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Abstract Although some of the earliest Estimation of Dis-
tribution Algorithms (EDAs) utilized bivariate marginal dis-
tribution models, up to now, all discrete bivariate EDAs had
one serious limitation: they were constrained to exploiting
only a limited O(d) subset out of all possible O(d2) bivari-
ate dependencies.

As a first we present a family of discrete bivariate EDAs
that can learn and exploit all O(d2) dependencies between
variables, and yet have the same run-time complexity as
their more limited counterparts. This family of algorithms,
which we label DICE (DIscrete Correlated Estimation of
distribution algorithms), is rigorously based on sound sta-
tistical principles, and particularly on a modelling technique
from statistical physics: dichotomised multivariate Gaussian
distributions.

Initially [19], DICE was trialled on a suite of combi-
natorial optimization problems over binary search spaces.
Our proposed dichotomised Gaussian (DG) model in DICE
significantly outperformed existing discrete bivariate EDAs;
crucially, the performance gap increasingly widened as di-
mensionality of the problems increased.

In this comprehensive treatment, we generalise DICE by
successfully extending it to multary search spaces that also
allow for categorical variables. Because correlation is not
wholly meaningful for categorical variables, interactions be-
tween such variables cannot be fully modelled by correlation-
based approaches such as in the original formulation of DICE.
Therefore, here we extend our original DG model to deal
with such situations.
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We test DICE on a challenging test suite of combina-
torial optimization problems, which are defined mostly on
multary search spaces. While the two versions of DICE out-
perform each other on different problem instances, they both
outperform all the state-of-the-art bivariate EDAs on almost
all of the problem instances. This further illustrates that these
innovative DICE methods constitute a significant step change
in the domain of discrete bivariate EDAs.
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1 Introduction

Estimation of Distribution Algorithms (EDAs), often also
called Probabilistic Model Building Genetic Algorithms
(PMBGAs), are an important optimization paradigm within
Evolutionary Computation. They are stochastic optimization
methods that guide the search for a global optimum by build-
ing and sampling explicit probabilistic models. Traditional
search operators like mutation and crossover are instead re-
placed by a probabilistic model.

Many EDA variants have been developed for both con-
tinuous and discrete problem domains. Some of the earliest
EDAs used relatively simple univariate models, for example,
the Univariate Marginal Distribution Algorithm (UMDA)
[25], Population-Based Incremental Learning (PBIL) [1] and
the Compact Genetic Algorithm (cGA) [14]. Such uncom-
plicated models were, obviously, unlikely to suffice to tackle
more difficult and intractable problems. There has been a
long and natural progression towards the use of more com-
plex models able to capture complicated problem dependen-
cies and structures.

EDAs utilizing models that could capture and exploit
bivariate marginal distributions appeared relatively early in
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the development of this field. Such bivariate models are po-
tentially much more expressive than univariate models. For
discrete spaces, a well known example of a bivariate EDA
would be Mutual Information Maximizing Input Clustering
(MIMIC) [7].

However, successively more expressive models have been
investigated. Perhaps the most popular general EDA mod-
elling approach has been graphical models and Bayesian
networks. Some discrete search space examples would be
the Bayesian Optimization Algorithm (BOA) [27] and the
Estimation of Bayesian Networks Algorithm (EBNA) [9],
and, in continuous search spaces, the Estimation of Gaus-
sian Network Algorithm (EGNA) [20]. However, increas-
ing expressiveness has almost invariably gone hand in hand
with added computational costs and configurational com-
plexities.

In this paper, we explore a novel bivariate EDA approach
for discrete search spaces, based on dichotomised multivari-
ate Gaussian distributions, that is no longer hindered by this
constraint. These models have the attractive property of cap-
turing and exploiting all O(d2) bivariate interactions between
the d variables of a problem domain. As far as these authors
are aware, all bivariate marginal distribution models previ-
ously used in discrete space EDAs were restricted to using
just O(d) of these bivariate interactions.

The structure of the paper is as follows. Section 2 de-
scribes previously developed bivariate EDAs. The dichotom-
ised Gaussian (DG) model that DICE utilizes has its origins
in the literature on the simulation of correlated multivariate
Bernoulli variables. Section 3 begins with a brief survey of
this literature. The bulk of this section, however, is devoted
to a detailed description of the DG model and its implemen-
tation. Section 4 describes an extended version of the basic
DG model developed to cope with categorical variables in
multary search spaces. Section 5 details our suite of com-
binatorial optimization problem domains, the bivariate EDA
algorithms we compare them with, and other experimental
details. Section 6 presents results and analysis for these ex-
periments. Finally, in section 7, we give our conclusions and
lay out some ideas for future work.

2 Bivariate EDAs

2.1 Continuous Bivariate EDAs

In continuous spaces, models capable of efficiently captur-
ing all bivariate marginal distributions are readily available
and easy to use, e.g. the family of multivariate Gaussian
distributions. EDAs like EMNA and the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES)1 [13] , which uti-

1 Strictly speaking, CMA-ES does not quite fall into the canonical
EDA framework. However, it shares almost all of the core features of
a typical EDA.

Fig. 1: The relative thicknesses of edges in the first graph represent rel-
ative interaction strengths between six search space variables. Dashed
red edges in the second graph represent the resulting constructed MST.
Only edges/dependencies in the tree are exploited in these approaches.

lize such models have, therefore, long been widely available
and used. The Estimation of Gaussian Network Algorithm
(EGNA)[20] is another continuous EDA that, at least in part,
uses Gaussian distribution techniques. When there has been
a need for even more expressive continuous models, several
past authors have utilized Gaussian Mixture Models (GMMs)
based on weighted mixtures of several multivariate Gaussian
distributions [22].

2.2 Discrete Bivariate EDAs

For discrete spaces, the only bivariate EDAs available up-to-
now have used restricted bivariate interaction models. MIMIC,
mentioned earlier, greedily constructs a sequential chain of
the most significant O(d) individual bivariate marginal dis-
tributions. Building such chains or trees is the principal mod-
elling strategy in existing discrete bivariate EDAs. Combin-
ing Optimizers with Mutual Information Trees (COMIT) [2],
and the Bivariate Marginal Distribution Algorithm (BMDA)
[28] are other examples. COMIT was essentially an exten-
sion of MIMIC. Whereas, for d-dimensional problems with
d dependent variables, MIMIC greedily constructed a se-
quential chain of O(d) individual bivariate marginal distri-
butions, COMIT used a more general O(d) dependency tree
structure. MIMIC, COMIT and BMDA are all based on chains
or trees of d−1 individual bivariate marginal distributions.

COMIT, in effect, builds a Chow-Liu tree [5]. This pro-
cedure scores all pairwise interaction densities based on an
estimate of their mutual information (MI). An efficient Min-
imum Spanning Tree (MST) algorithm is then applied to a
matrix of these scores to greedily construct an MST. Fig. 1
illustrates this process. The cost of this MST algorithm for
arbitrary dense matrices is O(d2), which also gives the over-
all cost for the model building procedure. This tree along
with the d−1 pairwise bivariate distributions associated with
its edges is then traversed to generate new individuals. Chow-
Liu trees can be viewed as a particularly simple and con-
strained form of Bayesian network (where a child can have
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at most one parent). However, even if this approach identi-
fies and makes use of the O(d) out of O(d2) most significant
pairwise interactions, it still is the case that the vast majority
are discarded. This may increasingly impact on model accu-
racy as problem dimensionality increases. The BMDA algo-
rithm also uses essentially the same procedure. The princi-
pal difference is that it uses Pearson’s chi-squared estimator
instead of mutual information to score bivariate variable in-
teractions.

In [31], an interesting variation on such tree-based algo-
rithms is given. Their algorithm, EDA based on Mixtures
(EDAM), simply uses random trees (avoiding this costly
O(d2) step). A mixture of ten such random trees was used
as their EDA model in experiments. In essence, this algo-
rithm reduces computational cost at the expense of some
model accuracy. Despite randomly constructing the depen-
dency trees, they claim their algorithm, nonetheless, per-
formed similarly to MIMIC on tests.

A small number of authors have previously used mul-
tivariate Gaussian copula models in EDAs. An example of
this, which has some relevance to our work is [16]. There
are some similarities between our approach and the algo-
rithm given in section III of that paper. Their algorithm is
potentially capable of learning and exploiting all the bivari-
ate marginal dependencies in the continuous problem do-
mains examined in their paper. However, their method is not
practical as a technique for discrete search spaces.

2.3 Computational Cost

A seeming advantage of previous MST techniques is the rel-
atively low O(d2) cost in building such a model (the main
cost is the construction of the MST). However, even if these
models identify and use only the O(d) most significant inter-
actions, all O(d2) bivariate interaction strengths for a pop-
ulation of size n must still be estimated and scored (with
computational cost O(d2n)). This is the primary computa-
tional bottleneck for MIMIC and other past discrete bivari-
ate EDAs.

The cost complexity of our new dichotomised Gaussian
(DG) bivariate EDA model, which will be described in de-
tail later, is O(max(d,n)d2) per generation. However, gen-
erally, to have a reasonable chance of accurately estimating
all O(d2) bivariate interaction parameters, it is expected that
the population size n should at least be d. Therefore, the
computational cost of the DG model normally is still of the
same order as this unavoidable O(d2n) bivariate EDA gener-
ational cost; hence, computationally DICE is not more com-
plex than past discrete bivariate EDAs despite exhaustively
exploiting all the bivariate dependencies. This is a signifi-
cant result.

3 The Dichotomised Gaussian Model

3.1 Simulation of Correlated Multivariate Bernoulli
Variables

The literature concerning simulation (random generation)
of correlated binary vectors has a decades long history. A
multivariate Bernoulli variable (essentially a randomly gen-
erated bit string) is, in principle, fully specified by 2d − 1
parameters (in effect, the individual probabilities for every
possible bit string of length d it can generate). There is usu-
ally little practical hope of accurately learning so many pa-
rameters from data. A more realistic goal is to learn the uni-
variate marginal distributions of the variables and the more
limited number of O(d2) correlations between those vari-
ables. Then, one constructs a multivariate Bernoulli variable
with those same univariate distribution and correlation char-
acteristics.

Usually, the ideal choice would be to use the maximum
entropy distribution for which the means and correlations
for the set of d binary variables are constrained to the de-
sired target values. In this case, the maximum entropy dis-
tribution is actually the well-known Ising model. Unfortu-
nately, it is not at all straightforward or cheap to find the
particular Ising model that fits a desired set of mean and
correlation constraints. It is also difficult and expensive (in-
deed NP-complete beyond a certain temperature) to sample
binary vectors from such a model. Therefore, many other
more practical methods have been proposed for simulating
such correlated binary vectors.

Examples would include [4] that proposed a method us-
ing look-up tables of size O(d3), [21] that introduced two
methods – one based on setting up a linear programming
problem and another based on Archimedean Copulas, [11]
that introduced an “iterative proportional fitting algorithm”,
and [17] that represents a more recent copula approach to
this problem.

3.2 The Dichotomised Gaussian Model

The particular technique, the dichotomised Gaussian (DG)
model, that we have elected to use has been described and
utilized in a number of fields (though never previously in
optimization or with EAs), with the first description being
possibly [8]. The approach uses dichotomised multivariate
Gaussian distributions where the real values in the vector
produced by an appropriate multivariate Gaussian are di-
chotomised (converted into discrete integral values) via a
set of appropriately constructed thresholds. A more recent
exposition of this method of dichotomising via thresholding
can be found in [24] (applying it to the biological problem of
simulating neuronal spike trains). Those authors also argue
that this model is “near maximum-entropy”. This method
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can also easily be extended to the more general case of gen-
erating multary vectors with any given correlation structure
and associated set of univariate marginal distributions.

3.2.1 Randomly Generating Multary Strings

The DG method randomly generates multary search space
strings ω ∈ Ω where each gene position can choose from
two or more possible allele values. Here Ω is a d-dimension-
al multary search space Ω =∏

d
i=1Zai where Zai = {0, . . . ,ai−1},

so that each ai ≥ 2 specifies the arity of the ith dependent
variable (gene) ωi. So, using this notation, the ith gene ωi
(out of d possible genes) can take on one out of of ai possi-
ble allele values (ranging from 0 up to ai−1). At the heart of
the DG model is a d-dimensional multivariate normal distri-
bution N (0,Σ) and an associated set of thresholds:

T =
{

tb
k | k ∈ {1, . . . ,d} , b ∈ {0, . . . ,(ak−2)}

}
The multivariate normal distribution is used to randomly

generate a d-dimensional continuous vector x ∈ ℜd . Each
individual variable xi will have a univariate marginal distri-
bution in ℜ with the usual Gaussian bell-shaped distribu-
tion (with a mean of 0 and a variance of 1). The thresh-
old values in T are used to convert this d-dimensional ran-
domly generated continuous vector x into a d-dimensional
discrete multary string ω . Each variable ωi, with arity ai ,
will have ai−1 increasing threshold values associated with
it: t0

i < t1
i · · · < tai−2

i which partition ℜ into ai disjoint inter-
vals:

K0
i =

(
−∞, t0

i
]
, K1

i =
(
t0
i , t1

i
]
, . . . ,Kai−1

i =
(

tai−2
i ,∞

)
So, for example, if xi happens to fall in the particular interval
Kc

i , then we set ωi = c.
The basic operation of this method is, therefore, straight-

forward: we first generate multivariate normal vectors ac-
cording to N (0,Σ) and then dichotomise these using the
set of thresholds T to produce random multary strings.

3.2.2 Configuring the DG Model

The goal of the DG method is to allow the random gener-
ation of multary search space vectors ω ∈ Ω so that these
conform to a set of desired univariate marginal density func-
tions {pω

i (c)}i, where pω
i (c) = Pr{ωi = c}, and according to

a target set of variable (gene) correlations ri j given in a d×d
gene correlation matrix (R)i, j = ri j. Usually, the {pω

i (c)}i
are empirical univariate marginal densities estimated from
normalized allele frequency counts in the population, and R
is a sample correlation matrix estimated from a population
of selected search space points. Once we have our target es-
timates for R and {pω

i (c)}i, then three further steps need to
be followed to properly configure the DG model (see Algo-
rithm 1):

Algorithm 1 Steps to configure the DG model
1: Calculate the set of threshold values T . These are chosen to repli-

cate the target univariate marginal densities pω
i (c). Calculating T

has computational complexity O(a) where a = Σ d
i=1ai and empiri-

cally estimating the {pω
i (c)}i from the population has cost O(d n).

2: Calculate the correlation matrix Σ . The multivariate normal d×
d correlation matrix (Σ)i, j = ρi j is constructed to ensure that the
correlations corr(ωi,ω j) in the generated multary strings ω match
the target gene correlation matrix R. Calculating Σ has cost O(a2)
and empirically estimating R has cost O(d2n).

3: If necessary, use a nearest correlation matrix algorithm to repair
Σ (to reconcile any conflicting gene correlation targets). This has
cost O(d3).

Fig. 2: Illustration of calculating thresholds for a gene ωi with four
possible allele values and specific occurrence probabilities for each of
these alleles.

Allele Values 0 1 2 3

Univariate Marginal Densities pi
ω
(.) 0.25 0.15 0.4 0.2

Cumulative Densities P i
ω
(.) 0.25 0.4 0.8 1

Threshold Values -0.675 -0.253 0.842 ∞ 

Threshold values 

0.675 Interval for allele value 1: 
Ki

1

 Interval for allele value 0: 
Ki

0

 Interval for allele value 2: 
Ki

2

 Interval for allele value 3: 
Ki

3

0.253 0.842

0.25 0.15 0.4 0.2

Probability of Gaussian being 
in interval for allele value 0:  

pi
ω(0)

Probability of Gaussian 
being in interval for 

allele value 3:  
pi

ω(3)

3.2.3 Calculating the Threshold Values

We set the thresholds to exactly replicate the target univari-
ate marginal densities {pω

i (c)}i. Let Pω
i (c) = Pr{ωi ≤ c} be

the target cumulative distribution function (CDF) for vari-
able ωi, which we can calculate as Pω

i (c) = ∑
c
k=0 pω

i (c) .
If we were thresholding simple uniform U(0,1) distribution
variables (rather than normal variates), then these CDF den-
sity values could be directly used as the thresholds. How-
ever, since we are dichotomising normal distribution vari-
ables, then we must first use the standard inverse normal
CDF function Φ−1(x) to map these to suitable correspond-
ing normal threshold values:

t0
i = Φ

−1(Pω
i (0)), . . . , tk

i = Φ
−1(Pω

i (k)), . . .

It can be easily verified that the univariate marginal densities
of the resulting randomly generated multary vectors ω will
indeed equal {pω

i (c)}i. See Fig. 2 for a concrete example.
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3.2.4 Replicating Gene Correlations

In step 1, we have already replicated the univariate marginal
densities of our target discrete distribution. If we went no
further and simply used a vector of d independent normal
variates with diagonal Σ , in our multivariate normal distri-
bution N (0,Σ), then, in effect, we would have constructed
a univariate EDA like PBIL or UMDA. However, (Σ)i j = ρi j

has O(d2) free parameters for us to tune. After empirically
estimating the matrix (R)i, j = ri j of correlations between the
search space variables in the selected population, we then
adjust each ρi j so that the resulting correlation corr(ωi,ω j)

between variables i and j in the generated random multary
vector ω equals the desired target value ri j.

We can deal with each pair of variables ωi and ω j sepa-
rately in turn. Their thresholds in T have already been cal-
culated. Unfortunately, we cannot simply set ρi j equal to ri j.
However, for any possible value of ρi j, we can efficiently
calculate what the resulting corr(ωi,ω j) would be.

Only cheap-to-compute functions from the standard math-
ematical toolbox are needed. We use the standard bivariate
normal CDF function Ψ2(x,y;ρ) to calculate bivariate marg-
inal CDFs for the generated vector ω as:

Pω
i j (b,c) = Prob

{
ωi ≤ b ∩ ω j ≤ c

}
=Ψ2

(
tb
i , t

c
j ;ρi j

)
, i 6= j

For convenience, if we also define Pω
i j (b,c) to be 0 when-

ever b < 0 or c < 0, then the bivariate marginal densities
pω

ij (b,c) = Prob
{

ωi = b ∩ ω j = c
}

for ω can be expressed
and easily calculated as:

pω
ij (b,c) = Pω

i j (b,c)−Pω
i j (b−1,c)−

Pω
i j (b,c−1)+Pω

i j (b−1,c−1)

From these density values, the gene correlations can be cal-
culated as:

corr(ωi,ω j) =
ai−1

∑
b=0

a j−1

∑
c=0

bc pω
i j(b,c)−E (ωi)E (ω j) ,

i 6= j, where E (ωi) =

(
ai−1

∑
b=0

b pω
i (b)

)
We numerically adjust ρi j until the resulting calculated

gene correlation between ωi and ω j exactly equals ri j. As
pointed out in [24], this problem is monotonic and there is
guaranteed to be a single unique solution for ρi j lying within
[−1,1]. Straightforward and efficient one-dimensional bi-
section root-finding algorithms can be used to quickly solve
for each ρi j. In our implementation, we used Brent’s root-
finding bisection method, which on average converged within
only six iterations. Alternative descriptions of this approach
can be found in [8] and [24]. This process is repeated to esti-
mate ρi j for each pair of variables until eventually Σ is fully
calculated.

3.2.5 Repairing the Correlation Matrix

If the resulting Σ is a valid correlation matrix, i.e. is pos-
itive semi-definite, then configuration of the DG model is
complete. Positive semi-definite means all eigenvalues are
non-negative λi ≥ 0 in the eigenvector decomposition: Σ =

QDQT where D = diag(λi). Σ may not always be positive
semi-definite due to incompatibilities, under this method,
between different gene correlation targets in R. However,
efficient correlation matrix repair algorithms exist that can
then replace Σ with its nearest valid correlation matrix, cal-
culated in terms of the Frobenius matrix norm.

A paper by Nicholas Higham [15] introduced the first al-
gorithm for finding, for any arbitrary real matrix, its nearest
valid correlation matrix. This method was based on Djik-
stra’s “alternating projections method” and had linear con-
vergence. However, later Newton-method based algorithms
have been developed with fast quadratic convergence [29].
We used a publicly available2 C-code version of this Newton-
based algorithm. Our implementation of DICE is available
from: https://github.com/FergalLane/DICE.

A simpler method, though not examined here, which we
have found empirically almost as effective, is covariance
matrix repair. The nearest valid covariance matrix to Σ is
given by Σ+ = Qdiag(max(λi,0))QT . Σ+ can then easily
be converted back into a correlation matrix by renormaliza-

tion: Σi j =
Σ
+
i j√

Σ
+
ii Σ

+
j j

.

Both of these repair approaches have cost O(d3) (due to
the matrix operations involved). As can be seen from Al-
gorithm 1, configuring the DG model each generation has
an overall computational cost of O(max(a2,d2n,d3)). Us-
ing the DG model, generating each new individual point has
cost O(d2) and new population, O(d2n). Unless allele arities
are large, the effective cost complexity of the DG approach
per generation is O(max(d,n)d2).

4 Extending the DG Model

4.1 Categorical Variables

DICE uses a correlation-based modelling approach. How-
ever, variable correlations may not always be an entirely rel-
evant measure for some types of multary search space. For
example, in the graph colouring problem, which we will en-
counter later, while numeric values can indeed be assigned
to colours in a representation, a colour average in this case
is not really meaningful. Colour is not a quantitative value
for this problem; there is no inherent ordering between the
possible colours. A variable holding such a qualitative value

2 Downloadable from: http://www.math.nus.edu.sg/
~matsundf/
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Fig. 3: An illustration of how a multary string is mapped to a binary
representation

1 0 3 2

Multary String  ω 
Allele values

Allele arities 3         5         4         3

a0           a1          a2          a3

Arity sum:        
a = ∑a i= 15

0  1  0 1  0  0  0 0 0  0  0  1 0  1  0

Binary String Representation Of a Multary String ω 

Group of bits
Representing

ω0=1

Group of bits
Representing

ω1=0

Group of bits
Representing

ω2=3

Group of bits
Representing

ω3=2

Multary String Length= 4

Binary String Length=15

is usually termed a categorical or nominal variable. Cor-
relation between the assigned colour values can still have
a degree of usefulness. However, the inadequate treatment
of categorical multary variables is a potential weakness in
our original DICE approach. Therefore, in this section, we
extend the original DG model to deal with this categorical
case.

4.2 Binary Representations for Multary Strings

This extended model uses a binary representation for mul-
tary strings. Suppose we have a multary string
ω = {ω0,ω1, . . . ,ωd−1} with individual variables ωi hav-
ing arities ai. In our new approach, this multary string will
be represented as a longer bit string b whose total length is
a=∑

d
k=1 ak (the arity sum). Each multary variable ωk is rep-

resented by a contiguous group of ak bits in b. Within this
group, one and only one bit is allowed to be set. The posi-
tion of this set bit corresponds to the allele value in ωk. The
first bit being set corresponds to an allele value of 0, the sec-
ond being set corresponds to a value of 1 etc. Fig. 3 gives a
concrete example of this mapping process.

In this representation, every possible allele value is al-
located an individual bit position and is treated separately;
correlations are calculated between individual allele values
(collective averages and correlations between entire vari-
ables are no longer calculated).

4.3 Generating Multary Strings With Categorical Variables

For a population of multary search space points expressed
using this a-dimensional bit string representation, a DG model
can be built in the standard previously-described way (re-
quiring the construction of an a×a correlation matrix and a
threshold values for T ). This can then be used to generate

random bit strings with statistical characteristics matching
the population. For example, the probability of any partic-
ular bit k, which represents allele value c at variable ωi in
the population, being set will equal the univariate marginal
density pω

i (c) for that allele value.
However, a complication arises if we want to use this

standard DICE approach to then randomly generate new in-
dividuals. Within any group of ai bits representing a multary
variable ωi, on average one of those bits will be set. How-
ever, sometimes more than one bit in the group will be set;
at other times none at all will be set. To randomly simu-
late multary strings, we need to be able to generate random
binary vectors with the above statistical characteristics, but
also constrained in such a way that always precisely one bit
is set within each variable group (not just on average).

4.4 A Related Statistical Sampling Problem

Luckily, related problems have been studied in the field of
stratified sampling in statistics [30]. Borrowing a technique
from this area, we can indeed generate such bit strings with
reasonable accuracy. This involves dichotomising the multi-
variate normal vector x generated by DICE in a new way.

The statistical topic, which closely relates to our needs,
is the question of how best to randomly sample, without re-
placement, n items out of a population of size N, so that the
selection probability for each item k is proportional to some
associated non-negative weight Wk (we can also assume that
these weights have been normalized so that ∑k Wk = n). Sev-
eral techniques developed for doing this involve associat-
ing with each item k an independent random number Uk ∼
U(0,1) and then using the Wk as thresholds. If we select only
items for which Wk ≥Uk, i.e. for which ζk =

Wk
Uk
≥ 1, then

the resulting sample will have, on average, n items exactly
sampled proportional to their weights Wk. Unfortunately, the
resulting sample will only have a size of n in expectation.

Several authors have proposed techniques to remedy this
issue. Ohlsson proposed Sequential Poisson Sampling (SPS)
[26], which simply selects the n items with the largest ζk val-
ues. He showed that this technique produces sampling prob-
abilities close to the desired ones.

This example almost exactly mirrors our requirement to
set/select exactly one (n = 1) bit out of a group of N = ai
bits that represent a multary variable ωi. In DICE, each bit k
is set if its associated normal variable xk exceeds the corre-
sponding threshold value tk in T . On average, exactly one
bit per group is set. The principal difference with the statis-
tical example is that we are using normal rather than uni-
form random variates. However, using the standard normal
CDF function Φ(x), we can equivalently reformulate this in
terms of the uniform distribution, putting Uk = Φ(xk) and
Wk = Φ(tk).
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4.5 A New Thresholding Procedure

To always exactly set one bit in a group, we can use the
SPS technique for thresholding: we first calculate ζk =

Wk
Uk

for each bit in the variable group and only set the bit with
the largest ζk value. This alternative thresholding technique
will always produce a binary vector in a format that we can
directly convert back into a multary string.

Rosen later created a similar sampling technique with
even better properties: Pareto sampling [30]. In our work,
we used his slightly different formula: ζk =

Wk(1−Uk)
Uk(1−Wk)

, setting
only the single bit in each group with the largest such value.

This new thresholding technique is easy to implement
and is likely to produce univariate and bivariate marginal
density properties close to the desired ones. The resulting
overall DG model is also bigger and more detailed (learn-
ing an a×a rather than a d×d correlation matrix from the
data). Exploiting more problem information could lead to
improved performances. However, there are added costs (the
cost per generation is now O(max(a3,d2n)) and, if there is
not sufficient data to learn the bigger model, performance
could potentially be negatively impacted.

5 Experimental Setup

Our overall goal was to test and compare the performance of
DICE (using both original and extended dichotomised Gaus-
sian models) with other existing discrete bivariate EDAs.
Previously in [19], we only tested DICE on problem do-
mains with binary search spaces. This time our test suite
contains mostly problem domains with multary search spaces.
To ensure an absolutely fair model comparison, we used the
same basic EDA algorithm with identical settings with each
EDA model.

5.1 EDA Algorithm Settings

All the EDAs used a population of 200 individuals. All al-
gorithms were run for 100 generations. At each iteration,
200 new individuals were generated. We did this by going
through all 200 existing individuals and, with probability
pm, either mutating it (by picking one variable at random
and modifying its allele value) or, otherwise, replacing it en-
tirely with an individual randomly generated using the cur-
rent EDA model. Such a strategy was found to improve the
performance of all EDAs we were testing. We used a setting
of pm = 0.5 for all EDAs (empirically this particular setting
was determined to most boost general EDA performances).

The 100 fittest individuals in the new population were
then selected and used in updating the probability model.
All the probabilistic EDA models were constructed, at each

iteration t, using a set H∗t of univariate and/or bivariate marg-
inal densities (estimated from current and previous selected
populations). We used an exponentially-decaying weighted
average of previously encountered population density his-
tograms. A model decay parameter τ ∈ [0,1] was used to
determine the factor at which the previous model was dis-
counted at each iteration. So the new EDA model H∗t would
be the weighted combination: H∗t = (1− τ)Ht + τH∗t−1 of
the just previously discounted model H∗t−1and the most re-
cent selected population histogram Ht . Extensive empirical
testing determined that τ = 0.75 was the best general setting
for the EDAs on the problem test suite we examined here.
An identical τ = 0.75 setting was used for all runs. Batches
of 100 runs were used to produce all the experimental re-
sults given below (except for MAX-SAT and graph colour-
ing where 200 runs were used). We tested the EDAs on a
range of dimensionalities: d = 10, 20, . . . , 100 for all prob-
lem domains.

We compared our original DICE EDA, and the new ex-
tended version, Categorical Variable-DICE (CV-DICE), against
a simple Univariate EDA (UEDA) model and the three prin-
cipal discrete bivariate EDA models available in the liter-
ature. These were the MST-based BMDA model (using the
Pearson chi-squared statistic), the MST-based MIMIC model
(scoring interactions using mutual information) and an inex-
pensive random tree (EDAM) model where a mixture of ten
randomly chosen dependency tree structures was used (the
same model used in [31]).

5.2 Problem Test Suite

Several well-known combinatorial optimization problem do-
mains, all defined on either binary or multary search spaces,
were used; these are described in more detail in Table 1. All
of these problem domains generated new fitness functions
for every run by randomly sampling a new set of weights.
We deliberately chose such problem domains because they
readily scale to higher dimensions, and we wanted to test the
performance of these models on search spaces of varying di-
mensionalities.

Some, but not all, of the problem domains previously
used in [19] had straightforward natural extensions to mul-
tary search spaces. Multary search spaces in this study used
an arity of 4 for all variables (except for graph colouring,
which used 3 colours and an arity-3 representation). Mul-
tary versions of QUBO and CUBO (Cubic Unconstrained
Binary Optimization) were used that simply replaced binary
variables with integer ones (and the formulas rescaled ap-
propriately).

Phase transition behaviour is well understood for both
graph colouring [18] and 3-Uniform SAT. To try to ensure
problem difficulty, we used an unweighted version of MAX-
SAT with the number of clauses chosen using the formula



8 F. Lane et al.

from [6]: c= 4.258d+58.26d
1
3 to place it at the phase tran-

sition point for SAT (similarly for 3-graph colouring).
In [23], some non-binary search space versions of NK

Landscapes were developed. One of these, Nominal NK Land-
scapes, was a simple multary extension of the original where
the fitness component functions Fi were also allowed to ac-
cept multary allele values. This NK Landscape variant has
a categorical variable structure. We wished to also include a
multary version of NK Landscapes that had variables with
non-categorical (ordinal or quantitative) properties. There-
fore, we constructed a novel but simple multary NK Land-
scape based on tessellations (or random cuts). Associated
with each variable ik in every Fi function (see Table 1) is a
randomly generated cut value ci ∼ U(0,ai−1). Allele val-
ues below this cut are treated by the Fi functions as 0, while
allele values greater than this cut point are treated as 1 (en-
suring that allele values further apart are more likely to be
“cut” and assigned different random values).

We also included the Quadratic Knapsack Problem, which
has a significant associated literature. We use the classic
form of the problem as originated by Gallo [10].

6 Results and Analysis

Fig. 4 details the EDA performances on both types of NK
Landscapes. Like other graphs in this section, mean best run
fitness for the EDA models for individual problem domains
is plotted. Clearly, DICE (using the original DG model) and
CV-DICE (using the new extended model) are the best per-
formers in all cases. CV-DICE has better performance in
more cases. However, for higher dimensions on the Nom-
inal NK Landscapes with K=3,4, DICE has better perfor-
mances. The reasons for this will need further investigation;
it is possible our populations contain an insufficient number
of individuals for the more detailed CV-DICE model to be
fully learned, particularly at higher dimensions.

Fig. 5 gives EDA performances on the Multary QUBO
and CUBO problem domains. DICE and CV-DICE have the
overall best performances on QUBO. DICE spectacularly
outperforms all other EDAs on multary QUBO. CV-DICE is
still clearly the runner-up, but lags far behind DICE. This is
perhaps unsurprising given that the variable structure is very
much quantitative, rather than categorical, for this problem
domain.The performance gaps between DICE and CV-DICE
and back to the others are all significant at least a 99% level
of significance using the two-tailed Student’s t-test (for all
further comparisons a 99% level of significance using this
test can be assumed unless specified otherwise).

For nine out of the eleven problem domains in this test
suite, DICE and CV-DICE have the best performances. Mul-
tary CUBO is one of two cases where this did not hold. In
[19], DICE could successfully cope with moderate numbers

of higher order interactions. Here, perhaps the much denser
O(d3) number of order-three variable interactions simply
overwhelms the O(d2)-parameter DG model.

For the two problem domains, 3-Uniform MAX-SAT
and 3-Graph Colouring, that made use of phase transition
theory, the performance margins between all EDAs were nu-
merically very small and graphically hard to see. The op-
timizers quickly were able to satisfy almost all colour or
clause constraints. However, at the phase transition point,
while there may be many local optima coming relatively
close to satisfying all clauses/colour constraints, there will
be very few or no points satisfying all of them. The real dif-
ficulty with such problem domains is in finding solutions
which satisfy the final small number of remaining constraints.

For these two problem domains, we ran batches of 200
rather than 100 simulations in order to better statistically dif-
ferentiate between such small performance gaps. To further
simplify comparison of results and reduce standard errors,
we give combined mean best run fitnesses, averaged across
all dimensionalities, for these problem domains. These com-
bined results are given in table form in Table 2 rather than as
graphs. Similar performance figures for the Quadratic Knap-
sack problem domain are also given (performance gaps were
also small in this case).

CV-DICE performs best on the Quadratic Knapsack and
DICE is in second place. DICE and CV-DICE perform best
on MAX-SAT with their performance gap not being statis-
tically significant; there should not really be a significant
performance gap as both DG models should perform almost
identically on binary search spaces. The performance gap
back to BMDA and MIMIC is also not quite statistically sig-
nificant.

For 3-Graph Colouring, MIMIC and BMDA beat CV-
DICE and DICE into third and fourth places. However, at
the 3-Graph Colouring phase transition, each vertex is con-
nected on average with only 4.687 other vertices. For such
sparse limited-dependency graphs, simpler tree-based mod-
els may be adequate (the added expressivness of the DG
model may confer no real advantage in this case).

Overall, for nine out of eleven problem domains, both
DICE and CV-DICE have superior performances to all other
EDAs.

7 Conclusions

In this paper, we generalise the first fully bivariate model
for discrete EDAs to cover both binary and multary search
spaces. A key innovation was a treatment of categorical vari-
ables which are not directly amenable to correlational mod-
els. A key feature of the DICE family is its computational
complexity: in its original form, despite exploiting all O(d2)

bivariate dependencies, DICE is no more computationally
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Table 1: Problem Domain Test Suite Details
Problem Domain Category Ref Fitness Function Formula/Details
Multary QUBO Multary [3] f (ω) = ∑

d
i, j=1 wi j(2si−1)(2s j−1), wi j ∼N (0, 1

d2 ), si =
ωi

ai−1

Multary CUBO Multary [12] f (ω) = ∑
d
i, j,k=1 wi jk(si)(s j)(sk), wi j ∼N (0, 1

d3 ), si =
ωi

ai−1

Nominal
NK-Landscapes

Categorical
Multary

[23]
K = 2,3,4; f (ω) = 1√

d ∑
d
i=1 Fi(ωi;ωi1 , . . . ,ωiK ) where the i j are chosen randomly without

replacement; each Fi returns a unique random normally distributed value for every unique
K+1-allele combination encountered.

Tessellation
NK-Landscapes

Multary
Same as above except a random cut value cik ∼ U(0,aik −1) is associated with each variable in
every Fi and f (ω) = 1√

d ∑
d
i=1 Fi(Iωi≥ci ; Iωi1≥cik

, . . . , IωiK≥ciK
) so allele values on the same side of

a cut are treated identically, and those on opposites sides, differently.
3-Uniform
MAX-SAT

Binary [6] The number of clauses c is set using the phase transition formula in [6].

3-Graph Colouring Categorical
Multary

[18] Fitness is the number of edges in the graph whose vertex colours differ; the graph connectivity
is set as close as possible to 4.687 to be at the phase transition.

Quadratic
Knapsack Problem

Binary [10]
f (ω) = 1

d ∑
d
i, j=1 pi jωiω j subject to ∑

d
j=1 w jω j ≤ c, each pi j is non-zero with probability

Λ = 0.33, pi j ∼ U(1,50), wi ∼ U(1,100) and c∼ U[50,∑d
j=1 wi], ωi ∈ {0,1}

Fig. 4: Mean Best Run Fitnesses for the EDA models on the Nominal NK and Tessellation NK Landscapes
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Fig. 5: Mean Best Run Fitnesses for the EDA models on the Multary QUBO and CUBO problem domains
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Table 2: Combined Mean Best Run Fitnesses for the EDA models av-
eraged across all Problem Sizes for the 3-Graph Colouring, 3-Uniform
Knapsack and Quadratic Knapsack problems domains

Problem Domains
EDA

Model
3-Uniform
MAX-SAT

3-Graph
Colouring

Quadratic
Knapsack

UEDA 236.04±0.03 53.09±0.02 230.10±0.03
EDAM 235.77±0.03 52.73±0.02 227.85±0.03
BMDA 236.18±0.03 53.61±0.02 228.28±0.03
MIMIC 236.18±0.03 53.69±0.02 228.27±0.03
DICE 236.24±0.03 53.34±0.02 230.38±0.03

CV-DICE 236.20±0.03 53.50±0.02 230.81±0.03

complex than its approximate counterparts that only explore
O(d) dependencies. In a majority of cases in our experi-
ments, the extended DICE outperformed the original DICE
model. Overall, however, the two DICE versions outperformed
all the other state-of-the-art discrete bivariate EDAs on nine
out of eleven problems in the test suite.

7.1 Future Work

The DG model has the potential to adapt other algorithms
from continuous domains, particularly those based on Gaus-
sian distributions, to discrete spaces. CMA-ES [13], a popu-
lar and powerful EDA-like optimizer for continuous search
spaces, would be a promising candidate for such treatment.

The DG model would be a good candidate for knowl-
edge incorporation. Correlation matrix repair can also be
performed using various forms of weighted Frobenius norms
(rather than the standard norm we use in this paper). In-
creased weights can be used to give increased priority and
protection to variable interactions learned to be more signif-
icant.
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