
Intelligent audio plugin framework for the Web Audio API

Nicholas Jillings, Yonghao Wang,

Ryan Stables

Digital Media Technology Lab,

Birmingham City University

{nicholas.jillings, yonghao.wang,

ryan.stables}@bcu.ac.uk

Joshua D. Reiss

Centre for Digital Music,

Queen Mary University of London

joshua.reiss@eecs.qmul.ac.uk

ABSTRACT
The Web Audio API introduced native audio processing into
web browsers. Audio plugin standards have been created
for developers to create audio-rich processors and deploy
them into media rich websites. It is critical these standards
support flexible designs with clear host-plugin interaction to
ease integration and avoid non-standard plugins. Intelligent
features should be embedded into standards to help develop
next-generation interfaces and designs. This paper presents
a discussion on audio plugins in the web audio API, how
they should behave and leverage web technologies with an
overview of current standards.

1. INTRODUCTION
The Web Audio API1 defines several low-level processing

blocks, such as gain and filter nodes. These can be linked
together to create highly complex processing graphs for real-
time rendering with native language performance. Intelli-
gent audio production systems enable computers to make
creative decisions based upon semantic cues and the pro-
duction environment. These have been in development since
1975 with automatic microphone mixing for conferences [4].
More recent work covers automated [7, 6] and semantic [13,
14] audio processors, known as plugins. Plugins can recom-
mend parameters based on descriptions [14] or user profiles
[1]. Intelligent e↵ects are aided by web ontologies [5] to un-
derstand the relationships of the information. The web does
not have a standard to facilitate intelligent processing of au-
dio streams. This paper analyses existing audio processor
frameworks and presents a flexible web-based audio plugin
format.

2. BACKGROUND
Native audio plugins, such as RTAS or VST, cannot exist

in the DAW as browsers will not execute user binary code for
security. Therefore several frameworks have been developed
to build audio processing chains in the web. Tuna2 expands

1https://www.w3.org/TR/webaudio/
2https://github.com/Theodeus/tuna

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

Feature
Extraction

Effect
Processor

Computation

Feature
Extraction

Feature
Extraction

channel 0 channel 1 channel N

k-rate

Parameter
Update

Audio Features

Inputs

Outputs
channel 0

Figure 1: Structure of a Cross-Adaptive E↵ect.

the number of base processing nodes by creating Web Audio-
like objects. These have limited functionality but behave as
traditional web audio nodes. Web Audio API Extension
(WAAX) [3] and Web Audio Modules (WAM) [11] both de-
fine methods for builidng graphical user interfaces. However
neither define the host implementations, limiting the design
scope to traditional audio e↵ects. The Web Audio Mod-
ules build javascript process units rather than leveraging
native nodes, making them less e�cient[2]. JavaScript Au-
dio Plugin (JSAP) [9] defines the host interface and provides
a wrapper for deploying prototype chains with a parameter
interface similar to the Web Audio API.

Cross-adaptive e↵ects are one method for building auto-
matic systems [10, 12], see fig. 1, taking audio from other
channels to compute parameters based on the extracted au-
dio features.

3. FRAMEWORK
Audio plugins are self-contained environments processing

discrete audio frames with a host interface. The host serves
audio frames and handles the lower-rate communications for
parameter controls, playback events and user interfacing, see
fig. 3. A plugin in the browser should behave the same way
and therefore is important for the host to be defined in the
plugin standard.

Plugin instances must investigate their environment, such



Host Plugin

Audio

User Interactions

Playback Events (Start/Stop)

Parameter Updates (GUI)

Plugin Events (Load/Unload)

Figure 2: Layout of Host and Plugin interactions

Window

PluginFactory
Web Audio
Context JSAP Prototype Objects

PluginFactory::SubFactory

Plugin Instance

Parameters

Audio Features

Audio Events

Plugin Instance
BasePlugin
ParameterManager

Audio IO

GUI

Figure 3: Structure of JSAP, with the host
(PluginFactory and SubFactory) to the plugin in-
stances, with interfaces and inherited objects.

as the track it is operating upon and the device being used,
to be intelligent. If this information is not available through
the host interface the plugin may access these in an unde-
fined method, creating more work for site-managers to adapt
for non-standard implementations.

Fig. 3 shows the JSAP project scope. The host is the
PluginFactory and holds every plugin instance. Each plu-
gin communicates through the factory to get any semantic
information. The page gives this to the factory in a stan-
dardised way. Plugin parameters are exposed globally but
the audio events and features are managed by the factory.
These interactions are k-rate (see fig. 1) since they operate
on blocks of audio not samples.

The SAFE plugins [14] utilise audio features and seman-
tic context to derive parameter controls. These have been
re-made into JSAP instances and available online3. Stan-
dard audio e↵ects have been developed exploring the more
complex e↵ects, including feedback delays, equalisers and
auto-adaptive e↵ects.

4. INTELLIGENT PROCESSING
Cross-adaptive e↵ects use a set of rules[12, 15] to map the

features into meaningful parameter control signals. Ontolo-
gies store the semantic descriptors and session information
to help define these rules. Plugins must therefore have ac-
cess to the session semantic information and have feature ex-
traction libraries to make correct and meaningful decisions.
Without access to this information the plugin may have to
infer this information from the audio or non-standard iter-
actions. At worst, plugins may not be intelligent and simply

3http://www.semantic.audio.co.uk/jsap

adaptive to its own audio stream. The rules can come from
studying texts and experts or from listening tests.

JSAP provides feature extraction using JS-xtract [8] and
the PluginFactory manages the routing of features between
plugins, saving developer time and computational resources
to build intelligent e↵ects. Any plugin output can be the
source for another plugins’ cross-adaptive input.

5. CONCLUSION
This paper presents the layout of an intelligent plugin

framework. A suitable framework must provide clear control
pathways between host and plugin instances to ease deploy-
ment and development. The plugins must have access to
the session to be able to make creative mixing decisions in-
telligently. Plugins can perform sample-level processing but
these are ine�cient in JavaScript compared to native im-
plementations which should be preferred. Plugins are also
bound to the supported interactions of the web environ-
ment and strict communication protocols, whilst desktop
programs can utilise a wider communication platform.

6. REFERENCES
[1] M. Cartwright, B. Pardo, and J. D. Reiss. Mixploration:

Rethinking the audio mixer interface. In 19th Intl. Conf. on

Intelligent User Interfaces, pages 365–370. ACM, 2014.
[2] A. Charland and B. Leroux. Mobile application

development: Web vs. native. Commun. ACM, 54(5):49–53,
May 2011.

[3] H. Choi and J. Berger. WAAX: Web audio api extension.
In New Interfaces for Musical Expression, pages 499–502,
2013.

[4] D. Dugan. Automatic microphone mixing. J. Audio Eng.

Soc, 23(6):442–449, 1975.
[5] G. Fazekas and M. B. Sandler. The studio ontology

framework. In 12th Intl. Soc. Music Inf. Retr., pages
471–476, Oct. 2011.

[6] D. Giannoulis, M. Massberg, and J. D. Reiss. Parameter
automation in a dynamic range compressor. J. Audio Eng.

Soc, 61(10):716–726, 2013.
[7] S. Hafezi and J. D. Reiss. Autonomous multitrack

equalization based on masking reduction. J. Audio Eng.

Soc, 63(5):312–323, 2015.
[8] N. Jillings, J. Bullock, and R. Stables. JS-xtract: A

realtime audio feature extraction library for the web. In
17th Intl. Soc. Music Inf. Retr., 2016.

[9] N. Jillings, Y. Wang, J. D. Reiss, and R. Stables. JSAP: A
plugin standard for the web audio api with intelligent
functionality. In Audio Engineering Society Convention

141, 2016.
[10] I. Jordal, Ø. Brandtsegg, and G. Tufte. Evolving neural

networks for cross-adaptive audio e↵ects. In Proceedings of

the 2nd AES Workshop on Intelligent Music Production,
volume 13, 2016.

[11] J. Kleimola and O. Larkin. Web audio modules. Sound and

Music Computing, 2015.
[12] J. D. Reiss. Intelligent systems for mixing multichannel

audio. In 17th Intl. Conf. on Digital Signal Processing

(DSP), pages 1–6, July 2011.
[13] P. Seetharaman and B. Pardo. Audealize: Crowdsourced

audio production tools. Journal of the Audio Engineering

Society, 64(9):683–695, 2016.
[14] R. Stables, S. Enderby, B. De Man, G. Fazekas, and J. D.

Reiss. Safe: A system for the extraction and retrieval of
semantic audio descriptors. In 15th Intl. Soc. Music Inf.

Retr. (ISMIR), 2014.
[15] A. Wilson and B. Fazenda. Variation in multitrack mixes:

analysis of low-level audio signal features. Journal of the
Audio Engineering Society, 64(7/8):466–473, 2016.


