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Abstract—In this paper, we explore multi-sensor Radio Fre-
quency (RF) sensing based Internet of Things (IoT) for surveil-
lance applications. RF sensing techniques are the next generation
technologies which offer distinct advantages over traditional
means of sensing. Traditionally, Energy detection (ED) has been
used for surveillance applications due to its low computational
complexity. However, ED is unreliable due to high false detection
rates. There is a need to develop surveillance strategies which
offer reliable target detection rates. In this paper, we have
proposed a multi-sensor RF sensing based target detection
architecture for IoT. To perform surveillance within IoT, multiple
sensor nodes are required to co-exist while performing the desired
tasks. Interfering waveforms from the neighbouring sensor nodes
have a significant impact on the target detection reliability of IoT.
In this paper, a waveform selection criterion has been proposed to
optimise the target detection reliability and power consumption
within IoT in the presence of interfering waveforms.

Index Terms—Energy efficiency, internet of things (IoT), multi-
sensor, RF sensing

I. INTRODUCTION

Internet of Things (IoT) consist of low-cost, easy-to-deploy
network of sensor nodes which are deployed within a pre-
defined sensing region. Once deployed, the sensor nodes
coordinate among themselves to perform assigned tasks. The
sensor nodes are equipped with one or more sensing devices
with limited power, processing, and communication capabil-
ities. Due to low-cost and ease of deployment, IoT have
found its place in numerous civilian and military applications
[1, 2]. The sensor nodes can be deployed in hostile and
harsh sensing environments and their ability to collectively
monitor the sensing region, makes them ideal candidates for
surveillance applications [3, 4]. Depending on the nature of
the sensing application, the sensor nodes can either actively
interact with the sensing environment or passively monitor
the same. RF sensing based active detection techniques can
provide increased reliability and higher target detection rates.
The sensor nodes transmit RF signals into the sensing region
and detect the presence of targets by observing the received
echoes [5, 6]. Transmission of RF signals by the active sensor

nodes is associated with significant increase in the power con-
sumption within the sensor nodes with limited available power.
Efficient target detection strategies need to be developed to
provide reliable target detection rates with reduced energy
consumption.

II. RELATED WORK

In the existing literature, various RF sensing based target
detectors [7–10] have been proposed by the authors. How-
ever, existing RF sensing based target detection strategies are
computationally intense for resource constrained sensor nodes
within IoT. Recent advancements in UWB [6, 11] technologies
allowed development of low-cost devices which can transmit
relatively short UWB pulses. Due to ultra-short nature of UWB
pulses, it is required to transmit significantly lower power for
these pulses. This has made RF sensing techniques possible
for resource constrained IoT. However, as a consequence of
low transmit power and subsequent propagation losses, the
received echoes are associated with lower energies. Within the
received signal components, detecting the presence of these
echoes which are usually corrupted by noise and interference
is extremely challenging. The choice of the transmit waveform
has a significant impact on the target detection performance
of IoT. With multiple sensor nodes deployed within the
sensing region, the problem of the waveforms transmitted
from the neighbouring sensor nodes interfering with each
other is required to be addressed [12]. Conventional multi-
sensor communication techniques are not suitable for RF
sensing applications to eliminate such interferences. Within
the existing literature, orthogonal waveform design techniques
have been considered to allow multiple access [13–15]. How-
ever, transmitting these orthogonal waveforms require complex
transmitting devices which are usually unavailable within re-
source constrained wireless sensor nodes. Due to event driven
nature of the sensor nodes within IoT, the transmission cycles
of independent sensor nodes may not always be synchronised
and hence the choice of orthogonal waveforms may not always
be the optimal solution. A simple and resource efficient solu-



tion for the choice of transmit waveforms is required which
guarantees reliable target detection rates within the constraints
of the given sensing conditions. In this paper, we considered
the choice of transmit waveforms which are suitable for RF
sensing based applications of IoT. The relevant waveform
selection strategies to optimise the target detection reliability
within the resource constraints of IoT have been proposed.
The main contributions of this paper are,
• RF sensing based target detection architecture for surveil-

lance applications of IoT.
• Suitable transmit waveform selection criterion for

application-specific IoT has been proposed.
• Target detection optimisation procedure in the presence

of interfering waveforms has been proposed.
Rest of the paper is organised as follows: Received signal

model and problem formulation for the proposed IoT is dis-
cussed in Section III. The transmit waveforms which are suit-
able of IoT are discussed in Section IV. Hypothesis testing and
the proposed target detection optimisation procedure through
waveform selection is presented in Section V. In Section VI,
we analyse the proposed waveform selection procedure and the
performance of the proposed IoT through simulation results
which is followed by the conclusion in Section VII

III. PROBLEM FORMULATION

The problem of interest is RF sensing based IoT whose
primary objective is to provide surveillance within the sensing
region. The proposed IoT consists of clusters of sensor nodes
which are distributed within the sensing region. Each cluster
consists of a primary node which acts as the cluster-head and
a group of receiving nodes. The primary node within each
cluster transmits the desired RF signal into the sensing region.
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Fig. 1. Proposed Target Detection Model for IoT

As shown in Fig. 1, in the event of existence of a target
within the sensing region, the receiving nodes attempt to
detect the reflected echoes of the known transmitted signal.
The primary node is assumed to have sufficient resources
to transmit the desired RF waveforms. To meet the power
constraints low-power UWB pulses are transmitted with short
transmit durations. As a result of high bandwidth due to ultra-
short nature of the transmit pulses, the reflected echoes are

characterised by the impulse response of the target. For a target
impulse response of length Na and transmit UWB waveform
s(t), the reflected echo from the target can be written as,

Ω(t) = a(t) ∗ s(t) (1)

where ∗ indicates the convolution operator and a is the
target impulse response. It is assumed that IoT has the knowl-
edge of the target’s impulse response. In the presence of noise
and interfering waveforms, the received target echo at the ith

sensor node can be written as,

yi(n) = Asi(n) + Bhi(n) + wi(n) (2)

where yi is the Ny × 1 received signal at the ith sensor
node, si is the Nt × 1 transmitted waveform. A is the Ny ×
Nt convolution matrix for the target impulse response. hi is
interfering waveform and wi is thermal noise. B is Ny ×Nt
convolution matrix for the channel impulse response.

A =



a(1) 0 . . . . . . 0

a(2) a(1)
. . . . . . 0

...
...

. . .
. . . 0

a(Na) a(Na −1) . . . a(1) 0
0 a(Na) a(Na −1) . . . a(1)
... 0 a(Na) . . . a(2)
...

... 0
. . .

...
0 0 . . . 0 a(Na)


(3)

Here, Ny = Nt + Na - 1. The channel convolution matrix B
can be written similarly as shown in (3). The complexity of the
convolution matrix is dependent on the impulse response time
and independent of the number of interfering sensor nodes.
Estimation of channel impulse response has been addressed by
the authors in the existing literature [16, 17] and in this paper,
we assume that an estimate of the channel impulse response
is available to the target detector.

IV. TRANSMIT WAVEFORMS

The choice of an appropriate transmit waveform is an
important design parameter for RF sensing based surveillance
applications of IoT. To achieve longevity, optimum choice
of a transmit waveform within IoT must fulfil the necessary
criterion to achieve the desired target detection reliability while
operating within the constraints of the available resources.
Brevity of the transmit pulses is required to reduce the trans-
mission costs. To reduce the signal processing complexities,
the choice of a transmit waveform with good correlation
properties is desirable. In this section, we study some of the
transmit waveforms which are suitable for IoT and discuss
their correlation properties [13–15].

Gaussian pulse is one of the most commonly discussed
waveforms. In the time domain, ultra-short Gaussian pulses
can be generated which are suitable for resource constrained



IoT. The time domain expression of a Gaussian pulse can be
written as,

g(t) = Aexp(
−t
τ

)2 (4)

Where A is the maximum amplitude and τ is the pulse
width. The first derivative of the Gaussian pulse gives a Mono-
cycle pulse which is also a commonly discussed waveform.
The expression for a Monocycle pulse is,

m(t) = A(
t

τ
)exp(−(

t

τ
)2) (5)

Due to simplicity and ease of generation, the Gaussian
and Monocycle pulses can be used within IoT with very low
computational cost. However, within a large sensing region
with multiple transmitting nodes the target detection rates
severely deteriorate due to interference from the neighbouring
sensor nodes. Hence a degree of diversity in the choice of
waveforms among the transmitting nodes is required.

Orthogonal waveforms generated based on modified Gegen-
bauer and Hermite polynomials can be used to generate short
UWB pulses. The diversity in the available waveforms pro-
vides a simple solution to allow multiple access. Gegenbauer
polynomials are defined in the interval [-1,1]. The recurrence
equation for the nth order Gegenbauer polynomial is written
as,

Gn(β, t) =
2(n+ β − 1)

n
tGn−1(β, t)−

(n+ 2β − 2)

n
Gn−2(β, t) (6)

G0(β, t) = 1 (7)

where n is the order of the Gegenbauer polynomial and β is
the shape parameter. Modified Gegenbauer polynomials use a
weight function w(t) to facilitate the generation of ultra-short
pulses. Modified Gegenbauer functions are written as,

G(β, t) =
√
w(t)Gn(β, t) (8)

w(t, β) = (1− t2)β−
1
2 β > −1

2

Modified Hermite polynomials are defined in the interval
[−∞ , ∞]. nth order Hermite polynomial can be written as,

hen(t) = (−1)ne
t2

2
dn

dtn
(e

−t2

2 ) n 6= 0 (9)

he0(t) = 1

Modified Hermite polynomials are obtained by multiplying
Hermite polynomials with e

−t2

4 . A nth order Modified Her-
mite function is,

hn(t) = e
−t2

4 hen(t) (10)

The transmit waveforms discussed in this section are easy
to generate and does not require complex transmitting devices.
They also provide diversity within the choice of transmit
waveforms. These proposed waveforms which are suitable

for UWB communications, can be transmitted as short pulses
with reduced transmission costs. However, due to event driven
nature of IoT and spatial displacement of the sensor nodes,
orthogonal waveforms do not provide a generalised solution
for multiple access.

V. TARGET DETECTION OPTIMISATION

The performance measure of an IoT as a surveillance system
while dedicated to detecting the existence or non-existence of
targets is the degree of reliability on such decision-making
process. The two possible outcomes of this decision-making
process are hypothesis H0 and hypothesis H1 which are
modelled as a binary hypothesis testing problem. Hypothesis
H0 represents absence of a target and hypothesis H1 represents
the existence of a target. The possible received signal models
corresponding to hypothesis H0 and H1 are,

H0 :

{
H00: y(n) = w(n)
H01: y(n) = Bh(n) + w(n) (11)

H1 :

{
H10: y(n) = As(n) + w(n)
H11: y(n) = As(n) + Bh(n) + w(n) (12)

(11) and (12) represent possible received signal models
under hypothesis H0 and H1 which are characterised by
existence and absence of the target and the interfering wave-
forms. A Cross-Correlation (CC) based detector is a popular
technique which is used to detect the existence of known wave-
forms within the received signal component. A CC detector
performs cross-correlation between the received signal and the
target signal to make a decision regarding the existence of the
desired waveform.

r(∆T ) =

∞∑
n=−∞

s(n−∆T )y(n) (13)

Where, ∆T is the time delay corresponding to a given range
bin. However, as a consequence of the ultra-wide band nature
of the transmit signal, the reflected echoes undergo shape
transformation. Hence the optimal detector should match the
scattered waveform in (1) with the received signal. If matched
filter impulse response is f , then the matched filtered output
of the received signal is given by,

x = fHy = fHAs + fHBh + fHw (14)

Signal to Interference and Noise Ratio (SINR) at the
matched filter output is given by,

SINR =
|fHAs|2

E[|fHBh|2] + E[|fHw|2]
(15)

From [18], the matched filter impulse response that max-
imises the SINR at the receiver can be written as,

f = α(BhhHBH + Rw)−1As (16)



Where, α is a scaling parameter and Rw is the noise
covariance matrix. However, the matched filter in (16) only
produces the maximum attainable SINR under the constraints
of the transmitted waveform. From (14) and (16), the optimum
transmit waveform that maximises the target return at the
matched filter output can be written as,

ŝ = max
s

sHAH(BhhHBH + Rw)−1As (17)

The solution to (17) can be obtained through eigen-analysis.
The transmit waveform that maximises the matched filter
output is the eigenvector corresponding to the maximum eigen-
value of AH(BhhHBH +Rw)−1A. However, the optimised
waveform obtained in (17) is associated with transmission
complexities and the resource constrained sensor nodes within
the IoT may not have sufficient resources to transmit these
waveforms. To reduce the transmission complexity, we con-
sider the transmit waveforms discussed in Section IV. While
the waveforms discussed in Section IV do not optimise the
matched filter output, suitable waveform may be chosen which
maximises the matched filter output within the constraints of
the available transmit waveforms. However, maximising SINR
is not the sufficient condition to optimise the target detection
performance of IoT.

The matched filter compares the received signal with the
expected target return to detect the existence of the target
echo. A reliable decision regarding the existence or absence
of a target can be made when the matched filter outputs under
hypothesis H0 and H1 are clearly distinguishable. To measure
the ability of the matched filter to make this distinction we
define Ease of Detection Index (δ) in (18) which is measured
at 3dB Signal-to-Interference Ratio (SIR). Here ? represents
correlation operator. When the sensing conditions are known,
the transmit waveform which maximises (δ) gives optimum
reliability among the available choice of transmit waveforms.
Within resource constrained IoT, the transmit power has a
significant impact on the life time of the sensor nodes. The
choice of transmit waveform while achieving high δ, must
also be energy efficient to ensure longevity of the sensor
nodes. The amount of transmit power required to guarantee
a desired SIR at the receiver is related to various factors such
as propagation losses, target impulse response, target range,
etc. For given sensing conditions, the energy efficiency of the
transmit waveform is defined by Energy Efficiency Index (η)
which is the ratio of the amount of transmit power (PTm)
required to guarantee a desired SIR at the matched filter output
to the amount of transmit power (PTr) required to guarantee
the desired SIR at the sensor node receiver which is given as,

η =
PTm
PTr

=
max(fH ?Bh)(As)H(As)

max(fH ?As)(Bh)H(Bh)
(19)

Energy efficiency index denotes the factor by which the
transmit power may be reduced while ensuring desired SIR
at the matched filter output. The transmit waveform which
provides optimal balance between δ and η is chosen based
on the criterion given by the ratio δ/η. Therefore, for given
sensing conditions the transmit waveform which maximises
δ/η optimises the target detection reliability of IoT.

VI. PERFORMANCE ANALYSIS

In this section, we compare the optimality criterion of the
waveforms discussed in Section IV. Simulations are performed
in MATLAB and within simulations, the interfering waveform
is assumed to be a Monocycle pulse and the presence of white
Gaussian noise is assumed. IoT is assumed to be deployed to
detect the presence of a target with known impulse response. In
Table I, δ and η of the waveforms considered under the given
sensing conditions are summarised. High value of Ease of De-
tection Index indicates greater target detection reliability and
lower value for Energy Efficiency Index indicates improved
transmission efficiency. From Table I it can be observed that
for the simulated sensing conditions, G4 and Hm4 waveforms
generated high δ/η ratios compared to the other waveforms.
Similarly, δ/η ratio of Hm1 waveform is less than zero which
indicates that for the given sensing conditions Hm1 waveform
is unsuitable for transmission.

TABLE I
COMPARISON OF GAUSSIAN AND MONOCYCLE PULSES

AUTOCORRELATION FUNCTIONS

Waveform δ η (δ/η)

Gaussian Pulse 0.4553 0.2277 1.9995

G0 0.4045 0.2214 1.8272

G1 0.3906 0.3789 1.0309

G2 0.0357 0.5609 0.0636

G3 0.4180 0.1440 2.9024

G4 1.2945 0.0843 15.3645

Hm0 0.1969 0.4029 0.4888

Hm1 -0.0333 1.3813 -0.0241

Hm2 0.3603 0.2523 1.4281

Hm3 1.2444 0.0958 12.9957

Hm4 1.2675 0.0857 14.7904

Matched Filter Output: In Fig. 2 and Fig. 3, the matched
filter outputs of the received signal models under hypothesis
H0 and H1 with transmit waveforms being G4 and Hm4

respectively are plotted. The transmission periods of individual
sensor nodes within IoT are assumed to be unsynchronised.
The matched filter outputs are plotted for all 4 cases of
received signal models discussed in (11) and (12). H00 indi-
cates the received signal model under hypothesis H0 where

δ =
(max(fH ?As)−max(fH ?Bh))(max(fH ? (As + Bh))−max(fH ?Bh))

max(fH ?Bh)
(18)



the target and interfering waveforms are absent. Similarly,
H01 refers to the received signal under hypothesis H0 in the
presence of interfering waveform. Similarly, H10 and H11

refer to the received signal models under hypothesis H1 in
the absence and presence of interfering waveform. From the
plots, it can be observed that, when G4 and Hm4 waveforms
are transmitted respectively, a clear distinction existed between
matched filter outputs under hypothesis H0 and H1 which
indicates greater detection reliability.
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Fig. 2. Matched filter output for G4 transmit waveform and interfering
Monocycle pulse
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Fig. 3. Matched filter output for Hm4 transmit waveform and interfering
Monocycle pulse

Similarly, in Fig. 4, the matched filter output is plotted when
G3 waveform is transmitted. In this case at 3dB SINR, while
the matched filter output is maximised under hypothesis H1,
a reduced distinction can be observed between hypothesis H0

and H1 along with lower dynamics. This leads to reduced
detection reliability. In Fig. 5, the matched filter output is
plotted when Hm1 waveform is transmitted. In this case, no
distinction between matched filter outputs under hypothesis

H0 and H1 can be observed which indicates an uncertainty in
the decision-making process.
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Fig. 4. Matched filter output for G3 transmit waveform and interfering
Monocycle pulse
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Fig. 5. Matched filter output for Hm1 transmit waveform and interfering
Monocycle pulse

Target Detection Performance: To make a decision regarding
the existence of targets, a test statistic T is generated based
on likelihood ratio test which is compared to a pre-defined
threshold γ. The test statistic for the detection problem based
on matched filter output can be written as [19]:

T =
fHy

yHy − fHy

H1
>
<
H0

γ (20)

γ is usually chosen such that the maximum false alarm rate
(Pfa) remains within an acceptable limit. For simulations,
γ is chosen to ensure a maximum allowable Pfa of 10−3.
We resort to Monte-Carlo techniques for simulations with
10/Pfa independent simulations with Ny = 415 received
signal samples. The target impulse response vector length



Na is assumed to be 15. A traditional Energy detector (ED)
is simulated to compare the detection reliability and power
efficiency of the proposed method [20]. According to the
results summarised in Table I and simulation results for the
matched filter outputs discussed in this section, within the
given sensing conditions, G4 waveform is expected to provide
optimum target detection performance. To verify the observa-
tions, in Fig. 6 we compare the target detection performances
of the proposed target detector when G4 and Hm1 waveforms
are transmitted respectively. Clearly, when G4 waveform is
transmitted the target detector outperformed its counterpart
when Hm1 waveform is used. Moreover, traditional ED also
outperformed target detection performance of the detector
when Hm1 waveform is used.
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Fig. 6. Comparison of target detection performance when G4 and Hm1

waveforms are transmitted

Similarly, in Fig. 7, the target detection performances are
compared when G4 and G3 waveforms are transmitted. While
G3 provided a significant improvement in target detection
performance when compared to Hm1, G4 outperformed G3

by a significant margin. However, target detection using G3

waveform outperformed the corresponding performance of
traditional ED. Finally, in Fig. 8, the target detection per-
formances are compared when G4 and Hm4 waveforms are
transmitted. From Table I it can be observed that the difference
between δ/η ratios of G4 and Hm4 waveforms are comparable
which is validated through simulations in Fig. 8 with G4

slightly outperforming Hm4.
Within Eq. 20, the amount of transmit power, PTm required

to guarantee a desired SIR at the matched filter output is
measured as,

PTm = SIR2

(
max(fH ?Bh)

max(fH ?As)

)2

(21)

At 0.5mW interfering signal strength, the power consump-
tion of the transmit UWB waveforms based on the proposed
waveform selection criterion is plotted in Fig. 9. Power re-
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Fig. 7. Comparison of target detection performance when G4 and G3

waveforms are transmitted
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Fig. 8. Comparison of target detection performance when G4 and Hm4

waveforms are transmitted

quirements of an energy Detector is provided for reference. It
can be observed that, the transmit waveforms selected based
on the proposed selection criterion significantly reduces the
power consumption within resource constrained IoT. Among
the selected waveforms, G4 and Hm4 consumed least amount
of power followed by G3 and Hm1. The results plotted in
Fig. 9 validate the proposed Energy Efficiency Index (η) which
is summarised in Table. I. Hence, with known target im-
pulse response and sensing conditions, the waveform selection
procedure is performed considering amount of power con-
sumption as well as maximum allowable Pfa. The proposed
framework to measure the δ/η ratio is expected to provide
with an indicative benchmark on the suitability of a certain
waveform. To calibrate a detection system the highest possible
value of such threshold is to be preferred.
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Fig. 9. Energy efficiency of the proposed waveform selection criterion

VII. CONCLUSION

We have investigated the waveform selection criterion in the
context of energy efficiency and detection reliability within RF
sensing based IoT for surveillance applications. The amount
of power consumed during RF signal transmission is one of
the major disadvantages of RF sensing when considered for
low-powered device based IoT. Transmit waveforms within the
range of UWB technologies which are suitable for resource
constrained IoT have been explored. Various received signal
models in the context of multi-sensor UWB based IoT have
been discussed. Within an event driven IoT, where the trans-
mission periods of individual sensor nodes are unsynchronised,
we proposed a waveform selection criterion to optimise the
target detection reliability. The proposed waveform selection
criterion takes into account the nature of the target and
sensing conditions to generate ease of detection index and
energy efficiency index for all available transmit waveforms.
Numerical results show the target detection performance and
energy efficiencies of the proposed IoT for different choices
of transmit waveforms. It has been shown that the proposed
waveform selection criterion optimises the target detection
reliability as well as the energy efficiency under the constraints
of available choices of transmit waveforms. In the future
work, authors consider deriving a reconfigurable and dynamic
waveform selection feature for the existing GLRT detector to
achieve increased the detection reliability while meeting the
resource constraints of IoT.
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