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Abstract—Due to the inherent property of the processing
resource request from mobile active or passive devices as part
of internet of things (IoT), processing capacity as well as latency
become major optimization criteria. To achieve overall optimized
uses of cloud resources - having dynamic tracking, monitoring
as well as orchestration framework is one of the key challenges
to overcome. In the same context, enhanced uses of computing
devices at distributed location is predicted to facilitate the success
of IoT; subsequently the success of fifth generation (5G) of
Wireless technologies. This opens enormous potential to integrate
the unused resources of such distributed computed devices within
the conventional cloudlet or cloud federation. However, this
requires an efficient micro-level distributed computing resource
tracking, monitoring and orchestration; where resources are
distributed in geo-location as well as the availability of unused
resources are time variant in nature. In this paper, we have
proposed a cognitive edge-computing based framework solution
for these requirements in order to achieve an efficient use of
these distributed resources. This provides the end-user with a
dynamic soft extension of computing facilities of cloudlet and
cloud federation, as well as a revenue generation avenue to end-
user. The simulation results show that such extension can be an
exponential function of the number of local processing platforms
agreed to participate in the proposed cognitive resource sharing.

Index Terms—Distributed computing, edge computing, internet
of things, merchant mode, resource sharing.

I. INTRODUCTION

Over the last decade, the exponential growth in the number
of connected devices has led the research community and the
industry to focus on issues that arise due to the increasing
network size. Internet of Things (IoT) has emerged as a
paradigm to provide such connectivity over dynamic and
global network infrastructures using a set of hardware and
software components [1, 2]. In general, IoT comprises of
devices that are widely distributed in nature and may have
limited local storage and processing capabilities; consequently,
posing challenges for IoT design. In order to tackle the issues
faced in IoT, cloud computing has gained significant attention.
Within modern telecommunication systems, cloud acts as a
backbone component of the IoT and provides access to a
shared pool of resources [3], where the storage and processing

capabilities are assumed to be virtually unlimited [1]. The
integration of IoT with cloud computing provides flexibility,
scalability and energy-efficiency to the modern telecommuni-
cation systems. Many research studies have considered such
integration to develop solutions for a diverse range of applica-
tions. Considering the drive towards the digitization of health
care systems, an infrastructure is proposed in [4] for real-
time health monitoring of patients based on such integration.
Authors in [5] have developed a vehicular data cloud services
model for intelligent parking and vehicle warranty analysis.
In [6], a cloud computing based model is proposed to meet
the computational requirements for smart grid applications.
Since, data storage is a critical issue in IoT, a cloud computing
based framework for the storage of massive IoT data is
proposed in [7]. To provide services with IoT, clouds are
required to meet particular quality requirements depending
on the customers’ expectations. In order to provide service
perspective, a model is developed in [8], while considering
different quality dimensions and metrics. The effectiveness of
the developed model is demonstrated by evaluating the quality
of multiple storage clouds.

Nevertheless, with the continuously growing demands for
resources from cloud, service providers are expected to expe-
rience a performance bottleneck. Therefore, the assumption
of unlimited cloud capability may not be feasible [9, 10].
Furthermore, cloud computing causes problems for latency-
sensitive applications as it results in unreliable latency due to
geo-distributed devices in IoT [10–12]. In future generation of
wireless networks, two of the key elements for the realization
of 5G are connectivity and latency. The global success of 5G
is possible only if IoT can facilitate services that meet users’
expectations in terms of connectivity and latency [13, 14].
Edge computing has emerged as a promising solution to
the problems faced in cloud computing and to comply with
the 5G communication standards [15, 16]. Edge computing
extends the existing cloud computing paradigm to the network
edge in order to meet the requirements of latency-critical
and computation-intensive IoT applications. Complying with
the 5G vision, edge computing reduces the overall latency
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Fig. 1. Proposed framework for tracking, monitoring and orchestration of distributed cloud resources

and provides an energy efficient solution [9]. Nevertheless, in
order to make the resource allocation to be more efficient, the
tracking, monitoring and orchestration of cloud resources is
required. One of the possible candidates to track the system
usage metrics is ATOM, which is proposed in [17]. However,
in resource saturated circumstances, ATOM may not provide
an optimal solution to the resource allocation problem.

Motivated by the significance of IoT in future generation
of wireless networks, this paper considers edge computing
as well as connectivity and latency to develop an efficient
solution for dynamic tracking, monitoring and orchestration
of cloud resources in IoT. The contributions of this paper are
summarised as follows:

• A framework for dynamic tracking, monitoring and or-
chestration (DTMO) of cloud resources is proposed.
The proposed framework incorporates softness in the
decision making process to provide an efficient solution
for dynamic resource allocation.

• Considering the exponential growth in the number of
connected devices, an algorithm is proposed for computa-
tion offloading to tackle the issue of processing capacity
shortage.

• In order to reduce the latency in future generation of
wireless networks, a strategy is devised for computation
offloading.

The advantages of the proposed framework are two-fold.
Firstly, the request for resource is fulfilled in an efficient
manner and secondly, the device that provides its resources
can generate revenue.

The rest of this paper is organised as follows: Section II
presents the system model and proposed methodology. Section

III evaluates the proposed framework. Finally, the conclusions
are made in Section IV.

II. SYSTEM MODEL AND PROPOSED METHODOLOGY

The proposed framework for distributed tracking, monitor-
ing and orchestration of cloud resources is shown in Fig.
1. Considering the IoT environment, various sensing devices
are present that are capable of generating different types of
data such as temperature, pressure, visual information etc.
A number of sensing devices are connected to each local
processing platform (LPP), which is capable of processing the
data obtained from the sensing devices. In order to enhance the
energy efficiency, each LPP can classify sensing tasks between
its sensing devices [18]. The proposed model comprises of
n number of service providers, where each service provider
can be represented by Se, and it can support ye number
of static/mobile LPP, such that e = 1, 2, 3, . . . , n. A cloud
federation exists in the proposed model [19], which provides
core functionality by utilising the contributed resources from
k number of cloud providers. Once the data is processed by a
LPP, it can be sent to the cloud for storage. Moreover, the data
collected from different LPP can be collaborated at the cloud
for efficient decision making. Since LPP may have limited
energy, they may have to offload their tasks by requesting for
a computational resource. In that case, the respective service
provider will send the request to the cloud federation.

Considering computation offloading [20] and the shared
resources of the cloud providers, the cloud federation looks
for available resources that can be allocated to LPP in order to
perform a particular task. Although, this approach facilitates
the sharing of cloud resources with LPP, it is inefficient in
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TABLE I
KEY SYMBOLS AND THEIR DEFINITION

Symbol Definition

k the number of cloud providers
n the number of service providers
Ct

i the total capacity of ith cloud provider
Ct

u the currently occupied capacity of ith cloud provider
ni the number of data centers of ith cloud provider
D the respective cloud controllers
di,j the distance between ith cloud controller and jth

data center
Rr the amount of required resource
Rt the type of resource requests considered in the pro-

posed model
ρw the available capacity of each LPP
s the number of LPP that agreed to connect with cloud

in case of available capacity
c the available capacity of s LPP
p the cost of resources
βt the acceptable distance threshold
g the grading of resources
ts the desired grade of requested resource
F(·) the function to find a cloud provider that can fulfill

the resource request
P(·) the function for purchasing a resource using the

merchant mode
ξ the percentage of LPP that agreed to participate in

resource sharing

terms of latency and leads to a performance bottleneck for
exponentially growing number of requests [10].

In order to overcome the aforementioned problems, two
types of resource requests are considered in the proposed
model i.e. (a) computational capacity for processing and stor-
ing data; and (b) low-latency computational capacity. The LPP
in IoT are expected to be heterogeneous i.e. having different
computational capabilities. The LPP with higher computa-
tional capability may not utilize their resources fully and may
have available resources at a given instance of time. The
tracking and monitoring of tasks is performed using ATOM
[17] for profiling of the resources. In the proposed model, if the
cloud providers cannot fulfill a new resource request, the LPP
that have agreed to share their available resources with cloud
are considered to acknowledge the request. This approach
enhances the efficiency of the system in terms of resource
allocation and generates revenue for the LPP that share their
resources. The proposed methodology for dynamic tracking,
monitoring and orchestration of resources is described below
in detail. The list of key symbols used in this paper along with
their definition is given in Table I.

Let Cti denote the total capacity of the ith cloud provider,
where that i = {1, 2, 3, . . . , k}. Assume each cloud provider
has ni number of data centers; the distances of data centers
from their respective cloud controllers can be represented by

D as,

D =


d1,1 d1,2 . . . d1,l
d2,1 d2,2 . . . d2,l

...
...

. . .
...

dk,1 dk,2 . . . dk,l

 (1)

where l = max{ni|i = 1, 2, 3, . . . , k} and di,j ∈ D is given
by,

di,j =


Distance between ith cloud
controller and jth data cente, j ≤ ni
−1, otherwise

(2)

Suppose a LPP requests for a resource, where Rr denotes the
amount of required resource. The type of resource requests
considered in the proposed model is represented by Rt, such
that Rt ∈ {0, 1}, where Rt = 0 refers to a resource request
for computational capability and Rt = 1 refers to a resource
request for latency-sensitive application. Let Cui denote the
currently occupied capacity of the ith cloud provider. In order
to accommodate a new request for a resource, the type of
resource request has to be considered as well as the available
resources. Algorithm 1 presents the approach for resource
tracking and allocation (RTA). In the proposed algorithm, four
different scenarios are considered, as shown in Table II, where

λ =
k∑
i=1

Cui +Rr.

TABLE II
SUMMARY OF THE SCENARIOS CONSIDERED IN THE PROPOSED SYSTEM

Scenario Resource
Request Condition Algorithm

1
computational

capability λ ≤
k∑

i=1
Ct

i ∩Rt = 0 1

2
computational

capability λ >
k∑

i=1
Ct

i ∩Rt = 0 1 and 2

3
low-latency

resource λ ≤
k∑

i=1
Ct

i ∩Rt = 1 1 and 3

4
low-latency

resource λ >
k∑

i=1
Ct

i ∩Rt = 1 1 and 3

In the first scenario, if a computational resource is requested
by a particular LPP, Algorithm 1 checks whether or not a
cloud provider can acknowledge the request. ATOM [17] is
utilized which tracks the tasks being performed for profiling
of the resources and provides information about the available
cloud resources. If cloud resources are available, function F(·)
utilizes the profiling information and considers the amount of
requested resource to find the cloud provider î that can fulfill
the request.

As in scenario 1, a computational resource request is
considered in the second scenario. However, in contrast to
scenario 1, scenario 2 handles the condition when the cloud
provider cannot acknowledge the request and a LPP within
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Algorithm 1 Proposed resource tracking and allocation
scheme
Initialisation:

The amount of requested resource Rr, the type of re-
quested resource Rt, total capacity of each cloud provider
Cti , currently occupied cloud capacity Cui , the number of
data centers for each cloud provider ni, the distance of
each data center from its respective cloud controller di,j
and the acceptable distance threshold βt.

1: λ←
k∑
i=1

Cui +Rr

2: if λ ≤
k∑
i=1

Cti ∩Rt = 0 then

3: î← F(Rr)
4: Cu

î
← Cu

î
+Rr

5: else if λ >
k∑
i=1

Cti ∩Rt = 0 then

6: Go to Algorithm 2
7: Obtain LPP ID I and allocate resource

8: else if λ ≤
k∑
i=1

Cti ∩Rt = 1 then

9: î← F(Rr)
10: t← dî,1:nî

11: γ1 ← argminj [t1,j − βt]
12: if γ1 ≤ 0 then
13: Cu

î
← Cu

î
+Rr

14: else
15: Go to Algorithm 3
16: Obtain LPP ID I and allocate resource
17: end if
18: else if λ >

k∑
i=1

Cti ∩Rt = 1 then

19: Go to Algorithm 3
20: Obtain LPP ID I and allocate resource
21: end if
22: return

the IoT has to be searched that has agreed to contribute its
available space to be a part of the cloud.

Suppose s denote the number of LPP that have agreed to
be connected to be a part of the cloud in case of available
capacity. Let ρw denote the used capacity of each LPP, such
that w = 1, 2, 3, . . . , s; where ρw ∈ [0, 100]. Let c with
dimension 1 × s denote the available resources of s LPP
and p with dimension 1 × s denote the respective cost of
resources, where the available capacity of wth LPP cw ∈ c
is given by (1 − ρw). Considering the condition provided in
scenario 2, Algorithm 2 is proposed to fulfill the resource
request by dynamically finding an optimal solution in terms
of computational capability and resource cost. Firstly, several
LPP with available resources that are sufficient to handle the
resource request are considered along with their respective
costs. Merchant mode [21] is considered to find the LPP that
can offer suitable amount of resource with minimum possible
cost. Let P(·) be a function for purchasing a resource using

the merchant mode. It is assumed that the price of per unit
capacity is fixed and it is set by the regulatory authority. The
aim of the proposed algorithm is to provide one single LPP
that fulfils the request. However, if a single LPP cannot provide
enough resources, a combination of LPP C can be considered
to purchase resources with minimum possible cost using the
merchant mode. Finally, Algorithm 2 provides ID I of the
LPP which will allocate its resources to fulfill the resource
request.

Algorithm 2 Proposed computation offloading algorithm for
processing capacity shortage

Initialisation:
The amount of requested resource Rr, the number of LPP
s that are considered for resource allocation, the used
capacity of each LPP ρw and the cost of resources p.

1: ĉ← ∅
2: for w ← 1 to s do
3: cw ← 100− ρw
4: pw ← the respective cost of resource
5: if bcw −Rrc = 0 then
6: ĉw ← cw
7: p̂w ← pw
8: end if
9: end for

10: if ĉ 6= ∅ then
11: I ← P(ĉ, p̂)
12: else
13: C← smallest possible combinations of LPP
14: P← the respective cost of resources
15: I ← P(C,P)
16: end if
17: return I

In the third scenario, if a resource is requested for a latency-
sensitive application, the algorithm performs a check to find if
the request can be acknowledged by a cloud provider. Similar
to the first scenario, ATOM [17] performs the profiling of
the resources available, and cloud provider î is found that can
fulfill the request. In this case, since the application is latency-
sensitive, the intelligence of the proposed system is enhanced
by performing additional checks. The distances of the data
centers from îth cloud controller are considered and denoted
by t. Let βt denote the acceptable distance threshold for a
particular application. Algorithm 1 finds if a data center of îth
cloud provider can fulfill the resource request by considering
the distance threshold βt. In case if the data centers of îth
cloud provider cannot acknowledge the request, the proposed
system provides an efficient approach, given in Algorithm 3, to
searches for a LPP in the IoT with available resources which
can be allocated to support the LPP that has requested for a
low-latency resource.

In contrast to scenario 3, the fourth scenario handles the
condition when the resources of the cloud provider are occu-
pied and it cannot acknowledge the request for a low-latency
resource. In this scenario, similar to scenario 3, Algorithm 3
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is used to find the LPP that can provide its available resources
for a particular cost to fulfill the resource request.

Assume d̂ with dimension 1 × s represent the distances
of the LPP from the cloud controller that have available
resources. Suppose ts denote the desired grade of requested
resource, such that ts ∈ {1, 2, 3}; where ts = 1, ts = 2
and ts = 3 refer to the suitability of a resource for real
time, quasi-real time and non-real time tasks. Let g with
dimension 1 × s denote the grading of s resources. In the
proposed approach, α1, α2 and α3 are application-specific
tunable parameters; for example, if a particular application has
acceptable tolerance of ±10%, α(·) can be set to 10. Initially,
Algorithm 3 classifies the LPP into three categories based on
the grading. Subsequently, depending on the desired grade of
requested resource ts, the LPP that are suitable for the task
to be performed are chosen. Assume d̃ denote the distance of
the chosen LPP from the cloud controller, c̃ represents their
respective available capacity and the respective resource cost
is given by p̃. Algorithm 3 considers the merchant mode for
choosing a suitable resource belonging to LPP I in order to
perform the desired task with optimal cost.

The flow chart of the proposed framework is shown in Fig.
2. In the proposed framework, DTMO tracks the available and
blocked resources. Suppose Pw denote the overall available
capacity of cloud providers and participating LPP. Let lt be
the target latency. When a new resource request comes into
the proposed framework, it goes to the umbrella Algorithm
1. Tracking Monitoring and Orchestration (TMO) context will
check if the request is for only computational resource or for
low-latency computational resource. If it is only computational
resource, then the availability of the resource in the cloud
federation’s resource pool will be checked. If available, it will
allocate the resource according to the request and update the
resource monitor of the DTMO framework. If the resource
is not available in the cloud federation’s resource pool, child
Algorithm 2 will be used. Through task tracking, Algorithm
2 will check available computational resource for offloading.
By allocation criteria optimization, Algorithm 2 will find the
most efficient resource to satisfy the request and takes into
account the resource pricing. Once the resource is allocated
for a particular request, the resource monitor of the DTMO
framework will be updated.

If TMO context finds that the request is asking for low-
latency resource, it will check if the data centers of the cloud
federation’s resource pool can meet the latency threshold. If
yes, then Algorithm 1 will allocate the resource and update
the resource monitor. If not, then the child Algorithm 3 will
be used. Algorithm 3 will check for the availability of the
resource for offloading through task tracking. It will classify
the candidate resources according to latency threshold. After-
wards, Algorithm 3 will take resource pricing into account
to fulfill the resource request. The resource monitor will be
updated after resource allocation.

Algorithm 3 Proposed computation offloading algorithm for
latency reduction

Initialisation:
The number of LPP s that are considered for resource al-
location, the acceptable distance threshold βt, the desired
grade of requested resource ts; for s LPP: the distance d̂
from the cloud controller, the grading of resources g, the
available capacity c and the cost of resources p.

1: g← ∅
2: Sort d̂ in ascending order
3: p← the respective cost of resources
4: for w ← 1 to s do
5: if (βt − βt/α1) ≤ d̂w ≤ (βt + βt/α1) then
6: gw ← 1
7: else if (βt − βt/α2) ≤ d̂w ≤ (βt + βt/α2) then
8: gw ← 2
9: else if (βt − βt/α3) ≤ d̂w ≤ (βt + βt/α3) then

10: gw ← 3
11: end if
12: end for
13: for ĵ ← 1 to 3 do
14: hĵ ← s−

s∑
w=1

[
sgn (gw − ts)

]2
15: end for
16: if ts = 1 then
17: γ2 ← 1
18: γ3 ← h1
19: else if ts = 2 then
20: γ2 ← h1 + 1
21: γ3 ← h1 + h2
22: else if ts = 3 then
23: γ2 ← h1 + h2 + 1
24: γ3 ← h1 + h2 + h3
25: end if
26: d̃← dγ2:γ3
27: p̃← pγ2:γ3
28: c̃← cγ2:γ3
29: I ← P(d̃, c̃, p̃)
30: return I

III. EVALUATION

The evaluation investigates the feasibility of the proposed
framework for efficient use of distributed resources. The
standard workload scenario for simulating cloud resource allo-
cation is considered [22, 23]. Exponentially growing number
of heterogeneous LPP within the range of 1000 to 10,000 is
considered. The activity factor of LPP that agree to participate
in the proposed cognitive resource sharing is assumed to be
50%. Depending on the percentage of available resources
that the participating LPP have agreed to share (denoted
by ξ) and the type of resource request, different scenarios
are considered to demonstrate the effectiveness of proposed
RTA algorithm. The simulation is modelled by considering
ξ ∈ {15%, 30%, 45%}.

Fig. III shows a comparison of the proposed scheme with
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Fig. 2. The flowchart of the proposed DTMO framework

the conventional scheme in terms of the percentage of cloud
requests fulfilled with increasing number of LPP. The conven-
tional scheme utilises traditional cloud computing paradigm
to acknowledge the requests for resource allocation, whereas,
the proposed scheme utilises cognitive resource sharing model
for distributed resource allocation. It can be observed from the
results that with exponentially growing number of LPP, the
efficiency of the conventional scheme is drastically affected.
Therefore, its utilisation in 5G networks is expected to result in
performance bottleneck and latency related issues. In contrast,
the proposed scheme outperforms the conventional scheme
and provides softness in decision making to allocate resources
efficiently. It is observed from the results that as the percentage
of available resources that the participating LPP have agreed
to share increases, the proposed scheme significantly enhances
the efficiency of fulfilment of resource allocation requests.
Hence, the proposed framework provides an efficient model
for resource sharing in future generation of wireless networks.
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IV. CONCLUSION

In any network of connected devices, processing capacity
and latency have always been major concerns for researchers
and practitioners. The number of connected devices are ex-
pected to grow exponentially in the next coming decades,
creating a new paradigm shift; where the aforementioned
concerns will become major optimization criteria. Due to the
growing demands for resources, depending on the enterprise
cloud, is no longer a feasible solution. Edge Computing is
a promising paradigm is this context, and complies with
future developments such as 5G technologies. The framework
proposed in this paper intended to integrate the advancement
of edge computing resource requirement schemes as well
as the resource allocation schemes found in the literature
for enterprise cloud; to attain a universal resource allocation
framework for IoT . The assumption has taken into consider-
ation that the enterprise cloud operating system supports bi-
directional resource sharing from local processing platform
with heterogeneous device properties. To obtain the proposed
resource allocation framework to be more cost-effective, auc-
tion mode of resource sharing agreement will be considered
for future works, alongside investigating the feasibility of
a unified operating system compatible with cloud resource
sharing within heterogeneous computing devices.
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