the effect of third molar teeth on angle fracture susceptibility, have treated third molar teeth as a homogeneous group. Pathological conditions such as cystic change in the follicle of the crown, which is common, were ignored, as were ankylosed teeth. This made it difficult to determine whether it was the presence of the tooth itself or a pathological unerupted tooth that suggested the increased fracture susceptibility. The conclusions of Gaddipati, et al. (2014) and, Inaoka, et al. (2009), seem to be partially supported by the results presented here; however, their conclusions appear incomplete. The results suggest that the nature of the impacted tooth itself is the primary determinant in whether or not the angle is more susceptible to fracture. The point of impact is a secondary factor. As the nature of the impacted tooth changes from the ankylosed state (which appears to be protective for fracture at the angle of the mandible) to the cystic state, through pathological change, the susceptibility to fracture increases. The fate of the normal un-erupted third molar remains in question for many reasons. Firstly, many patients tend to present when they have problems with third molar teeth. Others present when the surrounding follicle has undergone spontaneous pathological change. The width of the normal periodontal ligament is said to be approximately 0.2mm and the normal dental follicle has been measured as being between 0.0mm and 4.0mm (de Oliveira, et al., 2008). Normal cortical bone can undergo 2% strain before failure and cancellous bone can undergo 70% strain. Therefore, if the width of the angle of the mandible is approximately 10mm and the cortical bone is not reduced in thickness, then the angle of the mandible should not be more susceptible to fracture on symphyseal impact and condyle should be unaffected on angle impact (see cyst angle results). These findings suggest that when the periodontal ligament and dental follicle are at the lowest range of normality (in terms of width) then the un-erupted tooth should behave as modelled in this investigation and present no increased risk of fracture at the angle or condyle.

The findings here are incompatible with those of Weiner, et al. (2012), Milzman, et al. (2013) whose conclusions were too broad. The presence of the third molar does not always increase the risk of angle fracture, especially when the site of impact is unspecified. The conclusions of Safdar and Meechan, (1995) were also not fully supported by these results. An ankylosed third molar tooth, whilst changing the amount of bone at the angle quantitatively, will not weaken the angle of the mandible in the same way that a dense bone island in a similar place would not weaken the angle. In

conclusion, the results of this 3DFEA simulation suggest that the consensus view that an un-erupted third molar tooth weakens the mandible is incomplete without qualification i.e. the pathological nature of the tooth.

### 5.9 Research summary

In concluding this research, we return to the initial research aims (table 5.10) to determine if these have been satisfied. The basic research objective was to develop a three-dimensional finite element model capable of reproducing the biomechanical response of the mandible to loading. This research produced an anatomically and dimensionally accurate model, the final iteration of which allowed meaningful, clinically relevant problems to be analysed. There are currently no reported mandibular models capable of fulfilling these aims.

The research model exceeds the specifications of the only other model designed for a similar purpose (Gallas Torreira and Fernandez, 2004) in the following ways:

- The research model is capable of studying the effect of any impacting object. A model fist was used in the dynamic analyses; however, any model was possible.
- An attempt has been made at model validation. The research model has been validated against experimental mechanical data for deformation within the elastic limit. Calculated forces sufficient to cause various patterns of mandibular fracture have been found to be within the general range of those of many authors' experimental mechanical data. No in vivo data for cortical stress and strain during mandibular fractures is available in the literature and is unlikely to be in future; therefore the most accurate forms of validation have been performed. Additionally, fracture patterns obtained experimentally agree with clinical patterns found in similar loading situations.

| Research objective                                                                                                                                    | General research question                                                                                                                             | Specific research question                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| To develop a three-dimensional<br>finite element model capable of<br>reproducing the biomechanical<br>response of the mandible to<br>physical trauma. | Can a validated mandibular<br>3DFEA model be produced which<br>is capable of reproducing the<br>biomechanical response of the<br>mandible under load? | What are the effects of the<br>muscles of mastication on the<br>biomechanical response of the<br>mandible under load?       |
|                                                                                                                                                       |                                                                                                                                                       | What is the effect of tooth loss on the mandible under direct loading?                                                      |
|                                                                                                                                                       |                                                                                                                                                       | What are the effects of<br>generalized material property<br>changes on the mandible under<br>load?                          |
|                                                                                                                                                       | How does the mandible respond to static physiological loading?                                                                                        | What is the effect of load site on the mandible?                                                                            |
|                                                                                                                                                       |                                                                                                                                                       | What is the effect of load angulation on the mandible?                                                                      |
|                                                                                                                                                       | How does the mandible respond to static loading?                                                                                                      | Are the patterns of mandibular<br>stress and strain similar under<br>physiological and loading?                             |
|                                                                                                                                                       | How does the mandible respond to dynamic loading?                                                                                                     | What is the effect of deformation rate on mandibular fracture?                                                              |
|                                                                                                                                                       | How do localized changes in<br>material properties (i.e. bony<br>lesions) in the mandible change<br>the dynamic response to loading?                  | What is the effect of cystic lesions<br>at the angle of the mandible on<br>fracture propensity?                             |
|                                                                                                                                                       |                                                                                                                                                       | What is the effect of lesions at<br>the angle of the mandible (un-<br>erupted third molar teeth) on<br>fracture propensity? |

Table 5.4 Intial research aims.

• More than two impact scenarios have been modelled. The model produced, is

capable of modelling any impact site or angle that could occur in real life.

- The model is capable of estimating strain rate effects, which have been shown to be related to the genesis of fractures.
- The model has been used to study other anatomical features (such as impacted teeth) that may be related to mandibular fractures and has been able improve understanding and extend existing theories of fracture.

Additionally, a sound modelling methodology for 3DFEA was developed. This should be applicable to any biological structure.

The research has produced results that shed light on several often quoted (but unproven) theories of mandibular fracture. Analyses suggested that the mandible is unlikely to be fractured by any normal, co-ordinated muscular contraction, assuming that there are no global changes in material properties. Even the uncontrolled muscular activity of epileptic seizures is unlikely to result in direct mandibular fracture. This is contrary to many former beliefs.

Whilst an increase in fracture propensity might be expected to result from mandibular atrophy following tooth extraction, the immediate post extraction mandible does not appear to be at any significantly increased risk of fracture when compared to the immediate pre-extraction state.

Impact kinetic energy has been shown to be a factor in the pattern on mandibular fracture, with fragmentation occurring at high energy. However, this is an unreliable method of predicting the exact pattern of fractures as there the amount of kinetic energy converted to strain energy available to cause bony fracture is dependent on how much energy has been absorbed by the surrounding tissues.

In Phase IIIb the practical application of the technique was considered. The problem to be solved was whether a change in material properties significantly increased the propensity of the mandible to fracture under load. Questions of this nature would be of interest to those trying to determine whether a particular purported mechanism of injury was more or less than likely when determining accident from intention in traumatic injuries.

The computer imparts the ability to study cases, which vary by a single variable. This is not possible using mechanical laboratory experimentation without very large numbers of studies and even then, these are fraught with potential errors. As such, computer simulation of mandibular fractures using 3DFEA fills an important investigatory void.

Returning to the research application scenarios presented in chapter 1, it is necessary to determine whether the completed research would be of use to medico-legal practitioners or forensic scientists.

a) A dentist extracted a right molar tooth in a young man. Apparently, the procedure was routine and completed without complication. A week later, the patient complained of a pain in the contralateral parasymphysis of the mandible. After radiographic examination of the area, it was found that there was an ectopic tooth with a minimally enlarged follicle in the area of the fracture. The patient decided to take legal action and an expert witness was asked to provide information on whether the dentist had used excessive force or improper technique during the extraction or whether the ectopic tooth had made the mandible susceptible to fracture.

Whilst there are studies related to the effect of impacted third molar teeth on the propensity of the mandible to fracture there are none related to ectopic teeth and mandibular fractures, as these are rarer and each case will be unique. The expert witness would have to extrapolate the finding from studies on impacted third molar teeth in order to give an opinion. This would make the opinion more speculative. 3DFEA could aid in answering this question. In this case, one would need to determine the force required to fracture a mandible by applying force in the region of the extraction, and the range of forces required to fracture a mandible with the ectopic tooth. In order to use the research model to analyse this, a radiograph of the injury would be required in order to determine the position and size of the third molar tooth. These would be part of the normal clinical radiographs. Two models would be analysed, one with the ectopic tooth in the radiographic position and another without the tooth. Dynamic analyses would be performed which would determine whether forces applied in this area were likely to cause this pattern of mandibular fracture and the relative difference in forces required in the two modelled scenarios. It may be the case that the analysis suggested that the fracture pattern is incorrect for forces applied in that area, and that some other incident had occurred in the intervening week before presentation, fracturing the mandible. Alternatively, it may be found that the position of the ectopic tooth was such that there was little difference in the strength of the mandible at that point. The range of forces required to remove teeth is available in the literature. The expert witness could therefore use the 3DFEA data as supporting evidence for his opinion on whether the dentist's actions were likely to have caused the fracture or whether another injury was more likely. Relative fracture risk could easily be determined by examination of the ratio cortical stress ectopic tooth: cortical stressnormal mandible.

b) Forensic science deals with the relationship between medicine and law, and whilst much of the work is performed post mortem (Gordon and Shapiro, 1975) the ability to demonstrate the correlation between an assault weapon and injury in live patients is often the requirement of an expert witness. At their best, an expert can only suggest a possible cause of an injury and differentiating between assaults with a foot, a fist, an elbow, a forehead or indeed any other blunt or sharp weapon resulting in a mandibular fracture may be difficult. Any additional supporting evidence would strengthen an opinion.

In this second scenario, the research 3DFEA model could be of significant benefit in providing supporting information. The model is capable of providing information on mandibular impacts using any object, from any position and any angle. Multiple scenarios could be tested, using 3DFEA as a method not necessarily identifying the possible assault weapon, but to exclude weapons and scenarios related to purported mechanisms of injury. As with all expert testimony, the more supporting evidence that may be presented the better.

At the conclusion of this research, it can be said that the research aims have been achieved. This research begins to fill a void in understanding between laboratory cadaveric experimentation and clinical findings. Having produced a 3DFEA model through an iterative process, the final model is capable of answering both basic and applied biomechanical questions related to mandibular fracture that may be of real benefit to those working in medico-legal or forensic fields.

## Chapter 6 Limitations and future research

The research limitations associated with the modelling and analysis phases of the research are detailed below.

#### 6.1 General project limitations

Three of the main limitations of any academic research include the availability of resources, specifically finances and time. This research was no exception. As biological 3DFEA was a research area which was relatively new to the university at the time of the research, the learning curve was steep, especially the production of a suitable 3DFEA model. As no standard modelling technique exists, much time was spent on this aspect of research, trying software and hardware combinations. In many commercial research-establishments, this stage is performed by a third-party. The model production aspect of the research (Phase I) occupied almost 12 months, including finding suitable open source data, software packages and learning their use. Had sufficient funding been available the author could have attended advanced training courses to increase learning speed and productivity. However, with the modelling knowledge gained and the protocols derived from this research, future models would take a fraction of the time to produce.

Financial constraints were mentioned previously. As this research is heavily dependent on computing power, with increased power more detailed modelling could have been undertaken and more complex analyses undertaken. The number of analyses that could be performed would have been increased as analyses could have been performed quicker. Computation time was a serious limitation, with the initial computing power resulting in analyses which took up to 10 days to run.

### 6.2 Research limitations

Much research using 3DFEA is undertaken in industry where custom software and advanced proprietary algorithms are available for use. There may be better material models to describe bone, rather than the generalized elastic-plastic material model used for this research. Most analysis software has many available add-on modules, which increase functionality and simplify tasks. Unfortunately, only the basic software was available for this research, limiting functionality.

Although much literature on 3DFEA is in English, research is published in many languages and the author was on occasions limited in the ability to extract technical details from them. Time could have been saved, reducing technical errors, or detailing more efficient ways to achieve results, if some of the literature had been made available in English.

The literature review in chapter two showed that at the time of the research there was only a single paper published that could be described as being of a similar nature to the research undertaken here. Studying the work of others in the field can only help to expedite research progress, however, with such little published data the research may be considered evolutionary rather than revolutionary.

6.2.1 Modelling limitations.

# 6.2.1.1 Data

3DFEA begins with the acquisition of data. The facial CT data of a 17-year-old male was selected for this research. This was an open-source clinical scan and as such was insufficient to capture all of the mandibular structures, such as the complete structure of the tooth and its surrounding ligament. Additionally, the actual trabeculation of the cancellous bone was not captured, meaning that this important structure was modelled as a homogeneous mass.

Many biological 3DFEA studies on extinct organisms have used micro CT scans. These extremely high-resolution scans provide very high radiation dosages, which are inappropriate for clinical use, providing practical and ethical limitations. On reflection, such a scan could have been performed on a cadaveric skull; however, neither the opportunity to obtain cadaveric material or the facility for undertaking micro CT scans was available at the time of the research. The voxel-based modelling approach could have been used to increase model production speed. Importing CT scans into software, which employs voxel transformation, would have seemed a more streamlined process. This was attempted, however, several problems were encountered. The surface quality of the model was relatively poor, being entirely determined by the resolution of the clinical scan. As voxels were directly converted into finite elements, any artifacts contained in the original scan were also converted into finite elements. The direct conversion of voxels into finite elements limited elements to the hexahedral type. These were found to be less useful for complex shapes unless the element resolution was very high.

# 6.2.1.2 Model complexity

Initially a very high-resolution model was produced similar in form to that of Castaño, et al. (2002). It included individual components for the cortical bone and the cancellous bone. Teeth were modelled individually and contained enamel, dentine, cementum and pulp components as well as individual periodontal ligaments. A modelled hemi-mandible was produced which was then mirrored to produce a complete symmetrical mandible. The final model had an element resolution well in excess of 10 million tetrahedra. Unfortunately, this was well above the level that could be used to perform calculations with the software and computing resources that existed at the time. It was also realized that many of the structures represented were not directly under investigation and therefore did not require modelling; however, this limitation reduced the number of useful "incidental" findings that research may sometimes reveal.



A mandibular model produced with all mandibular structures including cortical bone, cancellous bone, individual teeth and individual supporting periodontal ligaments.

The acquisition of other forms of required data also presented limitations to the research. Bone is one of the most complex mandibular structures to model. It is known that both cortical and cancellous bone have anisotropic, non-linear material properties, yet no model to date has succeeded in the application of such properties to mandibular bone in a finite-element model. The reasons are two-fold. Firstly, there is simply a lack of data available and secondly, the application of such properties to finite elements would be extremely difficult. Orthotropic bone properties have been substituted by many authors to approximate to anisotropic properties. In this research, a model based on orthotropic properties was produced. The mandible was divided into sections and local axes were assigned to each section (after Lovald, et al., 2009). Unlike the *Lovald* study, different material properties were applied lingually and buccally. When the

analyses were run, artificial boundaries were found where the material properties suddenly changed from one value to another. This made the interpretation of the results very difficult. The resulting models produced very little difference in results compared to the isotropic models for a much greater processing overhead.



The mandibular model with regionally orthotropic material properties. The various colours represented areas where the mean Young's Modulus differed and a different local axis was assigned. Cancellous bone was still modelled as isotropic in this model. This was an improvement on the model of Lovald, et al. (2009), in that individual regional buccal and lingual orthotropic properties were assigned to the model.

Eventually the model was abandoned due to unnecessary complexity and little increase in accuracy (and possibly a reduction) in deformation studies.

Other modelling compromises that may have influenced the results were the lack of facial soft tissues, especially the muscles attached to the mandible. It was decided that the model would only include the muscles of mastication, as these are the most powerful movers of the mandible. The depressor muscles and the other facial softtissues were not considered. The combined effect of these on the cortical stress may have been significant, especially in terms of the absorbing impact energy and shielding the mandible. Thus, the calculated forces required to fracture the mandible would relate only to explanted cadaveric dried specimen, rather than the real life situation. This does not negate the value of the research, as the modelling of such structures is merely a limitation that could be resolved with greater computing power. The principle of the calculations may be applied to any future model with soft-tissues.

#### 6.2.1.3 Muscles

The finite element model employed an ad hoc traction modelling method whereby the effect of muscle forces was provided by the direct application of resultant muscle force vectors to the model over the area of muscle insertion. This method assumed that in the natural situation, muscle fibres were all of the same contractile power and were distributed evenly over the site of insertion. This is not the case in real life. The modelling method only took into account the resultant force vector, which is again nonphysiological. This modelling limitation tended to over-estimate the effect of the muscles. This tended to be insignificant with respect to bony fracture, however, as mentioned earlier not all muscles were modelled.

An improved technique, other than modelling the muscles themselves, would be to employ a muscle-wrapping technique (or the tangential-plus-normal-traction model, Grosse et al. 2007) to take into account tangential and normal effects of muscles on cortical bone. Modelling the muscles themselves, would have to be validated against in vivo strain gauge measurements, which would be both unethical and impractical, presenting a limitation, which is unlikely to be overcome until a non-invasive method of determining strain in vivo is developed.

The muscles were applied at muscular insertion sites on the mandible according to standard anatomical texts. This simplification ignores the fact that all muscle insertions are individual and related to skeletal form and function. The mandibular muscles may provide an additional bracing effect on the surrounding bones, which could provide additional protection against fracture due to lateral forces.

The analyses on the effect of musculature on the mandibular cortex provided useful information on the likelihood of direct fracture. The model was limited in that no particular muscle recruitment pattern was modelled. This may mean that the simultaneous contraction of all muscle groups may have work antagonistically to reduce the total load on the mandible. The lack of a co-ordinated muscle action meant that bony displacement could not be studied. The muscle action would have been minimal in real life in the first 1ms of fracture formation.

# 6.2.1.4 Ligaments

Several ligaments that are important clinically, including the lateral temporomandibular and sphenomandibular, were not modelled. This band of fibrous tissue tightens when the mandible moves from its rest position, stabilising the joint. The degree of restraint provided by these ligaments directly influences the propensity of the condylar neck to fracture, or dislocate. As the temporomandibular joint was only modelled as an ankylosis, only one part of the range of joint movements was modelled, meaning that the model, whilst providing an accurate replication of the cadaveric experimental laboratory validation studies, was insufficient to fully replicate clinical scenarios.

The lack of maxillary teeth in the model had an effect on the fractures modelled. When teeth are in occlusion, no strain is placed on the TMJ when the mandible receives an upward impact, reducing the incidence of condylar head and neck damage. This meant that in the research model, there were a higher number of impacts resulting in condylar injuries than might normally occur.

It would have been possible to model the effect of teeth by placing a point restraint on the crowns of the affected teeth to mimic the occlusion. However, modelling the potential contacts of 32 teeth realistically could have been problematic.

### 6.2.1.5 Biomechanical parameters

In an attempt to study the effect of variations in strain rate on mandibular fracture, the Cowper-Symonds scaling equation was used to provide an estimate of the yield stress. The strain rate parameters are individual for each material. These were obtained from the literature. These varied widely, and none were available for mandibular bone. This made calculations inaccurate for providing anything other than the derivation of a trend. As the equation provides an estimation of yield stress it is not as accurate as determining the yield stress of samples of fresh cadaveric human mandibular bone. The use of biological tissue, which would involve ethical approval, would involve the acquisition of human material, testing facilities and an increase in research time.

# 6.2.1.6 Validation

True quantitative validation of the research model was not possible for ethical reasons. This would require mandibular strain data to be obtained from human beings before, during and after mandibular fracture. It would be equally unethical to perform such tests on animals. Clearly, any lack of validation is a serious limitation on the model's use in medico-legal or forensic situations in any form other than as supporting evidence for a purported theory of mechanism of injury. That being said, no other mandibular trauma model, mechanical or otherwise has been validated against human data.

#### 6.2.2 Limitations of the analyses

### 6.2.2.1 Load position and angulation

This reduced the number of fracture patterns seen in the results. As these limitations were purely due to constraints of the stated in the research scope there should be no reason that these could not be studied given more time.

## 6.2.2.2 Material properties

The effects of changes in global or local material properties were studied rather crudely. The properties for the clinical condition of osteogenesis imperfecta (type III) were for a single sample of bone and did not take into consideration the changes in Young's modulus associated with the other forms of the disease. Where local changes in properties, such as un-erupted third molar teeth and the associated periodontal ligament and dental follicle, were modelled they relatively poor approximations of clinical conditions. It would have been useful to study the effect size of third molar tooth, depth of impaction, angulation and follicle size on the propensity of the mandible to fracture. This would have enabled a more comprehensive conclusion to be drawn. However, the three extreme lesions studied i.e. a cystic lesion, no lesion and an ankylosed un-erupted third molar tooth (all of the same position and volume) allowed a derivation of the general trend rather than exact calculation of associated risk. The cystic lesion itself only represented the unilocular variant.

# 6.2.2.3 Non-linear analyses

There are many forms on non-linearity e.g. material non-linearity, boundary nonlinearity and geometric non-linearity. Only material non-linearity was considered in the analyses. When changes in geometry have a significant effect on the stiffness of the structure geometric non-linearity is important. It was assumed that this would not be the case; however, this was not formally tested.

# 6.2.2.4 Impacting objects

Fracture patterns may be influenced by the nature of the impacting object. The dynamic analyses included a single impacting object i.e. a model fist. Other objects of different surface area would result in different areas of high stress on impact, changing the temporal occurrence of multifocal fractures and the fracture combinations. The model produced is capable of analysing impacts with any object that may be modelled, limited only by time and available computing power.

## 6.2.3 Limitations on forensic and medico-legal use

Despite the useful advances made in this research, the 3DFEA model is not ready for everyday forensic or medico-legal work. This particular model has been designed to answer specific questions and therefore the model set-up (especially the details modelled and the arrangement of the temporomandibular joint) would not be applicable to other situations. The whole modelling process takes an extremely long time (although not as long as laboratory cadaveric experiments) and this is not something that the end-user would want to be involved in. As a result of this, if this were to be available to scientists and clinicians, the modelling would have to be performed by a third party which was aware of the research question. The end-user would then presented with an analysis model upon which a limited number of parameters such as the material properties and impact object and angulation could be changed. Output variables would also have to be limited so as to reduce the processing overhead. The end-user would have to specify these output variables beforehand. The current model cannot determine the true displacement of fragments due to the lack of muscle modelling, however, this would not be necessary, as the clinical picture would show these details. Currently, only direct impacts to the mandible may be modelled and this tends to limit the medico-legal use more than the forensic.

## *6.3 Future work*

Future work the 3DFEA study of traumatic mandibular fractures will be based around two areas, namely the improvement of the model and the development of the model to a complete clinical problem-solving environment.

## Improving the model

Many of the limitations of the current research were imposed by the availability of computing power at an affordable price. Since the start of this research, the £1500 allocated for computing equipment could purchase a significantly more powerful, multiprocessor machine, which would allow analysis of a much larger more complex model.

In terms of features that could be usefully improved would be expansion of the model to include the whole craniofacial skeleton. There are many models available in the literature that study individual parts of the facial skeleton including the zygomatic complex, the individual bones of the cranium, the orbits and the maxilla. As such, the traumatic injuries studies in each of these regions appear to occur in isolation. This is clearly not the case in real life. Each injury affects the surrounding tissues to a greater of lesser extent. Knowledge of this is of particular interest in the detection of injuries. A good example would be the research model where the temporomandibular joints were modelled using restraints. A whole craniofacial skeleton would not only allow the study of the whole range of mandibular fractures but also the effect of mandibular fractures on other parts of the head, such as the brain. The study of brain injuries was one of the first uses for 3DFEA. These studies were related to brain injury from cranial impacts; however, with the recent focus on sport-related brain injury, especially boxing, it might be pertinent to study the effect of recurrent mandibular impacts on cranial base and brain injuries.

As the mandible was modelled in isolation, many mandibular structures were not modelled, such as the periodontal ligament, the cementum, enamel and pulp of the tooth. The modelling of tooth structures was restricted by the scan resolution of clinical data, however, in future, as any model produced would be generic, micro CT scan data from cadaveric material would solve this problem. Modeling teeth with the accompanying periodontal ligaments may also be important in studying injuries to other regions such as the brain. The loss of teeth during an impact to the mandible may have a protective effect on the brain in a similar manner to fracture at the condylar neck. Whether or not this is true has not been formally tested. This would only require a small extension to the current model i.e. the inclusion of the maxilla and cranial base.

Cancellous bone was modelled as a single homogeneous structure, and given isotropic properties. Modelling cortical bone as an anisotropic material will continue to present a problem as sufficient data to perform this is unavailable. Cancellous bone presents an even greater problem. Solving these problems in the short-term is unlikely to be possible.

The soft-tissue were largely ignored in the analyses, however, they lay a significant role in the absorption of impact energy. Firstly, muscles could be more effectively modelled rather than being represented as force vectors. Multibody dynamics analysis has been combined with finite element analysis to calculate loading conditions and joint reaction forces of muscles groups (Curtis, et al., 2008). Calculating the forces produced by muscles will allow the study of the displacement of fracture fragments, which themselves cause injury.

Eventually, the research model will require the application of all facial soft tissues. Before this can be performed, more details on the material properties will be required. The decision will then be whether to model the tissues as a homogeneous mass or model each layer. This will depend on the application to which the model is being put. It is likely that a homogeneous mass would be satisfactory for a trauma simulation, but this might not be the case for forensic cases where soft tissue injuries are also important.

This research largely concentrated on the use of the 3DFEA model to solve some clinically related problems that may arise in forensic or medico-legal practice. A full craniofacial 3DFEA model would have great potential as an academic tool to understand the effect of injuries three-dimensionally i.e. what injuries to expect following a traumatic impact, especially those that are remote from the impact site, how such injuries occur and how the craniofacial skeleton can be protected to avoid them. Such a tool could improve trauma understanding, teaching, and perhaps treatment, in the same way in which three-dimensional computer models have improved anatomy understanding and radiographic interpretation.

## **Bibliography**

Abbasi, M.M., Abbas, I., Khan, N., Shah, S.M., Hameed, H., Shad, S. and Zulfiqar, K. (2012) 'Frequency of un-erupted mandibular third molar in mandibular angle fractures', Journal of Ayub Medical College Abbottabad, vol. 24, no. 1, pp. 30-32.

Abdullah, W.A., Al-Mutairi, K., Al-Ali, Y., Al-Soghier, A. and Al-Shnwani, A. (2013) 'Patterns and etiology of maxillofacial fractures in Riyadh City, Saudi Arabia', Saudi Dental Journal, vol. 25, no. 1, Jan, pp. 33-38.

Adebayo, E.T., Ajike, O.S. and Adekeye, E.O. (2003) 'Analysis of the pattern of maxillofacial fractures in Kaduna, Nigeria', British Journal of Oral and Maxillofacial Surgery, vol. 41, no. 6, Dec, pp. 396-400.

Adams, V.A. (2008) A Designer's Guide to Simulation with Finite Element Analysis, NAFEMS.

Adekeye, E.O. (1980) 'Pediatric fractures of the facial skeleton: a survey of 85 cases from Kaduna, Nigeria', Journal of Oral Surgery, vol. 38, no. 5, May, pp. 355-358.

Adekeye, E.O. (1980) 'The pattern of fractures of the facial skeleton in Kaduna, Nigeria. A survey of 1,447 cases', Oral Surgery Oral Medicine and Oral Pathology, vol. 49, no. 6, Jun, pp. 491-495.

Adi, M., Ogden, G.R. and Chisholm, D.M. (1990) 'An analysis of mandibular fractures in Dundee, Scotland (1977 to 1985)', British Journal of Oral and Maxillofacial Surgery, vol. 28, no. 3, Jun, pp. 194-199.

Ajagbe, H.A., Daramola, J.O. and Oluwasanmi, J.O. (1977) 'Civilian type facial injuries - a retrospective study of cases seen at the University College Hospital, Ibadan', Nigerian Medical Journal, vol. 4, pp. 432-437.

Aksoy, E., Unlü, E. and Sensöz, O. (2002) 'A retrospective study on epidemiology and treatment of maxillofacial fractures', Journal of Craniofacial Surgery, vol. 13, no. 6, Nov, pp. 772-775.

Al Ahmed, H.E., Jaber, M.A., Abu Fanas, S.H. and Karas, M. (2004) 'The pattern of maxillofacial fractures in Sharjah, United Arab Emirates: a review of 230 cases', Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 98, no. 2, Aug, pp. 166-170.

Al-Aboosi, K. and Perriman, A. (1976) 'One hundred cases of mandibular fractures in children in Iraq', International Journal of Oral Surgery, vol. 5, no. 1, Feb, pp. 8-12.

Al-Khateeb, T. and Abdullah, F.M. (2007) 'Craniomaxillofacial injuries in the United Arab Emirates: a retrospective study', Journal of Oral and Maxillofacial Surgery, vol. 65, no. 6, Jun, pp. 1094-1101.

Alonso, M.B., Costa, P.P., Issa, J.P., Monteiro, S.A., Tiossi, R. and Watanabe, P.C. (2011) 'Radiographical evaluation of bone quality after extraction of mandibular impacted and semi-impacted third molars', Minerva Stomatologica, vol. 60, no. 7-8, pp. 359-364.

Ammar, H.H., Ngan, P., Crout, R.J., Mucino, V.H. and Mukdadi, O.M. (2011) 'Threedimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement', American Journal of Orthodontics and Dentofacial Orthopedics, vol. 139, no. 1, Jan, pp. e59-e71.

Anderson, P.J. (1995) 'Fractures of the facial skeleton in children', Injury, vol. 26, no. 1, Jan, pp. 47-50.

Andersson, L., Hultin, M., Nordenram, A. and Ramström, G. (1984) 'Jaw fractures in the county of Stockholm (1978-1980) (I). General survey', International Journal of Oral Surgery, vol. 13, no. 3, Jun, pp. 194-199.

Anker, A.H. (1996) 'What is the future of third molar removal? A critical review of the need for the removal of third molars', Annals of the Royal Australasian College of Dental Surgeons, vol. 13, pp. 154-157.

Ansari, M.H. (2004) 'Maxillofacial fractures in Hamedan province, Iran: a retrospective study (1987-2001)', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 32, no. 1, Feb, pp. 28-34.

Antoun, J.S. and Lee, K.H. (2008) 'Sports-related maxillofacial fractures over an 11-year period', Journal of Oral and Maxillofacial Surgery, vol. 66, no. 3, Mar, pp. 504-508

Anyanechi, C.E. and Saheeb, B.D. (2011) 'Mandibular sites prone to fracture: analysis of 174 cases in a Nigerian tertiary hospital', Ghana Medical Journal, vol. 45, no. 3, Sep, pp. 111-114.

Arbag, H., Korkmaz, H.H., Ozturk, K. and Uyar, Y. (2008) 'Comparative evaluation of different miniplates for internal fixation of mandible fractures using finite element analysis', Journal of Oral and Maxillofacial Surgery, vol. 66, no. 6, Jun, pp. 1225-1232.

Arosarena, O., Ducic, Y. and Tollefson, T. (2012) 'Mandible Fractures. Discussion and Debate', Facial Plastic Surgery Clinics of North America, vol. 20, no. 3, pp. 347-363.

Arrigoni J. and Lambrecht J.T. (2004) 'Complications during and after third molar extraction', Schweiz Monatsschr Zahnmed, vol. 114, no. 12, pp. 1271-1286.

Arvind, R.J., Narendar, R., Kumar, P.D., Venkataraman, S. and Gokulanathan (2013) 'Maxillofacial trauma in Tamil Nadu children and adolescents: A retrospective study', Journal of Pharmacy and Bioallied Sciences, vol. 5, no. Suppl 1, pp. S33-S35.

Ashman, R.B., Cowin, S.C., Van Buskirk, W.C. and Rice, J.C. (1984) 'A continuous wave technique for the measurement of the elastic properties of cortical bone', Journal of Biomechanics, vol. 17, no. 5, Jan, pp. 349-361.

Ashman, R.B. and Van Buskirk, W.C. (1987) 'The elastic properties of a human mandible', Advances in Dental Research, vol. 1, no. 1, Oct, pp. 64-67.

Ashman, R.B., Van Buskirk, W.C., Cowin, S.C., Sandborn, P.M., Wells, M.K. and Rice, J.C. (1985) 'The mechanical properties of immature osteopetrotic bone', Calcified Tissue International, vol. 37, no. 1, Jan, pp. 73-76.

Atanasov, D.T. and Vuvakis, V.M. (2000) 'Mandibular fracture complications associated with the third molar lying in the fracture line', Folia Medica, vol. 42, no. 1, pp. 41-46.

Bamjee, Y., Lownie, J.F., Cleaton-Jones, P.E. and Lownie, M.A. (1996) 'Maxillofacial injuries in a group of South Africans under 18 years of age', British Journal of Oral and Maxillofacial Surgery, vol. 34, pp. 298-302.

Banks, P. and Brown, A. (2003) Fractures of the facial skeleton, 1st edition, Edinburgh, London, New York, Oxford, Philadelphia, St Louis, Sydney, Toronto: Butterworth-Heinemann.

Barabas, J., Sandor, G.K., Bujtar, P. and Szucs, A. (2010) 'Finite element analysis of the human mandible to assess the effect of removing an impacted third molar', Journal of the Canadian Dental Association, vol. 76, p. a72.

Baron, P. and Debussy, T. (1979) 'A biomechanical functional analysis of the masticatory muscles in man', Archives of Oral Biology, vol. 24, pp. 547-553.

Bataineh, A.B. (1998) 'Etiology and incidence of maxillofacial fractures in the north of Jordan', Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 86, pp. 31-35.

Begg, C.B. and Mazumdar, M. (1994) 'Operating characteristics of a rank correlation test for publication bias', Biometrics, vol. 50, pp. 1088-1101.

Bezerra, T.P., Studart-Soares, E.-C., Pita-Neto, I.-C., Costa, F.-W.-G. and Batista, S.-H.-B. (2011) 'Do third molars weaken the mandibular angle?', Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 16, no. 5, pp. e657-e663.

Bither, S., Mahindra, U., Halli, R. and Kini, Y. (2008) 'Incidence and pattern of mandibular fractures in rural population: a review of 324 patients at a tertiary hospital in Loni, Maharashtra, India', Dental Traumatology, vol. 24, no. 4, Aug, pp. 468-470.

Boccaccio, A., Cozzani, M. and Pappalettere, C. (2011) 'Analysis of the performance of different orthodontic devices for mandibular symphyseal distraction osteogenesis', European Journal of Orthodontics, vol. 33, no. 2, Apr, pp. 113-120.

Boccaccio, A., Pappalettere, C. and Kelly, D.J. (2007) 'The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis', Annals of Biomedical Engineering, vol. 35, no. 11, pp. 1940-1960.

Boffano, P., Ferretti, F., Giunta, G. and Gallesio, C. (2012) 'Surgical removal of a third molar at risk for mandibular pathologic fracture: Case report and clinical considerations', Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, vol. 114, no. 6, pp. e1-e4.

Bonfield, W. and Li, C.H. (1968) 'The temperature-dependence of the deformation of bone', Journal of Biomechanics, vol. 1, pp. 323-329.

Bonfield, W. and Tully, A.E. (1982) 'Ultrasonic analysis of the Young's modulus of cortical bone', Journal of Biomedical Engineering, vol. 4, pp. 23-27.

Boole, J.R., Holtel, M., Amoroso, P. and Yore, M. (2001) '5196 mandible fractures among 4381 active duty army soldiers, 1980 to 1998', The Laryngoscope, vol. 111, pp. 1691-1696.

Borenstein, M., Hedges, L.V., Higgins, J.P.T. and Rothstein, H.R. (2009) Introduction to meta-analysis, Chichester, West Sussex: John Wiley and Sons, Ltd.

Bormann, K.-H., Wild, S., Gellrich, N.-C., Kokemüller, H., Stühmer, C., Schmelzeisen, R. and Schön, R. (2009) 'Five-year retrospective study of mandibular fractures in Freiburg, Germany: incidence, etiology, treatment, and complications', Journal Of Oral And Maxillofacial Surgery, vol. 67, no. 6, Jun, pp. 1251-1255.

Brasileiro, B.F. and Passeri, L.A. (2006) 'Epidemiological analysis of maxillofacial fractures in Brazil: a 5-year prospective study', Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 102, no. 1, Jul, pp. 28-34.

Breeze, J., Gibbons, A.J., Hunt, N.C., Monaghan, A.M., Gibb, I., Hepper, A. and Midwinter, M. (2011) 'Mandibular fractures in British military personnel secondary to blast trauma sustained in Iraq and Afghanistan', British Journal of Oral and Maxillofacial Surgery, vol. 49, no. 8, pp. 607-611.

Buitrago-Tellez, C.H., Audige, L., Strong, B., Gawelin, P., Hirsch, J., Ehrenfeld, M., Ruddermann, R., Louis, P., Lindqvist, C., Kunz, C., Cornelius, P., Shumrick, K., Kellman, R.M., Sugar, A., Alpert, B., Prein, J. and Frodel (2008) 'A comprehensive classification of mandibular fractures: a preliminary agreement validation study', International Journal of Oral and Maxillofacial Surgery, vol. 37, pp. 1080-1088.

Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., Hoshaw, S., Saiag, E. and Simkin, A. (1996) 'In vivo measurement of human tibial strains during vigorous activity', Bone, vol. 18, pp. 405-410.

Cankaya, A., Erdem, M., Cakarer, S., Cifter, M. and Oral, C. (2011) 'latrogenic mandibular fracture associated with third molar removal', International Journal of Medical Sciences, vol. 8, no. 7, pp. 547-553.

Carter, D.R. (1984) 'Mechanical loading histories and cortical bone remodeling', Calcified Tissue International, vol. 36, pp. 519-524.

Carter, D.R., Harris, W.H., Vasu, R. and Caler, E. (1981) 'The mechanical and biological response of cortical bone to in vivo strain histories', American Society of Mechanical Engineers, vol. 45, p. 81.

Carter, D.R., Hayes, W.C. and Schurman, D.J. (1976) 'Fatigue life of compact bone -II. Effects of microstructure and density', Journal of Biomechanics, vol. 9, pp. 211-218.

Casey, D.M. and Emrich, L.J. (1988) 'Changes in the mandibular angle in the edentulous state', Journal of Prosthetic Dentistry, vol. 59, no. 3, pp. 373-380.

Castaño, M.C., Zapata, U., Pedroza, A., Jaramillo, J.D. and Roldán (2002) 'Creation of a Three-dimensional Model of the Mandible and the TMJ by means of the Finite Element Method ', International Journal of Computerized dentistry, vol. 5, pp. 87-99.

Chamay, A. (1970) 'Mechanical and morphological aspects of experimental overload and fatigue in bone', Journal of Biomechanics, vol. 3, pp. 263-270.

Chambers, I.G. and Scully, C. (1987) 'Mandibular fractures in India during the Second World War (1944 and 1945): analysis of the Snawdon series', British Journal of Oral and Maxillofacial Surgery, vol. 25, no. 5, Oct, pp. 357-369.

Chen, Y., Miao, Y., Xu, C., Zhang, G., Lei, T. and Tan, Y. (2010) 'Wound ballistics of the pig mandibular angle: a preliminary finite element analysis and experimental study', Journal of Biomechanics, vol. 43, pp. 1131-1137.

Choi, B.-H., Huh, J.-Y., Suh, C.-H. and Kim, K.-N. (2005) 'An in vitro evaluation of miniplate fixation techniques for fractures of the atrophic edentulous mandible', International Journal of Oral and Maxillofacial Surgery, vol. 34, no. 2, Mar, pp. 174-177.

Choi, J.-P., Baek, S.-H. and Choi, J.-Y. (2010) 'Evaluation of stress distribution in resorbable screw fixation system: three-dimensional finite element analysis of mandibular setback surgery with bilateral sagittal split ramus osteotomy', The Journal of Craniofacial Surgery, vol. 21, no. 4, Jul, pp. 1104-1109.

Chole, R.H., Patil, R.N., Chole, S.B., Gondivkar, S., Gadbail, A.R. and Yuwanati, M.B. (2013) 'Association of mandible anatomy with age, gender, and dental status: a radiographic study', ISRN Radiology, vol. 2013, pp. 1-4.

Chrcanovic, B.R. and Custodio, A.L.N. (2010) 'Considerations of mandibular angle fractures during and after surgery for removal of third molars: A review of the literature', Oral and Maxillofacial Surgery, vol. 14, no. 2, pp. 71-80.

Christiaens, I. and Reychler, H. (2002) 'Complications after third molar extractions: retrospective analysis of 1,213 teeth', Revue De Stomatologie Et De Chirurgie Maxillo-Faciale, vol. 103, no. 5, pp. 269-274.

Colton, C.K.S., Schatzker, J. and Trafton, P. (2014) AO Surgery Reference. Online reference in clinical life, [Online], Available: https://www2.aofoundation.org/wps /portal/surgery [1 April 2014].

Copcu, E., Sisman, N. and Oztan, Y. (2004) 'Trauma and fracture of the mandible', European Journal of Trauma, vol. 2, pp. 110-115.

Courant, R. (1943) 'Variational methods for the solution of problems of equilibrium and vibrations', Bulletin of the American Mathematical Society, vol. 49, pp. 1-23.

Cowper, G. and Symonds, P. (1957) 'Strain hardening and strain-rate effects in the impact loading of cantilever beams', Technical report (Brown University, Division of Applied Mathematics), vol. 28, p. c11.

Cox, T., Kohn, M.W. and Impelluso, T. (2003) 'Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures', Journal of Oral and Maxillofacial Surgery, vol. 61, no. 4, Apr, pp. 481-87.

Craig, R.G., Peyton, F.A. and Johnson, D.W. (1961) 'Compressive properties of enamel, dental cements and gold', Journal of Dental Research, vol. 40, no. 5, pp. 936-945.

Curtis, N., Kupczik, K., O'Higgins, P., Moazen, M. and Fagan, M. (2008) 'Predicting Skull Loading: Applying Multibody Dynamics Analysis to a Macaque Skull', The Anatomical Record, vol. 291, pp. 491-501.

Daegling, D.J., Hotzman, J.L. and Rapoff, A.J. (2008) 'Effects of Dental Alveoli on the Biomechanical Behavior of the Mandibular Corpus', in Primate Craniofacial Function and Biology, Springer US.

de Matos, F.P., Arnez, M.F.M., Sverzut, C.E. and Trivellato, A.E. (2010) 'A retrospective study of mandibular fracture in a 40-month period', International Journal of Oral and Maxillofacial Surgery, vol. 39, no. 1, Jan, pp. 10-15.

de Oliveira, D.M., Andrade, E.S., da Silveira, M.M.F. and Carmargo, I.B. (2008) 'Correlation of the Radiographic and Morphological Features of the Dental Follicle of Third Molars with Incomplete Root formation', International Journal of Medical Sciences, vol. 5, no. 1, pp. 36-40.

Dingman, R.O. and Natvig, P. (1964) Surgery of Facial Fractures, Philadelphia: WB Saunders.

Doblaré, M., García, J.M. and Gómez, M.J. (2004) 'Modelling bone tissue fracture and healing: a review', Engineering Fracture Mechanics, vol. 71, pp. 1809-1840.

Dodson, T.B. (1996) 'Impacted third molar and mandibular angle fractures', Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 81, no. 3, pp. 264-265.

Dongas, P. and Hall, G.M. (2002) 'Mandibular fracture patterns in Tasmania, Australia', Australian Dental Journal, vol. 47, no. 2, Jun, pp. 131-137.

Dorin Ruse, N. (2008) 'Propagation of erroneous data for the modulus of elasticity of the periodontal ligament and gutta perch in FEM/FEA papers: A story of broken links', Dental Materials, vol. 24, pp. 1717-1719.

Duan, D.H. and Zhang, Y. (2008) 'Does the presence of mandibular third molars increase the risk of angle fracture and simultaneously decrease the risk of condylar fracture?', International Journal of Oral and Maxillofacial Surgery, vol. 37, no. 1, pp. 25-28.

Duarte, B., Assis, D., Ribeiro-Junior, P. and Gonçales, E. (2012) 'Does the relationship between retained mandibular third molar and mandibular angle fracture exist? An assessment of three possible causes', Craniomaxillofacial trauma and reconstruction, vol. 5, no. 3, pp. 127-136.

Dumont, E.R., Picrririllo, J. and Grosse, I.R. (2005) 'Finite-element analysis of biting behaviour and bone stress in the facial skeletons of bats', The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 283A, no. 2, pp. 319-330.

Duncanson, M.G. and Korostoff, E. (1975) 'Compressive viscoelastic properties of human dentin: 1. Stress-relaxation behaviour', Journal of Dental Research, vol. 54, pp. 1207-1212.

Eggensperger Wymann, N.M., Holzle, A., Zachariou, Z. and Iizuka, T. (2008) 'Pediatric craniofacial trauma', Journal of Oral and Maxillofacial Surgery, vol. 66, no. 1, pp. 58-64.

Egger, M. (1997) 'Bias in meta-analysis detected by a simple, graphical test', British Medical Journal, vol. 315, pp. 629-634.

Elgehani, R.-A. and Orafi, M.-I. (2009) 'Incidence of mandibular fractures in Eastern part of Libya', Med Oral Patol Oral Cir Bucal, vol. 14, no. 10, pp. e529-532.

Ellis 3rd, E., Moos, K.F. and el-Attar, A. (1985) 'Ten years of mandibular fractures: an analysis of 2,137 cases', Oral Surgery Oral Medicine and Oral Pathology, vol. 59, no. 2, Feb, pp. 120-129.

Emshoff, R., Schöning, H., Röthler, G. and Waldhart, E. (1997) 'Trends in the incidence and cause of sport-related mandibular fractures: a retrospective analysis', Journal of Oral and Maxillofacial Surgery, vol. 55, no. 6, Jun, pp. 585-92.

Ericson, S. and Bjerklin, K. (2001) 'The dental follicle in normally and ectopically erupting maxillary canines: a computed tomography study', Angle Orthodontist, vol. 71, no. 5, pp. 333-342.

Ertem, S.Y., Uckan, S. and Ozden, U.A. (2013) 'The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 41, no. 3, Apr, pp. e54-8.

Eskitaşcıoğlu, T., Ozyazgan, I., Coruh, A., Günay, G.K., Yontar, Y. and Altıparmak, M. (2013) 'Fractures of the mandible: a 20-year retrospective analysis of 753 patients', Turkish Journal of Trauma and Emergency Surgery, vol. 19, no. 4, Jul, pp. 348-56.

Eskitaşcıoğlu, T., Ozyazgan, I., Coruh, A., Gunay, G.K. and Yuksel, E. (2009) 'Retrospective analysis of two hundred thirty-five pediatric mandibular fracture cases', Annals of Plastic Surgery, vol. 63, no. 5, Nov, pp. 522-30.

Ethunandan, M., Shanahan, D. and Patel, M. (2012) 'latrogenic mandibular fractures following removal of impacted third molars: An analysis of 130 cases', British Dental Journal, vol. 212, no. 4, pp. 179-184.

Fan, Z. and Rho, J.Y. (2003) 'The effects of viscoelasticity and time-dependent plasticity to nanoindentation measurement of a human cortical bone', Journal of Biomedical Materials Research Part A, vol. 67A, pp. 208-214.

Fasola, A.O., Nyako, E.A., Obiechina, A.E. and Arotiba, J.T. (2003) 'Trends in the characteristics of maxillofacial fractures in Nigeria', Journal of Oral and Maxillofacial Surgery, vol. 61, no. 10, Oct, pp. 1140-1143.

Fasola, A.O., Obiechina, A.E. and Arotiba, J.T. (2001) 'Fractures of the mandible in children', East African Medical Journal, vol. 78, no. 11, Nov, pp. 616-618.

Fasola, A.O., Obiechina, A.E. and Arotiba, J.T. (2003) 'Incidence and pattern of maxillofacial fractures in the elderly', International Journal of Oral and Maxillofacial Surgery, vol. 32, no. 2, Apr, pp. 206-208.

Fenech, C.M. and Keaveny, T.M. (1999) 'A cellular solid criterion for predicting the axialshear failure properties of bovine trabecular bone', Journal of Biomechanical Engineering, vol. 121, pp. 414-422.

Fernández, J.R., Gallas, M., Burguera, M. and Viaño, J.M. (2003) 'A three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates', Journal of Biomechanics, vol. 36, no. 3, Mar, pp. 329-337.

Ferreira, P.C., Amarante, J.M., Silva, A.C., Pereira, J.M., Cardoso, M.A. and Rodrigues, J.M. (2004) 'Etiology and patterns of pediatric mandibular fractures in Portugal: a retrospective study of 10 years', Journal of Craniofacial Surgery, vol. 15, no. 3, May, pp. 384-391.

Fill, T.S., Toogood, R.W., Major, P.W. and Carey, J.P. (2012) 'Analytically determined mechanical properties of, and models for the periodontal ligament: Critical review of literature', Journal of Biomechanics, vol. 45, pp. 9-16.

Fridrich, K., Pena-Velasco, G. and Olson, R. (1992) 'Changing trends with mandibular fractures: a review of 1067 cases', Journal of Oral and Maxillofacial Surgery, vol. 50, pp. 586-589.

Fuselier, J.C., Ellis III, E.E. and Dodson, T.B. (2002) 'Do mandibular third molars alter the risk of angle fracture?', Journal of Maxillofacial and Oral Surgery, vol. 60, no. 5, pp. 514-518.

Gaball, C., Lovald, S., Baack, B. and Olson, G. (2011) 'Minimally invasive bioabsorbable bone plates for rigid internal fixation of mandible fractures', Archives of Facial Plastic Surgery, vol. 13, no. 1, pp. 31-35.

Gaddipati, R., Ramisetty, S., Vura, N., Kanduri, R.R. and Gunda, V.K. (2014 (epub ahead of print)) 'Impacted mandibular third molars and their influence on mandibular angle and condyle fractures - A retrospective study', Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, Jan.

Gallas Torreira, M. and Fernandez, J.R. (2004) 'A three-dimensional computer model of the human mandible in two simulated standard trauma situations', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 32, no. 5, Oct, pp. 303-307.

Gandhi, S., Ranganathan, L.K., Solanki, M., Mathew, G.C., Singh, I. and Bither, S. (2011) 'Pattern of maxillofacial fractures at a tertiary hospital in northern India: a 4-year retrospective study of 718 patients', Dental Traumatology, vol. 27, no. 4, Aug, pp. 257-262.

Ghodke, M.H., Subhash, C.B. and Seemit, V.S. (2013) 'Prevalence of mandibular fractures reported at C.S.M.S.S. Dental College, Aurangabad from February 2008 to September 2009', Journal of International Society of Preventative and Community Dentistry, vol. 3, no. 2, pp. 51-58.

Glazer, M., Joshua, B.Z., Woldenberg, Y. and Bodner, L. (2011) 'Mandibular fractures in children: analysis of 61 cases and review of the literature', International Journal of Pediatric Otorhinolaryngology, vol. 75, no. 1, Jan, pp. 62-64.

Goldberg, M.H. (2000) 'Mandibular fracture after third molar removal', Journal of Oral and Maxillofacial Surgery, vol. 58, no. 10, p. 1112

Goldberg, M.G. and Williams, A.C. (1969) 'The location and occurrence of mandibular fractures. An analysis of 202 cases', Oral Surgery, Oral Medicine and Oral Pathology, vol. 28, no. 3, Sep, pp. 336-341.

Gordon, I. and Shapiro, H.A. (1975) Forensic Medicine- A Guide to Principles, Edinburgh: Churchill-Livingstone.

Gorman, R. H. (2009) 'The Physics of a Karate Punch', [Online], Available at: http://www.thebrotherhoodofveteranwarriors.com/articles/Karate Punch Physics.html, [Accessed 14 2 2014].

Goussard, F., Damien Germain, D., Delmer, C. and Morenod, K. (2010) 'Finite element analysis: A promising tool for the reconstruction of extinct vertebrate graviportal taxa. A

preliminary study based on the metacarpal arrangement of Elephas maximus', Comptes Rendus Palevol, vol. 9, pp. 455–461.

Gröning, F., Fagan, M.J. and O'Higgins, P. (2011) 'The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics', Journal of Biomechanics, vol. 44, pp. 1304–1312.

Grosse, I., Dumont, E.R., Coletta, C. and Tolleson, A. (2007) 'Techniques for modelling muscle-induced forces in finite element models of skeletal structures', The Anatomical Record, vol. 290, pp. 1069-1088.

Hall, R.K. (1972) 'Injuries of the face and jaws in children', International Journal of Oral Surgery, vol. 1, no. 2, pp. 65-75.

Hall, S.C. and Ofodile, F.A. (1991) 'Mandibular fractures in an American inner city: the Harlem Hospital Center experience', Journal of the National Medical Association, vol. 83, no. 5, May, pp. 421-423.

Hallmer, F., Anderud, J., Sunzel, B., Güner, N. and Andersson, G. (2010) 'Jaw fractures diagnosed and treated at Malmö University Hospital: a comparison of three decades', International Journal of Oral Maxillofacial Surgery, vol. 39, pp. 446-451.

Halmos, D.R., Ellis III, E. and Dodson, T.B. (2004) 'Mandibular third molars and angle fractures', Journal of Oral and Maxillofacial Surgery, vol. 62, no. 9, pp. 1076-1081.

Hansen, U., Zioupos, P., Simpson, R., Currey, J.D. and Hynd, D. (2008) 'The effect of strain rate on the mechanical properties of human cortical bone', Journal of Biomechanical Engineering, vol. 130, no. 1, pp. 011011(1-8).

Hanson, B.P., Cummings, P., Rivara, F.P. and John, M.T. (2004) 'The association of third molars with mandibular angle fractures: a meta-analysis', Journal of the Canadian Dental Association, vol. 70, no. 1, pp. 39-43.

Harbord, R.M., Egger, M. and Sterne, J.A.C. (2006) 'A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints', Statistics in Medicine, vol. 25, no. 20, pp. 3443-3457.

Haug, R.H., Prather, J. and Indresano, A.T. (1990) 'An epidemiologic survey of facial fractures and concomitant injuries', Journal of Oral and Maxillofacial Surgery, vol. 48, no. 9, Sep, pp. 926-932.

Hayes, W.C. and Bouxsein, M.L. (1997) 'Biomechanics of cortical and trabecular bone: Implications for assessment of fracture risk', in Mow, V.C. and Hayes, W.C. (ed.) Basic Orthopaedic Biomechanics, Philadelphia: Lippincott-Raven.

Higgins, J.P.T. and Thompson, S.G. (2002) 'Quantifying heterogeneity in a meta-analysis', Statistics in Medicine, vol. 21, pp. 1539-1558.

Higgins, J.P.T., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) 'Measuring inconsistency in meta-analyses', British Medical Journal, vol. 327, pp. 557-560.

Hill, C.M., Crosher, R.F., Carroll, M.J. and Mason, D.A. (1984) 'Facial fractures-the results of a prospective four-year-study', Journal of Maxillofacial Surgery, vol. 12, no. 6, Dec, pp. 267-270.

Hogg, N.J.V. and Horswell, B.B. (2006) 'Hard tissue pediatric facial trauma: a review', Journal of the Canadian Dental Association, vol. 72, no. 6, pp. 555-558.

Huelke, D.F. and Compton, C.P. (1983) 'Facial injuries in automobile crashes', Journal of Oral and Maxillofacial Surgery, vol. 41, p. 2414.

Hung, Y.C., Montazem, A. and Costello, M.I.A. (2004) 'The correlation between mandible fractures and loss of consciousness', Journal of Oral and Maxillofacial Surgery, vol. 62, no. 8, Aug, pp. 938-942.

Huston, R.L. (2013) Fundamentals of Biomechanics, Florida: CRC Press Taylorand Francis Group.

lida, S., Hassfeld, S., Reuther, T., Nomura, K. and Muhling, J. (2005) 'Relationship between the risk of mandibular angle fractures and the status of incompletely erupted mandibular third molar', Journal of Cranio-Maxillofacial Surgery, vol. 33, no. 3, pp. 158-163.

lida, S., Hassfeld, S., Reuther, T., Schweigert, H.-G., Haag, C., Klein, J. and Mühling, J. (2003) 'Maxillofacial fractures resulting from falls', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 31, no. 5, Oct, pp. 278-283.

lida, S., Kogo, M., Sugiura, T., Mima, T. and Matsuya, T. (2001) 'Retrospective analysis of 1502 patients with facial fractures', International Journal of Oral and Maxillofacial Surgery, vol. 30, no. 4, Aug, pp. 286-290.

lida, S., Nomura, K., Okura, M. and Kogo, M. (2004) 'Influence of the incompletely erupted lower third molar on mandibular angle and condylar fractures', The Journal of Trauma: Injury, Infection, and Critical Care, vol. 57, no. 3, pp. 613-617.

lizuka, T., Tanne, R.S. and Berthold, H. (1997) 'Mandibular fractures following third molar extraction. A retrospective clinical and radiological study', International Journal of Oral and Maxillofacial Surgery, vol. 26, no. 5, pp. 338-343.

Imahara, S.D., Hopper, R.A., Wang, J., Rivara, F.P. and Klein, M.B. (2008) 'Patterns and outcomes of pediatric facial fractures in the United States: a survey of the National Trauma Data Bank', Journal Of The American College Of Surgeons, vol. 207, no. 5, Nov, pp. 710-716.

Inaoka, S.-D., Carneiro, S.-C.-D.A.-S., Vasconcelos, B.-C.-D.E., Leal, J. and Porto, G.-G. (2009) 'Relationship between mandibular fracture and impacted lower third molar', Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 14, no. 7, pp. e349-e354.

Infante Cossio, P., Espin Galvez, F., Gutierrez Perez, J.L., Garcia-Perla, A. and Hernandez Guisado, J.M. (1994) 'Mandibular fractures in children. A retrospective study of 99 fractures in 59 patients', International Journal of Oral and Maxillofacial Surgery, vol. 23, no. 6 Pt. 1, Dec, pp. 329-331.

Iwamoto, M., Miki, K. and Tanaka, E. (2005) 'Ankle skeletal injury prediction using anisotropic inelastic constitutive model of cortical bone taking into account damage evolution', Stapp Car Crash Journal, vol. 49, pp. 133-156.

Janssen, M., Zuidema, J. and Wanhill, R.J.H. (2004) Fracture Mechanics, 2nd edition, London, New York: Taylor and Francis e-Library.

Ji, B., Wang, C., Liu, L., Long, J., Tian, W. and Wang, H. (2010) 'A biomechanical analysis of titanium miniplates used for treatment of mandibular symphyseal fractures with the finite element method', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 109, no. 3, Mar, pp. e21-e27.

Ji, B., Wang, C., Song, F., Chen, M. and Wang, H. (2012) 'A new biomechanical model for evaluation of fixation systems of maxillofacial fractures', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 40, no. 5, Jul, pp. 405-408.

Joshi, S.R., Saluja, H., Pendyala, G.S., Chaudhari, S., Mahindra, U. and Kini, Y. (2013) 'Pattern and prevalence of maxillofacial fractures in rural children of central Maharashtra, India. A retrospective study', Journal of Maxillofacial and Oral Surgery, vol. 12, no. 3, Sep, pp. 307-311.

Kadkhodaie, M.H. (2006) 'Three-year review of facial fractures at a teaching hospital in northern Iran', British Journal of Oral and Maxillofacial Surgery, vol. 44, no. 3, Jun, pp. 229-331.

Kasamatsu, A., Watanabe, T. and Kanazawa, H. (2003) 'Presence of the third molar as a risk factor in mandibular angle fractures', Asian Journal of Oral and Maxillofacial Surgery, vol. 15, no. 3, pp. 176-180.

Kavanagh, E.P., Frawley, C., Kearns, G., Wallis, F., McGloughlin, T. and Jarvis, J. (2008) 'Use of finite element analysis in presurgical planning: treatment of mandibular fractures', Irish Journal of Medical Science, vol. 177, no. 4, Dec, pp. 325-331.

Kazanjian, V.H. and Converse, J. (1974) Surgical Treatment of Facial Injuries, Baltimore, MD: Williams and Wilkins.

Kelly, D. and Harrigan, W. (1975) 'A survey of facial fractures: Bellevue Hospital 1948-1974', Journal of Oral Surgery, vol. 33, pp. 145-149.
Kemper, A., McNally, C., Kennedy, E., Manoogian, S. and Duma, S. (2007) ' The material properties of human tibia cortical bone in tension and compression: Implications for the tibia index', Proceedings of the 20th Enhanced Safety of Vehicles Conference, Lyon, France, pp. 07-0470.

Keyak, J.H. (2000) 'Nonlinear finite element modeling to evaluate the failure load of the proximal femur', Journal of orthopaedic research: official publication of the Orthopaedic Research Society, vol. 18, no. 2, Mar, p. 337.

Keyak, J.H. (2000) 'Relationships between femoral fracture loads for two load configurations', Journal of Biomechanics, vol. 33, no. 4, Apr, pp. 499-502.

Keyak, J.H. (2001) 'Improved prediction of proximal femoral fracture load using nonlinear finite element models', Medical Engineering and Physics, vol. 23, no. 3, Apr, pp. 165-173.

Keyak, J.H., Lee, I.Y., Nath, D.S. and Skinner, H.B. (1996) 'Postfailure compressive behavior of tibial trabecular bone in three anatomic directions', Journal of Biomedical Materials Research, vol. 31, no. 3, Jul, pp. 373-378.

Keyak, J.H., Lee, I.Y. and Skinner, H.B. (1994) 'Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures', Journal of Biomedical Materials Research, vol. 28, no. 11, Nov, pp. 1329-1336.

Keyak, J.H., Meagher, J.M., Skinner, H.B. and Mote Jr, C.D. (1990) 'Automated threedimensional finite element modelling of bone, a new method', Journal of Biomedical Engineering, vol. 12, pp. 389-397.

Keyak, J.H. and Rossi, S.A. (2000) 'Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories', Journal of Biomechanics, vol. 33, no. 2, Feb, pp. 209-214.

Keyak, J.H., Rossi, S.A., Jones, K.A., Les, C.M. and Skinner, H.B. (2001) 'Prediction of fracture location in the proximal femur using finite element models', Medical Engineering and Physics, vol. 23, no. 9, Nov, pp. 657-664.

Keyak, J.H., Rossi, S.A., Jones, K.A. and Skinner, H.B. (1998) 'Prediction of femoral fracture load using automated finite element modeling', Journal of Biomechanics, vol. 31, no. 2, Feb, pp. 125-133.

Keyak, J.H. and Skinner, H.B. (1992) 'Three-dimensional finite element modelling of bone: effects of element size', Journal of Biomedical Engineering, vol. 14, no. 6, Nov, pp. 483-489.

Keyak, J.H. and Skinner, H.B. (1995) 'Comment on: The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model

geometry on stress convergence', Medical Engineering and Physics, vol. 17, no. 4, Jun, p. 320.

Keyak, J.H., Skinner, H.B. and Fleming, J.A. (2001) 'Effect of force direction on femoral fracture load for two types of loading conditions', Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 19, no. 4, Jul, pp. 539-544.

Kimsal, J., Baack, B., Candelaria, L., Khraishi, T. and Lovald, S. (2011) 'Biomechanical analysis of mandibular angle fractures', Journal of Oral and Maxillofacial Surgery, vol. 69, no. 12, Dec, pp. 3010-3014.

King, R.E., Scianna, J.M. and Petruzzelli, G.J. (2004) 'Mandible fracture patterns: a suburban trauma center experience', American Journal of Otolaryngology, vol. 25, pp. 301-307.

Kiong, T.K., Mustafa, W.M.W. and Sockalingam, G. (2007) 'Paediatric facial fractures: one-year survey of 23 government hospitals in Malaysia', Asian Journal of Oral and Maxillofacial Surgery, vol. 19, pp. 30-33.

Knoll, W.-D., Gaida, A. and Maurer, P. (2006) 'Analysis of mechanical stress in reconstruction plates for bridging mandibular angle defects', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 34, no. 4, Jun, pp. 201-209.

Korkmaz, H.H. (2007) 'Evaluation of different miniplates in fixation of fractured human mandible with the finite element method', Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 103, no. 6, Jun, pp. e1-13.

Korostoff, E., Pollack, S.R. and Duncanson, M.G. (1975) 'Viscoelastic properties of human dentin', Journal of Biomedical Materials Research, vol. 9, pp. 661-674.

Kromka, M. and Milewski, G. (2007) 'Experimental and numerical approach to chosen types of mandibular fractures cured by means of miniplate osteosynthesis', Acta of Bioengineering and Biomechanics, vol. 9, no. 2, pp. 49-54.

Kupczik, K., Dobson, C.A., Fagan, M.J., Crompton, R.H., Oxnard, C.E. and O'Higgins, P. (2007) 'Assessing mechanical function of the zygomatic region in macaques: validation and sensitivity testing of finite element models', Journal of Anatomy, vol. 210, pp. 41-53.

Kyrgidis, A., Koloutsos, G., Kommata, A., Lazarides, N. and Antoniades, K. (2013) 'Incidence, aetiology, treatment outcome and complications of maxillofacial fractures. A retrospective study from Northern Greece', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 41, no. 7, Oct, pp. 637-643.

Lanyon, L.E., Hampson, W.G.J., Goodship, A.E. and Shah, J.S. (1975) 'Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft', Acta Orthopaedica Scandinavica, vol. 46, pp. 256-268.

Le, B.T., Dierks, E.J., Ueeck, B.A., Homer, L.D. and Potter, B.F. (2001) 'Maxillofacial injuries associated with domestic violence', Journal of Oral and Maxillofacial Surgery, vol. 59, no. 11, Nov, pp. 1277-83; discussion 1283-4.

Lee, K.H. (2008) 'Epidemiology of mandibular fractures in a tertiary trauma centre', Emergency Medicine Journal, vol. 25, no. 9, Sep, pp. 565-568.

Lee, K.H. (2009) 'Interpersonal violence and facial fractures', Journal of Oral and Maxillofacial Surgery, vol. 67, no. 9, pp. 1878-1883.

Lee, J.H., Cho, B.K. and Park, W.J. (2010) 'A 4-year retrospective study of facial fractures on Jeju, Korea', Journal of Cranio-Maxillo-Facial Surgery, vol. 38, pp. 192-196.

Lee, H.L. and Chou, H.-J. (2010) 'Facial fractures in work-related injuries', Asian Journal of Oral and Maxillofacial Surgery, vol. 22, pp. 138-142.

Lee, J. and Dodson, T. (2000) 'The effect of mandibular third molar presence and position on the risk of an angle fracture', Journal of Oral and Maxillofacial Surgery, vol. 58, no. 4, pp. 394-399.

Lei, T., Xie, L., Tu, W., Chen, Y., Tang, Z. and Tan, Y. (2012) 'Blast injuries to the human mandible: development of a finite element model and a preliminary finite element analysis', Injury, vol. 43, no. 11, Nov, pp. 1850-1855.

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clark, M., Devereaux, P.J., Kleijnen, J. and Moher, D. (2009) 'The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration', PLoS Medicine, vol. 6, no. 7, p. e1000100.

Li, Z., Kindig, M.W., Kerrigan, J.R., Untaroiu, C.D., Subit, D., Crandall, J.R. and Kent, R.W. (2010) 'Rib fractures under anterior-posterior dynamic loads: Experimental and finiteelement study', Journal of Biomechanics, vol. 43, pp. 228-234.

Lindahl, L. (1977) 'Condylar fractures of the mandible. I. Classification and relation to age, occlusion, and concomitant injuries of teeth-supporting structures, and fractures of the mandibular body', International Journal of Oral Surgery, vol. 12-21, p. 6.

Lindqvist, C., Sorsa, S., Hyrkäs, T. and Santavirta, S. (1986) 'Maxillofacial fractures sustained in bicycle accidents', International Journal of Oral and Maxillofacial Surgery, vol. 15, no. 1, Feb, pp. 12-18.

Linn, E.W., Vrijhoef, M.M., de Wijn, J.R., Coops, R.P., Cliteur, B.F. and Meerloo, R. (1986) 'Facial injuries sustained during sports and games', Journal of Maxillofacial Surgery, vol. 14, no. 2, Apr, pp. 83-88.

Li, P., Tang, Y., Li, J., Shen, L., Tian, W. and Tang, W. (2013) 'Establishment of sequential software processing for a biomechanical model of mandibular reconstruction with custom-made plate', Computer Methods and Programs in Biomedicine, vol. 111, no. 3, pp. 642-649.

Livermore Software Technology Corporation (LSTC) (February 2013) LS-DYNA KEYWORD USER'S MANUAL. VOLUME II. Material Models, 70th edition, California: Livermore Software Technology Corporation.

Lopes, P (2009) 'Material assignment method', in Mimics 13.0 reference guide, Leuven, Belgium: Materialise.

Lorensen, W.E. and Cline, H.E. (1987) 'Marching Cubes: A High Resolution 3D Surface Construction Algorithm', Computer Graphics, vol. 21, no. 3, pp. 163-169.

Lotz, J.C., Cheal, E.J. and Hayes, W.C. (1991) 'Fracture prediction for the proximal femur using finite element models: Part II- Nonlinear analysis', Journal of Biomechanical Engineering, vol. 113, pp. 361-365.

Loukota, R.A., Eckelt, U., De Bont, L. and Rasse, M. (2005) 'Subclassification of fractures of the condylar process of the mandible', British Journal of Oral and Maxillofacial Surgery, vol. 43, pp. 72-73.

Lovald, S.T., Khraishi, T., Wagner, J. and Baack, B. (2009) 'Mechanical design optimization of bioabsorbable fixation devices for bone fractures', Journal of Craniofacial Surgery, vol. 20, no. 2, Mar, pp. 389-398.

Lovald, S.T., Wagner, J.D. and Baack, B. (2009) 'Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures', Journal of Oral and Maxillofacial Surgery, vol. 67, no. 5, May, pp. 973-985.

Luria, J.S. and Campbell, J.H. (2013) 'Fracture patterns associated with the presence of mandibular third molars', Journal of Oral and Maxillofacial Surgery, vol. 71, no. 9 SUPPL. 1, p. e100.

Ma'aita, J. and Alwrikat, A. (2000) 'Is the mandibular third molar a risk factor for mandibular angle fracture?', Oral Surgery Oral Medicine Oral Pathology Oral Radiology And Endodontics, vol. 89, no. 2, pp. 143-146.

MacLennan, W.D. (1952) 'Consideration of 180 cases of typical fractures of the mandibular condylar process', British Journal of Plastic Surgery, vol. 5, pp. 122-128.

Madhi, A.G.M. and Ali, I.A.A. (2013) 'A retrospective analytic study of mandibular fracture patterns in two different periods in Baghdad', Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, vol. 25, no. 3, pp. 205-209.

Marinescu, R., Daegling, D.J. and Rapoff, A.J. (2005) 'Finite element modeling of the anthropoid mandible: the effects of altered boundary conditions', The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol. 283, no. 3, pp. 300-309.

Marker, P., Eckerdal, A. and Smith-Sivertsen, C. (1994) 'Incompletely erupted third molars in the line of mandibular fractures. A retrospective analysis of 57 cases', Oral Surgery, Oral Medicine and Oral Pathology, vol. 78, no. 4, pp. 426-431.

Martins, M.M., Homsi, N., Pereira, C.C., Jardim, E.C. and Garcia, I.R.J. (2011) 'Epidemiologic evaluation of mandibular fractures in the Rio de Janeiro high-complexity hospital', Journal of Craniofacial Surgery, vol. 22, no. 6, pp. 2026-2030.

McMinn, R.M.H. (1994) Last's Anatomy. Regional and Applied, 9th edition, Edinburgh, London, Madrid, Melbourne, New York and Tokyo: Churchill Livingstone.

McMinn, R.M.H., Hutchings, R.T., Pegington, J. and Abrahams, P.H. (1993) A Colour Atlas of Human Anatomy, 3rd edition, Hong Kong: Mosby-Wolfe.

Meechan, J.G. (2000) 'The effect of mandibular third molar presence and position on the risk of an angle fracture', Journal of Oral and Maxillofacial Surgery, vol. 58, no. 4, p. 399.

Meisami, T., Sojat, A., Sandor, G.K., Lawrence, H.P. and Clokie, C.M. (2002) 'Impacted third molars and risk of angle fracture', International Journal of Oral and Maxillofacial Surgery, vol. 31, no. 2, pp. 140-144.

Mesnard, M., Ramos, A., Ballu, A., Morlier, J., Cid, M. and Simoes, J.A. (2011) 'Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model', Journal of Oral and Maxillofacial Surgery, vol. 69, no. 4, Apr, pp. 1008-1017.

Mijiti, A., Ling, W., Tuerdi, M., Maimaiti, A., Tuerxun, J., Tao, Y.-Z., Saimaiti, A. and Moming, A. (2014) 'Epidemiological analysis of maxillofacial fractures treated at a university hospital, Xinjiang, China: A 5-year retrospective study', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 42, no. 3, Apr, pp. 227-233.

Milzman, D., Weiner, D. and Murray, R. (2013) 'Presence of third molars predicts increased mandible fractures', Journal of Investigative Medicine, vol. 61, no. 3, pp. 662-663.

Milzman, D., Weiner, D., Napoli, A. and Smith, M. (2013) 'Presence of third molars predicts increased mandible fractures in blunt facial trauma', Academic Emergency Medicine, vol. 20, no. 5 SUPPL. 1, p. S168.

Ming-Yih, L., Chun-Li, L., Wen-Da, T. and Lun-Jou, L. (2010) 'Biomechanical stability analysis of rigid intraoral fixation for bilateral sagittal split osteotomy', Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 63, no. 3, Mar, pp. 451-455.

Moore, J.R. (1976) Principles of Oral Surgery, 2nd edition, Manchester: Manchester University Press.

Moroi, H.H., Okimoto, K., Moroi, R. and Terada, Y. (1993) 'Numeric approach to the biomechanical analysis of thermal effects in coated implants', International Journal Of Prosthodontics, vol. 6, pp. 564-572.

Morris, A.J. (1996) 'The qualification of safety critical structures by finite element analytical methods', Journal of Aerospace Engineering, vol. 210, pp. 203-208.

Mukherjee, S., Chawla, A., Borouah, S., Sahoo, D. and Arun, W.J.A. (2011) 'Dynamic properties of the shoulder complex bones', The 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), 13 June.

Müller, W. (1969) '[The luxation fracture of the condylar process of the mandible with dislocation towards the back]', Deutsche Zahn-, Mund-, und Kieferheilkunde mit Zentralblatt für die Gesamte Zahn-, Mund-, und Kieferheilkunde, vol. 53, no. 9, Dec, pp. 348-357.

Muñante-Cárdenas, J.L., Asprino, L., De Moraes, M., Albergaria-Barbosa, J.R. and Moreira, R.W.F. (2010) 'Mandibular fractures in a group of Brazilian subjects under 18 years of age: A epidemiological analysis', International Journal of Pediatric Otorhinolaryngology, vol. 74, no. 11, Nov, pp. 1276-1280.

Murakami, K., Sugiura, T., Yamamoto, K., Kawakami, M., Kang, Y.-B., Tsutsumi, S. and Kirita, T. (2011) 'Biomechanical analysis of the strength of the mandible after marginal resection', Journal of Oral and Maxillofacial Surgery, vol. 69, no. 6, Jun, pp. 1798-1806.

Murakami, K., Yamamoto, K., Sugiura, T., Kawakami, M., Kang, Y.-B., Tsutsumi, S. and Kirita, T. (2013) 'Effect of clenching on biomechanical response of human mandible and temporomandibular joint to traumatic force analyzed by finite element method', Med Oral Patol Oral Cir Bucal, vol. 18, no. 3, May, pp. e473-e478.

Mwaniki, D.L. and Guthua, S.W. (1990) 'Occurrence and characteristics of mandibular fractures in Nairobi, Kenya', British Journal of Oral and Maxillofacial Surgery, vol. 28, no. 3, Jun, pp. 200-202.

Mwaniki, D.L. and Guthua, S.W. (1991) 'Mandibular fractures: an appraisal of the weak regions', East African Medical Journal, vol. 68, no. 4, Apr, pp. 255-260.

Naghipur, S., Shah, A.A. and Elgazzar, R.F. (2013) 'The effect of lower third molar presence and position on fracture of the mandibular angle and condyle', Journal of Oral and Maxillofacial Surgery, vol. 71, no. 9 SUPPL. 1, pp. e95-e96.

Nahum, A.M. (1975) 'The biomechanics of facial bone fracture', Laryngoscope, vol. 85, no. 1, pp. 140-156.

Nahum, A.M. (1975) 'The biomechanics of maxillofacial trauma', Clinics in Plastic Surgery, vol. 2, no. 1, Jan, pp. 59-64.

Nalla, R.K., Kinney, J.H. and Ritchie, R.O. (2003) 'Mechanistic failure criteria for the failure of human cortical bone', Nature Materials, vol. 2, pp. 164-168.

Narra, N., Valášek, J., Hannula, M., Marcián, P., Sándor, G.K., Hyttinen, J. and Wolff, J. (2014) 'Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy', Journal of Biomechanics, vol. 47, no. 1, Jan, pp. 264-268.

National Institute for Health and Care Excellence, (2000) 'Guidance on the Extraction of Wisdom Teeth', Available: guidance.nice.org.uk/ta1

Natu, S.S., Pradhan, H., Gupta, H., Alam, S., Gupta, S., Pradhan, R., Mohammad, S., Kohli, M., Sinha, V.P., Shankar, R. and Agarwal, A. (2012) 'An epidemiological study on pattern and incidence of mandibular fractures', Plastic Surgery International, vol. 2012, pp. 1-7.

Nelson, G.J. (1986) Three dimensional computer modelling of human mandibular biomechanics. MSc thesis, Vancouver: The University of British Columbia.

Ogundare, B.O., Bonnick, A. and Bayley, N. (2003) 'Pattern of mandibular fractures in an urban major trauma center', Journal of Oral and Maxillofacial Surgery, vol. 61, no. 6, Jun, pp. 713-718.

Oikarinen, K., Ignatius, E., Kauppi, H. and Silvennoinen, U. (1993) 'Mandibular fractures in northern Finland in the 1980s-a 10-year study', British Journal of Oral and Maxillofacial Surgery, vol. 31, no. 1, Feb, pp. 23-27.

Oji, C. (1998) 'Fractures of the facial skeleton in children: a survey of patients under the age of 11 years', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 26, no. 5, Oct, pp. 322-325.

Oji, C. (1999) 'Jaw fractures in Enugu, Nigeria, 1985-95', British Journal of Oral and Maxillofacial Surgery, vol. 37, no. 2, Apr, pp. 106-109.

Ólafsson, S.H. (1984) 'Fractures of the facial skeleton in Reykjavik, Iceland, 1970-1979. (I) Mandibular fracture in 238 hospitalized patients, 1970-79', International Journal of Oral Surgery, vol. 13, no. 6, Dec, pp. 495-505.

Olasoji, H.O., Tahir, A. and Bukar, A. (2002) 'Jaw fractures in Nigerian children: an analysis of 102 cases', Central African Journal of Medicine, vol. 48, no. 9-10, pp. 109-112.

Olson, R., Fonseca, R., Zeitler, D. and Osbon, D. (1982) 'Fractures of the mandible: a review of 580 cases', Journal of Oral and Maxillofacial Surgery, vol. 40, pp. 23-28.

Ortakoğlu, K., Günaydin, Y., Aydintuğ, Y.S. and Bayar, G.R. (2004) 'An analysis of maxillofacial fractures: a 5-year survey of 157 patients', Military Medicine, vol. 169, no. 9, Sep, pp. 723-727.

Özkaya, N., Nordin, M. and Goldsheyder, D.L.D. (2012) Fundamentals of Biomechanics. Equilibrium, Motion, and Deformation, 3rd edition, New York, Dordrecht, Heidelberg, London: Springer.

Panagiotopoulou, O., Kupczik, K. and Cobb, S.N. (2011) 'The mechanical function of the periodontal ligament in the macaque mandible: a validation and sensitivity study using finite element analysis', Journal of Anatomy, vol. 218, no. 1, pp. 75-86.

Pankratov, A. and Robustova, T. (2001) 'A classification of mandibular fractures', Stomatologia M, vol. 2, pp. 29-31.

Parascandolo, S., Spinzia, A., Parascandolo, S., Piombino, P. and Califano, L. (2010) 'Two load sharing plates fixation in mandibular condylar fractures: biomechanical basis',

Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 38, no. 5, Jul, pp. 385-390.

Patil, P.M. (2012) 'Un-erupted lower third molars and their influence on fractures of the mandibular angle and condyle', British Journal of Oral and Maxillofacial Surgery, vol. 50, no. 5, pp. 443-446.

Peck, C.C., Langenbach, G.E.J. and Hannam, A.G. (2000) 'Dynamic simulation of muscle and articular properties during human wide jaw opening', Archives of Oral Biology, vol. 45, p. 969.

Pell, G.J. and Gregory, T. (1942) 'Report on a ten-year study of a tooth division technique for the removal of impacted teeth', American Journal of Orthodontics, vol. 28, p. 660.

Peltier, L.F. (1990) Fractures: A History and Iconography of Their Treatment. Norman orthopedic series, No. 1, San Francisco: Norman Publishing.

Pietrzak, G., Curnier, A., Botsis, J., Scherrer, S., Wiskott, A. and Belser, U. (2002) 'A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility', Computer Methods in Biomechanics and Biomedical Engineering, vol. 5, pp. 91-100.

Pini, M., Wiskott, H.W.A., Scherrer, S.S., Botsis, J. and Belser, U.C. (2002) 'Mechanical characterization of bovine periodontal ligament', Journal of Periodontal Research, vol. 37, p. 237-244.

Pogrel, M.A. and Kaban, L. (1989) 'Mandibular fracture', in Habal, A. (ed.) Facial Fractures, Toronto: B.C. Decker.

Qudah, M.A., Al-Khateeb, T., Bataineh, A.B. and Rawashdeh, M.A. (2005) 'Mandibular fractures in Jordanians: a comparative study between young and adult patients', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 33, no. 2, Apr, pp. 103-106.

Rai, S. and Pradhan, R. (2011) 'Tooth in the line of fracture: its prognosis and its effects on healing', Indian Journal of Dental Research, vol. 22, no. 3, pp. 495-496.

Rajkumar, K., Ramen, S., Chowdhury, R. and Chattopadhyay, P. (2009) 'Mandibular third molars as a risk factor for angle fractures: a retrospective study.', Journal of Maxillofacial and Oral Surgery, vol. 8, no. 3, pp. 237-240.

Ramli, R., Abdul Rahman, R., Abdul Rahman, N., Abdul Karim, F., Krsna Rajandram, R., Mohamad, M.S.F., Mat Nor, G. and Sohadi, R.U.R. (2008) 'Pattern of maxillofacial injuries in motorcyclists in Malaysia', Journal of Craniofacial Surgery, vol. 19, no. 2, Mar, pp. 316-321.

Ramos, A., Completo, A., Relvas, C., Mesnard, M. and Simões, J.A. (2011) 'Straight, semianatomic and anatomic TMJ implants: the influence of condylar geometry and bone fixation screws', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 39, no. 5, Jul, pp. 343-350.

Reilly, D. and Burstein, A. (1975) 'The elastic and ultimate properties of compact bone tissue', Journal of Biomechanics, vol. 8, pp. 393-405.

Reitzik, M., Lownie, J.F., Cleaton-Jones, P. and Austin, J. (1978) 'Experimental fractures of monkey mandibles', International Journal of Oral Surgery, vol. 7, pp. 100-103.

Rhea, I.T., Rao, P.M. and Neovelline, R.A. (1999) 'Helical CT and three-dimensional CT of facial and orbital injury', Radiologic Clinics of North America, vol. 37, pp. 489-513.

Rho, J.Y., Ashman, R.B. and Turner, C.H. (1993) 'Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements', Journal of Biomechanics, vol. 26, pp. 111-119.

Roth, F.S., Kokoska, M.S., Awwad, E.E., Martin, D.S., Olson, G.T., Hollier, L.H. and Hollenbeak, C.S. (2005) 'The identification of mandible fractures by helical computed tomography and panorex tomography', Journal of Craniofacial Surgery, vol. 16, pp. 3940-3949.

Rowe, N.L. (1968) 'Fractures of the facial skeleton in children', Journal of Oral Surgery, vol. 26, no. 8, Aug, pp. 505-515.

Rowe, N.L. (1969) 'Fractures of the jaws in children', Journal of Oral Surgery, vol. 27, no. 7, Jul, pp. 497-507.

Rowe, N.L. (1971) 'The history of the treatment of maxillo-facial trauma', Annals of the Royal College of Surgeons of England, vol. 49, no. 5, Nov, pp. 329-349.

Rowe, N.L. and Killey, H.C. (1968) Fractures of the facial skeleton, London: Livingstone.

Sacknoff, R., Novelline, R.A., Rhea, J.T., Lawrason, J.N. and Rao, P.M. (1997) 'Mandibular fracture not shown by axial computed tomography: Benefit of computed reformation', Emergency Radiology, vol. 4, no. 2, pp. 109-111.

Sadler, T.W. (1994) Langman's Medical Embryology, 7th edition, Baltimore, Maryland: Williams and Wilkins.

Safdar, N. and Meechan, J.G. (1995) 'Relationship between fractures of the mandibular angle and the presence and state of eruption of the lower third molar', Oral Surgery Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 79, no. 6, pp. 680-684.

Sakr, K., Farag, I.A. and Zeitoun, I.M. (2006) 'Review of 509 mandibular fractures treated at the University Hospital, Alexandria, Egypt', British Journal of Oral and Maxillofacial Surgery, vol. 44, no. 2, Apr, pp. 107-111.

Salem, J.E., Lilly, G.E., Cutcher, J.L. and Steiner, M. (1968) 'Analysis of 523 mandibular fractures', Oral Surgery Oral Medicine and Oral Pathology, vol. 26, no. 3, Sep, pp. 390-395.

Sammarco, G.J., Burstein, A.H., Davis, W.L. and Frankel, V.H. (1971) 'The biomechanics of torsional fractures: The effect of loading on ultimate properties', Journal of Biomechanics, vol. 4, pp. 113-117.

Sanchez, G. M. and Meltzer, E. S. (2012) The Edwin Smith Papyrus: Updated Translation of the Trauma Treatise and Modern Medical Commentaries, Atlanta, Georgia: Lockwood Press.

Sane, J., Lindqvist, C. and Kontio, R. (1988) 'Sports-related maxillofacial fractures in a hospital material', International Journal of Oral and Maxillofacial Surgery, vol. 17, no. 2, Apr, pp. 122-124.

Sasaki, R.O.H., Kumasaka, A., Ando, T., Nakamura, K., Ueki, T., Okada, Y., Asanami, S., Chigono, Y., Ichinokawa, Y., Satomi, T., Matsuo, A. and Chiba, H. (2012) 'Analysis of the pattern of maxillofacial fracture by five departments in Tokyo: a review of 674 cases', Oral Science International, vol. 6, no. 1, pp. 1-7.

Savoldelli, C., Bouchard, P.-O., Loudad, R., Baque, P. and Tillier, Y. (2012) 'Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis', Surgical and Radiologic Anatomy, vol. 34, no. 5, Jul, pp. 405-413.

Sawhney, C.P. and Ahuja, R.B. (1988) 'Faciomaxillary fractures in north India. A statistical analysis and review of management', British Journal of Oral and Maxillofacial Surgery, vol. 26, no. 5, Oct, pp. 430-434.

Schneider, D.C. and Nahum, A.M. (1974) 'Impact studies of facial bones and skull', Proceedings of the 16th Stapp Car Crash Conference, SAE No. 720966, p. 204.

Schön, R., Roveda, S.I. and Carter, B. (2001) 'Mandibular fractures in Townsville, Australia: incidence, aetiology and treatment using the 2.0 AO/ASIF miniplate system', British Journal of Oral and Maxillofacial Surgery, vol. 39, no. 2, Apr, pp. 145-148.

Schuchardt, K., Schwenzer, N., Rottke, B. and Lentkodt, J. (1966) 'Ursachen Häufigkeit und Lokalisation der Frakturen des Desichtsschädels', Fortschritte der Kiefer- und Gesichts-Chirurgie, vol. 11, pp. 1-6.

Schuller-Götzburg, P., Pleschberger, M., Rammerstorfer, F.G. and Krenkel, C. (2009) '3D-FEM and histomorphology of mandibular reconstruction with the titanium functionally dynamic bridging plate', International Journal of Oral and Maxillofacial Surgery, vol. 38, no. 12, Dec, pp. 1298-1305.

Schwartz-Dabney, C.L. and Dechow, P.C. (2003) 'Variations in Cortical Material Properties Throughout the Human Dentate Mandible', American Journal of Physical Anthropology, vol. 120, pp. 252-277.

Simsek, S., Simsek, B., Abubaker, A.O. and Laskin, D.M. (2007) 'A comparative study of mandibular fractures in the United States and Turkey', International Journal of Oral and Maxillofacial Surgery, vol. 36, no. 5, May, pp. 395-397.

Sinn, D., Hill, S. and Watson, S. (1987) 'Mandibular fractures', in Foster, C. and Sherman, J. (ed.) Surgery of facial bone fractures, Churchill Livingstone.

Smith, R.J. (1983) 'The mandibular corpus of female primates: taxonomic, dietary and allometric correlates of interspecific variations in size and shape', American Journal of Physical Anthropology, vol. 61, pp. 315-330.

Spencer, A.J.M. (2004) Continuum Mechanics, Mineola, New York: Dover Publications, Inc.

Sperber, G. (2001), in Craniofacial development, Hamilton (ON): BC Decker Inc.

Spiessl, B. and Schrol, K. (1989) 'Classification of fractures', in Spiessl, B. (ed.) Internal fixation of the mandible, New York: Springer-Verlag.

Standring, S. (2008) 'Mandible', in Standring, S. (ed.) Gray's Anatomy: the Anatomical Basis of Clinical Practice, 40th edition, Edinburgh: Churchill Livingstone/Elsevier.

Sterne, J.A.C. and Egger, M. (2001) 'Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis', Journal of Clinical Epidemiology, vol. 54, pp. 1046-1055.

Stylogianni, L., Arsenopoulos, A. and Patrikiou, A. (1991) 'Fractures of the facial skeleton in children', British Journal of Oral and Maxillofacial Surgery, vol. 29, no. 1, Feb, pp. 9-11.

Subhashraj, K. (2009) 'A study on the impact of mandibular third molars on angle fractures', Journal of Oral and Maxillofacial Surgery, vol. 67, no. 5, pp. 968-972.

Subhashraj, K., Nandakumar, N. and Ravindran, C. (2007) 'Review of maxillofacial injuries in Chennai, India: a study of 2748 cases', British Journal of Oral and Maxillofacial Surgery, vol. 45, no. 8, Dec, pp. 637-639.

Subhashraj, K., Ramkumar, S. and Ravindran, C. (2008) 'Pattern of mandibular fractures in Chennai, India', British Journal of Oral and Maxillofacial Surgery, vol. 46, no. 2, Mar, pp. 126-127.

Sugiura, T., Yamamoto, K., Murakami, K., Kawakami, M., Kang, Y.-B., Tsutsumi, S. and Kirita, T. (2009) 'Biomechanical analysis of miniplate osteosynthesis for fractures of the atrophic mandible', Journal of Oral and Maxillofacial Surgery, vol. 67, no. 11, Nov, pp. 2397-2403.

Szucs, A., Bujtar, P., Sandor, G. and Barabas, J. (2010) 'Finite element analysis of the human mandible to assess the effect of removing an impacted third molar', Journal of the Canadian Dental Association, vol. 76, p. a72.

Takada, H., Abe, S., Tamatsu, Y., Mitarashi, S., Saka, H. and Ide, Y. (2006) 'Threedimensional bone microstructures of the mandibular angle using micro-CT and finite element analysis: Relationship between partially impacted mandibular third molars and angle fractures', Dental Traumatology, vol. 22, no. 1, pp. 18-24. Tang, Z., Tu, W., Zhang, G., Chen, Y., Lei, T. and Tan, Y. (2012) 'Dynamic simulation and preliminary finite element analysis of gunshot wounds to the human mandible', Injury, vol. 43, no. 5, May, pp. 660-665.

Tevepaugh, D.B. and Dodson, T.B. (1995) 'Are mandibular third molars a risk factor for angle fractures? A retrospective cohort study.', Journal of Oral And Maxillofacial Surgery, vol. 53, no. 6, pp. 646-649.

Thaller, S.R. and Mabourakh, S. (1991) 'Pediatric mandibular fractures', Annals of Plastic Surgery, vol. 26, no. 6, Jun, pp. 511-513.

Thangavelu, A., Yoganandha, R. and Vaidhyanathan, A. (2010) 'Impact of impacted mandibular third molars in mandibular angle and condylar fractures', International Journal of Oral and Maxillofacial Surgery, vol. 39, no. 2, pp. 136-139.

Thorén, H., Snall J., Hallermann W., Kormi E. and Tornwall J. (2008) 'Policy of Routine Titanium Miniplate Removal After Maxillofacial Trauma', Journal of Oral and Maxillofacial Surgery, vol. 66, no. 9, pp. 1901-1904.

Thorén, H., Iizuka, T., Hallikainen, D. and Lindqvist, C. (1992) 'Different patterns of mandibular fractures in children. An analysis of 220 fractures in 157 patients', Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 20, no. 7, Oct, pp. 292-296.

Turner, M.J., Clough, R.W., Martin, H.C. and Topp, L.C. (1956) 'Stiffness and deflection analysis of complex structures', Journal of Aeronautical Science, vol. 23, pp. 805-823.

Ugboko, V.I., Oginni, F.O. and Owotade, F.J. (2000) 'An investigation into the relationships between mandibular third molars and angle fractures in Nigerians', British Journal of Oral and Maxillofacial Surgery, vol. 38, no. 5, pp. 427-429.

University of Virginia, Department of Materials Science and Engineering, (2010) 'MSE 2090: Introduction to the Science and Engineering of Materials. Chapter 8. Failure.', [Online] Available at: people.virginia.edu/~lz2n/mse209

Vajgel, A., Camargo, I.B., Willmersdorf, R.B., de Melo, T.M., Laureano Filho, J. and Vasconcellos, R.J. (2013) 'Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures', Journal of Oral and Maxillofacial Surgery, vol. 71, no. 2, Feb, pp. 335-342.

van Beek, G.J. and Merkx, C.A. (1999) 'Changes in the pattern of fractures of the maxillofacial skeleton', International Journal Of Oral and Maxillofacial Surgery, vol. 28, no. 6, Dec, pp. 424-428.

Van Hoof, R.F., Merkx, C.A. and Stekelenburg, E.C. (1977) 'The different patterns of fractures of the facial skeleton in four European countries', International Journal of Oral Surgery, vol. 6, pp. 3-11.

Venugopal, M.G., Sinha, R., Menon, P.S., Chattopadhyay, P.K. and Roy Chowdhury, S.K. (2010) 'Fractures in the maxillofacial region: a four year retrospective study', Medical Journal, Armed Forces India, vol. 66, no. 1, pp. 14-17.

Vetter, J.D., Topazian, R.G., Goldberg, M.H. and Smith, D.G. (1991) 'Facial fractures occurring in a medium-sized metropolitan area: recent trends', International Journal of Oral and Maxillofacial Surgery, vol. 20, no. 4, Aug, pp. 214-216.

Vignjevic, R., Morris, A.J. and Belagundu, A.D. (1998) 'Towards high fidelity fiinite element analysis', Advances in Engineering Software, vol. 29, pp. 655-665.

Vollmer, D., Meyer, U., Joos, U., Vegh, A. and Piffko, J. (2000) 'Experimental and finite element study of the mandible', Journal of Cranio-Maxillofacial Surgery, vol. 28, pp. 91-96.

Wagner, A., Krach, W., Schicho, K., Undt, G., Ploder, O. and Ewers, R. (2002) 'A 3dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process', Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, vol. 94, no. 6, Dec, pp. 678-686.

Walden, R.E., Wohlgemuth, P.R. and Fitz-Gibbon, J.H. (1956) 'Fractures of the Facial Bones', American Journal of Surgery, p. 92.

Wang, H., Ji, B., Jiang, W., Liu, L., Zhang, P., Tang, W., Tian, W. and Fan, Y. (2010) 'Threedimensional finite element analysis of mechanical stress in symphyseal fractured human mandible reduced with miniplates during mastication', Journal of Oral and Maxillofacial Surgery, vol. 68, no. 7, Jul, pp. 1585-1592.

Ward-Booth, P., Schendel, S.A. and Hausamen, J.-E. (2006) Maxillofacial Surgery, 2nd edition, London: Churchill Livingstone.

Watanabe, P.C.A., Alonso, M.B.C.C., Monteiro, S.A.C., Tiossi, R. and Issa, J.P.M. (2009) 'Morphodigital study of bone quality in the mandibular angle in patients with third molar impacted', Anatomical Science International, vol. 84, no. 3, pp. 246-252.

Watts, D.C. (1989) 'Temperature dependence of the mechanical properties of human dentine', in Yettram, D.C. (ed.) Material Properties and Stress Analysis in Biomechanics, Manchester: Manchester University Press.

Weijs, W.A. (1981) 'Mechanical loading of the human jaw', Acta Morphologica Neerlando-Scandinavica, vol. 19, pp. 261-262.

Weijs, W.A. and Hillen, B. (1984a) 'Relationship between the physiological cross-section of the human jaw muscles and their cross-sectional area in computer tomograms', Acta Anatomica, vol. 118, pp. 129-138.

Weijs, W.A. and Hillen, B. (1984b) 'Relationships between masticatory muscle crosssection and skull shape', Journal of Dental Research, vol. 63, pp. 1154-1157. Weijs, W.A. and Hillen, B. (1985b) 'Cross-sectional areas and estimated intrinsic strength of the human jaw muscles', Acta Morphologica Neerlando-Scandinavica, vol. 23, pp. 267-274.

Weijs, W.A. and Hillen, B. (1985b) 'Physiological cross-section of the human jaw muscles', Acta Anatomica, vol. 121, pp. 31-35.

Weiner, D., Murray, R., Huang, H. and Milzman, D. (2012) 'Presence of third molars and rates of mandible fractures after punched-in face', Canadian Journal of Emergency Medicine, vol. 14, p. S42.

Werkmeister, R., Fillies, T., Joos, U. and Smolka, K. (2005) 'Relationship between lower wisdom tooth position and cyst development, deep abscess formation and mandibular angle fracture', Journal of Cranio-Maxillofacial Surgery, vol. 33, no. 3, pp. 164-168.

Wescott, D.J. (2013) 'Biomechanics of Bone Trauma', Encyclopedia of Forensic Sciences, vol. 2, pp. 83-88.

Wilson, I.F., Lokeh, A., Benjamin, C.I., Hilger, P.A., Hamlar, D.D., Ondrey, F.G., Tashjian, J.H., Thomas, W. and Schubert, W. (2001) 'Prospective comparison of panoramic tomography (zonography) and helical computed tomography in the diagnosis and operative management of mandibular fractures', Plastic and Reconstructive Surgery, vol. 107, pp. 1369-1375.

Wolujewicz, M.A. (1980) 'Fractures of the mandible involving the impacted third molar tooth: An analysis of 47 cases', British Journal of Oral Surgery, vol. 18, no. 2, pp. 125-131.

Wood, S.A., Strait, D.S., Dumont, E.R., Ross, C.F. and Grosse, I.R. (2011) 'The effects of modeling simplifications on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments', Journal of Biomechanics, vol. 44, pp. 1831-1838.

World Health Organization (1977) International Classification of Diseases Index: Manual for the International Statistical Classification of Diseases, Ninth edition, Geneva: WHO Press.

Xu, H.H., Smith, D.T., Jahanmir, S., Romberg, E., Kelly, J.R., Thompson, V.P. and Rekow, E.D. (1998) 'Indentation damage and mechanical properties of human enamel and dentine', Journal of Dental Research, vol. 77, pp. 472-480.

Yadav, S., Tyagi, S., Puri, N., Kumar, P. and Kumar, P. (2013) 'Qualitative and quantitative assessment of relationship between mandibular third molar and angle fracture on North Indian population: A clinico-radiographic study', European Journal of Dentistry, vol. 7, no. 2, pp. 212-217.

Yamada, T., Sawaki, Y., Tohnai, I., Takeuchi, M. and Ueda, M. (1998) 'A study of sportsrelated mandibular angle fracture: relation to the position of the third molars', Scandinavian Journal of Medicine and Science in Sports, vol. 8, no. 2, pp. 116-119. Yamamoto, K., Kuraki, M., Kurihara, M., Matsusue, Y., Murakami, K., Horita, S., Sugiura, T. and Kirita, T. (2010) 'Maxillofacial fractures resulting from falls', Journal of Oral and Maxillofacial Surgery, vol. 68, no. 7, Jul, pp. 1602-1607.

Yamamoto, K., Matsusue, Y., Murakami, K., Horita, S.I., Matsubara, Y., Sugiura, T. and Kirita, T. (2011) 'Maxillofacial fractures due to work-related accidents', Journal of craniomaxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 39, no. 3, Apr, pp. 182-186.

Zachariades, N. and Papavassiliou, D. (1990) 'The pattern and aetiology of maxillofacial injuries in Greece. A retrospective study of 25 years and a comparison with other countries', Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 18, no. 6, Aug, pp. 251-254.

Zachariades, N., Papavassiliou, D. and Koumoura, F. (1990) 'Fractures of the facial skeleton in children', Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery, vol. 18, no. 4, May, pp. 151-153.

Zachariades, N., Papavassiliou, D., Papademetriou, I. and Koundouris, I. (1983) 'Fractures of the facial skeleton in Greece. A retrospective study covering 1791 cases in 10 years', Journal of Maxillofacial Surgery, vol. 11, no. 3, Jun, pp. 142-144.

Zachariades, N., Papavassiliou, D., Triantafyllou, D., Vairaktaris, E., Papademetriou, I., Mezitis, M. and Rapidis, A. (1984) 'Fractures of the facial skeleton in the edentulous patient', Journal of Maxillofacial Surgery, vol. 12, no. 6, Dec, pp. 262-266.

Zachar, M.R., Labella, C., Kittle, C.P., Baer, P.B., Hale, R.G. and Chan, R.K. (2013) 'Characterization of mandibular fractures incurred from battle injuries in Iraq and Afghanistan from 2001-2010', Journal of Oral and Maxillofacial Surgery, vol. 71, no. 4, Apr, pp. 734-742.

Zhou, H.-H., Ongodia, D., Liu, Q., Yang, R.-T. and Li, Z.-B. (2013) 'Incidence and pattern of maxillofacial fractures in children and adolescents: a 10 years retrospective cohort study', International Journal of Pediatric Otorhinolaryngology, vol. 77, no. 4, Apr, pp. 494-498.

Zhu, S.-J., Choi, B.-H., Kim, H.-J., Park, W.-S., Huh, J.-Y., Jung, J.-H., Kim, B.-Y. and Lee, S.-H. (2005) 'Relationship between the presence of un-erupted mandibular third molars and fractures of the mandibular condyle', International Journal of Oral and Maxillofacial Surgery, vol. 34, no. 4, pp. 382-385.

Zimmermann, E.A., Gludovatz, B., Schaible, E., Busse, B. and Ritchie, R.O. (2014) 'Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates', Biomaterials, vol. 35, pp. 5472-5481. Zix, J.A., Schaller, B., Lieger, O., Saulacic, N., Thorén, H. and Iizuka, T. (2011) 'Incidence, aetiology and pattern of mandibular fractures in central Switzerland', Swiss Medical Weekly, vol. 141, p. w13207.

## Appendices

| Appendix 1 Use of the Companion disc                        | 254 |
|-------------------------------------------------------------|-----|
| Appendix 2 Basic elasticity, stress, strain and performance | 255 |
| Appendix 3 Introduction to finite element analysis          | 263 |
| Appendix 4 Anatomy                                          | 265 |
| Appendix 5 Mandibular fracture classifications              | 280 |
| Appendix 6 Fracture definitions                             | 283 |
| Appendix 7 Meta-analysis raw data                           | 285 |
| Appendix 8 Bias indicators                                  |     |
| Appendix 9 The atrophic mandible                            |     |
| Appendix 10 Analysis results by section (tabulated)         |     |
| Appendix 11 Clinical case showing use of 3DFEA              |     |
| Appendix 12 Hardware and software list                      |     |
| Appendix 13 Electronic databases                            |     |
| Appendix 14 LS-DYNA keyword files                           |     |
| Appendix 15 Node sampling positions                         |     |
| Appendix 16 Software licences                               |     |
| Appendix 17 Meta-analysis review protocol                   | 350 |
| Appendix 18 Symphyseal impact graphs (dynamic)              | 352 |
| Appendix 19 Meta-analysis exclusion criteria                | 353 |

## Appendix 1

•

Use of the companion disc.

The accompanying companion disc contains additional information which is not

essential but may aid the understanding the thesis.

The disc contains a single file which requires Adobe Reader v. XI or later. The file is

arranged as a portfolio of information. The structure is as follows:

Companion disc file structure

## Non-linear dynamic analyses

- Animations (Cyst and third molar)
  - Cystic lesions
    - Angle impact
    - Symphyseal impact
    - Un-erupted third molars
- Animations (Punch)

- Parasymphyseal punch
  - High energy
  - Low energy
- Body punch
  - High energy
  - Low energy
- Angle Punch
  - High energy
  - Karate energy
  - Low energy
- Ramus punch
  - High energy
  - Karate energy
  - Low energy
- Symphyseal punch
  - High energy
  - Karate energy
  - Low energy
- 3D model folder

## Appendix 2

## **Basic elasticity**

This section introduces some mathematical and engineering concepts that are important to the understanding of this thesis. It is not intended to be an exhaustive exposition of continuum mechanics. Readers interested in a more comprehensive understanding of the concepts presented here should consult standard texts, several of which are mentioned in the bibliography.

## Stress and strain

When a load is applied to any material it deforms. Material behaviour may be described by a load vs. deformation curve.



Load vs. deformation curve for a theoretical material. Adapted from Wescott, 2013

The graph above shows the load vs. deformation curve for three idealized materials. If we assume that they all refer to bone then A would represent a brittle bone i.e. showing little deformation, C a ductile bone (showing significant deformation on loading) and B would represent a bone with properties midway between the two.

The load vs. deformation curve cannot accurately describe material behaviour as force is related to application area and deformation (or displacement) is related to specimen length. A better way to understand material properties is to examine a stress vs. strain graph which diminishes the effects of sample size.

The amount of deformation relative to the original material length is known as engineering (or Cauchy) strain.

 $\varepsilon_e = \frac{\Delta L}{L}$ 

The mathematical definition of strain.  $\varepsilon$ = strain, L= length, and  $\Delta$ L= change in length.

Appendices



Stress vs. strain curve for two theoretical materials. Adapted from Wescott, 2013

Stress is defined as force per unit area. Where the area is the original cross-sectional area of the material this is known as engineering (or Cauchy) stress.

$$\sigma_e = \frac{F}{A_0}$$

The mathematical definition of stress (engineering).

When the final cross-sectional area of the material is taken into consideration, this is known as true stress and in this case the stress vs. strain curve will differ.

If the strain disappears when the stress is removed then the material is said to behave elastically. If, on the other hand, permanent deformation occurs when the stress is

257

removed then plastic deformation is said to have taken place. Excess strain will cause material failure regardless of the stress level.

The gradient of the curve at any point is known as the modulus. Young's modulus (E), also known as the elastic modulus, is defined by the slope of the linear portion of the curve. It can be seen that both curves in have a linear portion and a non-linear portion. The junction between the two is known as the yield point. On a microscopic level this point represents slippage between the layers of atoms and molecules leading to permanent deformation.

In the linear portion, the stress and strain increase in a proportional manner, and the material behaves elastically on loading and unloading. Hooke's law describes the stress ( $\sigma$ ) and strain ( $\epsilon$ ) relationship in the elastic region.

# $E\varepsilon = \sigma$

#### Hooke's law.

Materials which are loaded in one direction will undergo strains parallel and perpendicular to the load direction. This maybe expressed as the Poisson ratio (v). This is the ratio of lateral strain ( $\varepsilon_{lat}$ ) to longitudinal strain ( $\varepsilon_{long}$ ).

$$v = - \frac{\varepsilon_{lat}}{\varepsilon_{long}}$$

#### Poisson's ratio

For most biological hard tissues, including bone, the Poisson ratio is approximately 0.3.

In general, a deformation resulting in <2% strain will be within the elastic limit. When greater load is applied a yield point is encountered and permanent deformation begins

to occur. In cortical bone the yield strain has been estimated as approximately 6800µɛ (Carter, 1984). The yield stress is approximately 130MPa in tension. At these points, micro-cracks occur in the hydroxyapatite and collagen fibres are disrupted. Collagen fibres are responsible for the tensile properties of bone whereas the hydroxyapatite forms the compressive strength.

Eventually, bone under increasing tension or compression will undergo failure. This frequently manifests clinically as fracture. The ultimate strain of bone (the point of failure for a material with brittle properties) is approximately 10000-15000µɛ in tension. The ultimate stress varies according to whether the bone is in tension (140MPa), compression (200MPa) or shear (65MPa) (Carter, et al., 1981). As a result, bony fracture is most likely to occur along shear planes. These run at approximately 45 degrees from normal compressive and tensile stresses.

The area under the stress vs. strain curve is known as the energy absorbed per unit volume. The area under the elastic region of the curve is elastically absorbed and that under the plastic region is the energy absorbed plastically. The total energy is also known as the strain energy density represents the total work done in deforming the material. Strain energy density has been used by several authors performing biological 3DFEA to determine the energy required to deform structures.



Stress vs. strain graph showing the derivation of work to failure (strain energy density). Adapted from Wescott, 2013

#### Measuring performance

Performance is a term borrowed from engineering, but frequently applied to biological systems. It refers to the mechanical efficiency or strength of a specific system. In reference to biological structures such as bone it can refer to the stress which it can withstand without deformation (which may cause system failure) or catastrophic material failure. Cortical bone has been described as failing under a ductile model of fracture (Nalla, et al., 2003) although Hansen, et al. (2008) noted a ductile-to-brittle transition, which was strain-rate related, in tensile and compressive tests to failure.

The von Mises formula was developed to predict yielding of isotropic ductile materials such as metals. Under this criterion, failure occurs when the von Mises stress equals the ultimate stress of the material. Whilst some have noted that this criterion is not very realistic for determining failure in bone (Doblaré, et al., 2004) von Mises stress ( $\sigma_{vm}$ )(also referred to as the equivalent stress) has been used throughout biological literature to predict bony failure. Keyak and Rossi (2000) found that when isotropic material properties were used, von Mises criterion was the most accurate for fracture location prediction in cortical bone. This was even the case when the differences in compressive and tensile stress were accounted for. This same accuracy was not found in cancellous bone (Fenech and Keaveny, 1999).

In terms of the determination of fracture location, Keyak and Rossi (2000) found that the predicted location of the fracture was often a function of the failure criterion employed.

The maximum principal stress criterion (Rankine criterion ( $\sigma_1$ )) has been used by some authors to describe the brittle failure of bone. Failure is said to occur when the maximum principal stress in a system reaches the value of the maximum strength at the elastic limit in uniaxial tension. Keyak and Rossi (2000) used the criterion to determine the ultimate fracture load in femora and found errors of upto 30%. The biological structure of bone results in its viscoelastic properties (Fan and Rho, 2003). As a result of this it has been suggested that strain rate may need to be taken into account in the ideal failure criterion, in addition to those of a material that fractures in a quasi-brittle manner. It is clear that there is no ideal failure criterion for bone loaded under impact conditions at present, therefore strain energy density, von Mises stress and von Mises strain (taken to mean equivalent stress and strain respectively) and strain rate were used in this thesis to measure performance.

## Appendix 3

## Introduction to finite element analysis

Three-dimensional finite element analysis (3DFEA) is a commonly used engineering technique. It is used to simulate the response of a physical system to loading. Physical systems under investigation are not limited to buildings or automobile crash analysis. 3DFEA may be applied to biological systems as the same governing principles apply to all structures.

With our current understanding, biological systems are impossible to model exactly, partly because they are understood incompletely and partly because of the high level of complexity required. As such 3DFEA models represent abstractions of systems. Such abstractions may require simplifying assumptions to be made.



The process of finite element analysis.

The finite element method is a discretization technique. The FE model is a mathematical interpretation of a physical entity. The mathematical model is composed of disjoint components of much simpler geometry called finite elements.

The response of the mathematical model is calculated by assembling the elements to produce a result that should closely approximate the true value. Results of analyses are frequently displayed (post-processed) graphically using colour contour or vector maps which may be various calculations of stress, strain, displacement or force.

In order to obtain meaningful results and allow the subsequent correct interpretation, quality control systems and sound engineering judgement are required (Adams, 2008). Finite element solvers will, in most cases, solve any problem that has been input correctly. It does not give the researcher any insight into any flaws in the data input or output, therefore it is important to make sure the research question is clearly defined and that the model produced is specific to the question. Additionally, it is important point to remember that rarely in any biological analysis does one get the chance to use the exact material properties. Loads, boundary conditions or geometry, are rarely exact, although the finite element solver will give an exact answer.

## Appendix 4

## Embryology

The mandible develops from a mesenchymal collection, known as the mandibular prominence (1<sup>st</sup> pharyngeal arch), which is recognisable when the embryo is approximately 4½ weeks old (Sadler, 1994). It lies caudal to the stomatodeum. The pharyngeal arches have a core composed of mesenchymal tissue covered externally by ectoderm and lined internally by endoderm. The core also contains cells of neural crest origin, which develop into skeletal components, and the remaining tissue (mesoderm) gives rise to the musculature.



Representation of the human embryo at 4½ weeks. Numbers 1 to 5 represent the pharyngeal arches. Arch number 1 contains Meckel's cartilage, which forms a scaffold for mandibular development (Adapted from Sadler, 1994).

Each arch has a skeletal component, a muscular component, a nerve component, and an arterial component. In the case of the first arch, the skeletal component is Meckel's cartilage, which is formed from chondrification in the mesoderm. The cartilage forms the malleus, the anterior ligament of malleus, the sphenomandibular ligament, the lingual of the mandible, the *ossa mentalis*. The mandible itself forms around the cartilage, ossifying in membrane in the 6<sup>th</sup> week. The remaining cartilage has usually disappears early after birth. Postnatal growth occurs by endochondral apposition occurring at the condylar cartilages, contributing to an increase in ramus height, and the posterior ramus and alveolar ridges by intramembranous ossification (Sperber, 2001). The effect of this is that the mandible starts from a relative retrognathic position at birth to occupy a more prognathic position in the adult.



Adult mandible with foetal mandible superimposed. Red and green arrows show postero-superior and antero-inferior growth relative to the cranial base, respectively. Red areas are areas of bone deposition and blue areas represent bone resorption. (Adapted from Sperber, 2001)

Appendices 267

The muscular components of the first pharyngeal arch form the muscles of mastication i.e. (temporalis, masseter, medial and lateral pterygoids), the mylohyoid muscle, the anterior belly of the digastric muscle, tensor palatini and tensor tympani. The trigeminal nerve supplies the muscles of mastication via the mandibular branch.

Adult mandibular anatomy

## Osteology

The mandible is composed of two halves at birth, with a connecting fibrous joint which ossifies at the end of the first year resulting in a roughly, 'U'-shaped bone. It has an anterior convexity in the horizontal plane and ascends posteriorly into two rami where it is attached by a ligament to the base of the skull. An external surface (or labio-buccal surface) lies adjacent to the lower lip, and an internal (or lingual) surface adjacent to the tongue. At the most anterior aspect of the mandible in the midline of the external surface is the mandibular symphysis, which is frequently marked by a median ridge. Either side of the median ridge are the mental tubercles.



The bony landmarks of the mandible (labio-buccal surface).

Between the mental tubercles and the median ridge is the triangle-shaped mental protuberance. The chin itself is composed of the mental tubercles and the mental protuberance. Joining the mental tubercles near the midline and the oblique line postero-lateral to the molar teeth is the external oblique ridge. The alveolar portion of the mandible lies in the upper border of the mandible and encloses the teeth within the lingual and buccal plates of bone.

On the lingual aspect of the lower border of the mandible lies a depression for the anterior belly of the digastric muscle, just lateral to the midline.

268



The muscular insertions of the mandible (lingual aspect). A = genioglossus; B= geniohyoid; C= anterior belly of digastric; D= mylohyoid; E= pterygomandibular raphe; F= medial pterygoid; G= temporalis (Adapted from Mc Minn, et al., 1993)

In the midline on the lingual (internal) surface lie two small protuberances, the genial tubercles (or mental spines). These indicate the attachment of genioglossus superiorly and geniohyoid inferiorly. The genial or lingual foramen is a canal that opens above the genial tubercles and contains a branch of the lingual artery. The mylohyoid line is a thin, oblique ridge that lies approximately 1cm below the alveolar crest of the mandible in the third molar region. It extends anteriorly as far as the mandibular symphysis where its prominence diminishes. The line forms the attachment of the mylohyoid muscle.

Below the mylohyoid line is the mylohyoid groove, extending from the ramus of the mandible and contains the mylohyoid neurovascular bundle. The submandibular fossa contains the submandibular gland which lies below the mylohyoid line. The sublingual gland lies in a concavity called the sublingual fossa on the lingual surface of the mandible above the mylohyoid muscle. The mandibular canal, containing the mental neurovascular bundle, runs through the ramus and body of the mandible, starting at the mental foramen. This foramen lies in a variable position below, anterior or posterior to the premolar teeth (Mc Minn, 1994). Posteriorly, the mandibular foramen, which lies on the medial aspect of the ramus of the mandible, provides the exit for the mandibular nerve from the mandible. Supero-medial to the mandibular foramen lies a small projection (or tongue) of bone called the lingula. The spheno-mandibular ligament is inserted in to lingula from its origin on the spine of the sphenoid. This ligament is neither stretched nor compressed in physiological movements of the mandible and functions as an accessory ligament of the temporomandibular joint.

The ramus is a quadrilateral extension of the mandible. It has been described as having superior, inferior, anterior and posterior borders and two processes (coronoid and condylar). The inferior aspect of the ramus and the angle of the mandible are continuous. The angle is slightly everted in males, giving a more square jaw and is inverted in females (Standring, 2008). The posterior aspect of the ramus is continuous with the condylar process and joins the ramus through a bony projection known as the condylar neck. The majority of the head is composed of cancellous bone with a thin cortical covering. Fibrocartilage covers the area that articulates with the base of the skull. The antero-medial aspect of the head contains a small depression (the pterygoid fovea) to which the superior and inferior head of the lateral pterygoid muscles are inserted (Standring, 2008).

With increasing age there are a number of changes that take place in the mandible. These are more pronounced when there has been loss of the dentition and the mandible has undergone atrophy. There have been many suggestions in the literature that the gonial angle (i.e. the angle between the ramus and body of the mandible, also called the mandibular angle) changes with age. Casey and Emrich, (1988) reviewed the current literature at the time and found that many well-known anatomy texts made statements regarding the widening of the angle with age, but their review of research literature was conflicting. Five articles reported a widening of the angle and six found no evidence for this. Their own study failed to show any increase in angle. A more recent study by Chole, et al. (2013) suggested that whilst there may be gonial angle changes associated with gender, there was no significant association with age or dental status. One change that certainly occurs with the loss of teeth is the atrophy of the alveolus due to loss of function. This leads to a reduction in bone height in the normally dentate region. This may occur to such an extent that the bone height in the body of the mandible may have a cross-sectional area approximating the condylar neck.



The atrophic edentulous mandible. Note that the extraction sockets from relatively recent extractions are still visible anteriorly.

### Musculature

Four paired muscles, frequently described as the muscles of mastication, are attached to the ramus and angle of the mandible. These are the masseter, medial pterygoid, lateral pterygoid and temporalis. These muscles are the primary movers of the mandible.



The muscular insertions of the mandible. A = mentalis; B= depressor labii inferioris; C= depressor anguli oris; D= platysma; E= buccinator; F= masseter; G= temporalis; H= medial pterygoid; I= mylohyoid; J= pterygomandibular raphe (sites of muscle insertions were adapted from Mc Minn, et al., 1993)
#### Tooth morphology

Humans have two successive generations of teeth known as the deciduous (primary) dentition and the permanent (secondary) dentition. Teeth develop from ectodermal and mesodermal components in the sixth week. Adult teeth begin to erupt into the mouth at approximately six years. The complete adult dentition is composed of 32 teeth arranged as eight teeth in each quadrant of the mouth (Sadler, 1994).

The crown of the tooth refers to that area which lies above the gingival margin in the healthy condition. It is composed of dentine covered with a layer of hard translucent enamel of approximately 2mm thick. The root is composed of the portion of the tooth that lies below the gingival margin. The crown and the root meet at the cervical margin. The root is composed mostly of dentine covered with cementum, and is surrounded by the alveolar bone of the osseous tooth socket. The cementum of the root is significantly thinner than the enamel covering the dentine of the crown. The cementum is attached to the alveolus by a connective tissue bridge known as the periodontal ligament. This ligament, composed mainly of collagen fibres is approximately 0.2mm wide.

### Material properties of mandibular biological structures

The hard tissue of mandibular biological structures include, enamel, dentine, cementum, and bone. The associated soft tissue structures include the dental pulp, vascular supply, lymphatic drainage and periodontal ligament. In this section, the dental hard tissues will be discussed. The periodontal ligament will also be discussed insofar as it relates to the proposed study.



Anatomy of an adult tooth. Note that the diagram is not in proportion. Figure adapted from student anatomy notes, United Medical and Dental Hospitals of Guy's and St. Thomas' Hospitals, 1989.

### Enamel

Enamel is a highly mineralized tissue. It contains crystalline apatites (95-96% by weight) and 1% organic matrix. It covers the crown of the teeth reaching up to 2.5mm over the cusp tips and tapering at the cervical margins (Standring, 2008). Structurally the enamel is composed of prisms which extend from the dentinal surface to just below the external enamel surface. The highly organized and complexly orientated prisms give enamel its anisotropic properties.

274

Appendices 275

The elastic modulus for enamel (Young's modulus) is very high, reflecting its place as the hardest tissue in the body. Estimates have been made at between 81.4GPa (Craig, et al., 1961) and 130GPa (Moroi, et al., 1993). It behaves in a brittle-elastic manner (Xu, et al., 1998). Enamel has no repair mechanism meaning that once tooth substance is lost it must be repaired artificially.

### Dentine

The majority of the substance of the tooth is composed of dentine. This hard-tissue is more mineralized than bone but less than enamel. A structural feature is the presence of dentinal tubules. Around the dentinal tubules is a collagenous organic matrix in which mineral is deposited. The tubules themselves enclose the cytoplasmic process of an odontoblast whose cell body lies on the surface of the dental pulp. Around the odontoblast, but still within the dentinal tubule, lies peritubular dentine. This is distinguished from normal dentine (intertubular dentine) by being more mineralized and having less collagen in its matrix.

The mechanical properties of dentine have been investigated by many authors (Duncanson and Korostoff, 1975; Korostoff, et al., 1975). The elastic modulus of dentine is not as high as that of enamel at standard room temperature; however, it is known to vary significantly with temperature in a similar way to bone (Bonfield and Li, 1968; Bonfield and Tully, 1982). This is important as the temperature in the oral cavity may vary from -10°C to 60°C depending on the temperature of ingested foods.

| Temperature         | 0    | 23    | 37    | 50    |
|---------------------|------|-------|-------|-------|
| Elastic modulus (E) | 15.2 | 13.94 | 13.26 | 12.06 |

The change in Young's Modulus of dentine with temperature (uni-axial compression). (Watts, 1989).

The tubular structure of dentine results in its anisotropic properties. Despite this it is much less anisotropic than bone. It also possesses elastic and visco-elastic properties (Korostoff, et al., 1975).

Unlike enamel, dentine is formed throughout life and has the ability to repair itself.

### Cementum

Cementum is the dental hard tissue, which covers the root of teeth. It is the closest dental hard tissue to bone. In terms of composition it is 50% mineral by weight with the predominant mineral being hydroxyapatite. However, unlike bone it is avascular. New layers of cementum are formed throughout life and may reach over a millimetre in thickness with advancing age (Standring, 2008).

### The periodontal ligament

The periodontal ligament (PDL) functions as support for the teeth. It also plays a role in the eruption of teeth. The ligament itself is 0.2mm wide and contains cells associated with the maintenance of the alveolar bone. The ligament fibres are mainly composed of collagen with a small volume of oxytalan fibres connecting alveolar bone and cementum.

The PDL is viscoelastic and its properties vary with the mode of loading (Pietrzak, et al., 2002; Pini, et al., 2002). The elastic modulus of the PDL has been calculated as between  $1 \times 10^{-5}$  GPa and  $3 \times 10^{-5}$  GPa (Pietrzak, et al., 2002).

Bone

## Material properties

The presence of mineral salts in bone accounts for the hardness. Bone is homogeneous and anisotropic i.e. its physical properties vary in location and direction. This is particularly apparent in the mandible.

277



#### The variation of the properties of mandibular bone with site (Schwartz-Dabney and Dechow, 2003).

Bone has a mass density of between 1800 and 1900kg/m<sup>3</sup> and is strongest in compression (Carter, 1984). Cortical bone is weakest in shear with a failure stress of approximately 70MPa as opposed to 200MPa in compression and 140MPa in tension (Carter, 1984). The strength and elastic modulus of cancellous bone is dependent on its density (Hayes and Bouxsein, 1997).

#### Architecture

Bone may be described as a composite material. It has an organic matrix consisting mainly of collagen and other non-collagen fibres. Embedded within this organic matrix is an inorganic component primarily composed of hydroxyapatite crystals. The tissue is vascularized, supplying nutrition to hyaline cartilage cells and other connective tissue components. The bone cells themselves are unable to derive their nutrition via this mechanism. There are small bone canaliculi which are connected to Haversian canals, which contain small capillaries (Huston, 2013).

Bone is formed in concentric layers (or lamellae) around capillaries. The capillaries and Haversian systems are connected by anastomosing vessels known as Volkman's canals.



A photomicrograph of a section of bone. Label A represents a Haversian canal, B are canaliculi, C represents a lacuna which encloses the bone cell (osteocyte), and D is the osteon composed of Haversian canal surrounded by concentric lamellae. Image used with permission Copyright ©Cea1.com – Human Body Anatomy 2014

Bone has two macroscopic forms, cortical and cancellous. Cortical bone is hard, but less so than the dental hard tissues enamel and dentine. Cancellous bone (also described as trabecular or spongy) has lattice-like structure which readily adapts to loading. It has a density of between 5% and 70% of that of cortical bone. Despite the macroscopic differences between the two types of bone, microscopically there are none. Cancellous bone is filled with marrow, although this is not part of the bone itself. The marrow has haemopoietic activity. This is lost with age as the initial red marrow is gradually replaced with yellow fatty marrow.

The periosteum is a layer of fibrous tissue, which covers the outer surface of cortical bone. In addition to providing nutrition to the underlying bone via fine periosteal vessels, it has osteogenic potential, which is of benefit in fracture healing.

#### Appendix 5

## Mandibular fracture classifications

There are many classifications of fractures. Classifications may be general, applying to all bony fractures or specific to a bone or regions of a bone. A good anatomical classification system should clearly identify the involved region, and if possible the complexity of the pattern of the fracture. A clinical classification system may be more demanding, additionally aiming to inform the end-user of the severity of the injury and possible treatment therapies. Whether clinical or anatomical, all classification systems should be logical, systematic and easy to use. Mandibular fractures have been classified in many ways, both globally and regionally. Examples of classification schemes are shown below. The list is not exhaustive.

- Classification according to the macroscopic appearance of the fracture:
  - o Linear or Comminuted
    - Determined by a single fracture or multiple fragments
  - Open or closed
    - Determined by the presence of communication with the exterior of the body
  - Complete or greenstick or torus/buckle
- Classification according to the relationship of the teeth (Kazanjian and Converse,

1974):

- Class I: teeth both sides of fracture
- Class II: teeth one side of fracture
- Class III: edentulous

• Classification according to various anatomical sub-sites of fracture (Dingman and Natvig, 1964; Sinn, et al., 1987; Pogrel and Kaban, 1989; Buitrago-Tellez, et al.,

2008). The anatomical sub-sites have included:

- o Condyle
- o Ramus
- o Coronoid
- Angle
- o Body
- Horizontal ramus
- Parasymphysis
- o Canine region
- o Symphysis
- Classification of sub-sites:
  - Condyle (Lindahl, 1977; Spiessl and Schrol, 1989; Loukota, et al., 2005;

Maclennan, 1952)

- According to the effect of muscle action:
  - Favourability
  - Stability
  - Displacement

Some classification systems are purely methods of coding, which may be useful for service and finance planning e.g. the International Statistical Classification of Diseases and Related Health Problems (ICD).

Most of the existing mandibular fracture classification systems have problems accurately describing high energy, multi-fragmentary injuries. Additionally, only one classification system has been validated, making comparisons between studies difficult. The classification system of Buitrago, et al. (2008, pp. 1087) is based on the AO system and aims to "record the precise location of an osseous injury, displacement degree, fragmentation, presence of condylar head luxation or mandibular atrophy". It is comprehensive and has been extensively validated; however, its complexity means that reliability and accuracy may be problematic.

| ICD-9 code       | Fracture type; region                                                       |  |  |
|------------------|-----------------------------------------------------------------------------|--|--|
| 802.20, 802.30   | Closed, open fracture of mandible                                           |  |  |
| • 802.21, 802.31 | <ul> <li>Closed, open fracture of mandible;<br/>condylar process</li> </ul> |  |  |
| • 802.22, 802.32 | <ul> <li>Closed, open fracture of mandible;<br/>subcondylar</li> </ul>      |  |  |
| • 802.23, 802.33 | <ul> <li>Closed, open fracture of mandible;<br/>coronoid process</li> </ul> |  |  |
| • 802.24, 802.34 | <ul> <li>Closed, open fracture of mandible;<br/>ramus</li> </ul>            |  |  |
| • 802.25, 802.35 | <ul> <li>Closed, open fracture of mandible;<br/>angle of jaw</li> </ul>     |  |  |
| • 802.26, 802.36 | <ul> <li>Closed, open fracture of mandible;<br/>symphysis</li> </ul>        |  |  |
| • 802.27, 802.37 | <ul> <li>Closed, open fracture of mandible;<br/>alveolar border</li> </ul>  |  |  |
| • 802.28, 802.38 | <ul> <li>Closed, open fracture of mandible;<br/>body</li> </ul>             |  |  |

Classification of fractured mandibles (World Health Organization, 1977). This has been superseded by the ICD-10 classification.

#### Appendix 6

### What is a fracture?

The term "fracture" may describe different events depending on the context in which it is used. In the field of engineering, a fracture may be defined as "the separation of a body into pieces due to stress, at temperatures below the melting point" (University of Virginia, Department of Materials Science and Engineering, 2010). Materials may be roughly divided in to those, which fracture in a brittle manner, and those, which fracture in a ductile manner. Materials such as bone do not fit into a single category.

Ductile fracture may be differentiated from brittle fracture by its ability to undergo significant plastic deformation. This does not occur to any significant extent in brittle failure. The manner in which cracks initiate and propagate also differ. In ductile fracture, cracks will extend slowly in response to increased stress whereas brittle fractures grow rapidly. On the macroscopic level, there is no permanent deformation in brittle fracture. Ductile fracture characteristically leaves a dull, often fibrous-looking surface.

Both ductile and brittle fractures require energy to extend the initial crack. The energy required to extend the fracture is also known as the elastic strain energy. A crack will propagate until the end of the affected body is reached or the energy required for crack extension exceeds the strain energy released.

The term fracture, when used clinically in reference to hard-tissues such a bone, enamel, dentine or cementum, implies a complete or incomplete break in the continuity of the structure.

Traumatic injuries to bone will result in reversible deformation when the loading force is small and within the elastic limit. When the load is further increased, plastic deformation occurs which is irreversible. This has been described as a plastic fracture i.e. there has been bending or acute angulation of the bone without macroscopic cortical bone disruption.

Another form of fracture is the torus or buckle. This refers to a fracture of the cortex on the side under compression with an intact adjacent cortex. This differs from greenstick fracture, which is a disruption of the cortex on the tension side of the fracture only.

The reference to "sides" of a bony cortex is in fact misleading as the cortex is composed of a single surface.

Clinically, fractures are usually visualized radiographically, although occasionally "open fractures," allow direct visualization. In general, when a fracture is diagnosed radiographically, what is really being assessed is fragment displacement. When fragments are displaced in opposite directions, a radiolucent line, representing the less dense tissue space appears. When fragments override each other, there is increased radio-opacity. However, clearly, a fracture may occur when there is no discernible displacement and in such cases, other modalities such as CT, MRI or even nuclear medicine may be required to detect an occult fracture.

Bony fracture in most clinical cases will lead to a reduction in performance and occasionally failure of the associated system. Equally, in some cases, the performance loss is so minimal that the fracture may be left to heal without surgical intervention.

# Appendix 7

# Meta-analysis (random effects results)

# Ascending ramus



#### Ascending ramus bias assessment plot.

| Author                      | Effect Size (Prop | portion) and 95% Co | nfidence Interval | % Weight |
|-----------------------------|-------------------|---------------------|-------------------|----------|
|                             |                   | (exact)             |                   |          |
|                             | Point Estimate    | Lower Limit         | Upper Limit       | Random   |
| Abdullah, et al., 2013      | 0.026455          | 0.008644            | 0.060654          | 2.764228 |
| Adebayo, et al., 2003       | 0.049462          | 0.03161             | 0.073296          | 3.353174 |
| Adi, et al., 1990           | 0.05538           | 0.038874            | 0.076181          | 3.488149 |
| Al Ahmed, et al., 2004      | 0.053333          | 0.023304            | 0.102382          | 2.567572 |
| Al-Khateeb and Abdullah,    | 0.051852          | 0.028634            | 0.085469          | 3.033068 |
| 2007                        |                   |                     |                   |          |
| Andersson, et al., 1984     | 0.032051          | 0.021727            | 0.045441          | 3.620071 |
| Bither, et al., 2008        | 0.059671          | 0.040323            | 0.084576          | 3.374516 |
| Elgehani, et al., 2009      | 0.033083          | 0.020847            | 0.049661          | 3.507671 |
| Ellis, et al., 1985         | 0.048015          | 0.040785            | 0.056107          | 3.831323 |
| Eskitaşcıoğlu, et al., 2009 | 0.015015          | 0.004893            | 0.03469           | 3.169453 |
| Eskitaşcıoğlu, et al., 2013 | 0.02844           | 0.019404            | 0.040127          | 3.660764 |
| Ferreira, et al., 2004      | 0.076358          | 0.057551            | 0.09893           | 3.516528 |
| Gandhi, et al., 2011        | 0.006263          | 0.001293            | 0.018193          | 3.36758  |
| Hall and Ofodile, 1991      | 0.028409          | 0.009287            | 0.065049          | 2.705305 |
| Joshi, et al., 2013         | 0.05102           | 0.016771            | 0.115058          | 2.172136 |
| Kadkhodaie, 2006            | 0.016834          | 0.012597            | 0.022017          | 3.830238 |
| Le, et al., 2001            | 0.04              | 0.001012            | 0.203517          | 0.962965 |
| Martins, et al., 2011       | 0.013699          | 0.001663            | 0.048607          | 2.543583 |
| Mijiti, et al., 2014        | 0.07496           | 0.055595            | 0.098436          | 3.485032 |
| Oji, 1998                   | 0                 | 0                   | 0.084084          | 1.372654 |
| Olafsson, 1984              | 0.05              | 0.030368            | 0.076982          | 3.246928 |
| Sakr, et al., 2006          | 0.025572          | 0.015465            | 0.039647          | 3.547599 |
| Salem, et al., 1968         | 0.049813          | 0.035822            | 0.067217          | 3.573519 |

| Simsek, et al., 2007 (a)  | 0.035714 | 0.016459 | 0.066712 | 2.984625 |
|---------------------------|----------|----------|----------|----------|
| Simsek, et al., 2007 (b)  | 0.039385 | 0.028409 | 0.053053 | 3.649028 |
| Subhashraj, et al., 2007  | 0.091797 | 0.068229 | 0.120199 | 3.398847 |
| Subhashraj, et al., 2008  | 0.040632 | 0.024256 | 0.063458 | 3.32898  |
| Walden, et al., 1956      | 0.05035  | 0.03551  | 0.069027 | 3.534166 |
| Yamamoto K et al. 2010    | 0.023952 | 0.012436 | 0.041465 | 3.388818 |
| Yamamoto, et al., 2011    | 0.067416 | 0.025141 | 0.14098  | 2.079151 |
| Zachariades, et al., 1990 | 0.074411 | 0.067171 | 0.082169 | 3.865539 |
| Zhou, et al., 2013        | 0.006944 | 0.000842 | 0.024859 | 3.076786 |
|                           |          |          |          |          |

Ascending ramus fracture results.



### Proportion meta-analysis plot [random effects]

Ascending ramus Forest plot (random effects).





Angle bias assessment plot.

| Author                      | Effect Size (Pro | % Weight    |             |          |
|-----------------------------|------------------|-------------|-------------|----------|
|                             | Point Estimate   | Lower Limit | Upper Limit | Random   |
| Abdullah, et al., 2013      | 0.174603         | 0.123342    | 0.236375    | 2.845119 |
| Adebayo, et al., 2003       | 0.184946         | 0.150681    | 0.223277    | 3.333914 |
| Adi, et al., 1990           | 0.19462          | 0.164449    | 0.227676    | 3.441289 |
| Al Ahmed, et al., 2004      | 0.233333         | 0.168225    | 0.309277    | 2.674148 |
| Al-Khateeb and Abdullah,    | 0.174074         | 0.130796    | 0.22467     | 3.072445 |
| 2007                        |                  |             |             |          |
| Andersson, et al., 1984     | 0.134615         | 0.113392    | 0.158167    | 3.544643 |
| Bither, et al., 2008        | 0.197531         | 0.163036    | 0.235753    | 3.351003 |
| Elgehani, et al., 2009      | 0.218045         | 0.187219    | 0.251397    | 3.456682 |
| Ellis, et al., 1985         | 0.233355         | 0.218618    | 0.248592    | 3.706955 |
| Eskitaşcıoğlu, et al., 2009 | 0.105105         | 0.074308    | 0.143138    | 3.185042 |
| Eskitaşcıoğlu, et al., 2013 | 0.166972         | 0.145296    | 0.190463    | 3.576211 |
| Ferreira, et al., 2004      | 0.160059         | 0.133308    | 0.189794    | 3.463654 |
| Gandhi, et al., 2011        | 0.183716         | 0.150035    | 0.221357    | 3.345454 |
| Hall and Ofodile, 1991      | 0.221591         | 0.162569    | 0.290235    | 2.794315 |
| Joshi, et al., 2013         | 0.05102          | 0.016771    | 0.115058    | 2.317742 |
| Kadkhodaie, 2006            | 0.163807         | 0.150917    | 0.177337    | 3.706131 |
| Le, et al., 2001            | 0.28             | 0.120717    | 0.493877    | 1.110758 |
| Martins, et al., 2011       | 0.184932         | 0.12555     | 0.25754     | 2.653013 |
| Mijiti, et al., 2014        | 0.122807         | 0.098145    | 0.151084    | 3.438829 |
| Oji, 1998                   | 0.119048         | 0.039806    | 0.256317    | 1.541027 |
| Olafsson, 1984              | 0.202632         | 0.163354    | 0.246613    | 3.248208 |
| Sakr, et al., 2006          | 0.220727         | 0.19139     | 0.252299    | 3.488058 |
| Salem, et al., 1968         | 0.212951         | 0.185109    | 0.242919    | 3.508349 |
| Simsek, et al., 2007 (a)    | 0.27381          | 0.219724    | 0.333302    | 3.032015 |
| Simsek, et al., 2007 (b)    | 0.275696         | 0.248736    | 0.303931    | 3.567122 |
| Subhashraj, et al., 2007    | 0.117188         | 0.090628    | 0.148259    | 3.370434 |
| Subhashraj, et al., 2008    | 0.115124         | 0.086929    | 0.148578    | 3.31449  |
| Walden, et al., 1956        | 0.236364         | 0.205665    | 0.269255    | 3.477518 |
| Yamamoto K et al. 2010      | 0.061876         | 0.042425    | 0.086682    | 3.362432 |
| Yamamoto, et al., 2011      | 0.134831         | 0.071655    | 0.223682    | 2.231384 |
| Zachariades, et al., 1990   | 0.154403         | 0.144328    | 0.164896    | 3.732883 |
| Zhou, et al., 2013          | 0.076389         | 0.04849     | 0.113371    | 3.108734 |

Angle results.



### Proportion meta-analysis plot [random effects]

Angle Forest plot (random effects).





Body bias assessment plot.

| Author                      | Effect Size (Proportion) and 95% Confidence Interval (exact) |             |             | % Weight |
|-----------------------------|--------------------------------------------------------------|-------------|-------------|----------|
|                             | Point Estimate                                               | Lower Limit | Upper Limit | Random   |
| Abdullah, et al., 2013      | 0.15873                                                      | 0.10973     | 0.218778    | 3.053573 |
| Adebayo, et al., 2003       | 0.511828                                                     | 0.465369    | 0.558136    | 3.234013 |
| Adi, et al., 1990           | 0.262658                                                     | 0.228733    | 0.298817    | 3.269097 |
| Al Ahmed, et al., 2004      | 0.2                                                          | 0.139194    | 0.273036    | 2.981042 |
| Al-Khateeb and Abdullah,    | 0.396296                                                     | 0.337527    | 0.457368    | 3.142043 |
| 2007                        |                                                              |             |             |          |
| Andersson, et al., 1984     | 0.231838                                                     | 0.205147    | 0.260227    | 3.301523 |
| Bither, et al., 2008        | 0.135802                                                     | 0.10661     | 0.16951     | 3.239696 |
| Elgehani, et al., 2009      | 0.192481                                                     | 0.163184    | 0.224537    | 3.274008 |
| Ellis, et al., 1985         | 0.329385                                                     | 0.312911    | 0.34618     | 3.349965 |
| Eskitaşcıoğlu, et al., 2009 | 0.132132                                                     | 0.097675    | 0.173296    | 3.182844 |
| Eskitaşcıoğlu, et al., 2013 | 0.197248                                                     | 0.174009    | 0.222133    | 3.311176 |
| Ferreira, et al., 2004      | 0.132159                                                     | 0.107627    | 0.159927    | 3.276223 |
| Gandhi, et al., 2011        | 0.098121                                                     | 0.072989    | 0.128341    | 3.237855 |
| Hall and Ofodile, 1991      | 0.460227                                                     | 0.384981    | 0.536835    | 3.032591 |
| Joshi, et al., 2013         | 0.142857                                                     | 0.08036     | 0.22806     | 2.810232 |
| Kadkhodaie, 2006            | 0.304953                                                     | 0.288747    | 0.321529    | 3.349727 |
| Le, et al., 2001            | 0.12                                                         | 0.025465    | 0.31219     | 1.915417 |
| Martins, et al., 2011       | 0.150685                                                     | 0.096907    | 0.219205    | 2.971685 |
| Mijiti, et al., 2014        | 0.352472                                                     | 0.315051    | 0.39129     | 3.26831  |
| Oji, 1998                   | 0.214286                                                     | 0.10296     | 0.368116    | 2.309734 |
| Olafsson, 1984              | 0.281579                                                     | 0.236897    | 0.329701    | 3.204927 |
| Sakr, et al., 2006          | 0.211306                                                     | 0.182473    | 0.242451    | 3.283929 |
| Salem, et al., 1968         | 0.154421                                                     | 0.13011     | 0.181299    | 3.290281 |
| Simsek, et al., 2007 (a)    | 0.289683                                                     | 0.234465    | 0.349925    | 3.126924 |
| Simsek, et al., 2007 (b)    | 0.230548                                                     | 0.205273    | 0.257355    | 3.308408 |
| Subhashraj, et al., 2007    | 0.082031                                                     | 0.059759    | 0.109266    | 3.246111 |
| Subhashraj, et al., 2008    | 0.058691                                                     | 0.038693    | 0.084816    | 3.227508 |
| Walden, et al., 1956        | 0.420979                                                     | 0.384482    | 0.458131    | 3.280609 |
| Yamamoto K et al. 2010      | 0.121756                                                     | 0.094427    | 0.15364     | 3.243475 |
| Yamamoto, et al., 2011      | 0.101124                                                     | 0.047293    | 0.183302    | 2.764238 |
| Zachariades, et al., 1990   | 0.211038                                                     | 0.199613    | 0.222812    | 3.357438 |
| Zhou, et al., 2013          | 0.149306                                                     | 0.110208    | 0.195798    | 3,155399 |

Body results.



### Proportion meta-analysis plot [random effects]

Body Forest plot (random effects).



# Parasymphysis/Symphysis

Parasymphysis/symphysis bias assessment plot.

| Author                      | Effect Size (Proportion) and 95% Confidence Interval<br>(exact) |             |             | % Weight |
|-----------------------------|-----------------------------------------------------------------|-------------|-------------|----------|
|                             | Point Estimate                                                  | Lower Limit | Upper Limit | Random   |
| Abdullah, et al., 2013      | 0.359788                                                        | 0.291414    | 0.432638    | 3.072493 |
| Adebayo, et al., 2003       | 0.122581                                                        | 0.094178    | 0.155886    | 3.216627 |
| Adi, et al., 1990           | 0.191456                                                        | 0.16149     | 0.224335    | 3.244267 |
| Al Ahmed, et al., 2004      | 0.18                                                            | 0.1221      | 0.250978    | 3.013606 |
| Al-Khateeb and Abdullah,    | 0.155556                                                        | 0.114468    | 0.204394    | 3.143578 |
| 2007                        |                                                                 |             |             |          |
| Andersson, et al., 1984     | 0.117521                                                        | 0.097585    | 0.139899    | 3.269704 |
| Bither, et al., 2008        | 0.407407                                                        | 0.363374    | 0.452574    | 3.221112 |
| Elgehani, et al., 2009      | 0.326316                                                        | 0.290767    | 0.363415    | 3.248126 |
| Ellis, et al., 1985         | 0.087068                                                        | 0.077411    | 0.097505    | 3.307511 |
| Eskitaşcıoğlu, et al., 2009 | 0.438438                                                        | 0.3844      | 0.493582    | 3.176091 |
| Eskitaşcıoğlu, et al., 2013 | 0.359633                                                        | 0.331097    | 0.38893     | 3.277256 |
| Ferreira, et al., 2004      | 0.209985                                                        | 0.179972    | 0.242536    | 3.249866 |
| Gandhi, et al., 2011        | 0.494781                                                        | 0.449115    | 0.540512    | 3.219659 |
| Hall and Ofodile, 1991      | 0.142045                                                        | 0.094081    | 0.202507    | 3.055514 |
| Joshi, et al., 2013         | 0.244898                                                        | 0.163643    | 0.34213     | 2.872718 |
| Kadkhodaie, 2006            | 0.215604                                                        | 0.201214    | 0.230534    | 3.307325 |
| Le, et al., 2001            | 0.16                                                            | 0.045379    | 0.360828    | 2.079925 |
| Martins, et al., 2011       | 0.40411                                                         | 0.323783    | 0.488409    | 3.005969 |
| Mijiti, et al., 2014        | 0.199362                                                        | 0.168769    | 0.232816    | 3.243648 |
| Oji, 1998                   | 0.238095                                                        | 0.120516    | 0.394502    | 2.441127 |
| Olafsson, 1984              | 0.123684                                                        | 0.092311    | 0.161061    | 3.193618 |
| Sakr, et al., 2006          | 0.297443                                                        | 0.264759    | 0.331744    | 3.255915 |
| Salem, et al., 1968         | 0.292653                                                        | 0.261371    | 0.325465    | 3.260897 |
| Simsek, et al., 2007 (a)    | 0.22619                                                         | 0.176048    | 0.282897    | 3.131487 |
| Simsek, et al., 2007 (b)    | 0.257445                                                        | 0.231121    | 0.285147    | 3.275092 |
| Subhashraj, et al., 2007    | 0.410156                                                        | 0.367201    | 0.454155    | 3.226172 |
| Subhashraj, et al., 2008    | 0.455982                                                        | 0.408903    | 0.503653    | 3.211488 |
| Walden, et al., 1956        | 0.092308                                                        | 0.07211     | 0.115941    | 3.25331  |
| Yamamoto K et al. 2010      | 0.169661                                                        | 0.137827    | 0.205451    | 3.224093 |
| Yamamoto, et al., 2011      | 0.269663                                                        | 0.181032    | 0.374173    | 2.834241 |
| Zachariades, et al., 1990   | 0.235841                                                        | 0.223938    | 0.248064    | 3.313322 |
| Zhou, et al., 2013          | 0.215278                                                        | 0.16922     | 0.267299    | 3.15424  |

Parasymphysis/symphysis results.

Adebayo, et al.,2003 Adi, et al., 1990 Al-Ahmed, et al.,2004 Al-Khateeb, et al., 2007 Andersson, et al., 1984 Bither, et al., 2008 Elgehani, et al., 2009 Ellis, et al., 1985 Eskitascioglu, et al., 2009 Eskitascioglu, et al., 2013 Ferreira, et al., 2004 Gandhi, et al., 2011 Hall, et al., 1991 Joshi, et al., 2013 Kadkhodaie, et al., 2006 Le, et al., 2001 Martins, et al., 2011 Mijiti, et al., 2014 Oji, et al., 1998 Ólafsson, et al., 1984 Sakr, et al., 2006 Salem, et al., 1968 Simsek, et al., 2007(a) Simsek, et al., 2007(b) Subhashraj, et al., 2007 Subhashraj, et al., 2008 Walden, et al., 1956 Yamamoto, et al., 2010 Yamamoto, et al., 2011 Zachariades, et al., 1990 Zhou, et al., 2013 Combined



#### Proportion meta-analysis plot [random effects]

Parasymphysis/symphysis Forest plot (random effects).





Alveolus bias assessment plot.

| Author                      | Effect Size (Pro | % Weight    |             |          |
|-----------------------------|------------------|-------------|-------------|----------|
|                             | Point Estimate   | Lower Limit | Upper Limit | Random   |
| Abdullah, et al., 2013      | 0.058201         | 0.029409    | 0.10175     | 2.961149 |
| Adebayo, et al., 2003       | 0.073118         | 0.051165    | 0.100679    | 3.291394 |
| Adi, et al., 1990           | 0.03481          | 0.021941    | 0.05223     | 3.359439 |
| Al Ahmed, et al., 2004      | 0.08             | 0.04202     | 0.135574    | 2.837018 |
| Al-Khateeb and Abdullah,    | 0.1              | 0.06694     | 0.142155    | 3.119083 |
| 2007                        |                  |             |             |          |
| Andersson, et al., 1984     | 0.050214         | 0.037125    | 0.066217    | 3.423515 |
| Bither, et al., 2008        | 0.032922         | 0.018932    | 0.052913    | 3.302327 |
| Elgehani, et al., 2009      | 0.043609         | 0.029397    | 0.062032    | 3.36907  |
| Ellis, et al., 1985         | 0.010883         | 0.007549    | 0.015176    | 3.521436 |
| Eskitaşcıoğlu, et al., 2009 | 0.117117         | 0.084621    | 0.156611    | 3.194467 |
| Eskitaşcıoğlu, et al., 2013 | 0.050459         | 0.038235    | 0.065176    | 3.442816 |
| Ferreira, et al., 2004      | 0.111601         | 0.088942    | 0.137687    | 3.373421 |
| Gandhi, et al., 2011        | 0.073069         | 0.05142     | 0.100158    | 3.298781 |
| Hall and Ofodile, 1991      | 0.028409         | 0.009287    | 0.065049    | 2.924758 |
| Joshi, et al., 2013         | 0.102041         | 0.050028    | 0.17966     | 2.562173 |
| Kadkhodaie, 2006            | 0.043056         | 0.036172    | 0.050821    | 3.520948 |
| Le, et al., 2001            | 0.08             | 0.00984     | 0.260306    | 1.431496 |
| Martins, et al., 2011       | 0.020548         | 0.004258    | 0.058874    | 2.821339 |
| Mijiti, et al., 2014        | 0.051037         | 0.035167    | 0.071288    | 3.357897 |
| Oji, 1998                   | 0.119048         | 0.039806    | 0.256317    | 1.875169 |
| Olafsson, 1984              | 0.015789         | 0.005816    | 0.034049    | 3.235967 |
| Sakr, et al., 2006          | 0.053836         | 0.038736    | 0.072591    | 3.388604 |
| Salem, et al., 1968         | 0.079701         | 0.061918    | 0.100639    | 3.40117  |
| Simsek, et al., 2007 (a)    | 0.015873         | 0.004341    | 0.04014     | 3.091565 |
| Simsek, et al., 2007 (b)    | 0.007685         | 0.003323    | 0.015086    | 3.437271 |
| Subhashraj, et al., 2007    | 0.111328         | 0.085417    | 0.141825    | 3.314709 |
| Subhashraj, et al., 2008    | 0.108352         | 0.080978    | 0.141085    | 3.27892  |
| Walden, et al., 1956        | 0.00979          | 0.003945    | 0.020067    | 3.382056 |
| Yamamoto K et al. 2010      | 0.063872         | 0.044095    | 0.088975    | 3.309616 |
| Yamamoto, et al., 2011      | 0.044944         | 0.01238     | 0.111092    | 2.492066 |
| Zachariades, et al., 1990   | 0.085573         | 0.077839    | 0.093811    | 3.536781 |
| Zhou, et al., 2013          | 0.010417         | 0.002153    | 0.030138    | 3.143578 |

Alveolus results.



## Proportion meta-analysis plot [random effects]

Alveolus Forest plot (random effects).

# Meta-analysis (fixed effect results)

# Condyle

| Author                      | Effect Size (Pro | Effect Size (Proportion) and 95% Confidence Interval<br>(exact) |             |           |
|-----------------------------|------------------|-----------------------------------------------------------------|-------------|-----------|
|                             | Point Estimate   | Lower Limit                                                     | Upper Limit | Fixed     |
| Abdullah, et al., 2013      | 0.222222         | 0.165099                                                        | 0.288274    | 0.780608  |
| Adebavo, et al., 2003       | 0.058065         | 0.03861                                                         | 0.083359    | 1.914544  |
| Adi. et al., 1990           | 0.261076         | 0.227225                                                        | 0.297176    | 2.600657  |
| Al Ahmed. et al., 2004      | 0.253333         | 0.18593                                                         | 0.330744    | 0.620378  |
| Al-Khateeb and Abdullah,    | 0.122222         | 0.085645                                                        | 0.167346    | 1.113394  |
| Andersson, et al., 1984     | 0.433761         | 0.401728                                                        | 0.466211    | 3,84963   |
| Bither, et al., 2008        | 0.166667         | 0.134617                                                        | 0.202835    | 2.000822  |
| Elgebani, et al., 2009      | 0.186466         | 0.157557                                                        | 0.218189    | 2,736237  |
| Fllis et al., 1985          | 0.291293         | 0.275402                                                        | 0.307576    | 12,838948 |
| Eskitascioğlu, et al., 2009 | 0.192192         | 0.151273                                                        | 0.238684    | 1.372227  |
| Eskitascioğlu, et al., 2013 | 0.197248         | 0.174009                                                        | 0.222133    | 4.482334  |
| Ferreira, et al., 2004      | 0.309838         | 0.275261                                                        | 0.346073    | 2.801972  |
| Gandhi, et al., 2011        | 0.14405          | 0.113839                                                        | 0.178734    | 1.972062  |
| Hall and Ofodile. 1991      | 0.119318         | 0.075398                                                        | 0.176593    | 0.727198  |
| Joshi. et al., 2013         | 0.408163         | 0.309923                                                        | 0.512107    | 0.406738  |
| Kadkhodaie, 2006            | 0.255746         | 0.240436                                                        | 0.27152     | 12.695152 |
| Le, et al., 2001            | 0.32             | 0.149495                                                        | 0.535001    | 0.10682   |
| Martins, et al., 2011       | 0.226027         | 0.160983                                                        | 0.302523    | 0.603944  |
| Mijiti, et al., 2014        | 0.199362         | 0.168769                                                        | 0.232816    | 2.580115  |
| Oji, 1998                   | 0.309524         | 0.176221                                                        | 0.470861    | 0.176664  |
| Olafsson, 1984              | 0.326316         | 0.279373                                                        | 0.37599     | 1.565325  |
| Sakr, et al., 2006          | 0.191117         | 0.163445                                                        | 0.221266    | 3.056697  |
| Salem, et al., 1968         | 0.210461         | 0.182749                                                        | 0.240316    | 3.303205  |
| Simsek, et al., 2007 (a)    | 0.15873          | 0.115885                                                        | 0.209811    | 1.039441  |
| Simsek, et al., 2007 (b)    | 0.189241         | 0.165872                                                        | 0.214382    | 4.281019  |
| Subhashraj, et al., 2007    | 0.1875           | 0.154601                                                        | 0.224055    | 2.107642  |
| Subhashraj, et al., 2008    | 0.221219         | 0.183411                                                        | 0.262796    | 1.824158  |
| Walden, et al., 1956        | 0.19021          | 0.16207                                                         | 0.220932    | 2.94166   |
| Yamamoto K et al. 2010      | 0.558882         | 0.514167                                                        | 0.602899    | 2.062449  |
| Yamamoto, et al., 2011      | 0.382022         | 0.281                                                           | 0.49113     | 0.369762  |
| Zachariades, et al., 1990   | 0.238735         | 0.226779                                                        | 0.251007    | 19.880855 |
| Zhou, et al., 2013          | 0.541667         | 0.48221                                                         | 0.600257    | 1.187346  |

Condyle results.



#### Proportion meta-analysis plot [fixed effects]

# Ascending ramus

| Author                           | Effect Size (Pro | Effect Size (Proportion) and 95% Confidence Interval |             |           |  |  |
|----------------------------------|------------------|------------------------------------------------------|-------------|-----------|--|--|
|                                  |                  | (exact)                                              |             |           |  |  |
|                                  | Point Estimate   | Lower Limit                                          | Upper Limit | Fixed     |  |  |
| Abdullah, et al., 2013           | 0.026455         | 0.008644                                             | 0.060654    | 0.780608  |  |  |
| Adebayo, et al., 2003            | 0.049462         | 0.03161                                              | 0.073296    | 1.914544  |  |  |
| Adi, et al., 1990                | 0.05538          | 0.038874                                             | 0.076181    | 2.600657  |  |  |
| Al Ahmed, et al., 2004           | 0.053333         | 0.023304                                             | 0.102382    | 0.620378  |  |  |
| Al-Khateeb and Abdullah,<br>2007 | 0.051852         | 0.028634                                             | 0.085469    | 1.113394  |  |  |
| Andersson, et al., 1984          | 0.032051         | 0.021727                                             | 0.045441    | 3.84963   |  |  |
| Bither, et al., 2008             | 0.059671         | 0.040323                                             | 0.084576    | 2.000822  |  |  |
| Elgehani, et al., 2009           | 0.033083         | 0.020847                                             | 0.049661    | 2.736237  |  |  |
| Ellis, et al., 1985              | 0.048015         | 0.040785                                             | 0.056107    | 12.838948 |  |  |
| Eskitaşcıoğlu, et al., 2009      | 0.015015         | 0.004893                                             | 0.03469     | 1.372227  |  |  |
| Eskitaşcıoğlu, et al., 2013      | 0.02844          | 0.019404                                             | 0.040127    | 4.482334  |  |  |
| Ferreira, et al., 2004           | 0.076358         | 0.057551                                             | 0.09893     | 2.801972  |  |  |
| Gandhi, et al., 2011             | 0.006263         | 0.001293                                             | 0.018193    | 1.972062  |  |  |
| Hall and Ofodile, 1991           | 0.028409         | 0.009287                                             | 0.065049    | 0.727198  |  |  |
| Joshi, et al., 2013              | 0.05102          | 0.016771                                             | 0.115058    | 0.406738  |  |  |
| Kadkhodaie, 2006                 | 0.016834         | 0.012597                                             | 0.022017    | 12.695152 |  |  |
| Le, et al., 2001                 | 0.04             | 0.001012                                             | 0.203517    | 0.10682   |  |  |
| Martins, et al., 2011            | 0.013699         | 0.001663                                             | 0.048607    | 0.603944  |  |  |
| Mijiti, et al., 2014             | 0.07496          | 0.055595                                             | 0.098436    | 2.580115  |  |  |
| Oji, 1998                        | 0                | 0                                                    | 0.084084    | 0.176664  |  |  |
| Olafsson, 1984                   | 0.05             | 0.030368                                             | 0.076982    | 1.565325  |  |  |
| Sakr, et al., 2006               | 0.025572         | 0.015465                                             | 0.039647    | 3.056697  |  |  |
| Salem, et al., 1968              | 0.049813         | 0.035822                                             | 0.067217    | 3.303205  |  |  |
| Simsek, et al., 2007 (a)         | 0.035714         | 0.016459                                             | 0.066712    | 1.039441  |  |  |
| Simsek, et al., 2007 (b)         | 0.039385         | 0.028409                                             | 0.053053    | 4.281019  |  |  |
| Subhashraj, et al., 2007         | 0.091797         | 0.068229                                             | 0.120199    | 2.107642  |  |  |
| Subhashraj, et al., 2008         | 0.040632         | 0.024256                                             | 0.063458    | 1.824158  |  |  |
| Walden, et al., 1956             | 0.05035          | 0.03551                                              | 0.069027    | 2.94166   |  |  |
| Yamamoto K et al. 2010           | 0.023952         | 0.012436                                             | 0.041465    | 2.062449  |  |  |
| Yamamoto, et al., 2011           | 0.067416         | 0.025141                                             | 0.14098     | 0.369762  |  |  |
| Zachariades, et al., 1990        | 0.074411         | 0.067171                                             | 0.082169    | 19.880855 |  |  |
| Zhou, et al., 2013               | 0.006944         | 0.000842                                             | 0.024859    | 1.187346  |  |  |

Ascending ramus results.



#### Proportion meta-analysis plot [fixed effects]



# Angle

| Author                      | Effect Size (Pro | portion) and 95% Co | onfidence Interval | % Weight  |
|-----------------------------|------------------|---------------------|--------------------|-----------|
|                             |                  |                     |                    |           |
|                             | Point Estimate   | Lower Limit         | Upper Limit        | Fixed     |
| Abdullah, et al., 2013      | 0.174603         | 0.123342            | 0.236375           | 0.780608  |
| Adebayo, et al., 2003       | 0.184946         | 0.150681            | 0.223277           | 1.914544  |
| Adi, et al., 1990           | 0.19462          | 0.164449            | 0.227676           | 2.600657  |
| Al Ahmed, et al., 2004      | 0.233333         | 0.168225            | 0.309277           | 0.620378  |
| Al-Khateeb and Abdullah,    | 0.174074         | 0.130796            | 0.22467            | 1.113394  |
| 2007                        |                  |                     |                    |           |
| Andersson, et al., 1984     | 0.134615         | 0.113392            | 0.158167           | 3.84963   |
| Bither, et al., 2008        | 0.197531         | 0.163036            | 0.235753           | 2.000822  |
| Elgehani, et al., 2009      | 0.218045         | 0.187219            | 0.251397           | 2.736237  |
| Ellis, et al., 1985         | 0.233355         | 0.218618            | 0.248592           | 12.838948 |
| Eskitaşcıoğlu, et al., 2009 | 0.105105         | 0.074308            | 0.143138           | 1.372227  |
| Eskitaşcıoğlu, et al., 2013 | 0.166972         | 0.145296            | 0.190463           | 4.482334  |
| Ferreira, et al., 2004      | 0.160059         | 0.133308            | 0.189794           | 2.801972  |
| Gandhi, et al., 2011        | 0.183716         | 0.150035            | 0.221357           | 1.972062  |
| Hall and Ofodile, 1991      | 0.221591         | 0.162569            | 0.290235           | 0.727198  |
| Joshi, et al., 2013         | 0.05102          | 0.016771            | 0.115058           | 0.406738  |
| Kadkhodaie, 2006            | 0.163807         | 0.150917            | 0.177337           | 12.695152 |
| Le, et al., 2001            | 0.28             | 0.120717            | 0.493877           | 0.10682   |
| Martins, et al., 2011       | 0.184932         | 0.12555             | 0.25754            | 0.603944  |
| Mijiti, et al., 2014        | 0.122807         | 0.098145            | 0.151084           | 2.580115  |
| Oji, 1998                   | 0.119048         | 0.039806            | 0.256317           | 0.176664  |
| Olafsson, 1984              | 0.202632         | 0.163354            | 0.246613           | 1.565325  |
| Sakr, et al., 2006          | 0.220727         | 0.19139             | 0.252299           | 3.056697  |
| Salem, et al., 1968         | 0.212951         | 0.185109            | 0.242919           | 3.303205  |
| Simsek, et al., 2007 (a)    | 0.27381          | 0.219724            | 0.333302           | 1.039441  |
| Simsek, et al., 2007 (b)    | 0.275696         | 0.248736            | 0.303931           | 4.281019  |
| Subhashraj, et al., 2007    | 0.117188         | 0.090628            | 0.148259           | 2.107642  |
| Subhashraj, et al., 2008    | 0.115124         | 0.086929            | 0.148578           | 1.824158  |
| Walden, et al., 1956        | 0.236364         | 0.205665            | 0.269255           | 2.94166   |
| Yamamoto K et al. 2010      | 0.061876         | 0.042425            | 0.086682           | 2.062449  |
| Yamamoto, et al., 2011      | 0.134831         | 0.071655            | 0.223682           | 0.369762  |
| Zachariades, et al., 1990   | 0.154403         | 0.144328            | 0.164896           | 19.880855 |
| Zhou, et al., 2013          | 0.076389         | 0.04849             | 0.113371           | 1.187346  |

Angle results.



#### Proportion meta-analysis plot [fixed effects]

| Body |
|------|
|------|

| Author                        | Effect Size (Proportion) and 95% Confidence Interval |             |             | % Weight |
|-------------------------------|------------------------------------------------------|-------------|-------------|----------|
|                               |                                                      |             |             |          |
|                               | Point Estimate                                       | Lower Limit | Upper Limit | Fixed    |
| Abdullah, et al., 2013        | 0.15873                                              | 0.10973     | 0.218778    | 0.780608 |
| Adebayo, et al., 2003         | 0.511828                                             | 0.465369    | 0.558136    | 1.914544 |
| Adi, et al., 1990             | 0.262658                                             | 0.228733    | 0.298817    | 2.600657 |
| Al Ahmed, et al., 2004        | 0.2                                                  | 0.139194    | 0.273036    | 0.620378 |
| Al-Khateeb and Abdullah, 2007 | 0.396296                                             | 0.337527    | 0.457368    | 1.113394 |
| Andersson, et al., 1984       | 0.231838                                             | 0.205147    | 0.260227    | 3.84963  |
| Bither, et al., 2008          | 0.135802                                             | 0.10661     | 0.16951     | 2.000822 |
| Elgehani, et al., 2009        | 0.192481                                             | 0.163184    | 0.224537    | 2.736237 |
| Ellis, et al., 1985           | 0.329385                                             | 0.312911    | 0.34618     | 12.83894 |
| Eskitaşcıoğlu, et al., 2009   | 0.132132                                             | 0.097675    | 0.173296    | 1.372227 |
| Eskitaşcıoğlu, et al., 2013   | 0.197248                                             | 0.174009    | 0.222133    | 4.482334 |
| Ferreira, et al., 2004        | 0.132159                                             | 0.107627    | 0.159927    | 2.801972 |
| Gandhi, et al., 2011          | 0.098121                                             | 0.072989    | 0.128341    | 1.972062 |
| Hall and Ofodile, 1991        | 0.460227                                             | 0.384981    | 0.536835    | 0.727198 |
| Joshi, et al., 2013           | 0.142857                                             | 0.08036     | 0.22806     | 0.406738 |
| Kadkhodaie, 2006              | 0.304953                                             | 0.288747    | 0.321529    | 12.69515 |
| Le, et al., 2001              | 0.12                                                 | 0.025465    | 0.31219     | 0.10682  |
| Martins, et al., 2011         | 0.150685                                             | 0.096907    | 0.219205    | 0.603944 |
| Mijiti, et al., 2014          | 0.352472                                             | 0.315051    | 0.39129     | 2.580115 |
| Oji, 1998                     | 0.214286                                             | 0.10296     | 0.368116    | 0.176664 |
| Olafsson, 1984                | 0.281579                                             | 0.236897    | 0.329701    | 1.565325 |
| Sakr, et al., 2006            | 0.211306                                             | 0.182473    | 0.242451    | 3.056697 |
| Salem, et al., 1968           | 0.154421                                             | 0.13011     | 0.181299    | 3.303205 |
| Simsek, et al., 2007 (a)      | 0.289683                                             | 0.234465    | 0.349925    | 1.039441 |
| Simsek, et al., 2007 (b)      | 0.230548                                             | 0.205273    | 0.257355    | 4.281019 |
| Subhashraj, et al., 2007      | 0.082031                                             | 0.059759    | 0.109266    | 2.107642 |
| Subhashraj, et al., 2008      | 0.058691                                             | 0.038693    | 0.084816    | 1.824158 |
| Walden, et al., 1956          | 0.420979                                             | 0.384482    | 0.458131    | 2.94166  |
| Yamamoto K et al. 2010        | 0.121756                                             | 0.094427    | 0.15364     | 2.062449 |
| Yamamoto, et al., 2011        | 0.101124                                             | 0.047293    | 0.183302    | 0.369762 |
| Zachariades, et al., 1990     | 0.211038                                             | 0.199613    | 0.222812    | 19.88085 |
| Zhou, et al., 2013            | 0.149306                                             | 0.110208    | 0.195798    | 1.187346 |

Body results.



### Proportion meta-analysis plot [fixed effects]

# Parasymphysis/Symphysis

| Author                           | Effect Size (Pro | portion) and 95% Co | onfidence Interval | % Weight |
|----------------------------------|------------------|---------------------|--------------------|----------|
|                                  | Point Estimate   | (exact)             | UnnerLimit         | Fixed    |
| Abdullah. et al., 2013           | 0.359788         | 0.291414            | 0.432638           | 0.780608 |
| Adebavo, et al., 2003            | 0.122581         | 0.094178            | 0.155886           | 1.914544 |
| Adi. et al., 1990                | 0.191456         | 0.16149             | 0.224335           | 2.600657 |
| Al Ahmed. et al., 2004           | 0.18             | 0.1221              | 0.250978           | 0.620378 |
| Al-Khateeb and Abdullah,<br>2007 | 0.155556         | 0.114468            | 0.204394           | 1.113394 |
| Andersson. et al., 1984          | 0.117521         | 0.097585            | 0.139899           | 3.84963  |
| Bither. et al., 2008             | 0.407407         | 0.363374            | 0.452574           | 2.000822 |
| Elgehani, et al., 2009           | 0.326316         | 0.290767            | 0.363415           | 2.736237 |
| Ellis, et al., 1985              | 0.087068         | 0.077411            | 0.097505           | 12.83894 |
| Eskitascıoğlu, et al., 2009      | 0.438438         | 0.3844              | 0.493582           | 1.37222  |
| Eskitascioğlu, et al., 2013      | 0.359633         | 0.331097            | 0.38893            | 4.482334 |
| Ferreira, et al., 2004           | 0.209985         | 0.179972            | 0.242536           | 2.80197  |
| Gandhi, et al., 2011             | 0.494781         | 0.449115            | 0.540512           | 1.972062 |
| Hall and Ofodile, 1991           | 0.142045         | 0.094081            | 0.202507           | 0.72719  |
| Joshi, et al., 2013              | 0.244898         | 0.163643            | 0.34213            | 0.406738 |
| Kadkhodaie, 2006                 | 0.215604         | 0.201214            | 0.230534           | 12.6951  |
| Le, et al., 2001                 | 0.16             | 0.045379            | 0.360828           | 0.10682  |
| Martins, et al., 2011            | 0.40411          | 0.323783            | 0.488409           | 0.603944 |
| Mijiti, et al., 2014             | 0.199362         | 0.168769            | 0.232816           | 2.580115 |
| Oji, 1998                        | 0.238095         | 0.120516            | 0.394502           | 0.176664 |
| Olafsson, 1984                   | 0.123684         | 0.092311            | 0.161061           | 1.565325 |
| Sakr, et al., 2006               | 0.297443         | 0.264759            | 0.331744           | 3.056693 |
| Salem, et al., 1968              | 0.292653         | 0.261371            | 0.325465           | 3.303205 |
| Simsek, et al., 2007 (a)         | 0.22619          | 0.176048            | 0.282897           | 1.039443 |
| Simsek, et al., 2007 (b)         | 0.257445         | 0.231121            | 0.285147           | 4.281019 |
| Subhashraj, et al., 2007         | 0.410156         | 0.367201            | 0.454155           | 2.107642 |
| Subhashraj, et al., 2008         | 0.455982         | 0.408903            | 0.503653           | 1.82415  |
| Walden, et al., 1956             | 0.092308         | 0.07211             | 0.115941           | 2.94166  |
| Yamamoto K et al. 2010           | 0.169661         | 0.137827            | 0.205451           | 2.062449 |
| Yamamoto, et al., 2011           | 0.269663         | 0.181032            | 0.374173           | 0.369762 |
| Zachariades, et al., 1990        | 0.235841         | 0.223938            | 0.248064           | 19.88085 |
| Zhou, et al., 2013               | 0.215278         | 0.16922             | 0.267299           | 1.187346 |

Parasymphysis/symphysis results.



#### Proportion meta-analysis plot [fixed effects]

proportion (95% confidence interval)

# Alveolus

| Author                           | Effect Size (Proportion) and 95% Confidence Interval |             |             | % Weight |
|----------------------------------|------------------------------------------------------|-------------|-------------|----------|
|                                  |                                                      |             |             |          |
|                                  | Point Estimate                                       | Lower Limit | Upper Limit | Fixed    |
| Abdullah, et al., 2013           | 0.058201                                             | 0.029409    | 0.10175     | 0.780608 |
| Adebayo, et al., 2003            | 0.073118                                             | 0.051165    | 0.100679    | 1.914544 |
| Adi, et al., 1990                | 0.03481                                              | 0.021941    | 0.05223     | 2.600657 |
| Al Ahmed, et al., 2004           | 0.08                                                 | 0.04202     | 0.135574    | 0.620378 |
| Al-Khateeb and Abdullah,<br>2007 | 0.1                                                  | 0.06694     | 0.142155    | 1.113394 |
| Andersson, et al., 1984          | 0.050214                                             | 0.037125    | 0.066217    | 3.84963  |
| Bither, et al., 2008             | 0.032922                                             | 0.018932    | 0.052913    | 2.000822 |
| Elgehani, et al., 2009           | 0.043609                                             | 0.029397    | 0.062032    | 2.736237 |
| Ellis, et al., 1985              | 0.010883                                             | 0.007549    | 0.015176    | 12.83894 |
| Eskitascıoğlu, et al., 2009      | 0.117117                                             | 0.084621    | 0.156611    | 1.372227 |
| Eskitascioğlu, et al., 2013      | 0.050459                                             | 0.038235    | 0.065176    | 4.482334 |
| Ferreira, et al., 2004           | 0.111601                                             | 0.088942    | 0.137687    | 2.801972 |
| Gandhi, et al., 2011             | 0.073069                                             | 0.05142     | 0.100158    | 1.972062 |
| Hall and Ofodile, 1991           | 0.028409                                             | 0.009287    | 0.065049    | 0.727198 |
| Joshi, et al., 2013              | 0.102041                                             | 0.050028    | 0.17966     | 0.406738 |
| Kadkhodaie, 2006                 | 0.043056                                             | 0.036172    | 0.050821    | 12.69515 |
| Le, et al., 2001                 | 0.08                                                 | 0.00984     | 0.260306    | 0.10682  |
| Martins, et al., 2011            | 0.020548                                             | 0.004258    | 0.058874    | 0.603944 |
| Mijiti, et al., 2014             | 0.051037                                             | 0.035167    | 0.071288    | 2.580115 |
| Oji, 1998                        | 0.119048                                             | 0.039806    | 0.256317    | 0.176664 |
| Olafsson, 1984                   | 0.015789                                             | 0.005816    | 0.034049    | 1.565325 |
| Sakr, et al., 2006               | 0.053836                                             | 0.038736    | 0.072591    | 3.056697 |
| Salem, et al., 1968              | 0.079701                                             | 0.061918    | 0.100639    | 3.303205 |
| Simsek, et al., 2007 (a)         | 0.015873                                             | 0.004341    | 0.04014     | 1.039441 |
| Simsek, et al., 2007 (b)         | 0.007685                                             | 0.003323    | 0.015086    | 4.281019 |
| Subhashraj, et al., 2007         | 0.111328                                             | 0.085417    | 0.141825    | 2.107642 |
| Subhashraj, et al., 2008         | 0.108352                                             | 0.080978    | 0.141085    | 1.824158 |
| Walden, et al., 1956             | 0.00979                                              | 0.003945    | 0.020067    | 2.94166  |
| Yamamoto K et al. 2010           | 0.063872                                             | 0.044095    | 0.088975    | 2.062449 |
| Yamamoto, et al., 2011           | 0.044944                                             | 0.01238     | 0.111092    | 0.369762 |
| Zachariades, et al., 1990        | 0.085573                                             | 0.077839    | 0.093811    | 19.88085 |
| Zhou, et al., 2013               | 0.010417                                             | 0.002153    | 0.030138    | 1.187346 |

Alveolus results.



#### Proportion meta-analysis plot [fixed effects]

# Summary results

| Anatomical location of<br>fracture | Effect size<br>(Prevalence) | 95% Confidence<br>interval |
|------------------------------------|-----------------------------|----------------------------|
|                                    |                             | Fixed                      |
| Angle                              | 0.177                       | (0.172- 0.182)             |
| Body                               | 0.237                       | (0.231 - 0.242)            |
| Condyle                            | 0.245                       | (0.239 - 0.250)            |
| Dentoalveolar                      | 0.049                       | (0.046 - 0.052)            |
| Symphyseal/Parasymphyseal          | 0.221                       | (0.216 - 0.226)            |
| Ascending ramus                    | 0.044                       | (0.042 - 0.047)            |
## **Bias indicators**

|                                                                   | Condyle                                                       | Ascending<br>ramus<br>fracture                                   | Angle                                                      | Body                                                           | Parasymphysis                                              | Alveolus                                                      |
|-------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|
| Non-combinabili                                                   | ty of studies                                                 | -                                                                | _                                                          | -                                                              | -                                                          | -                                                             |
| Moment-<br>based<br>estimate of<br>between<br>studies<br>variance | 0.0399                                                        | 0.0094                                                           | 0.0152                                                     | 0.0499                                                         | 0.0364                                                     | 0.0184                                                        |
| Bias indicator                                                    | s                                                             |                                                                  |                                                            |                                                                |                                                            |                                                               |
| Begg-<br>Mazumdar                                                 | Kendall's tau<br>= 0.2989<br>P = 0.0181                       | Kendall's tau<br>= 0.0924<br>P = 0.4785                          | Kendall's tau =<br>0.0.1647<br>P = 0.1884                  | Kendall's tau<br>= 0.2<br>P = 0.1185                           | Kendall's tau =<br>0.0.1226<br>P = 0.3442                  | Kendall's<br>tau = 0.1785<br>P = 0.1647                       |
| Harbord                                                           | 0.6080<br>(92.5% Cl = -<br>3.7640 to<br>4.9800)<br>P = 0.7991 | -1.167892<br>(92.5% CI = -<br>3.0851 to<br>0.7297)<br>P = 0.2635 | -0.2078 (92.5%<br>CI = -2.8191 to<br>2.4034)<br>P = 0.8841 | -1.3771<br>(92.5% CI = -<br>5.9129 to<br>3.1587)<br>P = 0.5793 | 2.7520<br>(92.5% Cl = -<br>1.0908 to 6.5947)<br>P = 0.1963 | 0.7169<br>(92.5% Cl = -<br>1.9666 to<br>3.4004)<br>P = 0.6254 |

*How does the pattern of stress and strain differ in the atrophic human mandible on loading?* 



An STL model of an atrophic edentulous mandible made using a modified female VHP dataset. The anterior teeth were removed from the original scan data.

The atrophic edentulous mandibular model had similar gross geometry to the dentate mandible in that both were 'U'-shaped with proximal vertical extensions. With the resorption of the majority of the alveolar portion of the mandible the sampled zone was in a similar place to the dentate mandible i.e. placed halfway between the superior and inferior cortex on the buccal and lingual sides of the mandible. Examination of the colour contour plots showed similar buccal and lingual cortical signatures to those obtained in the dentate mandible. There were areas of high stress at the condylar head and neck bilaterally, with the right being greater than the left. The loading area showed high stress on the buccal and lingual aspect. There were increased areas of stress at the

contra-lateral buccal and lingual body. Peaks and troughs occurred roughly in the same anatomical positions in response to loading in the equivalent region. This would suggest that the cortical strain pattern was more a function of the geometry of the mandible rather than the material properties. Material properties might have changed the magnitude of the response but geometry was primarily responsible for the strain/stress disposition.



Colour contour maps of von Mises strain ( $\epsilon_{vm}$ ) showing the buccal and lingual aspects of cortex.



#### Buccal cortical strain in the atrophic mandible.

Graph of buccal cortical strain ( $\varepsilon_{vm}$ ) in the atrophic mandible subjected to a physiological load in the region of the mandibular body. Strain at each node position is noted.

Buccal cortical strain results.

| Node number | Buccal $\varepsilon_{vm}$ |
|-------------|---------------------------|
| 1           | 0.0063                    |
| 2           | 0.0029                    |
| 3           | 0.0016                    |
| 4           | 0.0018                    |
| 5           | 0.0024                    |
| 6           | 0.0031                    |
| 7           | 0.0017                    |
| 8           | 0.0023                    |
| 9           | 0.0018                    |
| 10          | 0.0028                    |
| 11          | 0.004                     |
| 12          | 0.004                     |
| 13          | 0.004                     |
| 14          | 0.0043                    |
| 15          | 0.005                     |
| 16          | 0.0061                    |
| 17          | 0.0066                    |
| 18          | 0.0059                    |
| 19          | 0.0047                    |
| 20          | 0.0045                    |
| 21          | 0.0035                    |
| 22          | 0.0024                    |
| 23          | 0.0017                    |
| 24          | 0.0013                    |
| 25          | 0.0012                    |
| 26          | 0.0015                    |
| 27          | 0.0023                    |

| 28 | 0.0024 |
|----|--------|
| 29 | 0.0028 |
| 30 | 0.0033 |
| 31 | 0.0034 |
| 32 | 0.0032 |
| 33 | 0.003  |
| 34 | 0.0026 |
| 35 | 0.0026 |
| 36 | 0.002  |
| 37 | 0.0022 |
| 38 | 0.002  |
| 39 | 0.0017 |
| 40 | 0.0017 |
| 41 | 0.0016 |
| 42 | 0.0015 |
| 43 | 0.0012 |
| 44 | 0.0021 |
| 45 | 0.0018 |
| 46 | 0.0014 |
| 47 | 0.0012 |
| 48 | 0.0027 |
| 49 | 0.0044 |
| 50 | 0.0039 |

#### Lingual cortical strain in the atrophic mandible.



Graph of lingual cortical strain ( $\epsilon_{vm}$ ) in the atrophic mandible subjected to a physiological load in the region of the mandibular body. Strain at each node position is noted.

#### Lingual strain results

|   | Node number | Lingual $\varepsilon_{vm}$ | 30 | 0.00515 |
|---|-------------|----------------------------|----|---------|
|   | 1           | 0.0019                     | 31 | 0.00522 |
|   | 2           | 0.00176                    | 32 | 0.00515 |
|   | 3           | 0.00177                    | 33 | 0.00482 |
|   | 4           | 0.00198                    | 34 | 0.00489 |
|   | 5           | 0.00337                    | 35 | 0.00509 |
|   | 6           | 0.00542                    | 36 | 0.00477 |
|   | 7           | 0.00661                    | 37 | 0.00433 |
|   | 8           | 0.00942                    | 38 | 0.00447 |
|   | 9           | 0.01033                    | 39 | 0.00405 |
|   | 10          | 0.00899                    | 40 | 0.0033  |
|   | 11          | 0.00867                    | 41 | 0.00223 |
|   | 12          | 0.00713                    | 42 | 0.00175 |
|   | 13          | 0.00597                    | 43 | 0.00164 |
|   | 14          | 0.0044                     | 44 | 0.00098 |
|   | 15          | 0.0036                     | 45 | 0.00089 |
|   | 16          | 0.00318                    | 46 | 0.00084 |
|   | 17          | 0.00237                    | 47 | 0.0008  |
|   | 18          | 0.00232                    | 48 | 0.00076 |
|   | 19          | 0.00256                    | 49 | 0.00075 |
|   | 20          | 0.00273                    | 50 | 0.00089 |
|   | 21          | 0.00248                    | 51 | 0.00095 |
|   | 22          | 0.00267                    | 52 | 0.0011  |
|   | 23          | 0.00316                    | 53 | 0.00103 |
|   | 24          | 0.00342                    | 54 | 0.00093 |
|   | 25          | 0.0036                     | 55 | 0.0009  |
|   | 26          | 0.00466                    | 56 | 0.00102 |
|   | 27          | 0.00464                    | 57 | 0.00114 |
|   | 28          | 0.00458                    | 58 | 0.00124 |
| _ | 29          | 0.00449                    | 59 | 0.00216 |

| 60 | 0.00191 |
|----|---------|
| 61 | 0.00191 |
| 62 | 0.0018  |
| 63 | 0.00188 |
| 64 | 0.0018  |
| 65 | 0.00168 |
| 66 | 0.0017  |
| 67 | 0.0014  |
| 68 | 0.00129 |
| 69 | 0.00131 |
| 70 | 0.00117 |
| 71 | 0.00106 |
| 72 | 0.00103 |
| 73 | 0.00096 |
| 74 | 0.00099 |
| 75 | 0.00061 |
| 76 | 0.00064 |
| 77 | 0.00076 |
| 78 | 0.00069 |
| 79 | 0.00069 |
| 80 | 0.00087 |
| 81 | 0.00084 |

| _ | 82 | 0.00072 |
|---|----|---------|
|   | 83 | 0.0007  |
|   | 84 | 0.00078 |
|   | 85 | 0.00107 |
|   | 86 | 0.00156 |
|   | 87 | 0.00201 |
|   | 88 | 0.00252 |
|   | 89 | 0.00272 |
|   | 90 | 0.00322 |
|   | 91 | 0.00328 |
|   | 92 | 0.00382 |
|   | 93 | 0.00332 |
|   | 94 | 0.00384 |
|   | 95 | 0.00384 |
|   | 96 | 0.00316 |
|   | 97 | 0.00318 |
|   | 98 | 0.00289 |
|   | 99 | 0.0031  |

## Tabulated results

#### Section 5.3.1

The effect of muscular contraction on buccal cortical von Mises stress

| Contribution of individual muscles to buscal cortical strass $(\sigma_{-})(MDa)$ |          |                  |            |                    |  |  |
|----------------------------------------------------------------------------------|----------|------------------|------------|--------------------|--|--|
| Node position                                                                    | Muscles  |                  |            |                    |  |  |
| Noue position                                                                    | Masseter | Medial ntervaoid | Temnoralis | l ateral ntervaoid |  |  |
| 1                                                                                | 1.87E-05 | 2.30E-05         | 4.59E-05   | 8.79E-06           |  |  |
| 2                                                                                | 2.52E-05 | 3.00E-05         | 7.41E-05   | 3.26E-06           |  |  |
| 3                                                                                | 2.69E-05 | 3.41E-05         | 8.97E-05   | 4.61E-06           |  |  |
| 4                                                                                | 2.50E-05 | 3.45E-05         | 9.76E-05   | 5.37E-06           |  |  |
| 5                                                                                | 1.83E-05 | 2.75E-05         | 8.34E-05   | 4.37E-06           |  |  |
| 6                                                                                | 1.25E-05 | 1.99E-05         | 6.30E-05   | 2.87E-06           |  |  |
| 7                                                                                | 7.89E-06 | 1.31E-05         | 4.04E-05   | 1.59E-06           |  |  |
| 8                                                                                | 5.69E-06 | 9.29E-06         | 2.47E-05   | 9.19E-07           |  |  |
| 9                                                                                | 4.72E-06 | 6.93E-06         | 1.41E-05   | 6.49E-07           |  |  |
| 10                                                                               | 3.95E-06 | 5.99E-06         | 8.59E-06   | 5.54E-07           |  |  |
| 11                                                                               | 4.06E-06 | 6.27E-06         | 5.76E-06   | 6.25E-07           |  |  |
| 12                                                                               | 3.43E-06 | 5.84E-06         | 2.63E-06   | 5.77E-07           |  |  |
| 13                                                                               | 3.77E-06 | 5.54E-06         | 2.19E-06   | 5.66E-07           |  |  |
| 14                                                                               | 3.16E-06 | 4.98E-06         | 3.12E-06   | 5.63E-07           |  |  |
| 15                                                                               | 3.07E-06 | 5.03E-06         | 4.38E-06   | 6.87E-07           |  |  |
| 16                                                                               | 2.90E-06 | 5.55E-06         | 5.64E-06   | 8.59E-07           |  |  |
| 17                                                                               | 2.73E-06 | 5.98E-06         | 6.83E-06   | 1.02E-06           |  |  |
| 18                                                                               | 2.75E-06 | 6.24E-06         | 8.39E-06   | 1.17E-06           |  |  |
| 19                                                                               | 3.39E-06 | 8.18E-06         | 1.12E-05   | 1.55E-06           |  |  |
| 20                                                                               | 2.46E-06 | 7.30E-06         | 9.31E-06   | 1.34E-06           |  |  |
| 21                                                                               | 2.29E-06 | 7.28E-06         | 9.68E-06   | 1.37E-06           |  |  |
| 22                                                                               | 1.96E-06 | 7.42E-06         | 9.81E-06   | 1.40E-06           |  |  |
| 23                                                                               | 1.63E-06 | 6.34E-06         | 8.28E-06   | 1.19E-06           |  |  |
| 24                                                                               | 1.09E-06 | 2.89E-06         | 3.78E-06   | 5.62E-07           |  |  |
| 25                                                                               | 1.04E-06 | 3.23E-06         | 4.17E-06   | 6.35E-07           |  |  |
| 26                                                                               | 1.26E-06 | 6.68E-06         | 8.45E-06   | 1.36E-06           |  |  |
| 27                                                                               | 1.18E-06 | 7.45E-06         | 9.51E-06   | 1.54E-06           |  |  |
| 28                                                                               | 9.78E-07 | 6.79E-06         | 8.43E-06   | 1.37E-06           |  |  |
| 29                                                                               | 1.06E-06 | 7.23E-06         | 8.43E-06   | 1.39E-06           |  |  |
| 30                                                                               | 9.26E-07 | 6.06E-06         | 6.88E-06   | 1.15E-06           |  |  |
| 31                                                                               | 8.25E-07 | 5.47E-06         | 7.05E-06   | 1.19E-06           |  |  |
| 32                                                                               | 8.82E-07 | 5.34E-06         | 5.65E-06   | 1.04E-06           |  |  |
| 33                                                                               | 9.73E-07 | 5.11E-06         | 4.42E-06   | 9.19E-07           |  |  |
| 34                                                                               | 1.09E-06 | 4.52E-06         | 3.15E-06   | 7.31E-07           |  |  |
| 35                                                                               | 1.27E-06 | 4.62E-06         | 2.10E-06   | 6.16E-07           |  |  |
| 36                                                                               | 1.47E-06 | 5.06E-06         | 1.46E-06   | 6.41E-07           |  |  |
| 37                                                                               | 1.95E-06 | 5.31E-06         | 1.50E-06   | 6.73E-07           |  |  |
| 38                                                                               | 2.28E-06 | 5.40E-06         | 3.75E-06   | 6.75E-07           |  |  |
| 39                                                                               | 2.26E-06 | 5.69E-06         | 6.59E-06   | 7.00E-07           |  |  |
| 40                                                                               | 2.27E-06 | 5.76E-06         | 8.87E-06   | 7.33E-07           |  |  |

| 41 | 2.53E-06 | 6.51E-06 | 1.25E-05 | 8.73E-07 |
|----|----------|----------|----------|----------|
| 42 | 3.07E-06 | 7.53E-06 | 1.79E-05 | 1.11E-06 |
| 43 | 3.73E-06 | 8.55E-06 | 2.30E-05 | 1.37E-06 |
| 44 | 6.89E-06 | 1.30E-05 | 3.83E-05 | 2.92E-06 |
| 45 | 1.09E-05 | 1.81E-05 | 5.41E-05 | 5.14E-06 |
| 46 | 1.47E-05 | 2.05E-05 | 6.10E-05 | 7.12E-06 |
| 47 | 1.83E-05 | 2.32E-05 | 6.87E-05 | 7.33E-06 |
| 48 | 1.82E-05 | 2.16E-05 | 6.00E-05 | 8.12E-06 |
| 49 | 1.42E-05 | 1.86E-05 | 4.16E-05 | 8.73E-06 |
|    |          |          |          |          |

The effect of muscular contraction on buccal cortical von Mises strain

| Contril       | Contribution of individual muscles to buccal cortical strain ( $arepsilon_{vm}$ ) |                  |            |                   |  |
|---------------|-----------------------------------------------------------------------------------|------------------|------------|-------------------|--|
| Node position | Muscles                                                                           |                  |            |                   |  |
|               | Masseter                                                                          | Medial pterygoid | Temporalis | Lateral pterygoid |  |
| 1             | 1.80E-09                                                                          | 2.22E-09         | 4.43E-09   | 8.49E-10          |  |
| 2             | 2.44E-09                                                                          | 2.90E-09         | 7.15E-09   | 3.15E-10          |  |
| 3             | 2.60E-09                                                                          | 3.30E-09         | 8.67E-09   | 4.45E-10          |  |
| 4             | 2.42E-09                                                                          | 3.33E-09         | 9.43E-09   | 5.19E-10          |  |
| 5             | 1.76E-09                                                                          | 2.66E-09         | 8.05E-09   | 4.22E-10          |  |
| 6             | 1.20E-09                                                                          | 1.92E-09         | 6.09E-09   | 2.78E-10          |  |
| 7             | 7.62E-10                                                                          | 1.27E-09         | 3.90E-09   | 1.53E-10          |  |
| 8             | 5.50E-10                                                                          | 8.97E-10         | 2.38E-09   | 0.00E+00          |  |
| 9             | 4.56E-10                                                                          | 6.69E-10         | 1.36E-09   | 0.00E+00          |  |
| 10            | 3.81E-10                                                                          | 5.78E-10         | 8.29E-10   | 0.00E+00          |  |
| 11            | 3.92E-10                                                                          | 6.05E-10         | 5.56E-10   | 0.00E+00          |  |
| 12            | 3.31E-10                                                                          | 5.64E-10         | 2.54E-10   | 0.00E+00          |  |
| 13            | 3.64E-10                                                                          | 5.35E-10         | 2.11E-10   | 0.00E+00          |  |
| 14            | 3.06E-10                                                                          | 4.81E-10         | 3.02E-10   | 0.00E+00          |  |
| 15            | 2.96E-10                                                                          | 4.86E-10         | 4.23E-10   | 0.00E+00          |  |
| 16            | 2.80E-10                                                                          | 5.36E-10         | 5.45E-10   | 0.00E+00          |  |
| 17            | 2.64E-10                                                                          | 5.77E-10         | 6.60E-10   | 0.00E+00          |  |
| 18            | 2.66E-10                                                                          | 6.03E-10         | 8.10E-10   | 1.13E-10          |  |
| 19            | 3.28E-10                                                                          | 7.90E-10         | 1.09E-09   | 1.49E-10          |  |
| 20            | 2.38E-10                                                                          | 7.05E-10         | 8.99E-10   | 1.29E-10          |  |
| 21            | 2.22E-10                                                                          | 7.03E-10         | 9.35E-10   | 1.32E-10          |  |
| 22            | 1.89E-10                                                                          | 7.16E-10         | 9.47E-10   | 1.35E-10          |  |
| 23            | 1.57E-10                                                                          | 6.12E-10         | 8.00E-10   | 1.15E-10          |  |
| 24            | 1.05E-10                                                                          | 2.79E-10         | 3.66E-10   | 0.00E+00          |  |
| 25            | 1.00E-10                                                                          | 3.12E-10         | 4.03E-10   | 0.00E+00          |  |
| 26            | 1.21E-10                                                                          | 6.46E-10         | 8.16E-10   | 1.31E-10          |  |
| 27            | 1.14E-10                                                                          | 7.20E-10         | 9.19E-10   | 1.49E-10          |  |
| 28            | 0.00E+00                                                                          | 6.56E-10         | 8.15E-10   | 1.32E-10          |  |
| 29            | 1.02E-10                                                                          | 6.98E-10         | 8.14E-10   | 1.34E-10          |  |
| 30            | 0.00E+00                                                                          | 5.85E-10         | 6.65E-10   | 1.11E-10          |  |
| 31            | 0.00E+00                                                                          | 5.28E-10         | 6.81E-10   | 1.15E-10          |  |
| 32            | 0.00E+00                                                                          | 5.16E-10         | 5.46E-10   | 1.01E-10          |  |
| 33            | 0.00E+00                                                                          | 4.94E-10         | 4.27E-10   | 0.00E+00          |  |
| 34            | 1.05E-10                                                                          | 4.37E-10         | 3.04E-10   | 0.00E+00          |  |
| 35            | 1.23E-10                                                                          | 4.46E-10         | 2.03E-10   | 0.00E+00          |  |
| 36            | 1.42E-10                                                                          | 4.89E-10         | 1.41E-10   | 0.00E+00          |  |
| 37            | 1.89E-10                                                                          | 5.13E-10         | 1.45E-10   | 0.00E+00          |  |
| 38            | 2.21E-10                                                                          | 5.22E-10         | 3.62E-10   | 0.00E+00          |  |
| 39            | 2.18E-10                                                                          | 5.49E-10         | 6.37E-10   | 0.00E+00          |  |
| 40            | 2.20E-10                                                                          | 5.56E-10         | 8.56E-10   | 0.00E+00          |  |
| 41            | 2.45E-10                                                                          | 6.28E-10         | 1.21E-09   | 0.00E+00          |  |

| 42 | 2.96E-10 | 7.28E-10 | 1.73E-09 | 1.07E-10 |
|----|----------|----------|----------|----------|
| 43 | 3.60E-10 | 8.25E-10 | 2.22E-09 | 1.33E-10 |
| 44 | 6.65E-10 | 1.25E-09 | 3.70E-09 | 2.82E-10 |
| 45 | 1.05E-09 | 1.75E-09 | 5.23E-09 | 4.97E-10 |
| 46 | 1.42E-09 | 1.98E-09 | 5.90E-09 | 6.88E-10 |
| 47 | 1.77E-09 | 2.24E-09 | 6.64E-09 | 7.08E-10 |
| 48 | 1.76E-09 | 2.09E-09 | 5.80E-09 | 7.84E-10 |
| 49 | 1.37E-09 | 1.80E-09 | 4.01E-09 | 8.43E-10 |
|    |          |          |          |          |

The effect of muscular contraction on lingual cortical von Mises strain

| Contribut     | Contribution of individual muscles to lingual cortical strain ( $arepsilon_{vm}$ ) |                |          |            |  |  |
|---------------|------------------------------------------------------------------------------------|----------------|----------|------------|--|--|
| Node position | Muscles                                                                            |                |          |            |  |  |
|               | Lat. pterygoid                                                                     | Med. pterygoid | Masseter | Temporalis |  |  |
| 1             | 5.96E-10                                                                           | 3.31E-09       | 1.19E-09 | 5.8E-09    |  |  |
| 2             | 4.19E-09                                                                           | 5.79E-09       | 2.42E-09 | 1.23E-08   |  |  |
| 3             | 1.1E-09                                                                            | 4.26E-09       | 2.2E-09  | 1.38E-08   |  |  |
| 4             | 1.76E-10                                                                           | 2.42E-09       | 1.47E-09 | 1.14E-08   |  |  |
| 5             | 1.59E-10                                                                           | 2.34E-09       | 1.31E-09 | 1.06E-08   |  |  |
| 6             | 2.88E-10                                                                           | 1.21E-09       | 9.4E-10  | 8.65E-09   |  |  |
| 7             | 3.26E-10                                                                           | 4.8E-10        | 4.46E-10 | 4.01E-09   |  |  |
| 8             | 2.35E-10                                                                           | 6.43E-10       | 3.94E-10 | 2.33E-09   |  |  |
| 9             | 2.03E-10                                                                           | 9.94E-10       | 2.77E-10 | 1.7E-09    |  |  |
| 10            | 1.82E-10                                                                           | 1.09E-09       | 2.9E-10  | 2.09E-09   |  |  |
| 11            | 1.54E-10                                                                           | 1.09E-09       | 3.29E-10 | 2.14E-09   |  |  |
| 12            | 1.2E-10                                                                            | 8.8E-10        | 4.11E-10 | 1.59E-09   |  |  |
| 13            | 0                                                                                  | 4.11E-10       | 1.93E-10 | 6.38E-10   |  |  |
| 14            | 0                                                                                  | 5.79E-10       | 3.16E-10 | 7.98E-10   |  |  |
| 15            | 0                                                                                  | 5.3E-10        | 3.23E-10 | 5.12E-10   |  |  |
| 16            | 0                                                                                  | 5.14E-10       | 3.6E-10  | 4.07E-10   |  |  |
| 17            | 0                                                                                  | 5.03E-10       | 3.71E-10 | 3.54E-10   |  |  |
| 18            | 0                                                                                  | 5.06E-10       | 3.26E-10 | 2.85E-10   |  |  |
| 19            | 0                                                                                  | 5.56E-10       | 3.13E-10 | 2.63E-10   |  |  |
| 20            | 0                                                                                  | 6.07E-10       | 2.99E-10 | 2.53E-10   |  |  |
| 21            | 0                                                                                  | 6.02E-10       | 2.82E-10 | 2.14E-10   |  |  |
| 22            | 0                                                                                  | 5.88E-10       | 2.88E-10 | 1.89E-10   |  |  |
| 23            | 0                                                                                  | 6.45E-10       | 3.03E-10 | 2.37E-10   |  |  |
| 24            | 0                                                                                  | 6.03E-10       | 3.19E-10 | 3.03E-10   |  |  |
| 25            | 0                                                                                  | 5.59E-10       | 3.4E-10  | 3.95E-10   |  |  |
| 26            | 0                                                                                  | 5.74E-10       | 3.58E-10 | 5.33E-10   |  |  |
| 27            | 1.01E-10                                                                           | 5.94E-10       | 3.52E-10 | 6.48E-10   |  |  |
| 28            | 1.1E-10                                                                            | 6.43E-10       | 3.12E-10 | 6.99E-10   |  |  |
| 29            | 1.27E-10                                                                           | 7.05E-10       | 3.03E-10 | 8.28E-10   |  |  |
| 30            | 1.52E-10                                                                           | 7.93E-10       | 3.02E-10 | 1.01E-09   |  |  |
| 31            | 1.73E-10                                                                           | 8.7E-10        | 2.88E-10 | 1.18E-09   |  |  |
| 32            | 1.95E-10                                                                           | 9.49E-10       | 2.9E-10  | 1.36E-09   |  |  |
| 33            | 2.04E-10                                                                           | 9.72E-10       | 2.57E-10 | 1.39E-09   |  |  |
| 34            | 1.93E-10                                                                           | 8.64E-10       | 2.33E-10 | 1.33E-09   |  |  |
| 35            | 1.87E-10                                                                           | 7.68E-10       | 2.03E-10 | 1.33E-09   |  |  |
| 36            | 1.74E-10                                                                           | 6.8E-10        | 1.79E-10 | 1.26E-09   |  |  |
| 37            | 1.53E-10                                                                           | 5.49E-10       | 1.5E-10  | 1.13E-09   |  |  |
| 38            | 1.64E-10                                                                           | 5.9E-10        | 1.29E-10 | 1.22E-09   |  |  |
| 39            | 1.57E-10                                                                           | 5.65E-10       | 0        | 1.19E-09   |  |  |
| 40            | 1.73E-10                                                                           | 6.48E-10       | 0        | 1.3E-09    |  |  |
| 41            | 1.8E-10                                                                            | 7.19E-10       | 0        | 1.33E-09   |  |  |
| 42            | 1.81E-10                                                                           | 7.65E-10       | 0        | 1.32E-09   |  |  |
| 43            | 1.82E-10                                                                           | 8.17E-10       | 0        | 1.29E-09   |  |  |
| 44            | 1.79E-10                                                                           | 8.52E-10       | 0        | 1.23E-09   |  |  |
| 45            | 1.74E-10                                                                           | 8.33E-10       | 0        | 1.17E-09   |  |  |

| 46 | 1.66E-10 | 8.24E-10 | 0        | 1.07E-09 |
|----|----------|----------|----------|----------|
| 47 | 1.59E-10 | 8.14E-10 | 1.03E-10 | 9.82E-10 |
| 48 | 1.31E-10 | 6.91E-10 | 1E-10    | 7.62E-10 |
| 49 | 1.21E-10 | 6.3E-10  | 1.04E-10 | 6.76E-10 |
| 50 | 1.04E-10 | 5.4E-10  | 1.01E-10 | 5.55E-10 |
| 51 | 0        | 4.9E-10  | 1.1E-10  | 5E-10    |
| 52 | 0        | 5.03E-10 | 1.27E-10 | 4.35E-10 |
| 53 | 0        | 5.99E-10 | 1.47E-10 | 3.31E-10 |
| 54 | 0        | 6.05E-10 | 1.34E-10 | 2.14E-10 |
| 55 | 0        | 5.83E-10 | 1.18E-10 | 1.85E-10 |
| 56 | 0        | 5.44E-10 | 1.18E-10 | 1.98E-10 |
| 57 | 0        | 5.26E-10 | 1.28E-10 | 2.22E-10 |
| 58 | 0        | 5.46E-10 | 1.5E-10  | 2.58E-10 |
| 59 | 0        | 5.14E-10 | 1.59E-10 | 2.79E-10 |
| 60 | 0        | 4.47E-10 | 0        | 3.9E-10  |
| 61 | 1.33E-10 | 7.98E-10 | 2.99E-10 | 8.57E-10 |
| 62 | 1.24E-10 | 7.39E-10 | 2.65E-10 | 9.04E-10 |
| 63 | 1.59E-10 | 8.83E-10 | 2.11E-10 | 1.55E-09 |
| 64 | 2.11E-10 | 1.09E-09 | 1.4E-10  | 2.14E-09 |
| 65 | 3.03E-10 | 1.33E-09 | 1.71E-10 | 2.41E-09 |
| 66 | 4.14E-10 | 1.5E-09  | 2.76E-10 | 2.21E-09 |
| 67 | 5.38E-10 | 1.56E-09 | 3.37E-10 | 1.74E-09 |
| 68 | 5.55E-10 | 1.26E-09 | 3.64E-10 | 1.34E-09 |
| 69 | 5.09E-10 | 1.02E-09 | 4.38E-10 | 3.52E-09 |
| 70 | 4.43E-10 | 1.5E-09  | 7.33E-10 | 5.72E-09 |
| 71 | 2.35E-09 | 3.09E-09 | 1.33E-09 | 8.32E-09 |
| 72 | 4.63E-09 | 3.74E-09 | 1.47E-09 | 8.38E-09 |
| 73 | 7.96E-10 | 3.51E-09 | 1.3E-09  | 6.84E-09 |
| 74 | 1.3E-09  | 4.96E-09 | 1.8E-09  | 8.92E-09 |

The effect of muscular contraction on lingual cortical von Mises stress

| Cont          | ribution of individud | al muscles to lingual corti | cal stress ( $\sigma_{vm}$ )(MP | a)         |  |  |  |
|---------------|-----------------------|-----------------------------|---------------------------------|------------|--|--|--|
| Node position |                       | Muscles                     |                                 |            |  |  |  |
|               | Lat. pterygoid        | Med. pterygoid              | Masseter                        | Temporalis |  |  |  |
| 1             | 6.17E-06              | 3.43E-05                    | 1.23E-05                        | 6.00E-05   |  |  |  |
| 2             | 4.34E-05              | 6.00E-05                    | 2.51E-05                        | 1.27E-04   |  |  |  |
| 3             | 1.13E-05              | 4.41E-05                    | 2.28E-05                        | 1.43E-04   |  |  |  |
| 4             | 1.82E-06              | 2.51E-05                    | 1.52E-05                        | 1.18E-04   |  |  |  |
| 5             | 1.65E-06              | 2.43E-05                    | 1.36E-05                        | 1.10E-04   |  |  |  |
| 6             | 2.98E-06              | 1.25E-05                    | 9.74E-06                        | 8.96E-05   |  |  |  |
| 7             | 3.37E-06              | 4.97E-06                    | 4.62E-06                        | 4.15E-05   |  |  |  |
| 8             | 2.43E-06              | 6.65E-06                    | 4.08E-06                        | 2.41E-05   |  |  |  |
| 9             | 2.10E-06              | 1.03E-05                    | 2.87E-06                        | 1.76E-05   |  |  |  |
| 10            | 1.89E-06              | 1.13E-05                    | 3.00E-06                        | 2.17E-05   |  |  |  |
| 11            | 1.59E-06              | 1.13E-05                    | 3.40E-06                        | 2.21E-05   |  |  |  |
| 12            | 1.24E-06              | 9.11E-06                    | 4.25E-06                        | 1.64E-05   |  |  |  |
| 13            | 7.20E-07              | 4.25E-06                    | 2.00E-06                        | 6.61E-06   |  |  |  |
| 14            | 8.07E-07              | 5.99E-06                    | 3.27E-06                        | 8.27E-06   |  |  |  |
| 15            | 7.90E-07              | 5.49E-06                    | 3.35E-06                        | 5.30E-06   |  |  |  |
| 16            | 8.34E-07              | 5.32E-06                    | 3.72E-06                        | 4.21E-06   |  |  |  |
| 17            | 8.29E-07              | 5.20E-06                    | 3.84E-06                        | 3.66E-06   |  |  |  |
| 18            | 7.76E-07              | 5.24E-06                    | 3.38E-06                        | 2.95E-06   |  |  |  |
| 19            | 7.71E-07              | 5.76E-06                    | 3.24E-06                        | 2.72E-06   |  |  |  |
| 20            | 7.55E-07              | 6.28E-06                    | 3.10E-06                        | 2.62E-06   |  |  |  |
| 21            | 6.99E-07              | 6.23E-06                    | 2.92E-06                        | 2.21E-06   |  |  |  |
| 22            | 6.66E-07              | 6.09E-06                    | 2.98E-06                        | 1.96E-06   |  |  |  |
| 23            | 6.20E-07              | 6.68E-06                    | 3.13E-06                        | 2.45E-06   |  |  |  |
| 24            | 5.95E-07              | 6.24E-06                    | 3.30E-06                        | 3.14E-06   |  |  |  |
| 25            | 6.81E-07              | 5.79E-06                    | 3.53E-06                        | 4.09E-06   |  |  |  |
| 26            | 8.73E-07              | 5.94E-06                    | 3.71E-06                        | 5.52E-06   |  |  |  |
| 27            | 1.04E-06              | 6.15E-06                    | 3.64E-06                        | 6.71E-06   |  |  |  |

| - | 28 | 1.14E-06             | 6.66E-06 | 3.23E-06             | 7.24E-06             |
|---|----|----------------------|----------|----------------------|----------------------|
|   | 29 | 1.32E-06             | 7.30E-06 | 3.14E-06             | 8.57E-06             |
|   | 30 | 1.58E-06             | 8.21E-06 | 3.13E-06             | 1.04E-05             |
|   | 31 | 1.80E-06             | 9.00E-06 | 2.98E-06             | 1.22E-05             |
|   | 32 | 2.02E-06             | 9.83E-06 | 3.01E-06             | 1.41E-05             |
|   | 33 | 2.12E-06             | 1.01E-05 | 2.66E-06             | 1.43E-05             |
|   | 34 | 2.00E-06             | 8.95E-06 | 2.41E-06             | 1.38E-05             |
|   | 35 | 1.93E-06             | 7.95E-06 | 2.10E-06             | 1.37E-05             |
|   | 36 | 1.81E-06             | 7.04E-06 | 1.86E-06             | 1.30E-05             |
|   | 37 | 1.58E-06             | 5.68E-06 | 1.56E-06             | 1.17E-05             |
|   | 38 | 1.69E-06             | 6.10E-06 | 1.34E-06             | 1.27E-05             |
|   | 39 | 1.62E-06             | 5.85E-06 | 9.83E-07             | 1.23E-05             |
|   | 40 | 1.79E-06             | 6.71E-06 | 7.65E-07             | 1.35E-05             |
|   | 41 | 1.86E-06             | 7.45E-06 | 5.94E-07             | 1.38E-05             |
|   | 42 | 1.88E-06             | 7.92E-06 | 5.31E-07             | 1.37E-05             |
|   | 43 | 1.88E-06             | 8.45E-06 | 6.14E-07             | 1.34E-05             |
|   | 44 | 1.85E-06             | 8.82E-06 | 7.63E-07             | 1.28E-05             |
|   | 45 | 1.80E-06             | 8.62E-06 | 8.61E-07             | 1.21E-05             |
|   | 46 | 1./2E-06             | 8.53E-06 | 9.56E-07             | 1.11E-05             |
|   | 4/ | 1.64E-06             | 8.43E-06 | 1.07E-06             | 1.02E-05             |
|   | 48 | 1.36E-06             | 7.15E-06 | 1.04E-06             | 7.89E-06             |
|   | 49 | 1.25E-06             | 6.52E-06 | 1.08E-06             | 7.00E-06             |
|   | 50 | 1.07E-06             | 5.59E-06 | 1.05E-06             | 5.74E-06             |
|   | 51 | 9.91E-07             | 5.07E-06 | 1.14E-06             | 5.17E-06             |
|   | 52 | 9.20E-07             | 5.21E-06 | 1.31E-06             | 4.50E-06             |
|   | 55 | 9.16E-07<br>9.40E 07 | 6.20E-00 | 1.32E-00             | 3.43E-00<br>2.21E-06 |
|   | 54 | 8.40L-07<br>9.42E.07 | 6.025.06 | 1.382-00             | 2.21L-00<br>1.01E.06 |
|   | 56 | 8.42L-07             | 5.64E-06 | 1.22L-00<br>1.22E-06 | 1.91L-00<br>2.05E-06 |
|   | 57 | 8.57E-07             | 5.04E 00 | 1.22E 00             | 2.05E 00             |
|   | 58 | 9 29F-07             | 5.45E 00 | 1.55E-06             | 2.50E 00<br>2.67E-06 |
|   | 59 | 9.00F-07             | 5.32E-06 | 1.55E 00             | 2.07E 00             |
|   | 60 | 7 88F-07             | 4.63F-06 | 9.48F-07             | 4.04F-06             |
|   | 61 | 1 38E-06             | 8 26F-06 | 3.09E-06             | 8 88F-06             |
|   | 62 | 1.29F-06             | 7.65F-06 | 2.75E-06             | 9.36F-06             |
|   | 63 | 1.65E-06             | 9.15E-06 | 2.19E-06             | 1.60E-05             |
|   | 64 | 2.19E-06             | 1.12E-05 | 1.45E-06             | 2.22E-05             |
|   | 65 | 3.14E-06             | 1.38E-05 | 1.78E-06             | 2.50E-05             |
|   | 66 | 4.28E-06             | 1.56E-05 | 2.85E-06             | 2.29E-05             |
|   | 67 | 5.57E-06             | 1.61E-05 | 3.49E-06             | 1.80E-05             |
|   | 68 | 5.75E-06             | 1.30E-05 | 3.77E-06             | 1.39E-05             |
|   | 69 | 5.28E-06             | 1.06E-05 | 4.53E-06             | 3.65E-05             |
|   | 70 | 4.58E-06             | 1.55E-05 | 7.59E-06             | 5.92E-05             |
|   | 71 | 2.43E-05             | 3.20E-05 | 1.38E-05             | 8.61E-05             |
|   | 72 | 4.79E-05             | 3.87E-05 | 1.52E-05             | 8.68E-05             |
|   | 73 | 8.24E-06             | 3.63E-05 | 1.34E-05             | 7.08E-05             |
| - | 74 | 1.34E-05             | 5.14E-05 | 1.87E-05             | 9.23E-05             |
| - |    |                      |          |                      |                      |

#### Section 5.3.2

| Buccal strain(με <sub>νm</sub> ) |            |         |  |  |
|----------------------------------|------------|---------|--|--|
| Node position                    | Edentulous | Dentate |  |  |
| 1                                | 6184.2     | 6275.3  |  |  |
| 2                                | 7014.31    | 7135.3  |  |  |
| 3                                | 6963.88    | 7077.7  |  |  |
| 4                                | 5717.47    | 5796.8  |  |  |
| 5                                | 3191.4     | 3211.2  |  |  |
| 6                                | 1644.91    | 1643.2  |  |  |
| 7                                | 1146.72    | 1165.6  |  |  |
| 8                                | 1373.59    | 1409.8  |  |  |
| 9                                | 1385.97    | 1424.9  |  |  |
| 10                               | 1386.79    | 1427.3  |  |  |
| 11                               | 1658.88    | 1715    |  |  |
| 12                               | 1518.29    | 1591.6  |  |  |
| 13                               | 1606.43    | 1651.1  |  |  |
| 14                               | 1815.31    | 1787    |  |  |
| 15                               | 2042.28    | 2013.4  |  |  |
| 16                               | 2346.13    | 2319.8  |  |  |
| 17                               | 2622.96    | 2600.9  |  |  |
| 18                               | 2473.11    | 2480.5  |  |  |
| 19                               | 2548.96    | 2577.4  |  |  |
| 20                               | 1362.35    | 1384    |  |  |
| 21                               | 951.71     | 977.6   |  |  |
| 22                               | 431.81     | 456.8   |  |  |
| 23                               | 234.25     | 265.5   |  |  |
| 24                               | 239.87     | 265.9   |  |  |
| 25                               | 308.74     | 328     |  |  |
| 26                               | 867.84     | 873.5   |  |  |
| 27                               | 1285.91    | 1288.8  |  |  |
| 28                               | 1304.67    | 1310.2  |  |  |
| 29                               | 1412.61    | 1419    |  |  |
| 30                               | 1258.2     | 1260.8  |  |  |
| 31                               | 1523.33    | 1517.3  |  |  |
| 32                               | 1307.25    | 1263.9  |  |  |
| 33                               | 1095.07    | 1057.3  |  |  |
| 34                               | 944.38     | 941.7   |  |  |
| 35                               | 894.77     | 894.4   |  |  |
| 36                               | 873.77     | 890.7   |  |  |
| 37                               | 833.47     | 863.5   |  |  |
| 38                               | 828.18     | 853.8   |  |  |
| 39                               | 845.73     | 867.6   |  |  |
| 40                               | 851.49     | 871.7   |  |  |

Buccal cortical strain the edentulous and dentate state

| 41 | 894.07  | 916.1  |
|----|---------|--------|
| 42 | 960.24  | 985.2  |
| 43 | 955.59  | 982.6  |
| 44 | 999.69  | 1035.4 |
| 45 | 649.7   | 681.9  |
| 46 | 1088.95 | 1098.5 |
| 47 | 2495.74 | 2524.1 |
| 48 | 3469.07 | 3513.8 |
| 49 | 3608.53 | 3654.9 |
|    |         |        |

# Lingual cortical strain the edentulous and dentate state

| Lingu         | Lingual strain(με <sub>νm</sub> ) |         |  |  |
|---------------|-----------------------------------|---------|--|--|
| Node position | Edentulous                        | Dentate |  |  |
| 1             | 1152.7                            | 1191.9  |  |  |
| 2             | 2138.61                           | 2202.4  |  |  |
| 3             | 1903.94                           | 1944.6  |  |  |
| 4             | 1235.01                           | 1256.2  |  |  |
| 5             | 721.49                            | 730.2   |  |  |
| 6             | 772.37                            | 800.7   |  |  |
| 7             | 1166.04                           | 1226.6  |  |  |
| 8             | 1858.1                            | 1932    |  |  |
| 9             | 1913.89                           | 1981.2  |  |  |
| 10            | 2069.22                           | 2134.5  |  |  |
| 11            | 2497.64                           | 2569.5  |  |  |
| 12            | 2582.97                           | 2649.2  |  |  |
| 13            | 1006.09                           | 1031.5  |  |  |
| 14            | 1756.38                           | 1800    |  |  |
| 15            | 1660.61                           | 1697.9  |  |  |
| 16            | 1828.22                           | 1865.3  |  |  |
| 17            | 1923.91                           | 1960.7  |  |  |
| 18            | 1708.18                           | 1737.7  |  |  |
| 19            | 1632.4                            | 1661.8  |  |  |
| 20            | 1499.26                           | 1533.4  |  |  |
| 21            | 1457.31                           | 1503.4  |  |  |
| 22            | 1590.97                           | 1659.8  |  |  |
| 23            | 1466.78                           | 1568.1  |  |  |
| 24            | 1955.69                           | 1999.7  |  |  |
| 25            | 2613.74                           | 2569.3  |  |  |
| 26            | 3297.14                           | 3244.4  |  |  |
| 27            | 3780.42                           | 3744.6  |  |  |
| 28            | 3791.44                           | 3692.4  |  |  |

| 29 | 4093.54 | 3959.1 |
|----|---------|--------|
| 30 | 4105.96 | 4036.6 |
| 31 | 3710.14 | 3720.1 |
| 32 | 3352.67 | 3402.1 |
| 33 | 2728.2  | 2770.1 |
| 34 | 1848.75 | 1893   |
| 35 | 1023.75 | 1092.7 |
| 36 | 646.55  | 738.6  |
| 37 | 468.29  | 560.1  |
| 38 | 764.65  | 815.3  |
| 39 | 1187.8  | 1212.7 |
| 40 | 1695.59 | 1715.8 |
| 41 | 2172.15 | 2193.2 |
| 42 | 2517.49 | 2540.1 |
| 43 | 2672.7  | 2687.5 |
| 44 | 2950.1  | 2960.1 |
| 45 | 3032.5  | 3028.8 |
| 46 | 3092.18 | 3070.1 |
| 47 | 3072.77 | 2990.7 |
| 48 | 2706.61 | 2555.3 |
| 49 | 2562.57 | 2425.5 |
| 50 | 2278.22 | 2204.6 |
| 51 | 2244.8  | 2236.7 |
| 52 | 2157.36 | 2177.7 |
| 53 | 1855.03 | 1886.8 |
| 54 | 1243.32 | 1297.6 |
| 55 | 989.17  | 1033.8 |
| 56 | 1006.03 | 1031.6 |
| 57 | 1078.17 | 1098.4 |
| 58 | 1197.82 | 1218.7 |
| 59 | 1253.21 | 1275.5 |
| 60 | 755.23  | 773.9  |
| 61 | 2563.72 | 2616.5 |
| 62 | 2381.85 | 2430.9 |
| 63 | 2336.39 | 2383.8 |
| 64 | 2205.91 | 2256.3 |
| 65 | 2277.2  | 2335.2 |
| 66 | 2127.62 | 2189.5 |
| 67 | 1756.14 | 1816   |
| 68 | 700.46  | 736.2  |
| 69 | 790.43  | 795.3  |
| 70 | 1528.79 | 1541.6 |
| 71 | 2985.23 | 3028.2 |
| 72 | 3833.65 | 3891.4 |
| /3 | 3608.15 | 3659.5 |
| 74 | 4686.76 | 4/44.5 |

#### Section 5.3.3

|               | Buccal strain ( $u_{\text{E},m}$ ) at anatomical sub-site |        |             |               |           |
|---------------|-----------------------------------------------------------|--------|-------------|---------------|-----------|
| Node position | Ramus                                                     | Angle  | Body        | Parasymphysis | Symphysis |
| 1             | 9047.9                                                    | 8792.8 | ,<br>6275.3 | 5156.4        | 5888.6    |
| 2             | 9144.9                                                    | 9667.3 | 7135.3      | 7382.9        | 7493.8    |
| 3             | 8157.9                                                    | 9334.8 | 7077.7      | 8247.3        | 8588.7    |
| 4             | 5364.2                                                    | 7258.2 | 5796.8      | 7878.3        | 8750      |
| 5             | 2295.6                                                    | 3815.5 | 3211.2      | 5599.6        | 6847.4    |
| 6             | 3143.7                                                    | 2540.8 | 1643.2      | 3590.8        | 4713.9    |
| 7             | 4377.4                                                    | 3027.4 | 1165.6      | 1967          | 2854.7    |
| 8             | 4464                                                      | 3543.4 | 1409.8      | 1183          | 1821.3    |
| 9             | 2710.4                                                    | 3257   | 1424.9      | 894.5         | 1278.2    |
| 10            | 1963.2                                                    | 3009.7 | 1427.3      | 837.5         | 1009.8    |
| 11            | 1647.8                                                    | 3423   | 1715        | 944.2         | 1053.7    |
| 12            | 1262.4                                                    | 2413.4 | 1591.6      | 805           | 996.1     |
| 13            | 1136.7                                                    | 2154.3 | 1651.1      | 785.7         | 902.7     |
| 14            | 1090.9                                                    | 2093.5 | 1787        | 820.8         | 790.5     |
| 15            | 1007.5                                                    | 1961.4 | 2013.4      | 1049.7        | 839.8     |
| 16            | 933.7                                                     | 1798.5 | 2319.8      | 1361.3        | 993.5     |
| 17            | 894.1                                                     | 1658.3 | 2600.9      | 1671.2        | 1127.1    |
| 18            | 920.1                                                     | 1673.1 | 2480.5      | 2001          | 1232.7    |
| 19            | 1205.1                                                    | 2037.6 | 2577.4      | 2672.3        | 1714.1    |
| 20            | 1057.2                                                    | 1569   | 1384        | 2259.2        | 1612.5    |
| 21            | 1074                                                      | 1551.7 | 977.6       | 2172          | 1784.1    |
| 22            | 1118.1                                                    | 1546.6 | 456.8       | 2122.3        | 2139.4    |
| 23            | 1115.8                                                    | 1556   | 265.5       | 1511.7        | 2531.2    |
| 24            | 870                                                       | 1254.5 | 265.9       | 620           | 844.9     |
| 25            | 918.8                                                     | 1305.8 | 328         | 662.3         | 933.8     |
| 26            | 1420.8                                                    | 1895.7 | 873.5       | 1039.7        | 2214.8    |
| 27            | 1560.8                                                    | 2080.3 | 1288.8      | 681.6         | 1991      |
| 28            | 1375.3                                                    | 1845.5 | 1310.2      | 359.3         | 1600.6    |
| 29            | 1310.1                                                    | 1764.3 | 1419        | 335.6         | 1557.3    |
| 30            | 1104.4                                                    | 1493.5 | 1260.8      | 406.1         | 1208      |
| 31            | 1266.9                                                    | 1732.6 | 1517.3      | 594.2         | 1028.9    |
| 32            | 1015.6                                                    | 1396.5 | 1263.9      | 605.4         | 943.6     |
| 33            | 871.3                                                     | 1202.5 | 1057.3      | 635.9         | 848.6     |
| 34            | 713.2                                                     | 993.2  | 941.7       | 738           | 707.8     |
| 35            | 580.7                                                     | 817.9  | 894.4       | 913.9         | 714.3     |
| 36            | 524.7                                                     | 741.2  | 890.7       | 1060.2        | 799.1     |
| 37            | 474.1                                                     | 673    | 863.5       | 1104.7        | 846.6     |
| 38            | 439.5                                                     | 633.2  | 853.8       | 1086.2        | 842.2     |
| 39            | 382.3                                                     | 566.7  | 867.6       | 1122.3        | 860.7     |
| 40            | 338.3                                                     | 513.8  | 871.7       | 1152          | 881.5     |
| 41            | 336.8                                                     | 521.9  | 916.1       | 1332.3        | 1078.4    |
| 42            | 316.1                                                     | 514.2  | 985.2       | 1577.3        | 1349.2    |
| 43            | 284.7                                                     | 478.2  | 982.6       | 1779.2        | 1638.5    |
| 44            | 244.9                                                     | 389.2  | 1035.4      | 2676.7        | 2817      |
| 45            | 565.5                                                     | 609.5  | 681.9       | 3556          | 4356.1    |
| 46            | 1173.1                                                    | 1494.2 | 1098.5      | 3854.3        | 5220.8    |
| 47            | 1705.8                                                    | 2330.6 | 2524.1      | 4328.4        | 5990.2    |
| 48            | 1957.4                                                    | 2838.1 | 3513.8      | 4645.5        | 5577.6    |
| 49            | 1743.8                                                    | 2697.1 | 3654.9      | 4855.3        | 4704.1    |

The effect of load position on buccal cortical strain

|               | L       | ingual str | ain (με <sub>νm</sub> ) | at anatomical sub | o-site    |
|---------------|---------|------------|-------------------------|-------------------|-----------|
| Node position | Ramus   | Angle      | Body                    | Parasymphysis     | Symphysis |
| 1             | 1924.4  | 1276.1     | 1191.9                  | 5320.5            | 8088.1    |
| 2             | 3134.8  | 1846.1     | 2202.4                  | 9460.2            | 13688.1   |
| 3             | 2531.1  | 1317.1     | 1944.6                  | 7466.3            | 9793.3    |
| 4             | 2463.5  | 1644.7     | 1256.2                  | 4500.9            | 5470.1    |
| 5             | 3584.3  | 2497.5     | 730.2                   | 3720              | 5034.6    |
| 6             | 2278.8  | 1869.8     | 800.7                   | 2299.6            | 2723.5    |
| 7             | 1627    | 1243.9     | 1226.6                  | 1065.2            | 1607      |
| 8             | 3084.6  | 2081.5     | 1932                    | 969               | 1779.2    |
| 9             | 4448    | 3050.1     | 1981.2                  | 707.1             | 2574.1    |
| 10            | 5354.7  | 3804.2     | 2134.5                  | 637.9             | 2752.9    |
| 11            | 6368.6  | 4779.3     | 2569.5                  | 568.5             | 2685.1    |
| 12            | 6305.9  | 5131.8     | 2649.2                  | 752               | 2216.1    |
| 13            | 2648.2  | 2046.4     | 1031.5                  | 634               | 1145.9    |
| 14            | 3642.1  | 3505.2     | 1800                    | 743.5             | 1406      |
| 15            | 2853.7  | 3366.4     | 1697.9                  | 778               | 1203.6    |
| 16            | 2385    | 3724.2     | 1865.3                  | 878.2             | 1057.3    |
| 17            | 2069.1  | 3876       | 1960.7                  | 893.6             | 919.2     |
| 18            | 1620.2  | 3297.1     | 1737.7                  | 812.6             | 762.9     |
| 19            | 1524.9  | 3087       | 1661.8                  | 776.4             | 733       |
| 20            | 1447.7  | 2819       | 1533.4                  | 718.3             | 711.6     |
| 21            | 1400.6  | 2590.7     | 1503.4                  | 677.1             | 677.5     |
| 22            | 1430.4  | 2632.3     | 1659.8                  | 705.9             | 657.8     |
| 23            | 1464 5  | 2524.4     | 1568 1                  | 616.4             | 697.9     |
| 23            | 1478 1  | 2643       | 1999 7                  | 800 5             | 679.6     |
| 25            | 1474.2  | 2798 7     | 2569.3                  | 1119 7            | 647.9     |
| 25            | 1451.6  | 2891 9     | 3244 4                  | 1516.5            | 689       |
| 20            | 1372.4  | 2799       | 3744.6                  | 1832.6            | 705.8     |
| 28            | 1252.4  | 2426       | 3692.4                  | 1969.8            | 762.8     |
| 29            | 1225.4  | 2329 5     | 3052.4                  | 2282.2            | 867.2     |
| 30            | 1258.3  | 2325.5     | 4036.6                  | 2731.6            | 1038 3    |
| 31            | 1271.6  | 2156.8     | 3720.1                  | 3091.9            | 1225 5    |
| 32            | 1380 3  | 2130.0     | 3402.1                  | 3471 3            | 1440 4    |
| 32            | 1/52    | 2112 1     | 2770 1                  | 3694.8            | 1533      |
| 34            | 1/75 1  | 2056.6     | 1893                    | 3534.6            | 151/ 1    |
| 25            | 15171   | 2030.0     | 1002 7                  | 21/12 2           | 1607 7    |
| 36            | 1/188.6 | 107/       | 738.6                   | 2556 4            | 1775 8    |
| 30            | 12/15 8 | 1782 5     | 560 1                   | 1819.6            | 1776.0    |
| 20            | 1/22 0  | 19946      | 915 2                   | 1240 1            | 2104 4    |
| 20            | 1452.5  | 1004.0     | 1212.5                  | 1240.1<br>E 4 7 0 | 2104.4    |
| 39            | 1555 0  | 2050.0     | 1715 0                  | 260               | 2056.2    |
| 40            | 1604 7  | 2039.9     | 2102.2                  | 420.2             | 1997 6    |
| 41            | 1764.7  | 2200.7     | 2195.2                  | 430.2             | 1662.0    |
| 42            | 1704.7  | 2414.4     | 2540.1                  | /3/./             | 1002.3    |
| 43            | 1755.0  | 2407.1     | 2087.5                  | 912.7             | 1275 4    |
| 44            | 1750.9  | 24/7.0     | 2900.1                  | 1205.4            | 1375.4    |
| 40            | 1606 5  | 2307.8     | 3028.8<br>2070 1        | 1505.2            | 1144 2    |
| 40            | 1610.0  | 2451.0     | 30/0.1                  | 15/8.8            | 1144.2    |
| 47            | 1018.9  | 2361.8     | 2990.7                  | 1640.4            | 1068.5    |
| 48            | 13/5.2  | 2024.8     | 2555.3                  | 1535.1            | 855.3     |
| 49            | 1339.9  | 19/8.8     | 2425.5                  | 1541.2            | /83.6     |
| 50            | 1196.5  | 1//8.5     | 2204.6                  | 1505.9            | 656.3     |
| 51            | 1195.3  | 1786       | 2236.7                  | 1627.4            | 606.9     |

The effect of load position on lingual cortical strain

| 52 | 1152.3 | 1727.4 | 2177.7 | 1694.5  | 634.5   |
|----|--------|--------|--------|---------|---------|
| 53 | 1018.8 | 1527.6 | 1886.8 | 1604.3  | 718.7   |
| 54 | 732.4  | 1096.7 | 1297.6 | 1212.7  | 694.3   |
| 55 | 601.6  | 906.2  | 1033.8 | 960     | 648.2   |
| 56 | 560.1  | 862.2  | 1031.6 | 939.4   | 633.8   |
| 57 | 547.2  | 859.8  | 1098.4 | 1053    | 692.6   |
| 58 | 580.9  | 925.8  | 1218.7 | 1206.2  | 805.1   |
| 59 | 554.3  | 904.3  | 1275.5 | 1331.4  | 882.5   |
| 60 | 268.6  | 456.1  | 773.9  | 1132.4  | 933.8   |
| 61 | 878.8  | 1539.7 | 2616.5 | 3099.8  | 1924.8  |
| 62 | 785.8  | 1399.7 | 2430.9 | 2860.2  | 1719.7  |
| 63 | 675.4  | 1289.8 | 2383.8 | 3044.4  | 1975    |
| 64 | 525.7  | 1113.5 | 2256.3 | 3316.1  | 2521.3  |
| 65 | 395.9  | 984    | 2335.2 | 3800.8  | 3188    |
| 66 | 220.2  | 711.3  | 2189.5 | 3917.6  | 3621.5  |
| 67 | 241.4  | 423.6  | 1816   | 3690.4  | 3803.9  |
| 68 | 541.8  | 468.5  | 736.2  | 2163.1  | 2971.2  |
| 69 | 856.3  | 1039.6 | 795.3  | 618.9   | 1759.4  |
| 70 | 1006.4 | 1423.1 | 1541.6 | 2152.2  | 2700.7  |
| 71 | 1119.5 | 1982.2 | 3028.2 | 5982.3  | 6633.5  |
| 72 | 1219.5 | 2305.7 | 3891.4 | 7728.5  | 8347.7  |
| 73 | 932.9  | 1926.3 | 3659.5 | 7648.6  | 8292.7  |
| 74 | 942.2  | 2328.5 | 4744.5 | 10870.2 | 11995.5 |

#### Section 5.3.4

The effect of load angulation on buccal cortical strain (symphyseal loading)

| Ducco     | al continal strain   | (up) at variant la                     | ading angulations |
|-----------|----------------------|----------------------------------------|-------------------|
| виссо     | ii cortical strain ( | $(\mu \varepsilon_{vm})$ at varying 10 |                   |
|           | 45 degrees           | 90 degrees                             | 135 degrees       |
| 1         | 0.004206             | 0.005889                               | 0.00669           |
| 2         | 0.00602              | 0.007494                               | 0.006553          |
| 3         | 0.006639             | 0.008589                               | 0.006847          |
| 4         | 0.006244             | 0.00875                                | 0.006857          |
| 5         | 0.0043               | 0.006847                               | 0.005571          |
| 6         | 0.002725             | 0.004714                               | 0.003977          |
| 7         | 0.001415             | 0.002855                               | 0.002628          |
| 8         | 0.000717             | 0.001821                               | 0.001903          |
| 9         | 0.000478             | 0.001278                               | 0.001535          |
| 10        | 0.000509             | 0.00101                                | 0.001302          |
| 11        | 0.000549             | 0.001054                               | 0.001416          |
| 12        | 0.000406             | 0.000996                               | 0.00137           |
| 13        | 0.000355             | 0.000903                               | 0.001171          |
| 14        | 0.000355             | 0.000791                               | 0.000901          |
| 15        | 0.000497             | 0.00084                                | 0.000759          |
| 16        | 0.000711             | 0.000994                               | 0.000735          |
| 17        | 0.000941             | 0.001127                               | 0.000693          |
| 18        | 0.001154             | 0.001233                               | 0.00063           |
| 19        | 0.001556             | 0.001714                               | 0.000881          |
| 20        | 0.001394             | 0.001613                               | 0.000913          |
| 21        | 0.001384             | 0.001784                               | 0.001239          |
| 22        | 0.001278             | 0.002139                               | 0.001942          |
| 23        | 0.000615             | 0.002531                               | 0.003116          |
| 24        | 0.001177             | 0.000845                               | 0.001789          |
| 25        | 0.001989             | 0.000934                               | 0.00129           |
| 26        | 0.002867             | 0.002215                               | 0.0011            |
| 27        | 0.001941             | 0.001991                               | 0.001385          |
| 28        | 0.001272             | 0.001601                               | 0.001339          |
| 29        | 0.000979             | 0.001557                               | 0.001409          |
| 30        | 0.000649             | 0.001208                               | 0.001147          |
| 31        | 0.000505             | 0.001029                               | 0.000979          |
| 32        | 0.000494             | 0.000944                               | 0.000849          |
| 33        | 0.000566             | 0.000849                               | 0.000637          |
| 34        | 0.000618             | 0.000708                               | 0.000422          |
| 35        | 0.000855             | 0.000714                               | 0.000243          |
| 36        | 0.001117             | 0.000799                               | 0.00017           |
| 37        | 0.001261             | 0.000847                               | 0.000241          |
| 38        | 0.001261             | 0.000842                               | 0.000346          |
| 39        | 0.001291             | 0.000861                               | 0.000411          |
| 40        | 0.001321             | 0.000881                               | 0.000449          |
| 41        | 0.0015               | 0.001078                               | 0.00039           |
| 42        | 0.001753             | 0.001349                               | 0.00041           |
| <u>42</u> | 0.001965             | 0.001638                               | 0 00044           |
| ΔΔ        | 0.001303             | 0.001030                               | 0.000-00          |
| /5        | 0.003                | 0.002017                               | 0 002002          |
| 75<br>/6  | 0.004102             | 0.004330                               | 0.002052          |
| 40<br>//7 | 0.004017             | 0.003221                               | 0.002909          |
| 47<br>/12 | 0.005075             | 0.00555                                | 0.004238          |
| -+0<br>/0 | 0.0055               | 0.003378                               | 0.004025          |
| +9        | 0.005274             | 0.004704                               | 0.002024          |

| 45 degrees         90 degrees         135 degrees           1         0.004353         0.008088         0.00716           2         0.007992         0.013688         0.011465           3         0.00684         0.009793         0.007123           4         0.004544         0.005035         0.003539           6         0.002743         0.002723         0.002325           7         0.00158         0.001607         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.00464           12         0.000515         0.00216         0.003257           13         0.000455         0.001146         0.001871           14         0.000548         0.001045         0.001464           15         0.000558         0.001204         0.001455           16         0.000573         0.000733         0.000747           20         0.00054         0.000919         0.001045           18         0.000513         0.000763         0.000709           21         0.000343         0.000678         0.000712           20         0.000438         0.000688    | Lingu | al cortical strain | (με <sub>νm</sub> ) at varying l | oading angulations |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------------------|--------------------|
| 1         0.004353         0.008088         0.00716           2         0.007992         0.013688         0.011465           3         0.00684         0.009793         0.007123           4         0.004544         0.00547         0.003512           5         0.003837         0.002723         0.002325           7         0.001631         0.001779         0.003257           9         0.000952         0.002753         0.004178           10         0.000688         0.002753         0.00418           11         0.000467         0.002685         0.00464           12         0.000515         0.002216         0.003257           13         0.000455         0.001146         0.001871           15         0.00058         0.001204         0.001489           16         0.000513         0.000763         0.000802           19         0.000459         0.000733         0.000747           20         0.000343         0.000678         0.000731           21         0.000343         0.000678         0.000912           22         0.000722         0.000688         0.001212           23         0.000227         0     |       | 45 degrees         | 90 degrees                       | 135 degrees        |
| 2         0.007992         0.013688         0.011465           3         0.00684         0.009793         0.007123           4         0.004544         0.005035         0.003539           5         0.002743         0.002723         0.002325           7         0.00158         0.001607         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00464           12         0.000515         0.00216         0.003257           13         0.000455         0.001146         0.001871           15         0.000588         0.001204         0.001871           15         0.000513         0.000763         0.000802           16         0.000513         0.000733         0.000747           20         0.003227         0.000678         0.000731           22         0.000343         0.000688         0.001247           23         0.000227         0.000688         0.001247           24         0.000438         0.000689         0.001247           25         0.00722         0     | 1     | 0.004353           | 0.008088                         | 0.00716            |
| 3         0.00684         0.009793         0.007123           4         0.004544         0.005035         0.003512           5         0.003837         0.005035         0.003539           6         0.002743         0.002723         0.00371           9         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00464           12         0.000515         0.00216         0.003257           13         0.000467         0.002685         0.004064           12         0.00058         0.001406         0.001871           15         0.00058         0.001204         0.001489           16         0.000513         0.000763         0.000802           19         0.000459         0.000731         0.000707           10         0.00343         0.000678         0.000731           122         0.000347         0.000688         0.001121           13         0.000227         0.000688         0.001247           14         0.000238         0.000763         0.001247           14         0.000242         0     | 2     | 0.007992           | 0.013688                         | 0.011465           |
| 4         0.004544         0.00547         0.003512           5         0.003837         0.005035         0.003539           6         0.002743         0.002723         0.002325           7         0.00158         0.00167         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.00418           10         0.000688         0.002753         0.00418           11         0.000467         0.002685         0.004064           12         0.000515         0.00216         0.003257           13         0.000455         0.001146         0.001871           15         0.000578         0.001204         0.001489           16         0.000513         0.000733         0.000731           17         0.000594         0.000733         0.000731           18         0.000513         0.000733         0.000731           19         0.000459         0.000733         0.000731           20         0.000227         0.000688         0.00121           21         0.000343         0.00068         0.00121           25         0.000763         0.00     | 3     | 0.00684            | 0.009793                         | 0.007123           |
| 5         0.003837         0.005035         0.003539           6         0.002743         0.002723         0.002325           7         0.00158         0.001607         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00418           11         0.000467         0.002685         0.00464           12         0.000515         0.00216         0.003257           13         0.000455         0.01146         0.01355           14         0.000588         0.001204         0.001489           16         0.000513         0.000763         0.000802           19         0.000549         0.000733         0.000747           20         0.00032         0.000712         0.000709           21         0.000343         0.000688         0.001121           22         0.000343         0.000688         0.001121           23         0.000227         0.000689         0.001278           27         0.001282         0.000763         0.001144           29         0.001677         0     | 4     | 0.004544           | 0.00547                          | 0.003512           |
| 6         0.002743         0.002723         0.002325           7         0.00158         0.001607         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00418           11         0.000467         0.002685         0.004064           12         0.000515         0.00216         0.003257           13         0.000455         0.01146         0.001355           14         0.000548         0.001057         0.00123           15         0.000513         0.000763         0.00082           19         0.000459         0.000731         0.000709           21         0.00032         0.000712         0.000709           21         0.000343         0.00668         0.001121           22         0.000438         0.000688         0.001121           25         0.000722         0.006689         0.001278           27         0.001282         0.000763         0.001144           29         0.01027         0.000687         0.001125           30         0.00252         0.0     | 5     | 0.003837           | 0.005035                         | 0.003539           |
| 7         0.00158         0.001607         0.003288           8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00418           11         0.000515         0.002216         0.003257           13         0.000455         0.001406         0.001355           14         0.000548         0.001406         0.001871           15         0.000558         0.001204         0.001489           16         0.000548         0.000763         0.000802           19         0.000594         0.000733         0.000747           20         0.000392         0.000712         0.000709           21         0.000343         0.000678         0.000731           22         0.000343         0.000688         0.001121           25         0.00027         0.000689         0.001278           26         0.00128         0.000689         0.001278           27         0.001282         0.000689         0.001278           26         0.001225         0.001038         0.00114           29         0.001277         < | 6     | 0.002743           | 0.002723                         | 0.002325           |
| 8         0.001631         0.001779         0.00371           9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00418           11         0.000515         0.002216         0.003257           13         0.000455         0.001146         0.001355           14         0.000548         0.001204         0.001489           16         0.000513         0.001057         0.00123           17         0.000594         0.000763         0.000802           19         0.000459         0.000733         0.000747           20         0.000392         0.000712         0.000709           21         0.000343         0.000678         0.000731           22         0.000347         0.000688         0.001121           23         0.000227         0.000688         0.001278           24         0.000438         0.000689         0.001277           25         0.000722         0.000689         0.001278           26         0.00128         0.000689         0.001247           28         0.00128         0.000689         0.001247           28         0.001277         | 7     | 0.00158            | 0.001607                         | 0.003288           |
| 9         0.000952         0.002574         0.004178           10         0.000688         0.002753         0.00418           11         0.000515         0.002216         0.003257           13         0.000455         0.001466         0.001355           14         0.000558         0.001204         0.001489           16         0.00057         0.00123         0.00145           17         0.000594         0.000919         0.00145           18         0.000513         0.000763         0.000802           19         0.000459         0.000733         0.000747           20         0.00343         0.000678         0.000791           21         0.000343         0.000688         0.001121           22         0.000472         0.000688         0.001278           23         0.000227         0.000688         0.001121           24         0.00128         0.000689         0.001278           27         0.001282         0.000763         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677          | 8     | 0.001631           | 0.001779                         | 0.00371            |
| 10         0.000688         0.002753         0.00418           11         0.000467         0.002685         0.004064           12         0.000515         0.00216         0.003257           13         0.000455         0.001146         0.001355           14         0.000588         0.001204         0.001489           16         0.000513         0.000763         0.000802           19         0.000594         0.000733         0.000747           20         0.000392         0.000712         0.000731           21         0.000343         0.000658         0.000731           22         0.000343         0.000688         0.001121           23         0.000227         0.000688         0.001121           25         0.000722         0.000689         0.001278           27         0.00128         0.000689         0.001247           28         0.001225         0.00138         0.0011           31         0.002362         0.00138         0.0011           31         0.00238         0.001247         28           33         0.002177         0.000867         0.001144           29         0.001677         0.00     | 9     | 0.000952           | 0.002574                         | 0.004178           |
| 11         0.000467         0.002685         0.004054           12         0.000515         0.002216         0.003257           13         0.000455         0.001406         0.001355           14         0.000588         0.001204         0.001489           16         0.000513         0.000919         0.001045           18         0.000513         0.000763         0.000802           19         0.000459         0.000712         0.000799           21         0.000343         0.000678         0.000731           22         0.000347         0.000688         0.000767           23         0.000227         0.000688         0.000767           23         0.000227         0.000689         0.001278           27         0.00128         0.000689         0.001277           28         0.00128         0.000689         0.001277           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677    | 10    | 0.000688           | 0.002753                         | 0.00418            |
| 12         0.000515         0.002216         0.003257           13         0.000455         0.001146         0.001355           14         0.000548         0.001204         0.001489           16         0.000516         0.001057         0.00123           17         0.000594         0.000919         0.001045           18         0.000513         0.000763         0.000802           19         0.000459         0.000712         0.000799           21         0.000343         0.000678         0.000731           22         0.000347         0.000688         0.000767           23         0.000227         0.000688         0.000767           23         0.000227         0.000689         0.00127           24         0.000438         0.000689         0.00127           25         0.000722         0.000689         0.001247           28         0.001429         0.000763         0.001144           29         0.001677         0.000867         0.001125           30         0.00252         0.00138         0.0011           31         0.00252         0.00138         0.0011           31         0.00254              | 11    | 0.000467           | 0.002685                         | 0.004064           |
| 13         0.000455         0.001146         0.001355           14         0.000548         0.001406         0.001871           15         0.000558         0.001204         0.001489           16         0.000513         0.000919         0.001045           18         0.000513         0.000763         0.000802           19         0.000459         0.000733         0.000747           20         0.000392         0.000712         0.000709           21         0.000343         0.000658         0.000767           23         0.000227         0.000698         0.000941           24         0.000438         0.00068         0.001121           25         0.000722         0.000689         0.001278           27         0.01282         0.000763         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.001677         0.000867         0.001144           29         0.00252         0.00138         0.00111           31         0.00254        | 12    | 0.000515           | 0.002216                         | 0.003257           |
| 140.0005480.0014060.001871150.0005580.0012040.001489160.0006160.0010570.00123170.0005940.0009190.001045180.0005130.0007630.000802190.0004590.0007330.000747200.0003920.0007120.000799210.0003430.006780.000767230.0002270.0006880.000941240.0004380.000680.001121250.0007220.0006480.001123260.0010280.0007630.001247280.0014290.0007630.001144290.0016770.008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.0014440.000862330.0021740.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0020380.001603400.0011580.0020710.001973410.0007190.018830.02194420.0004230.016620.00248440.0007350.013750.002597450.0008290.012760.002597450.001660.0011440.002446470.001750.0016990.002294 <td>13</td> <td>0.000455</td> <td>0.001146</td> <td>0.001355</td>                                                                                                                                                                                                                                                                                                                | 13    | 0.000455           | 0.001146                         | 0.001355           |
| 150.0005580.0012040.001489160.0006160.0010570.00123170.0005940.0009190.001045180.0005130.0007630.000802190.0004590.0007330.000747200.0003920.0007120.000709210.0003430.0006780.000767230.0002270.0006980.000941240.0004380.000680.001121250.0007220.0006480.001123260.001280.0006890.001247280.0014290.0007630.001144290.0016770.008670.001125300.0020520.0010380.0011310.002380.001440.00862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0011770.002380.00163400.0011580.0020710.01973410.0007190.018830.02194420.0004230.016620.002361430.0004210.0015620.00248440.0007350.0013750.02597450.0008290.012760.002597450.001660.0011440.02446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                    | 14    | 0.000548           | 0.001406                         | 0.001871           |
| 160.0006160.0010570.00123170.0005940.0009190.001045180.0005130.0007630.000802190.0004590.0007330.000747200.0003920.0007120.000709210.0003430.006780.000767230.0002270.0006880.001121250.0007220.006480.001121260.001280.0006890.001278270.0012820.0007660.001247280.0014290.0007630.001144290.0016770.008670.001125300.0020520.0010380.0011310.002380.001440.00862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0011770.0017760.000597370.0018710.0017770.00787380.0012740.0017760.000597370.0018710.0020380.001603400.0011580.0020710.001973410.0007190.018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002599460.001660.0011440.002466470.0011750.0008550.001787 <td>15</td> <td>0.000558</td> <td>0.001204</td> <td>0.001489</td>                                                                                                                                                                                                                                                                                                                | 15    | 0.000558           | 0.001204                         | 0.001489           |
| 170.0005940.0009190.00145180.0005130.0007630.000802190.0004590.0007330.000747200.0003920.0007120.000709210.0003430.0006780.000731220.0003470.0006580.000941240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0006890.001278270.0012820.0007630.001144290.0016770.008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0012740.0017760.001301390.0014390.020380.001603400.0011580.0020710.01973410.0007190.018830.02194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002597450.001660.0011440.002466470.0011750.0008550.001787490.0011660.0007840.0015 <td>16</td> <td>0.000616</td> <td>0.001057</td> <td>0.00123</td>                                                                                                                                                                                                                                                                                                                 | 16    | 0.000616           | 0.001057                         | 0.00123            |
| 18         0.000513         0.000763         0.000802           19         0.000392         0.000712         0.000709           21         0.000343         0.000678         0.000767           23         0.000227         0.000688         0.000941           24         0.000438         0.00068         0.001121           25         0.000722         0.000648         0.001123           26         0.001028         0.000689         0.001247           28         0.001282         0.000763         0.0011247           28         0.001429         0.000763         0.001144           29         0.001677         0.000867         0.001125           30         0.002052         0.001038         0.0011           31         0.002338         0.00125         0.000958           32         0.002608         0.00144         0.000862           33         0.002717         0.001533         0.000733           34         0.002524         0.001514         0.00044           36         0.002174         0.001777         0.000787           38         0.001871         0.001727         0.000787           38         0.001871       | 17    | 0.000594           | 0.000919                         | 0.001045           |
| 190.0004590.0007330.000747200.0003920.0007120.000709210.0003430.0006780.000731220.0003470.0006580.000941240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0007630.001247280.0014290.0007630.001144290.0016770.0008670.001125300.0020520.0010380.0011310.002380.001440.00862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.00787380.0014390.0020380.001603400.0011580.0020710.001973410.000730.0016620.002361430.004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18    | 0.000513           | 0.000763                         | 0.000802           |
| 200.0003920.0007120.000709210.0003430.0006780.000731220.0003470.0006580.000941240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0006890.001278270.0012820.0007630.001247280.0016770.0008670.001125300.0020520.0010380.0011310.002380.001440.00862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.00787380.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002597450.001660.0011440.00246470.001750.0016990.002294480.001160.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19    | 0.000459           | 0.000733                         | 0.000747           |
| 210.0003430.0006780.000731220.0003470.0006580.000941230.0002270.0006980.000941240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0007660.001247280.0014290.0007630.001144290.0016770.008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.00862330.0027170.0015330.000733340.0025240.0016980.0044360.0021740.0017760.000597370.0018710.0017770.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.018830.002194420.004230.0016620.002361430.0004210.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20    | 0.000392           | 0.000712                         | 0.000709           |
| 22         0.000347         0.000658         0.000767           23         0.000227         0.000698         0.000941           24         0.000438         0.00068         0.001121           25         0.000722         0.000648         0.001278           26         0.00128         0.000766         0.001247           28         0.001429         0.000763         0.001144           29         0.001677         0.000867         0.001125           30         0.002052         0.001038         0.0011           31         0.002338         0.001225         0.000958           32         0.002608         0.00144         0.000862           33         0.002717         0.001533         0.000733           34         0.002524         0.001514         0.000489           35         0.002365         0.001698         0.00044           36         0.002174         0.001776         0.000597           37         0.001871         0.001777         0.000787           38         0.001827         0.002038         0.001603           40         0.001158         0.002038         0.001603           40         0.001562        | 21    | 0.000343           | 0.000678                         | 0.000731           |
| 230.0002270.0006980.000941240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0006890.001278270.0012820.0007660.001247280.0014290.0007630.001144290.0016770.0008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0016980.00044360.0021740.0017760.000597370.0018710.0017770.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.018830.002194420.004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22    | 0.000347           | 0.000658                         | 0.000767           |
| 240.0004380.000680.001121250.0007220.0006480.001193260.0010280.0006890.001278270.0012820.0007660.001247280.0014290.0007630.001144290.0016770.0008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.00862330.0027170.0015330.00733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017770.000787380.0014390.0020380.001603400.0011580.0020710.001973410.0007190.018830.002194420.004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23    | 0.000227           | 0.000698                         | 0.000941           |
| 250.0007220.0006480.001193260.0010280.0006890.001278270.0012820.0007060.001247280.0014290.0007630.001144290.0020520.0010380.0011310.002380.0012250.000958320.0026080.001440.000862330.0027170.0015330.00733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.004230.0016620.002361430.004210.0015620.00248440.0007350.0013750.002597450.001660.0011440.002446470.001750.002597480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24    | 0.000438           | 0.00068                          | 0.001121           |
| 260.0010280.0006890.001278270.0012820.0007060.001247280.0014290.0007630.001144290.0016770.0008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.004230.0016620.002361430.004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25    | 0.000722           | 0.000648                         | 0.001193           |
| 270.0012820.0007060.001247280.0014290.0007630.001144290.0016770.0008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.004230.0016620.002361430.004210.0015620.00248440.0007350.0012760.002597450.0008290.0012760.002599460.0010660.0011440.002446470.0011750.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26    | 0.001028           | 0.000689                         | 0.001278           |
| 28         0.001429         0.000763         0.001144           29         0.001677         0.000867         0.001125           30         0.002052         0.001038         0.0011           31         0.002338         0.001225         0.000958           32         0.002608         0.00144         0.000862           33         0.002717         0.001533         0.000733           34         0.002524         0.001514         0.000489           35         0.002365         0.001698         0.00044           36         0.002174         0.001776         0.000597           37         0.001871         0.001727         0.000787           38         0.001827         0.002104         0.001301           39         0.001439         0.002038         0.001603           40         0.001158         0.002071         0.001973           41         0.000719         0.01883         0.002194           42         0.000423         0.001662         0.002361           43         0.000421         0.001562         0.00248           44         0.000735         0.001375         0.002599           45         0.001269        | 27    | 0.001282           | 0.000706                         | 0.001247           |
| 290.0016770.0008670.001125300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.001660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28    | 0.001429           | 0.000763                         | 0.001144           |
| 300.0020520.0010380.0011310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.00733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29    | 0.001677           | 0.000867                         | 0.001125           |
| 310.0023380.0012250.000958320.0026080.001440.000862330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.018830.002194420.0004230.0016620.002361430.0004210.0015620.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30    | 0.002052           | 0.001038                         | 0.0011             |
| 32         0.002608         0.00144         0.000862           33         0.002717         0.001533         0.000733           34         0.002524         0.001514         0.000489           35         0.002365         0.001698         0.00044           36         0.002174         0.001776         0.000597           37         0.001871         0.001727         0.000787           38         0.001827         0.002104         0.001301           39         0.001439         0.002038         0.001603           40         0.001158         0.002071         0.001973           41         0.000719         0.001883         0.002194           42         0.000423         0.001662         0.002361           43         0.000421         0.001562         0.00248           44         0.000735         0.001276         0.002509           45         0.000829         0.001276         0.002509           46         0.001066         0.001144         0.002294           48         0.001175         0.0007855         0.001787           49         0.001175         0.000784         0.0015                                    | 31    | 0.002338           | 0.001225                         | 0.000958           |
| 330.0027170.0015330.000733340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32    | 0.002608           | 0.00144                          | 0.000862           |
| 340.0025240.0015140.000489350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33    | 0.002717           | 0.001533                         | 0.000733           |
| 350.0023650.0016980.00044360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34    | 0.002524           | 0.001514                         | 0.000489           |
| 360.0021740.0017760.000597370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35    | 0.002365           | 0.001698                         | 0.00044            |
| 370.0018710.0017270.000787380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36    | 0.002174           | 0.001776                         | 0.000597           |
| 380.0018270.0021040.001301390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37    | 0.001871           | 0.001727                         | 0.000787           |
| 390.0014390.0020380.001603400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38    | 0.001827           | 0.002104                         | 0.001301           |
| 400.0011580.0020710.001973410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39    | 0.001439           | 0.002038                         | 0.001603           |
| 410.0007190.0018830.002194420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40    | 0.001158           | 0.002071                         | 0.001973           |
| 420.0004230.0016620.002361430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41    | 0.000719           | 0.001883                         | 0.002194           |
| 430.0004210.0015620.00248440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42    | 0.000423           | 0.001662                         | 0.002361           |
| 440.0007350.0013750.002597450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43    | 0.000421           | 0.001562                         | 0.00248            |
| 450.0008290.0012760.002509460.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44    | 0.000735           | 0.001375                         | 0.002597           |
| 460.0010660.0011440.002446470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45    | 0.000829           | 0.001276                         | 0.002509           |
| 470.0011750.0010690.002294480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46    | 0.001066           | 0.001144                         | 0.002446           |
| 480.001160.0008550.001787490.0011750.0007840.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47    | 0.001175           | 0.001069                         | 0.002294           |
| 49 0.001175 0.000784 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48    | 0.00116            | 0.000855                         | 0.001787           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49    | 0.001175           | 0.000784                         | 0.0015             |
| 50 0.001207 0.000656 0.001242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50    | 0.001207           | 0.000656                         | 0.001242           |
| 51 0.00135 0.000607 0.001136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51    | 0.00135            | 0.000607                         | 0.001136           |
| 52 0.001455 0.000634 0.00099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52    | 0.001455           | 0.000634                         | 0.00099            |
| 53 0.00141 0.000719 0.000668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53    | 0.00141            | 0.000719                         | 0.000668           |
| 54 0.001069 0.000694 0.000346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54    | 0.001069           | 0.000694                         | 0.000346           |
| 55 0.000804 0.000648 0.000351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55    | 0.000804           | 0.000648                         | 0.000351           |
| 56 0.00076 0.000634 0.000412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56    | 0.00076            | 0.000634                         | 0.000412           |

The effect of load angulation on lingual cortical strain (symphyseal loading)

| 57 | 0.000894 | 0.000693 | 0.000432 |
|----|----------|----------|----------|
| 58 | 0.001044 | 0.000805 | 0.000495 |
| 59 | 0.00121  | 0.000883 | 0.000532 |
| 60 | 0.001133 | 0.000934 | 0.000328 |
| 61 | 0.003143 | 0.001925 | 0.00072  |
| 62 | 0.002939 | 0.00172  | 0.000685 |
| 63 | 0.00321  | 0.001975 | 0.000508 |
| 64 | 0.003541 | 0.002521 | 0.000761 |
| 65 | 0.004164 | 0.003188 | 0.001438 |
| 66 | 0.004428 | 0.003621 | 0.002228 |
| 67 | 0.00431  | 0.003804 | 0.00274  |
| 68 | 0.002744 | 0.002971 | 0.002785 |
| 69 | 0.000928 | 0.001759 | 0.002589 |
| 70 | 0.001373 | 0.002701 | 0.002927 |
| 71 | 0.005227 | 0.006634 | 0.004498 |
| 72 | 0.007105 | 0.008348 | 0.005067 |
| 73 | 0.007343 | 0.008293 | 0.004752 |
| 74 | 0.010573 | 0.011996 | 0.006527 |
|    |          |          |          |

The effect of load angulation on buccal cortical strain (body loading)

| Висса | al cortical strain ( | $u arepsilon_{vm}$ ) at varying lo | ading angulations |
|-------|----------------------|------------------------------------|-------------------|
|       | 45 degrees           | 90 degrees                         | 135 degrees       |
| 1     | 0.00625              | 0.00628                            | 0.00758           |
| 2     | 0.00539              | 0.00714                            | 0.0105            |
| 3     | 0.00505              | 0.00708                            | 0.0116            |
| 4     | 0.0047               | 0.0058                             | 0.011             |
| 5     | 0.00377              | 0.00321                            | 0.00789           |
| 6     | 0.00279              | 0.00164                            | 0.00505           |
| 7     | 0.002                | 0.00117                            | 0.00301           |
| 8     | 0.00158              | 0.00141                            | 0.0023            |
| 9     | 0.00133              | 0.00142                            | 0.00204           |
| 10    | 0.00117              | 0.00143                            | 0.0019            |
| 11    | 0.00126              | 0.00171                            | 0.0023            |
| 12    | 0.00123              | 0.00159                            | 0.00211           |
| 13    | 0.0011               | 0.00165                            | 0.00208           |
| 14    | 0.000899             | 0.00179                            | 0.00222           |
| 15    | 0.000859             | 0.00201                            | 0.00277           |
| 16    | 0.00142              | 0.00232                            | 0.00332           |
| 17    | 0.00172              | 0.0026                             | 0.00253           |
| 18    | 0.00111              | 0.00248                            | 0.00242           |
| 19    | 0.000758             | 0.00258                            | 0.00292           |
| 20    | 0.00011              | 0.00138                            | 0.00197           |
| 21    | 0.000444             | 0.000978                           | 0.0018            |
| 22    | 0.000934             | 0.000457                           | 0.00155           |
| 23    | 0.00117              | 0.000266                           | 0.00131           |
| 24    | 0.000769             | 0.000266                           | 0.000954          |
| 25    | 0.000844             | 0.000328                           | 0.000985          |
| 26    | 0.00138              | 0.000874                           | 0.00114           |
| 27    | 0.00156              | 0.00129                            | 0.0012            |
| 28    | 0.00145              | 0.00131                            | 0.00118           |
| 29    | 0.00153              | 0.00142                            | 0.00113           |
| 30    | 0.00124              | 0.00126                            | 0.00109           |
| 31    | 0.00116              | 0.00152                            | 0.00137           |
| 32    | 0.00099              | 0.00126                            | 0.00113           |
| 33    | 0.000731             | 0.00106                            | 0.00105           |
| 34    | 0.000516             | 0.000942                           | 0.000995          |
| 35    | 0.000388             | 0.000894                           | 0.000947          |
| 36    | 0.000373             | 0.000891                           | 0.000915          |

| 37 | 0.000445 | 0.000863 | 0.000806 |
|----|----------|----------|----------|
| 38 | 0.000526 | 0.000854 | 0.000734 |
| 39 | 0.000586 | 0.000868 | 0.000706 |
| 40 | 0.000617 | 0.000872 | 0.000694 |
| 41 | 0.000553 | 0.000916 | 0.000848 |
| 42 | 0.000525 | 0.000985 | 0.00104  |
| 43 | 0.000485 | 0.000983 | 0.00121  |
| 44 | 0.000664 | 0.00104  | 0.00183  |
| 45 | 0.00153  | 0.000682 | 0.00238  |
| 46 | 0.00254  | 0.0011   | 0.00241  |
| 47 | 0.00401  | 0.00252  | 0.00283  |
| 48 | 0.00407  | 0.00351  | 0.00314  |
| 49 | 0.00281  | 0.00365  | 0.00367  |
|    |          |          |          |

The effect of load angulation on lingual cortical strain (body loading)

| Lingu | al cortical strain | με <sub>νm</sub> ) at varying lo | ading angulations |
|-------|--------------------|----------------------------------|-------------------|
|       | 45 degrees         | 90 degrees                       | 135 degrees       |
| 1     | 0.00561            | 0.00119                          | 0.00656           |
| 2     | 0.0088             | 0.0022                           | 0.0111            |
| 3     | 0.00523            | 0.00194                          | 0.00775           |
| 4     | 0.00256            | 0.00126                          | 0.00402           |
| 5     | 0.00282            | 0.00073                          | 0.00308           |
| 6     | 0.00194            | 0.000801                         | 0.00215           |
| 7     | 0.003              | 0.00123                          | 0.00195           |
| 8     | 0.00358            | 0.00193                          | 0.0013            |
| 9     | 0.00395            | 0.00198                          | 0.00147           |
| 10    | 0.00398            | 0.00213                          | 0.00143           |
| 11    | 0.00398            | 0.00257                          | 0.00139           |
| 12    | 0.0033             | 0.00265                          | 0.00159           |
| 13    | 0.0013             | 0.00103                          | 0.00099           |
| 14    | 0.00193            | 0.0018                           | 0.00129           |
| 15    | 0.00156            | 0.0017                           | 0.00142           |
| 16    | 0.00136            | 0.00187                          | 0.00173           |
| 17    | 0.00123            | 0.00196                          | 0.0019            |
| 18    | 0.000948           | 0.00174                          | 0.00181           |
| 19    | 0.000852           | 0.00166                          | 0.00182           |
| 20    | 0.000747           | 0.00153                          | 0.00178           |
| 21    | 0.000775           | 0.0015                           | 0.00172           |
| 22    | 0.000871           | 0.00166                          | 0.00181           |
| 23    | 0.000958           | 0.00157                          | 0.00177           |
| 24    | 0.00127            | 0.002                            | 0.00199           |
| 25    | 0.00151            | 0.00257                          | 0.00242           |
| 26    | 0.00176            | 0.00324                          | 0.00305           |
| 27    | 0.00194            | 0.00374                          | 0.00349           |
| 28    | 0.00192            | 0.00369                          | 0.00341           |
| 29    | 0.00206            | 0.00396                          | 0.00363           |
| 30    | 0.0021             | 0.00404                          | 0.00368           |
| 31    | 0.0018             | 0.00372                          | 0.00353           |
| 32    | 0.00148            | 0.0034                           | 0.00341           |
| 33    | 0.00105            | 0.00277                          | 0.00296           |
| 34    | 0.000549           | 0.00189                          | 0.00224           |
| 35    | 0.000365           | 0.00109                          | 0.00166           |
| 36    | 0.000555           | 0.000739                         | 0.00133           |
| 37    | 0.000723           | 0.00056                          | 0.00105           |
| 38    | 0.00122            | 0.000815                         | 0.00104           |
| 39    | 0.00159            | 0.00121                          | 0.00101           |
| 40    | 0.00208            | 0.00172                          | 0.00115           |
| 41    | 0.00246            | 0.00219                          | 0.00129           |

| 42 | 0.00272  | 0.00254  | 0.00143  |
|----|----------|----------|----------|
| 43 | 0.00287  | 0.00269  | 0.00144  |
| 44 | 0.00305  | 0.00296  | 0.00156  |
| 45 | 0.003    | 0.00303  | 0.0016   |
| 46 | 0.00295  | 0.00307  | 0.00164  |
| 47 | 0.0028   | 0.00299  | 0.00163  |
| 48 | 0.00225  | 0.00256  | 0.0015   |
| 49 | 0.00197  | 0.00243  | 0.00155  |
| 50 | 0.0017   | 0.0022   | 0.00147  |
| 51 | 0.00162  | 0.00224  | 0.00156  |
| 52 | 0.00149  | 0.00218  | 0.00161  |
| 53 | 0.00113  | 0.00189  | 0.00155  |
| 54 | 0.000644 | 0.0013   | 0.00124  |
| 55 | 0.000522 | 0.00103  | 0.00104  |
| 56 | 0.000577 | 0.00103  | 0.00101  |
| 57 | 0.000619 | 0.0011   | 0.00106  |
| 58 | 0.000692 | 0.00122  | 0.00119  |
| 59 | 0.00074  | 0.00128  | 0.00122  |
| 60 | 0.000348 | 0.000774 | 0.000924 |
| 61 | 0.00136  | 0.00262  | 0.00241  |
| 62 | 0.0013   | 0.00243  | 0.00217  |
| 63 | 0.00112  | 0.00238  | 0.00229  |
| 64 | 0.000936 | 0.00226  | 0.00255  |
| 65 | 0.00132  | 0.00234  | 0.00288  |
| 66 | 0.00194  | 0.00219  | 0.00295  |
| 67 | 0.00232  | 0.00182  | 0.00284  |
| 68 | 0.00235  | 0.000736 | 0.002    |
| 69 | 0.0022   | 0.000795 | 0.00186  |
| 70 | 0.00227  | 0.00154  | 0.00325  |
| 71 | 0.00298  | 0.00303  | 0.00652  |
| 72 | 0.00325  | 0.00389  | 0.00788  |
| 73 | 0.00307  | 0.00366  | 0.00738  |
| 74 | 0.00392  | 0.00474  | 0.0103   |
|    |          |          |          |

#### Section 5.4.1

The effect of load position on buccal cortical strain (non-linear analysis)

|               |           | Buccal strai | n (με <sub>νm</sub> ) at an | atomical sub-site |          |
|---------------|-----------|--------------|-----------------------------|-------------------|----------|
| Node position | Ramus     | Angle        | Body                        | Parasymphysis     | Symphysi |
| 1             | 7034.2579 | 6898.8229    | 4983.1251                   | 5779.9447         | 6822.1   |
| 2             | 7072.6099 | 7668.0935    | 5640.3927                   | 7797.2187         | 8623.9   |
| 3             | 6060.8678 | 7178.8986    | 5487.9208                   | 8299.207          | 9751.2   |
| 4             | 3692.8874 | 5286.7256    | 4335.3582                   | 7487.0999         | 9474.1   |
| 5             | 1615.0221 | 2616.5317    | 2294.4403                   | 5033.9629         | 6847.7   |
| 6             | 2378.3366 | 1852.4414    | 1177.9586                   | 3105.0135         | 4454.1   |
| 7             | 3276.3604 | 2229.7735    | 857.5776                    | 1668.1802         | 2579.4   |
| 8             | 3357.1083 | 2593.4375    | 1019.1772                   | 1019.1439         | 1623.1   |
| 9             | 1978.6752 | 2361.9394    | 1026.7554                   | 768.4459          | 1169.1   |
| 10            | 1401.5493 | 2180.1557    | 1033.2229                   | 717.3407          | 954.8    |
| 11            | 1174.7858 | 2555.349     | 1249.9171                   | 820.1628          | 1013.3   |
| 12            | 905.6323  | 1741.0024    | 1162.7688                   | 706.7832          | 942.8    |
| 13            | 814.5394  | 1529.2211    | 1198.9535                   | 684.8569          | 852.7    |
| 14            | 783.0681  | 1496.6703    | 1278.4051                   | 697.298           | 751.6    |
| 15            | 720.2783  | 1403.1756    | 1427.301                    | 877.7813          | 817.5    |
| 16            | 662.7356  | 1276.9266    | 1676.0118                   | 1123.9801         | 972.9    |
| 17            | 633.6346  | 1176.6319    | 1908.8657                   | 1361.7498         | 1106.7   |
| 18            | 657.2397  | 1190.0732    | 1758.0302                   | 1633.135          | 1228.8   |
| 19            | 859.2484  | 1433.5659    | 1818.5769                   | 2191.0172         | 1699     |
| 20            | 760.5864  | 1116.7052    | 999.3266                    | 1852.868          | 1566.6   |
| 21            | 776.568   | 1110.2628    | 708.1096                    | 1830.7771         | 1714.9   |
| 22            | 817.7667  | 1117.2764    | 342.5209                    | 1832.5111         | 2018.5   |
| 23            | 832.2343  | 1147.4208    | 178.1289                    | 1291.0443         | 2288.8   |
| 24            | 654.6632  | 935.9668     | 176.4232                    | 546.0201          | 741.1    |
| 25            | 686.172   | 968.3062     | 212.3788                    | 591.8153          | 851.7    |
| 26            | 1064.6151 | 1404.1459    | 598.5878                    | 994.3671          | 2050.1   |
| 27            | 1164.6474 | 1536.3577    | 899.3224                    | 743.6959          | 1893.7   |
| 28            | 1024.7362 | 1355.5952    | 911.8209                    | 479.2297          | 1536.5   |
| 29            | 970.1398  | 1286.5351    | 983.0315                    | 423.847           | 1516     |
| 30            | 818.5776  | 1088.4719    | 871.6157                    | 369.4477          | 1175     |
| 31            | 945.8963  | 1271.1277    | 1059.8965                   | 400.5199          | 1039.8   |
| 32            | 751.721   | 1017.0963    | 882.5229                    | 439.0423          | 936.5    |
| 33            | 643.2244  | 874.7451     | 745.5198                    | 484.6952          | 827      |
| 34            | 527.8216  | 724.5262     | 667.4449                    | 554.5494          | 670.8    |
| 35            | 429.3669  | 596.183      | 637.6695                    | 697.608           | 645.9    |
| 36            | 389.5445  | 542.4371     | 639.9517                    | 823.579           | 719.6    |
| 37            | 353.5552  | 494.4496     | 633.4714                    | 893.198           | 791.3    |
| 38            | 329.4725  | 466.8384     | 632.5691                    | 900.5556          | 804.6    |
| 39            | 283.5221  | 413.4649     | 642.5354                    | 945.416           | 825.5    |
| 40            | 249.945   | 373.5658     | 646.8606                    | 977.6657          | 842.3    |
| 41            | 248.2562  | 379.0905     | 678.3023                    | 1133.569          | 1015.9   |
| 42            | 230.2939  | 371.1098     | 730.1141                    | 1348.2104         | 1253.8   |
| 43            | 205 0212  | 343 2272     | 731 0501                    | 1537 53/12        | 1516.0   |

| 44   | 166.8433  | 274.2211  | 815.1622  | 2494.3143 | 2764.5 |
|------|-----------|-----------|-----------|-----------|--------|
| 45   | 381.6776  | 373.831   | 599.4656  | 3561.5592 | 4611.5 |
| 46   | 812.6028  | 980.4051  | 676.3731  | 4099.1074 | 6116.2 |
| 47 2 | 1200.8357 | 1583.3325 | 1621.5005 | 4292.1518 | 7284.3 |
| 48 2 | 1405.1849 | 2002.4277 | 2365.9543 | 4105.9866 | 7099.1 |
| 49 2 | 1282.4841 | 1960.7079 | 2527.1033 | 3695.9127 | 5663.3 |

The effect of load position on lingual cortical strain (non-linear analysis)

|               |           | -ingual struit | $(\mu e_{vm})$ at an | alonnear sub-sile |           |
|---------------|-----------|----------------|----------------------|-------------------|-----------|
| Node position | Ramus     | Angle          | Body                 | Parasymphysis     | Symphysis |
| 1             | 1601.4654 | 1039.2545      | 921.5983             | 5334.8334         | 8731.5    |
| 2             | 2682.6209 | 1609.3439      | 1828.0298            | 9565.3837         | 14958.1   |
| 3             | 1821.9283 | 953.3935       | 1656.1541            | 7132.1845         | 8852.3    |
| 4             | 1708.8547 | 1139.3314      | 1093.3888            | 4037.8993         | 4317.8    |
| 5             | 2554.0776 | 1764.6102      | 606.3749             | 3297.7128         | 3758.2    |
| 6             | 1534.3562 | 1270.9944      | 646.1316             | 1929.5529         | 2578.9    |
| 7             | 1267.5982 | 896.0779       | 936.345              | 851.0097          | 2711.7    |
| 8             | 2398.655  | 1612.2547      | 1443.7211            | 628.1231          | 2337.7    |
| 9             | 3432.2776 | 2348.5303      | 1477.1414            | 595.2098          | 2717.3    |
| 10            | 4127.35   | 2910.5385      | 1591.6997            | 593.7523          | 2687.5    |
| 11            | 4915.8773 | 3643.4618      | 1912.0045            | 612.7451          | 2504      |
| 12            | 4836.4841 | 3880.6138      | 1955.2357            | 757.0681          | 1986.2    |
| 13            | 1957.8949 | 1490.3294      | 753.8935             | 581.0433          | 1062.5    |
| 14            | 2738.2532 | 2621.4626      | 1328.7918            | 682.2967          | 1256.5    |
| 15            | 2130.3256 | 2527.8149      | 1260.3856            | 716.5378          | 1105.9    |
| 16            | 1762.2192 | 2807.1891      | 1387.7968            | 809.8754          | 1006.2    |
| 17            | 1518.4497 | 2929.5648      | 1463.0723            | 826.2406          | 900.5     |
| 18            | 1192.4044 | 2490.0563      | 1305.2514            | 762.1828          | 787.4     |
| 19            | 1125.2215 | 2323.2238      | 1251.4235            | 738.1715          | 782.6     |
| 20            | 1068.0312 | 2104.4117      | 1151.5022            | 689.8239          | 773.7     |
| 21            | 1042.413  | 1944.7281      | 1131.7979            | 641.589           | 728.5     |
| 22            | 1080.1348 | 2008.8291      | 1255.598             | 655.595           | 701.9     |
| 23            | 1078.4549 | 1867.6751      | 1161.0103            | 567.2627          | 720.4     |
| 24            | 1061.153  | 1904.5014      | 1439.7276            | 672.2338          | 673.1     |
| 25            | 1065.7118 | 2034.9495      | 1878.9843            | 921.934           | 654.2     |
| 26            | 1068.0182 | 2127.9249      | 2399.6677            | 1246.7193         | 735.8     |
| 27            | 1009.5352 | 2081.9792      | 2834.4457            | 1538.4642         | 793.9     |
| 28            | 929.1627  | 1809.4699      | 2794.1878            | 1653.3305         | 878.6     |
| 29            | 896.0369  | 1712.7837      | 3007.4175            | 1906.8513         | 997.7     |
| 30            | 924.0206  | 1667.8219      | 3015.7581            | 2272.951          | 1193.5    |
| 31            | 919.6146  | 1546.7745      | 2750.4562            | 2559.2869         | 1373.2    |
| 32            | 1001.7285 | 1591.341       | 2493.6539            | 2874.3978         | 1581.8    |
| 33            | 1058.7074 | 1519.1748      | 2028.2933            | 3073.2404         | 1668.6    |
| 34            | 1083.3312 | 1493.6173      | 1372.778             | 2948.7661         | 1650.6    |
| 35            | 1116.2925 | 1486.4396      | 809.1143             | 2637.7442         | 1755.7    |
| 36            | 1100.0236 | 1449.1125      | 548.2973             | 2155.8538         | 1781.8    |
| 37            | 998.5305  | 1311.1103      | 402.6996             | 1554.2926         | 1685      |
| 38            | 1068.3678 | 1393.4864      | 575.1722             | 1139.7374         | 2018.5    |
| 39            | 1051.5012 | 1373.9453      | 859.6793             | 607.9862          | 1955      |

| 40 | 1161.3423 | 1527.5764 | 1217.9688 | 357.0096   | 2038.1  |
|----|-----------|-----------|-----------|------------|---------|
| 41 | 1263.9832 | 1693.2982 | 1562.6936 | 231.5903   | 1908.1  |
| 42 | 1310.3881 | 1787.4779 | 1820.8981 | 346.9648   | 1725.1  |
| 43 | 1289.5868 | 1776.5463 | 1920.5497 | 455.2618   | 1656.3  |
| 44 | 1301.746  | 1829.8413 | 2132.2946 | 695.9731   | 1504.7  |
| 45 | 1309.2552 | 1860.2776 | 2200.9327 | 808.2233   | 1412.9  |
| 46 | 1273.3817 | 1829.9789 | 2249.5033 | 971.7299   | 1292.8  |
| 47 | 1227.5238 | 1778.1781 | 2223.3022 | 1055.509   | 1222.5  |
| 48 | 1038.1086 | 1507.2406 | 1875.7234 | 1026.4867  | 974.4   |
| 49 | 1023.7359 | 1490.6567 | 1803.9184 | 1076.0941  | 877.1   |
| 50 | 919.5167  | 1347.1143 | 1635.8352 | 1065.6485  | 723.3   |
| 51 | 920.3195  | 1356.8103 | 1670.6233 | 1166.8086  | 635.4   |
| 52 | 869.6136  | 1286.627  | 1594.5794 | 1218.9887  | 622.2   |
| 53 | 770.1426  | 1140.6566 | 1384.0403 | 1196.6971  | 680.4   |
| 54 | 559.8177  | 828.9661  | 960.8172  | 938.3444   | 661.3   |
| 55 | 460.1067  | 685.6646  | 767.111   | 751.958    | 641.8   |
| 56 | 427.6702  | 651.5917  | 772.3552  | 723.0384   | 620.5   |
| 57 | 422.3665  | 656.7755  | 833.2769  | 818.6172   | 655.9   |
| 58 | 447.2807  | 705.3154  | 919.8875  | 932.972    | 745.2   |
| 59 | 425.727   | 686.9541  | 958.3288  | 1034.3684  | 794.3   |
| 60 | 205.171   | 344.7439  | 574.2365  | 943.9023   | 869.1   |
| 61 | 665.2924  | 1153.8204 | 1955.845  | 2472.2044  | 1633.1  |
| 62 | 591.4203  | 1043.712  | 1813.1782 | 2283.9986  | 1453.1  |
| 63 | 514.2648  | 974.8223  | 1811.2709 | 2524.5833  | 1688.6  |
| 64 | 399.3775  | 839.918   | 1710.6359 | 2831.518   | 2203.3  |
| 65 | 304.4812  | 749.114   | 1793.0985 | 3409.9702  | 2933.5  |
| 66 | 171.8376  | 551.0575  | 1703.1338 | 3755.0555  | 3566.9  |
| 67 | 169.0187  | 332.805   | 1461.3549 | 3874.2045  | 4070.8  |
| 68 | 384.0987  | 288.2924  | 694.2726  | 2816.7225  | 3519.4  |
| 69 | 623.3181  | 705.5011  | 452.2097  | 1488.3942  | 2142.5  |
| 70 | 745.89    | 1000.2272 | 874.2055  | 573.0341   | 1398.2  |
| 71 | 856.6363  | 1453.3103 | 1980.407  | 3444.3298  | 4879.8  |
| 72 | 958.5835  | 1748.387  | 2742.33   | 5339.0698  | 7028.9  |
| 73 | 780.1587  | 1546.28   | 2829.058  | 6384.3048  | 8271.2  |
| 74 | 825.7072  | 2005.1915 | 3989.7859 | 13549.6277 | 19964.8 |

\_

#### Section 5.4.2

|               | Buccal st | rain (με <sub>νm</sub> ) at anat | tomical su | b-site |
|---------------|-----------|----------------------------------|------------|--------|
| Node position | Symphysis | Parasymphysis                    | Body       | Ramus  |
| 1             | 0.5358    | 0.3843                           | 0.3985     | 0.5578 |
| 2             | 1.1807    | 0.9301                           | 0.8461     | 1.0607 |
| 3             | 1.4195    | 1.0955                           | 0.9531     | 1.1126 |
| 4             | 1.645     | 1.1885                           | 0.9172     | 0.8808 |
| 5             | 1.1543    | 0.7101                           | 0.4012     | 0.2847 |
| 6             | 0.6969    | 0.3595                           | 0.1443     | 0.4551 |
| 7             | 0.3209    | 0.1305                           | 0.1329     | 0.7079 |
| 8             | 0.136     | 0.06                             | 0.1396     | 0.6279 |
| 9             | 0.0723    | 0.032                            | 0.1042     | 0.3275 |
| 10            | 0.0471    | 0.0241                           | 0.0921     | 0.1469 |
| 11            | 0.044     | 0.0245                           | 0.1135     | 0.0805 |
| 12            | 0.032     | 0.0191                           | 0.1062     | 0.0512 |
| 13            | 0.0269    | 0.0211                           | 0.1371     | 0.04   |
| 14            | 0.0243    | 0.0289                           | 0.1718     | 0.0334 |
| 15            | 0.0319    | 0.0474                           | 0.206      | 0.0308 |
| 16            | 0.0581    | 0.08                             | 0.2148     | 0.03   |
| 17            | 0.0839    | 0.1225                           | 0.2551     | 0.0329 |
| 18            | 0.1263    | 0.1975                           | 0.2897     | 0.0382 |
| 19            | 0.2108    | 0.3125                           | 0.2945     | 0.0623 |
| 20            | 0.1608    | 0.2261                           | 0.0989     | 0.071  |
| 21            | 0.1854    | 0.1704                           | 0.0564     | 0.0769 |
| 22            | 0.2169    | 0.1336                           | 0.0263     | 0.0819 |
| 23            | 0.2521    | 0.0975                           | 0.026      | 0.0772 |
| 24            | 0.0531    | 0.0106                           | 0.0258     | 0.0596 |
| 25            | 0.0496    | 0.0087                           | 0.0302     | 0.0663 |
| 26            | 0.2502    | 0.0146                           | 0.0863     | 0.1318 |
| 27            | 0.22      | 0.0059                           | 0.1431     | 0.1553 |
| 28            | 0.161     | 0.004                            | 0.152      | 0.1361 |
| 29            | 0.1352    | 0.0068                           | 0.1668     | 0.1309 |
| 30            | 0.0938    | 0.0103                           | 0.1444     | 0.1008 |
| 31            | 0.0676    | 0.0201                           | 0.1826     | 0.1176 |
| 32            | 0.0426    | 0.0196                           | 0.1182     | 0.0694 |
| 33            | 0.027     | 0.0199                           | 0.0894     | 0.0477 |
| 34            | 0.0158    | 0.0286                           | 0.0823     | 0.0314 |
| 35            | 0.016     | 0.0413                           | 0.0719     | 0.0206 |
| 36            | 0.0184    | 0.0466                           | 0.0671     | 0.0161 |
| 37            | 0.0216    | 0.0388                           | 0.0505     | 0.0119 |
| 38            | 0.0262    | 0.0356                           | 0.0435     | 0.0099 |
| 39            | 0.0316    | 0.0397                           | 0.0438     | 0.008  |
| 40            | 0.0371    | 0.0453                           | 0.0456     | 0.0069 |
| 41            | 0.0555    | 0.0648                           | 0.0552     | 0.0069 |
| 42            | 0.0948    | 0.1051                           | 0.0738     | 0.0065 |

The effect of load position on buccal cortical strain (non-linear analysis, non-physiological load)

| 43 | 0.1336 | 0.134  | 0.0823 | 0.0059 |
|----|--------|--------|--------|--------|
| 44 | 0.3939 | 0.289  | 0.1106 | 0.0048 |
| 45 | 0.821  | 0.4782 | 0.0658 | 0.0075 |
| 46 | 0.9907 | 0.4959 | 0.0708 | 0.0444 |
| 47 | 1.0919 | 0.5104 | 0.231  | 0.1095 |
| 48 | 0.8295 | 0.4897 | 0.355  | 0.1455 |
| 49 | 0.5681 | 0.453  | 0.3423 | 0.123  |

# The effect of load position on lingual cortical strain (non-linear analysis, nonphysiological load)

|               | Lingual st | train (με <sub>νm</sub> ) at ana | tomical si | ub-site |
|---------------|------------|----------------------------------|------------|---------|
| Node position | Symphysis  | Parasymphysis                    | Body       | Ramus   |
| 1             | 1.2942     | 0.5937                           | 0.0858     | 0.1306  |
| 2             | 1.832      | 0.9262                           | 0.1786     | 0.1422  |
| 3             | 2.2375     | 1.2465                           | 0.3455     | 0.3096  |
| 4             | 1.5884     | 1.0041                           | 0.3527     | 0.4394  |
| 5             | 1.5934     | 0.9208                           | 0.2294     | 0.5665  |
| 6             | 1.0669     | 0.7537                           | 0.2857     | 0.486   |
| 7             | 0.4002     | 0.5133                           | 0.3888     | 0.3324  |
| 8             | 0.2229     | 0.3818                           | 0.4115     | 0.4178  |
| 9             | 0.2376     | 0.091                            | 0.2606     | 0.5015  |
| 10            | 0.3021     | 0.0385                           | 0.2633     | 0.6615  |
| 11            | 0.2633     | 0.0275                           | 0.2604     | 0.7567  |
| 12            | 0.1823     | 0.0313                           | 0.2518     | 0.7404  |
| 13            | 0.078      | 0.0202                           | 0.0854     | 0.3531  |
| 14            | 0.0829     | 0.0219                           | 0.1241     | 0.3837  |
| 15            | 0.0535     | 0.0192                           | 0.108      | 0.2704  |
| 16            | 0.0397     | 0.0201                           | 0.1202     | 0.2115  |
| 17            | 0.0293     | 0.0192                           | 0.1263     | 0.1506  |
| 18            | 0.0198     | 0.0159                           | 0.1038     | 0.0945  |
| 19            | 0.0163     | 0.0151                           | 0.1027     | 0.0792  |
| 20            | 0.014      | 0.0146                           | 0.1009     | 0.0709  |
| 21            | 0.0121     | 0.016                            | 0.0972     | 0.0611  |
| 22            | 0.0113     | 0.0193                           | 0.1017     | 0.0526  |
| 23            | 0.0133     | 0.0202                           | 0.1492     | 0.0566  |
| 24            | 0.0139     | 0.0349                           | 0.2304     | 0.0641  |
| 25            | 0.0167     | 0.0542                           | 0.2772     | 0.0532  |
| 26            | 0.025      | 0.083                            | 0.3406     | 0.0425  |
| 27            | 0.0306     | 0.0906                           | 0.2928     | 0.042   |
| 28            | 0.0401     | 0.1125                           | 0.3082     | 0.0409  |
| 29            | 0.0595     | 0.1433                           | 0.309      | 0.0448  |
| 30            | 0.1015     | 0.2433                           | 0.3946     | 0.0531  |
| 31            | 0.1492     | 0.2941                           | 0.3435     | 0.0696  |
| 32            | 0.1865     | 0.3765                           | 0.3362     | 0.0941  |
| 33            | 0.199      | 0.3747                           | 0.2182     | 0.1212  |
| 34            | 0.2284     | 0.3747                           | 0.1152     | 0.133   |
| 35            | 0.2543     | 0.2953                           | 0.046      | 0.1406  |
| 36            | 0.2722     | 0.2289                           | 0.0309     | 0.1426  |

| 37 | 0.234  | 0.1384 | 0.028  | 0.1226 |
|----|--------|--------|--------|--------|
| 38 | 0.2822 | 0.0707 | 0.0594 | 0.1422 |
| 39 | 0.2689 | 0.0122 | 0.1102 | 0.1494 |
| 40 | 0.2935 | 0.0041 | 0.1827 | 0.1788 |
| 41 | 0.2667 | 0.0086 | 0.2476 | 0.1997 |
| 42 | 0.2758 | 0.0198 | 0.3141 | 0.2286 |
| 43 | 0.2315 | 0.0297 | 0.3103 | 0.2081 |
| 44 | 0.1696 | 0.0496 | 0.3271 | 0.1924 |
| 45 | 0.1419 | 0.0568 | 0.317  | 0.1799 |
| 46 | 0.103  | 0.0638 | 0.2903 | 0.1494 |
| 47 | 0.0751 | 0.0633 | 0.2276 | 0.1159 |
| 48 | 0.0435 | 0.0626 | 0.2032 | 0.0914 |
| 49 | 0.0319 | 0.0538 | 0.1563 | 0.0728 |
| 50 | 0.02   | 0.0549 | 0.1428 | 0.0582 |
| 51 | 0.0156 | 0.0641 | 0.1435 | 0.0549 |
| 52 | 0.0143 | 0.0934 | 0.19   | 0.0603 |
| 53 | 0.0139 | 0.0857 | 0.1591 | 0.0459 |
| 54 | 0.0132 | 0.0561 | 0.0923 | 0.0256 |
| 55 | 0.0125 | 0.0403 | 0.0701 | 0.0168 |
| 56 | 0.0133 | 0.0404 | 0.0626 | 0.0139 |
| 57 | 0.0182 | 0.0417 | 0.0555 | 0.0131 |
| 58 | 0.026  | 0.0518 | 0.0637 | 0.0136 |
| 59 | 0.0339 | 0.0612 | 0.0687 | 0.0123 |
| 60 | 0.0514 | 0.0597 | 0.0421 | 0.0054 |
| 61 | 0.1558 | 0.2284 | 0.194  | 0.0205 |
| 62 | 0.1381 | 0.2156 | 0.1877 | 0.0184 |
| 63 | 0.1501 | 0.2055 | 0.1577 | 0.0149 |
| 64 | 0.2471 | 0.2873 | 0.1807 | 0.0113 |
| 65 | 0.3721 | 0.4    | 0.2198 | 0.0089 |
| 66 | 0.431  | 0.4569 | 0.2307 | 0.0052 |
| 67 | 0.3407 | 0.4151 | 0.2011 | 0.0053 |
| 68 | 0.2415 | 0.162  | 0.0623 | 0.0206 |
| 69 | 0.5659 | 0.2518 | 0.0941 | 0.0646 |
| 70 | 1.136  | 0.6745 | 0.2549 | 0.0978 |
| 71 | 1.634  | 1.0718 | 0.4473 | 0.1141 |
| 72 | 1.5101 | 1.0422 | 0.4653 | 0.1112 |
| 73 | 1.2702 | 0.8732 | 0.3721 | 0.0706 |
| 74 |        |        |        |        |

The effect of load position on buccal cortical stress (non-linear analysis, nonphysiological load)

|               | Buccal stress ( $\sigma_{vm}$ )(MPa) at anatomical sub-site |               |          |          |
|---------------|-------------------------------------------------------------|---------------|----------|----------|
| Node position | Symphysis                                                   | Parasymphysis | Body     | Ramus    |
| 1             | 404.1272                                                    | 324.243       | 331.4517 | 414.3793 |
| 2             | 738.8577                                                    | 608.3267      | 564.4878 | 676.1435 |
| 3             | 862.9023                                                    | 694.2292      | 619.958  | 702.8436 |
| 4             | 979.8281                                                    | 742.4924      | 601.3634 | 582.4033 |
| 5             | 724.8134                                                    | 494.3764      | 334.1891 | 278.9669 |

| 6  | 487.429  | 312.2702 | 201.2204 | 361.7262 |
|----|----------|----------|----------|----------|
| 7  | 292.747  | 192.3278 | 193.3365 | 492.4443 |
| 8  | 196.0712 | 155.3115 | 196.7029 | 450.8206 |
| 9  | 161.9208 | 140.7278 | 178.288  | 294.5686 |
| 10 | 148.6027 | 136.0316 | 172.0075 | 200.6484 |
| 11 | 146.9865 | 136.2891 | 183.1494 | 166.0642 |
| 12 | 140.7489 | 131.2753 | 179.3117 | 150.6961 |
| 13 | 137.9925 | 133.437  | 195.4023 | 144.88   |
| 14 | 136.3303 | 139.0641 | 213.4461 | 141.4357 |
| 15 | 140.7263 | 148.7087 | 231.2076 | 140.0616 |
| 16 | 154.3584 | 165.7144 | 236.1139 | 139.6363 |
| 17 | 167.8502 | 187.84   | 257.0928 | 141.1707 |
| 18 | 189.9048 | 226.8184 | 274.8573 | 143.9738 |
| 19 | 234.3012 | 287.2914 | 277.6358 | 156.6097 |
| 20 | 207.7708 | 241.6768 | 175.5594 | 161.072  |
| 21 | 220.5666 | 212.9269 | 153.4005 | 164.1379 |
| 22 | 236.9338 | 193.9117 | 137.4751 | 166.6729 |
| 23 | 255.3835 | 174.9403 | 137.2931 | 164.208  |
| 24 | 152.3645 | 113.3519 | 137.2005 | 155.0482 |
| 25 | 150.5391 | 102.3378 | 139.7769 | 158.6014 |
| 26 | 254.3245 | 124.7837 | 169.0128 | 192.6655 |
| 27 | 238.6899 | 76.7418  | 198.5214 | 204.8759 |
| 28 | 208.1678 | 56.3655  | 203.2467 | 194.8966 |
| 29 | 194.6374 | 86.9358  | 210.8484 | 192.1404 |
| 30 | 173.0839 | 111.3728 | 199.2191 | 176.5242 |
| 31 | 159.4119 | 132.5125 | 219.1427 | 185.3099 |
| 32 | 146.3524 | 132.0016 | 185.5885 | 160.1982 |
| 33 | 138.1199 | 132.3013 | 170.5807 | 148.8821 |
| 34 | 127.0379 | 138.8937 | 166.8797 | 140.402  |
| 35 | 127.3956 | 145.5788 | 161.4533 | 132.9159 |
| 36 | 130.7258 | 148.3332 | 158.9701 | 127.2396 |
| 37 | 134.0671 | 144.2723 | 150.3153 | 117.841  |
| 38 | 137.6707 | 142.6367 | 146.6952 | 109.2621 |
| 39 | 140.6646 | 144.741  | 146.8629 | 97.5151  |
| 40 | 143.5919 | 147.7223 | 147.7951 | 87.3829  |
| 41 | 153.4438 | 157.8984 | 152.843  | 87.4598  |
| 42 | 174.174  | 178.8919 | 162.5116 | 83.1045  |
| 43 | 194.6695 | 194.0034 | 166.9445 | 76.8372  |
| 44 | 330.7982 | 274.7428 | 181.7696 | 64.6523  |
| 45 | 552.0727 | 372.9178 | 158.9974 | 93.4212  |
| 46 | 639.6591 | 382.6729 | 166.6022 | 147.2542 |
| 47 | 692.8092 | 393.3206 | 248.0101 | 181.2053 |
| 48 | 559.5292 | 391.2932 | 311.7632 | 200.0169 |
| 49 | 430.3954 | 374.0035 | 304.9372 | 188.3474 |

|               | Lingual strass $(\sigma_{-})(MDa)$ at anatomical sub-site |               |          |          |
|---------------|-----------------------------------------------------------|---------------|----------|----------|
| Node position | Symphysis                                                 | Parasymnhysis | Body     | Ramus    |
| 1             | 798 2967                                                  | Δ22 7027      | 168 8517 | 192 1258 |
| 2             | 1076 999                                                  | 606 0037      | 217 / 75 | 198 3016 |
| 3             | 1288 5/12                                                 | 772 6515      | 217.473  | 285 7644 |
| 4             | 953 7702                                                  | 647 0265      | 309.3023 | 205.7044 |
| 5             | 956 5235                                                  | 603 7712      | 247 895  | 419 6319 |
| 6             | 684,7073                                                  | 516.9478      | 275.1658 | 378.0274 |
| 7             | 344.518                                                   | 392,1784      | 327,2703 | 299.8859 |
| 8             | 249.5594                                                  | 323.1049      | 338.3883 | 342.0089 |
| 9             | 248.3469                                                  | 171.866       | 259.76   | 385.2733 |
| 10            | 281.8431                                                  | 143.3041      | 261.1509 | 468.2426 |
| 11            | 261.3502                                                  | 137.9599      | 259.5347 | 517.7913 |
| 12            | 219.6779                                                  | 139.9805      | 255.2575 | 509.815  |
| 13            | 164.8188                                                  | 132.4405      | 168.5785 | 308.5613 |
| 14            | 167.4107                                                  | 134.1748      | 188.7261 | 324.1453 |
| 15            | 152.0658                                                  | 131.292       | 180.3333 | 265.118  |
| 16            | 144.8677                                                  | 132.2838      | 186.6298 | 234.3975 |
| 17            | 139.3913                                                  | 131.5071      | 189.7729 | 202.6287 |
| 18            | 131.9361                                                  | 127.0112      | 178.0406 | 173.2914 |
| 19            | 127.5435                                                  | 125.6126      | 177.5253 | 165.3024 |
| 20            | 123.468                                                   | 124.7322      | 176.6166 | 160.9926 |
| 21            | 118.4513                                                  | 127.2122      | 174.6393 | 155.8743 |
| 22            | 115.8827                                                  | 131.6061      | 176.9663 | 151.4621 |
| 23            | 121.9569                                                  | 132.4754      | 201.7244 | 153.5228 |
| 24            | 123.203                                                   | 142.242       | 244.0419 | 157.4068 |
| 25            | 127.8089                                                  | 152.2569      | 268.3631 | 151.794  |
| 26            | 136.6845                                                  | 167.3265      | 301.2837 | 146.2101 |
| 27            | 140.0006                                                  | 171.2729      | 276.5166 | 145.9614 |
| 28            | 145.0405                                                  | 182.7207      | 284.4336 | 145.3574 |
| 29            | 155.1227                                                  | 198.6641      | 284.8202 | 147.4051 |
| 30            | 176.9771                                                  | 250.7501      | 329.3823 | 151.746  |
| 31            | 201.7856                                                  | 277.1039      | 302.8331 | 160.3759 |
| 32            | 221.2035                                                  | 319.9701      | 298.9906 | 173.1605 |
| 33            | 227.7771                                                  | 319.0675      | 237.7222 | 187.2728 |
| 34            | 242.9181                                                  | 319.0485      | 184.0935 | 193.3764 |
| 35            | 256.3728                                                  | 277.7355      | 147.9964 | 197.3189 |
| 36            | 265.653                                                   | 243.2906      | 140.1734 | 198.2864 |
| 37            | 245.8322                                                  | 196.3004      | 138.5503 | 187.9354 |
| 38            | 270.8966                                                  | 160.9994      | 155.0835 | 198.1144 |
| 39            | 264.0199                                                  | 114.8794      | 181.5419 | 201.865  |
| 40            | 276.8152                                                  | 60.4788       | 219.4114 | 217.1662 |
| 41            | 262.8896                                                  | 103.847       | 253.1951 | 227.9961 |
| 42            | 267.6363                                                  | 132.1726      | 287.6623 | 243.012  |
| 43            | 244.657                                                   | 139.5756      | 285.7043 | 232.3473 |
| 44            | 212.5414                                                  | 149.981       | 294.3613 | 224.2417 |
| 45            | 198.1055                                                  | 153.7735      | 289.1399 | 217.7419 |
| 40            | 177.9214                                                  | 157.3932      | 275.2934 | 201.9047 |
| 47            | 163.3353                                                  | 157.1042      | 242.5376 | 184.4635 |

# The effect of load position on lingual cortical stress (non-linear analysis, non-physiological load)

| 48 | 146.7942 | 156.7322 | 229.9241 | 171.6641 |  |
|----|----------|----------|----------|----------|--|
| 49 | 140.7817 | 152.118  | 205.5531 | 161.9992 |  |
| 50 | 132.5809 | 152.7209 | 198.531  | 154.3794 |  |
| 51 | 126.8325 | 157.5231 | 198.8663 | 152.6455 |  |
| 52 | 124.5245 | 172.7618 | 223.0819 | 155.4374 |  |
| 53 | 123.6692 | 168.7662 | 207.0038 | 147.9519 |  |
| 54 | 121.9772 | 153.3005 | 172.1323 | 137.0696 |  |
| 55 | 120.1669 | 145.0652 | 160.5594 | 128.365  |  |
| 56 | 122.1959 | 145.0986 | 156.6316 | 123.3323 |  |
| 57 | 130.362  | 145.7796 | 152.9473 | 121.4457 |  |
| 58 | 137.507  | 151.0389 | 157.1882 | 122.8619 |  |
| 59 | 141.8557 | 155.8919 | 159.8206 | 119.4124 |  |
| 60 | 150.8418 | 155.153  | 145.9731 | 70.7428  |  |
| 61 | 205.6827 | 243.232  | 225.2038 | 132.5473 |  |
| 62 | 196.4667 | 236.5024 | 221.864  | 129.0889 |  |
| 63 | 202.3874 | 231.1948 | 206.3099 | 125.1026 |  |
| 64 | 252.9257 | 273.6979 | 218.2409 | 115.9547 |  |
| 65 | 317.9133 | 332.3314 | 238.6527 | 103.8492 |  |
| 66 | 349.1448 | 362.3164 | 244.357  | 69.5931  |  |
| 67 | 306.1599 | 341.772  | 229.2735 | 70.2706  |  |
| 68 | 269.5184 | 222.1399 | 159.0299 | 130.7405 |  |
| 69 | 425.4951 | 267.135  | 175.467  | 157.791  |  |
| 70 | 716.1303 | 476.1135 | 257.5443 | 175.0622 |  |
| 71 | 974.1115 | 681.663  | 356.9503 | 183.5041 |  |
| 72 | 909.5157 | 666.2532 | 366.1121 | 181.9532 |  |
| 73 | 784.7343 | 578.3068 | 317.7167 | 160.8128 |  |
| 74 | 1201.813 | 865.1869 | 440.9817 | 178.7708 |  |

#### A clinical case showing the use of FEA to model a fracture presenting clinically.

This section shows a comparison between the results of a modelled high kinetic energy impact to the symphyseal region and a clinical case. The picture below shows a reconstructed CT scan taken from a patient who suffered facial trauma as a result of a kick to the symphyseal region by a horse.



*3D reconstruction of a CT of a patient who suffered a horse kick to the chin. (Used with the consent of the patient).* The unfortunate patient almost managed to avoid the kick and so did not receive the full impact. The only soft-tissue injury that the patient suffered was a 2.5cm horizontal laceration to the chin. The patient suffered bilateral fractures to the condylar necks and a linear fracture just to the patient's left of the symphysis. The FEA simulation of the injury suggests more fragmentation to the symphyseal region than is seen in the clinical case, although in the model there is no soft-tissue to absorb the impact energy. The pictures reinforce the impression that the sub-site location of mandibular fractures is determined by the point of impact. The energy of the impact determines how much damage is produced at these sub-sites. The clinical picture shows slightly more antero-

medial displacement of the condylar heads. This is due to the fact that the FE analysis shows only the first 1.0ms of impact (and there are no muscles represented in the model). The clinical CT (which was taken some time after the initial impact) shows the position of the condylar heads once the lateral pterygoid muscles have had time to act. There is also similarity of the angulation of the condylar neck fracture, with the fracture passing supero-inferiorly from lateral to medial. The results suggest that for this form of impact at least; the 3DFEA and simulation, using the element deletion algorithm, gives a reasonable impression of the clinical condition.



The FEA model (using the element deletion algorithm) of the mandible following an impact at the symphyseal region. Impact is at 1.0ms.



Reconstructed CT scan of a patient who suffered trauma to the symphyseal (chin) region. The mandible has been segmented from the remaining facial CT scan. The CT scan data was used with express consent of the patient.

# List of software and hardware used during this research

| LS-DYNA (v 971)              | www.ls-dyna.com                     |
|------------------------------|-------------------------------------|
| Strand7 <sup>®</sup>         | www.strand7.com                     |
| Enguage                      | digitizer.sourceforge.net           |
| MIX 2.0                      | www.meta-analysis-made-easy.com     |
| Mimics 14.1                  | www.materialise.com/mimics          |
| Scan IP <sup>™</sup>         | www.simpleware.com                  |
| Scan FE <sup>™</sup>         | www.simpleware.com                  |
| +Scan CAD                    | www.simpleware.com                  |
| Osirix                       | www.osirix-viewer.com               |
| Invesalius 3                 | cti.gov.br/invesalius/              |
| LS-Pre-post                  | www.lstc.com/lspp                   |
| Irfanview                    | www.irfanview.com                   |
| Geomagic Studio              | www.geomagic.com/en/products/studio |
| Paraview 3.8                 | www.paraview.org                    |
| GIMP 2.8                     | www.gimp.org                        |
| Adobe Photoshop <sup>®</sup> | www.adobe.com                       |
| Adobe Acrobat                | www.adobe.com                       |
| Microsoft Word               | www.microsoft.com                   |
| Microsoft Excel              | www.microsoft.com                   |
| Papers                       | www.mekentosj.com                   |

Analyses were performed on an Intel <sup>®</sup> Core<sup>™</sup> i7-4770 CPU@ 3.40GHz with 16GB memory, running Windows 7 64-bit (© 2007 Microsoft Corporation).

Analysis run-time

Each simulation was run for 1.0ms to achieve an impact time of the same duration. The mean computation time for the dynamic analyses was 56hrs 23mins.
## Electronic databases used in this research

Ovid Medline

Embase

PubMed

Scirus

Scopus

Google Scholar

LS-DYNA reduced keyword file

\$# LS-DYNA Keyword file created by LS-PrePost 3.2 \*KEYWORD MEMORY=350000000 NCPU=4 **\*TITLE** \*CONTROL\_CONTACT \*CONTROL\_ENERGY \*CONTROL OUTPUT \*CONTROL PARALLEL \*CONTROL\_TERMINATION \*CONTROL\_TIMESTEP \*DATABASE ELOUT \*DATABASE\_GLSTAT \*DATABASE\_MATSUM \*DATABASE\_NODOUT \*DATABASE\_RBDOUT \*DATABASE RCFORC \*DATABASE\_BINARY\_D3DUMP \*DATABASE\_BINARY\_D3PLOT \*DATABASE\_BINARY\_D3THDT \*DATABASE EXTENT BINARY \*BOUNDARY SPC SET \*SET\_NODE\_LIST \*BOUNDARY\_SPC\_SET \*SET NODE LIST \*CONTACT\_ERODING\_SURFACE\_TO\_SURFACE\_MPP\_ID \*SET\_PART\_LIST\_TITLE \*CONTACT\_ERODING\_SURFACE\_TO\_SURFACE\_MPP\_ID \*SET\_PART\_LIST\_TITLE \*SECTION SOLID TITLE \*MAT\_PIECEWISE\_LINEAR\_PLASTICITY\_TITLE \*SECTION\_SOLID\_TITLE \*SECTION\_SOLID\_TITLE \*MAT\_PIECEWISE\_LINEAR\_PLASTICITY\_TITLE \*PART \*SECTION\_SOLID\_TITLE \*SECTION\_SOLID\_TITLE \*INITIAL\_VELOCITY\_GENERATION \*DEFINE\_TABLE\_TITLE \*DEFINE\_CURVE\_TITLE \*ELEMENT\_SOLID \*NODE \*END

# Sampled node positions

## Lingual Node Positions

| Node     | Node   |
|----------|--------|
| position | number |
| 1        | 66947  |
| 2        | 40133  |
| 3        | 96434  |
| 4        | 41115  |
| 5        | 109081 |
| 6        | 57569  |
| 7        | 38274  |
| 8        | 66823  |
| 9        | 2863   |
| 10       | 66036  |
| 11       | 99613  |
| 12       | 80656  |
| 13       | 68702  |
| 14       | 100398 |
| 15       | 85719  |
| 16       | 9939   |
| 17       | 88175  |
| 18       | 56657  |
| 19       | 36916  |
| 20       | 737    |
| 21       | 28987  |
| 22       | 58496  |
| 23       | 89438  |
| 24       | 7615   |

| 25 | 76187  |
|----|--------|
| 26 | 43146  |
| 27 | 101434 |
| 28 | 46645  |
| 29 | 39374  |
| 30 | 80778  |
| 31 | 30223  |
| 32 | 6246   |
| 33 | 33115  |
| 34 | 68533  |
| 35 | 108104 |
| 36 | 298    |
| 37 | 111833 |
| 38 | 39121  |
| 39 | 32727  |
| 40 | 99139  |
| 41 | 11311  |
| 42 | 71462  |
| 43 | 82036  |
| 44 | 61082  |
| 45 | 93164  |
| 46 | 104380 |
| 47 | 102012 |
| 48 | 102620 |
| 49 | 111174 |

| 50 | 10054  |
|----|--------|
| 51 | 110185 |
| 52 | 22327  |
| 53 | 60621  |
| 54 | 49812  |
| 55 | 19478  |
| 56 | 79351  |
| 57 | 93726  |
| 58 | 32247  |
| 59 | 80180  |
| 60 | 84157  |
| 61 | 22710  |
| 62 | 33528  |
| 63 | 53369  |
| 64 | 81735  |
| 65 | 110241 |
| 66 | 42861  |
| 67 | 100830 |
| 68 | 63962  |
| 69 | 22373  |
| 70 | 91866  |
| 71 | 3873   |
| 72 | 76103  |
| 73 | 110516 |
| 74 | 13503  |
|    |        |

### **Buccal Node Positions**

| Node Positions | Actual Nodes |
|----------------|--------------|
| 1              | 38932        |
| 2              | 63245        |
| 3              | 57990        |
| 4              | 25731        |
| 5              | 66328        |
| 6              | 98457        |
| 7              | 49226        |
| 8              | 37462        |
| 9              | 98338        |
| 10             | 94133        |
| 11             | 47551        |
| 12             | 89739        |
| 13             | 114930       |
| 14             | 86562        |
| 15             | 15126        |
| 16             | 76026        |
| 17             | 10033        |
| 18             | 84683        |
| 19             | 102009       |
| 20             | 125349       |
| 21             | 80502        |
| 22             | 121649       |
| 23             | 66001        |
| 24             | 87555        |
| 25             | 284          |
| 26             | 66259        |
| 27             | 48157        |
| 28             | 83408        |
| 29             | 99411        |
| 30             | 10560        |

| 2735   |
|--------|
| 50029  |
| 7875   |
| 44231  |
| 24232  |
| 108295 |
| 98690  |
| 66479  |
| 63273  |
| 70032  |
| 84481  |
| 90808  |
| 79680  |
| 5876   |
| 70450  |
| 36655  |
| 24454  |
| 86992  |
| 80475  |
|        |

Licences

Royalty Free License http://support.turbosquid.com/entries/28757878

### http://www.turbosquid.com/3d-models/maya-set-hands/481903,

Creative Commons Licence <u>https://creativecommons.org/licenses/by/3.0/legalcode</u>

## ISB 2015 Copyright

"Copyright Policy: By submitting the abstract, all authors confirm that: (1) they own the copyright and have not used copyrighted material without permission, and (2) the abstract has not been previously published or submitted elsewhere. By submitting the abstract, the authors transfer their copyright to the International Society of Biomechanics (ISB) pending acceptance of the abstract for presentation at the conference. In return, the ISB grants permission to the authors and to the Congress to publish the abstract in online repositories, provided that the abstract, and any reference to it, clearly identifies the ISB and the Congress where the abstract was presented. The authors also have permission to submit the work for journal publication. The copyright will be returned to the authors if the abstract is withdrawn before it is included in the proceedings".

## Review Protocol (Meta-analysis)

#### **Review objective**

The objective of this review is to determine the anatomical sub-site fracture frequency of the mandible as a result of trauma

#### Participants

Studies reporting the prevalence of mandibular sub-site fractures in humans as a result of trauma.

#### Interventions

All patients presenting with traumatically induce mandibular fractures, given conservative or surgical treatment.

#### Outcome

Any outcome related to mandibular fracture sub-site frequency that used the Dingman and Natvig classification system or one which could easily be mapped to it.

### Study design

Prospective or retrospective case series reports will be examined. Retrospective reports must include all patients examined within the study period. A study must include at least a review of radiographic records of patients. Studies that include only patients that have undergone surgical treatment will be excluded due to the potential for bias. Database searches will be ineligible unless such a search includes a radiographic review. Studies that only include frequency data without details of the number of cases or number of fractures will be excluded. For the purposes of the study, multiple fractures at different sub-sites in the same case will be counted. Eligible studies reporting several datasets (e.g. where the data has been sub-divided to perform another analysis) will have all data recombined into a single dataset.





The figure shows the variation of right lingual angle cortical stress  $(\sigma_{vm})$ (GPa) for the node set following impact at the symphysis of the mandible. Three cases are considered, as shown. The same sample set is used in each case. The sample takes place at 0.2ms (i.e. just before the condylar neck fractures).



The figure shows the variation of right posterior condylar cortical stress ( $\sigma_{vm}$ )(GPa) for the node set following impact at the symphysis of the mandible. Three cases are considered, as shown. The same sample set is used in each case. The sample takes place at 0.2ms (i.e. just before the condylar neck fractures).

| Design   | Letters related to mandibular trauma.                                    |
|----------|--------------------------------------------------------------------------|
|          | Narrative reviews with no original data.                                 |
|          | Book chapters not reporting the original data source.                    |
|          | Studies that failed to provide either raw numbers of the effect measures |
|          | or prevalence estimates.                                                 |
|          | Studies relating to facial fractures without detailed information on     |
|          | mandibular fractures.                                                    |
|          | Studies reporting pathological fractures.                                |
|          | Studies related to high-energy injuries resulting in severely comminuted |
|          | fractures e.g. ballistic, explosions.                                    |
|          | Studies relating to only surgically treated fractures.                   |
|          | Studies confined to a mandibular fractures in a single anatomical region |
|          | e.g. Condyle and sub-condyle.                                            |
| Data     | Studies not reporting sample size.                                       |
| recorded | Studies not employing and appropriate classification of mandibular       |
|          | anatomical fractures sub-classification.                                 |
|          | No data verification i.e. no examination of notes or radiographs by      |
|          | authors.                                                                 |

## Data search exclusion criteria