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BIM AND SENSOR BASED DATA MANAGEMENT SYSTEM FOR CONSTRUCTION 

SAFETY MONITORING 

 

ABSTRACT 

Purpose: This research investigates the integration of real-time monitoring of thermal conditions 

within confined work environments through wireless sensor network (WSN) technology when 

integrated with Building Information Modelling (BIM). A prototype system entitled Confined 

Space Monitoring System or CoSMoS (which provides an opportunity to incorporate sensor data 

for improved visualization through new add-ins to BIM software) was then developed.  

Design/ methodology/ approach: An empirical study was undertaken to compare and contrast 

between the performance (over a time series) of various database models to find a back-end 

database storage configuration that best suits the needs of CoSMoS. 

Findings: Fusing BIM data with information streams derived from wireless sensors challenges 

traditional approaches to data management. These challenges encountered in the prototype 

system are reported upon and include issues such as hardware/ software selection and 

optimisation. Consequently, various database models are explored and tested to find a database 

storage that best suits the specific needs of this BIM-wireless sensor technology integration. 

Originality/ value: This work represents the first tranche of research that seeks to deliver a fully 

integrated and advanced digital built environment solution for automating the management of 

health and safety issues on construction sites.   
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INTRODUCTION 

According to U.S. Bureau of Labor Statistics (BLS), a total of 796 fatal injuries were recorded in 

the U.S. construction industry in 2013 from which 14% of fatalities were due to the exposure to 

hazardous environment and 2% were caused by fire and explosions (BLS, 2013). One major 

operational area of safety concern on construction sites is workers operating in confined spaces. 

Occupational Safety and Health Administration (OSHA) has defined a confined space as: “any 

space that has limited means for entry or exit and that is primarily not designed for continuous 

worker occupancy” (OSHA, 2014). OSHA (2015) estimates that there are 53 worker deaths and 

injuries, 4,900 lost workday cases and 5,700 non-lost time accident annually. Lack of oxygen in 

confined spaces is the main cause of accidents faced by construction workers (IACS, 2007). 

OSHA suggests that in confined spaces oxygen content should be continuously monitored both 

during and prior to starting work. If the oxygen content in air drops by 19.5% by volume or 

increases from 22% by volume then entry into a confined space should be avoided (OSHA, 

2011). Consequently, effective ‘real-time’ monitoring of oxygen and temperature levels in a 

confined space environment is needed to improve worker safety. 
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The built environment is increasingly becoming digitized and advanced smart city technologies 

may present new opportunities to more effectively monitor environmental conditions and for this 

research, hazardous parameters (Pӓrn et al., 2017). BIM is one of several prominent digital 

technologies that has gained extensive practitioner and academic interest within the Architectural, 

Engineering, Construction and Owner-operated (AECO) sector. BIM provides a multi-

collaborative platform for sharing both semantic and geometric information throughout the 

project management team during the asset’s entire lifecycle (Vanlande et al., 2008). Similarly, 

wireless sensor network (WSN) technology has gained prominence within the management of 

built environmental assets post construction (Li and Becerik-Gerber, 2011). A WSN incorporates 

a wireless network of spatially distributed autonomous devices or sensors (often called nodes) to 

provide real time monitoring of physical or environmental conditions (such as temperature, sound 

and pressure) within built environment systems (Cook and Das, 2004). These nodes are often low 

cost/ complexity and relay information either to a ‘sink’ for local usage or a ‘gateway’ for remote 

user access via networks connected to the internet (Zhu et al., 2010). Attempts to integrate BIM 

with different sensing technologies have already been made to specifically improve: 

environmental monitoring (Piza, et al., 2005); building performance (Guinard et al., 2009; 

Katranuschkov et al., 2010; Attar et al., 2011; Setayeshgar et al., 2013); facility management 

(Cahill et al., 2012; Ozturk et al., 2012); and health and safety (H&S) management (Shiau and 

Chang, 2012; Guven et al., 2012).  
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These aforementioned studies provide motivation to develop a BIM-Sensor based solution to 

improve H&S of construction workers particularly when working within confined spaces. The 

research specifically explored the integration of BIM and WSN with the objective of monitoring 

environmental conditions within confined spaces - an often ignored area where the physical 

condition and safety of operators is at high risk. A prototype system entitled Confined Space 

Monitoring System or CoSMoS was then developed and evaluated (Riaz et al., 2014). This paper 

reports upon the latest developments of this on-going research work and commensurate 

improvements to the prototype system which was transformed into a superior solution by 

addressing the inherent limitations identified during the study. The paper also highlights 

challenges faced due to collection of real time sensor data and resulting data management issues. 

To improve the performance of CoSMoS, the work sought to determine the most appropriate 

choice of database system that fits the application’s requirements. Consequently, various database 

models are explored and tested to find a database storage that best suits the needs of CoSMoS. 

 

COSMOS BACKGROUND: DATA MANAGEMENT CHALLENGE 

The prototype CoSMoS (Riaz et al., 2014) was developed as a proof of concept where the 

development environment comprised of: Crossbow's TolesB mote (Wireless Sensors); Autodesk 

RevitTM Architecture 2013 (BIM Software); Visual Studio.Net (Software Development 

Environment); and SQL Server (Database Management System). CoSMoS data aggregation, 

storage and management framework (refer to Figure 1) highlights the back-end sensor application 

that was programmed to: read TelosB gateway mote; convert acquired raw sensor values in a 
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human understandable format; and push the data to a data storage layer. The self-updating BIM 

model in CoSMoS depends upon a database link between RevitTM external application and a 

database system. Therefore, overall application data management performance not only dealt 

with centralized sensor data storage but also included BIM integration and visualization.  

 

<Insert Figure 1 about here> 

 

The data storage layer stores sensor values with ‘SensorID’, ‘Sensor type’, and ‘Timestamp’ in a 

SQL Server (DBMS) and relational format. Storing each sensing mote’s unique identification 

(ID) is critical to later correlate the acquired sensor values to the BIM model of a confined space. 

Once huge sensor data is collected from multiple motes, the next challenge posed relates to 

efficiently managing and retrieving relevant data from a database. The developed prototype 

system uses an SQL server which is a traditional method to store data, based on the Relational 

Database Management Systems (RDBMS). Recent research highlights that sharp a growth of data 

makes traditional RDBMSs inadequate to handle huge volume and heterogeneity of sensor data 

(Mai et al., 2014). However, there the literature offers no consensus on which type of database 

performs best for real time sensor applications. 

 

TRADITIONAL RELATIONAL DATABASES IN SENSOR DATA CONTEXT  

Existing literature on using traditional relational databases to store dynamically changing sensor 

data illustrates that adding more capacity to such a database requires greater processing and 
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storage power on a single machine (Shah et al., 2009). The literature also reveals several key 

challenges, namely: 

 

 rigid: RDBMS provides a well-defined structure which is required for transactional data but 

is too rigid for sensor data (van der Veen et al., 2012);  

 expensive: with dynamically changing data it is too expensive to maintain indexes on time 

(Pungilă et al., 2009, Shah et al., 2009); and 

 less scalable: relational databases are built for consistency and availability so there is less 

tolerance for network partitions making it difficult to scale horizontally (van der Veen et 

al., 2012).  

 

The extant literature also highlights some characteristics of a good sensor database which include 

the need to be: energy efficient; scalable; self-organizing; and robust against node failures and 

topology changes (Elnahrawy, 2003). Moreover, the underlying system should benefit from 

general characteristics of sensor data, such as their spatio temporal nature. Consequently, 

literature highlights the use of different types of time series software that benefit from the 

temporal nature of sensor data by having indexes on time. For example, time series DataBlade is 

used as a potential solution to performance degradation that result from reasoning over a huge 

volume of data (Shah et al., 2009).  
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Database Types: 

To overcome these challenges posed by RDBMS, several types of databases have been proposed 

such as NoSQL and Time Series Databases (TSDB) (Mai et al., 2014; Dix, 2016). RDBMS (or 

SQL databases) store data in database objects called tables. A table is a collection of related data 

entries and consists of columns and rows (Harrington, 2010). A NoSQL (often interpreted as ‘Not 

only SQL’) database provides a mechanism for storage and retrieval of data that is modelled in 

means other than the tabular relations used in relational databases. For example, column stores, 

document stores, key-value stores are some of the examples of the data models which come 

under NoSQL (Nayak et al., 2013). A TSDB on the other hand, is a software system that is 

optimized for handling time series data, arrays of numbers indexed by time (a date-time or a date-

time range) (Fu, 2011). 

 

Literature highlights StoneDB (a NoSQL database) as a possible solution to storing sensor data 

(Elnahrawy, 2003). Hypertable is also underlined as a potential solution which can overcome the 

limitations of scalability posed by traditional RDBMS however it is limited by the fact that it can 

store only strings (Sikkens, 2010). Existing research compares databases such as MySQL, 

MongoDB, CouchDB and Redis on scalar sensor data. Results show that NoSQL databases, 

particularly MongoDB, performed better in write intensive systems with the use of bulk inserts, 

followed by MySQL, CouchDB, and Redis (Mai et al., 2014). Table 1 gives a snapshot of 

databases reviewed within the extant literature. It also documents the category and advantages of 

each database. 



8 

 

<Insert Table 1 about here> 

 

DATABASE CHOICES FOR COSMOS: 

To improve the performance of CoSMoS and following a careful review of literature, it was 

decided to evaluate MySQL as a representative of relational databases, MongoDB as a 

representative of NoSQL, MongoDB with time series concept to test the benefits of having 

indexes on time and finally Informix, Influx and Kairos databases as representative of the time 

series group.  

 

MySQL is the world's most popular open source relational database and can cost-effectively help 

to deliver high performance, scalable database applications (Converse, 2004). Here data is stored 

in tables consisting of rows and columns. Since the existing prototype system for CoSMoS 

already uses MySQL, it seemed a viable choice as a representation of traditional RDBMS. 

MongoDB is an open-source document database that provides high performance, high 

availability and automatic scaling (Chodorow, 2003). A record in MongoDB is a document, 

which is a data structure composed of field and value pairs. The extant literature revels that 

MongoDB has good performance for write intensive applications (Mai et al., 2014) and because 

CoSMoS is write intensive, MongoDB appeared to be a good choice. Using MongoDB as a Time 

Series concept, multiple readings are stored into a single document - this further improves the 

efficiency of the schema as repeating data structures can be isolated (Membrey et al., 2010). 

MongoDB with a time series concept for storing sensor data has not been discussed extensively 
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within extant literature and hence, was chosen to be explored further in this research. Hypertable 

also made a viable candidate however, when millions of rows of integers are required to be stored 

into string conversion it can get rather expensive in terms of data processing and hence is 

eliminated from further consideration. 

 

Informix, Influx and Kairos belong to the relatively new Time Series group of databases and are 

not discussed thoroughly in the literature (which predominantly discusses Time Series data blade 

in general only) (Ahsan and Vijay, 2014). Hence, in this research the three mentioned Time 

Series databases were benchmarked for sensor readings. IBM® Informix® Time Series software 

is a built-in feature of Informix that greatly expands database functionality by adding 

sophisticated support for managing time series (time-stamped) data (IBM, 2015). Influx is a Time 

Series database that can perform standard functions such as min, max, sum, count, mean, median 

and percentiles. Moreover, it uses a SQL-like query language designed for working with time 

series and analytics (Influx, 2015). Finally, Kairos is a Time Series database that can be run using 

a back-end store of Apache Cassandra, Apache HBase, or H2 (Bader et al., 2017). It supports 

millisecond granularity when used with Apache Cassandra and allows to group and aggregate 

data in flexible ways. 

 

TEST APPROACH 

The main goal was to devise a standard means of testing the performance of writes and reads 

across different databases, with the table structures resembling that being used by the CoSMoS 
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prototype. To achieve this objective, two core areas of development required greater 

consideration, namely: i) sensor network setup and deployment; and ii) software and database 

development environment – each of these areas is now discussed in some further detail.  

 

Sensor network setup and deployment 

The sensing network store routing tables and execute routing protocols to route sensor readings 

from one mote to another. Choosing the correct network architecture for routing sensor readings 

is important for the network to be scalable and reliable. In doing so, the architecture must keep 

the sensor network active and working effectively. Sensor network architecture for CoSMoS has 

been designed for single-hop communications, having single aggregator mote and multiple 

sensing motes. Sensing motes have been programmed using a specialized programming language 

NesC on a TinyOS platform. For sensor data aggregation, a TinyOS utility named ‘BaseStation’ 

has been run for the operation of aggregator motes. BaseStation works as a bridge between the 

BIM server serial port and radio network. When it receives a data packet from the serial port, it 

transmits it on the radio channel; when it receives data packets over the radio, it transmits it to the 

serial port of BIM server. Because TinyOS has a tool chain for generating and sending packets to 

a mote over a serial port, using a BaseStation allows PC tools to communicate directly with mote 

networks (Levis and Gay 2009). To establish communication with a mote over the server’s serial 

port, MOTECOM environment is set to get reading from the aggregator mote running 

BaseStation utility. Whereas, PORT depends on the platform and where the mote has been 

plugged in. For Linux/UNIX machines, it is /dev/ttyUSBn for a serial-over-USB port as 
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mentioned below. A built-in ‘SerialForwarder’ program is also used to open a data packet source 

and allow CoSMoS connect to it over a TCP/IP stream in order to use sensor data source. 

 

Export MOTECOM = serial@/dev/ttyUSB0: telosb 

java net.tinyos.sf.SerialForwarder -comm serial@/dev/ttyUSB0:telosb  

 

Once motes have been programmed and deployed in a building, motes will initialize and 

implement operations such as neighbor discovery, data sensing, sensor data processing and 

sensor data transmissions. 

 

Software and database development environment 

For the prototype system, two temperature sensing motes are placed in two different locations of 

the building under development. Aggregator motes are programmed to aggregate the sensor 

values received from other sensing motes and forward them along with its own sensed value to a 

serial port. Aggregator motes are connected to a BIM server using a standard Universal Serial 

Bus (USB) interface. The back-end sensor application is written in Microsoft Visual Studio 2012 

(Software Development Environment) running on a RevitTM server to read the aggregator mote. 

Sensor application is programmed to: read TelosB gateway mote; convert acquired raw sensor 

values in a human understandable format; and store sensor values with ‘SensorID’, ‘Sensor type’, 

and ‘Timestamp’ in Comma Separated Values (CSV) file. Storing each sensing mote’s unique 

identification (ID) is critical to later correlating the acquired sensor values for the confined space 
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within the BIM model. A data connection is established between RevitTM Architecture software 

and Database Management System (DBMS) using a RevitTM application programming interface 

API. The primary objective is to select the most appropriate DBMS for CoSMoS, so that database 

performance can be optimised. Consequently, various database models are explored and tested to 

find a database storage that best suits the needs of CoSMoS. For consistency all tests conducted 

were run on the same machine with hardware and software configurations as reported upon in 

Table 2. 

 

<Insert Table 2 about here> 

 

Figure 2 shows the CoSMoS database schema for BIM and sensor data storage. Here 

SensingMote and AggregatorMote are the categories of the basic sensor mote that have functions 

to acquire data through WSNGateway, save and forward sensor readings to a DataServer. The 

application for H&S manager retrieves data through RevitTM Server using an external interface 

that can be viewed (via a graphical user interface (GUI)) on a DesktopClient or MobileApp. This 

database design provides a detailed view of how BIM and sensor data is linked to give a real-time 

visualization for monitoring confined spaces. To test the performance of different databases, a 

homogeneous data schema for execution is maintained for consistency. 

 

<Insert Figure 2 about here> 

 



13 

 

Subsequent steps involve creating a table with a timestamp, sensor reading and roomID, followed 

by population of sensor data using multiple inserts. A detailed algorithm for multiple insert/ 

select is illustrated in Figure 3. It should be noted from the algorithm that the values are averaged 

for two rounds of Insert/ Select Operations so as to remove any effects of sudden CPU surge due 

to other background OS processes like paging.  

 

<Insert Figure 3 about here> 

 

1. RESULTS AND ANALYSIS 

Table 3 lists the average performances of read and write operations across the evaluated 

databases. A PERL script was written to measure the time for these operations. 

 

<Insert Table 3 about here> 

 

Testing initially started with the relational database MySQL where the average time measured for 

read operation was 250 ms whereas, for write it was 100 ms. However, relational databases are 

renowned to start degrading with increasing data. When data volume is a key consideration and 

an application is expected to receive several millions to billions of entries per day, NoSQL and 

time series storage are considered suitable. 
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The NoSQL data model with MongoDB (as its representative test subject) was then tested.  

MongoDB is well known for its good performance of read/ write operations because unlike a 

relational database that stores data in structured rows, MongoDB is free of any rigid structure and 

stores data in documents. Therefore, MongoDB with high insert rates is preferred to increase 

query performance and flexibility particularly when handling sensor data and, geometric and 

semantic BIM information. Table 3 confirms that MongoDB gives better performance for both 

operations (when compared to other viable alternatives) - read and write times being 2ms and 

50ms respectively. However, this performance may degrade due to numerous document scanning 

when queries attempt to perform aggregation of sensor readings to create sensor data 

visualizations on BIM software. To improve performance of such aggregated queries, a nested 

json (java script object notation) approach is tested using MongoDB as a Time Series data store. 

Furthermore, due to the flexible structure of MongoDB's json document, aggregated average, 

minimum and maximum values for each document can also be recorded, thus saving redundant 

aggregation computes. This implementation has already been successfully used by the MongoDB 

software development team for performance monitoring applications where five billion entries 

are carried out per day across 10 servers. Table 3 reveals that MongoDB ‘as a time series’ 

concept takes 127 ms for inserts and 46 ms for selects and is thus much faster than MySQL but 

slower in comparison to MongoDB ‘as a regular document store’ concept. This can be accepted 

as the use of a time series concept comes in handy when aggregates such as average or max/min 

of readings are to be performed.   Hence, it is a fair compromise and well suited for the CoSMoS 

application under consideration. 
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Evaluation 

The evaluation commenced by comparing the relational database MySQL and Informix (used as 

relational database without the Time Series concept). Table 3 reveals that Informix (as a 

relational database) outperformed MySQL in read operation but was slower in write operation 

when averaged over 50 different batch tests. Informix was then tested as a time series database 

(refer to Table 3) to reveal that the average time for select/ read operation in Informix (when used 

with the time-series concepts), shoots from 5ms to 7000ms; this is 30 times slower than that of 

MySQL. In order to better understand this observed slow performance of Informix for read 

operation, experts on the Informix developer forum and dbforums.com were contacted and based 

on received suggestions, the code was changed to insert all the records under the same ID column 

thus allowing all sensor values to fall under the same record. However, this further degraded the 

performance from 7000ms read time to average time of around 14690ms.  

 

Considering the lack of proper documentation for Informix and its poor results on read 

operations, other open source Time Series data store alternatives were tested (such as Influx and 

Kairos). As mentioned earlier, Kairos is a time series database, which is primarily written for 

Apache Cassandra (as a free and open source distributed database management system) but 

works on Apache HBase as well (as a free open source, non-relational distributed database 

written in Java). Apache Cassandra was chosen as the underlying database for testing as it is 

fastest performer amongst the supported databases for Kairos (Apache HBase is known to be 

slower than Kairos) (Goldschmidt, 2014). Table 3 reveals that Kairos gave better performance 
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when compared with other Time Series databases such as Informix and Influx. However, 

MongoDB (as a time series concept) outperforms all other Time Series data stores.  

 

The performance for read and write operations are also depicted using graphs, presented in 

Figures 4 and 5 respectively. Figure 4 confirms that MongoDB as a time series concept 

outperforms all other tested time series databases. For write operations, Informix used as a 

relational database and MySQL exhibits almost similar performance (refer to Figure 5). 

However, performance degrades for Informix when used with the time series blade and becomes 

worse when values are inserted into the same bucket (refer to Figure 5). Moreover, Kairos 

performed better than Informix (with time series) and Influx. Finally, Figure 6 confirms that 

MongoDB has the best performance in the time series category. 

 

<Insert Figures 4 and 5 about here> 

 

LIMITATIONS AND FUTURE WORK 

To ensure consistency and derive standard results, all the above tests were run on a 64-bit 

Windows machine. However, performance may vary from machine to machine and better or 

faster hardware can give improved results. Even though consistent efforts were made to ensure 

the comprehensiveness of the test results, results for Informix may not reflect the best 

performance due to lack of comprehensive documentation for the subject. In addition to the tested 

databases, other time series databases which are gaining popularity (such as Graphite and 
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OpenTS) should be examined. However, other time series databases require a Linux based test 

environment and are unavailable for more commonly used platforms like Windows.  

 

Furthermore, environmental monitoring wireless sensing motes have serious resource constraints 

(Madden et al., 2002; Zhao et al., 2003). In particular, they have limited: communication 

bandwidth (1-100 Kbps); storage; transmission data rate; processing capabilities; and battery life, 

which may cause motes to operate for a restricted number of hours. For example, the wireless 

sensing mote used for this research has an 8MHz processor, 10 KB programming memory and 

250 Kbps data rate only. These mote limitations require special network management algorithms 

for sensor data streams that can explicitly incorporate these resource constraints, for example, 

incorporating an idle mote to sleep mode for energy as well as data efficient mechanisms. 

 

For this research, the performance of various databases in the presence of dynamically changing 

sensor data was assessed in terms of identifying a best fit for the CoSMoS application. These 

tests, were performed locally on a single machine but future work should assess how performance 

of the databases differ for: a distributed network where data is stored at different locations; 

platform virtualization for multitasking; and when placed on a cloud based (vis-a-vis local 

personal computer (PC)) platform to reduce overhead costs and improved accessibility. Since 

time series data is being used, it would be useful to apply knowledge discovery techniques to find 

useful patterns to predict anomalies. For CoSMoS, where sensors are constantly monitoring 

oxygen levels and temperature in confined spaces, detecting patterns in sensor data will help to 
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collect data that propagates useful information which in turn can generate new knowledge (such 

as, anomaly detection when sensor reading goes beyond the predicted pattern). Smoothing, curve 

fitting, linear regression and autocorrelation are several techniques mentioned within extant 

literature that can be used to identify patterns in time series data (Harrell, 2013). These standard 

statistical techniques are however limited in terms of their ability to generate intelligence and 

new knowledge – hence, future developments should seek to implement machine learning (Hana 

and Golparvar-Fardb, 2016) (including computational intelligent algorithms such as generic 

algorithms (Kumar and Cheng, 2015) to optimise data driven predictions and decision making 

(Catbas and Malekzadeh, 2017). Future work for CoSMoS development will explore the inherent 

value of these scientifically advanced techniques for finding patterns and knowledge in time 

series data that will invariably augment decision support and so engender higher levels of safety 

conformance. 

 

CONCLUSION 

The digital built environment and the advanced technological solutions that deliver such, afford 

huge potential to continuously monitor environmental and hazardous conditions that impact upon 

human health and safety. Realising the true potential of these technological solutions, will require 

greater far integration and coalescence between them – the primary objective of CoSMoS was not 

only to show improvement in system performance per se but also illustrate the potential of digital 

integration to solve real-life construction problems.  
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With regards to performance and depending on the nature of data being stored, the overall 

performance of a database system will vary across different database models and applications. 

This research illustrates that the choice of database depends not only upon system architecture 

but also on its ability to: communicate at very high data exchange rates; insert performance at 

high data rate; and hold extremely large data amounts. To ensure optimal performance of any 

sensor based application (including CoSMoS), an optimised database model must be chosen that 

best suits the data needs of the application. CoSMoS deals with a continuous stream of time 

series sensor data and therefore required a database that accounts for the nature of this data and 

scales well with an increase in data volume. Traditional RDBMS or SQL databases do not fulfill 

this requirement owing to their rigid structure, hence other alternatives like NoSQL and time 

series databases were explored which allow database scaling to as many servers as required by 

distributing content among them. After a careful review SQL database (MySQL) was tested 

against NoSQL (MongoDB) and time series databases (Informix, Influx, Kairos, MongoDB with 

time series concept). Tests were designed to measure performance of read and write operations 

across databases populated with CoSMoS sensor readings. Results revealed that MongoDB 

performed the best both in terms of read and write operations amongst all the databases. 

However, given the temporal nature of CoSMoS data and taking into consideration the case 

where aggregation is required, MongoDB used as a time series store was considered as the best 

choice for the application.  
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Future work is however required to include: developing of a more sophisticated pattern analysis 

criteria to support decision support and generate new knowledge from the data and information 

accrued within CoSMoS; and extending the capabilities of CoSMoS to cover a wider range of 

environmental, health and safety issues. Such developments will contribute towards creating a 

fully autonomous and intelligent digital built environment.  
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Figure 1 – CoSMoS Data Framework  
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Table 1 - Snapshot of the Various Databases Reviewed in Literature 
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1.1.1 Database 1.1.2 Type 1.1.3 Advantages 1.1.4 Comments 1.1.5 Reference 

1.1.6 MySQL  1.1.7 SQL 1.1.8 Consistency and availability. 1.1.9 Does not scale well 1.1.10 (van der Veen 

et al., 2012) 

1.1.11 Oracle 

Berkeley DB  

1.1.12 SQL Enables prediction of patterns 

consistency and availability. 

1.1.13 Open source embedded database 

engine, offered as a library that directly links 

into applications. 

1.1.14 Pungilă et al., 

2009 

1.1.15 Hypertable 1.1.16 NoSQL 1.1.17 Supports applications requiring 

maximum performance, scalability, 

reliability resistant to component 

failures. 

1.1.18 Distributed data storage system 

1.1.19 stores only strings. 

1.1.20 (Sikkens, 

2010) 

1.1.21 Cassandra  1.1.22 NoSQL 1.1.23 Can cope with very large 

amounts of data spread out across many 

commodity servers. 

1.1.24 Structured key-value store using the 

mechanism of eventual consistency 

1.1.25 relaxes either consistency or 

availability. 

1.1.26 (Mai et al., 

2014) 

1.1.27 MongoDB  1.1.28 NoSQL 1.1.29 Includes a powerful query 

language that allows for regular 

expressions and Javascript functions to 

be passed in as checks for matching keys 

and values. 

Provides a key-value store that manages 

collections of BSON (binary JSON) 

document relaxes either consistency or 

availability. 

1.1.30 (Mai et al., 

2014) 

1.1.31 PostgreSQL 1.1.32 SQL 1.1.33 ACID (atomicity, consistency, 

isolation, durability) compliant and is 

fully transactional. 

1.1.34 Traditional open source SQL 

database 

1.1.35 does not scale well.  

1.1.36 (Pungilă et al., 

2009) 

1.1.37 Informix 1.1.38 Time 

Series 

1.1.39 Consolidates and organizes time-

stamped data much more efficiently than 

traditional, relational databases. 

1.1.40 IBM® Informix® TimeSeries 

software is a built-in feature of Informix that 

greatly expands database functionality by 

adding sophisticated support for managing 

time series (time-stamped) data. 

1.1.41 (Pungilă et al., 

2009, IBM, 2015) 
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1.1.42 Influx 1.1.43 Time 

Series 

1.1.44 Has no external dependencies. 1.1.45 Designed to track data from tens of 

thousands of sensors rates of once a second 

or more. Using the Influx JavaScript library 

one can build custom sensor analytics. 

1.1.46 (Influx, 2015) 

1.1.47 Kairos 1.1.48 Time 

Series 

1.1.49 KairosDB supports millisecond 

granularity when used with Cassandra. 

1.1.50 KairosDB can be run using a back-

end store of Cassandra, HBase, or H2.  

1.1.51 (Goldschmidt, 

2014)  
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Table 2 - Hardware and Software Configurations of Test Machine 

 

 

 

 

 

 

 

  

Criteria Specification 

CPU Type AMD A6-6310 Quad-Core APU processor 2.40GHz 

System memory 8GB RAM 

Hard Drive 1 TB 

Operating System Windows 7, 64 bit, TinyOS 2.1.2 packages  

BIM software Autodesk RevitTM Architecture 2013 
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Figure 2 - CoSMoS Database Schema 
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Figure 3 - Algorithm for Benchmarking Performance of Database for Insert/Select Operations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Establish connection to database 

While batchSize <= 500 

Start timer 

totalTime = 0; 

For each batch size measure time over 2 rounds 

startTimeForBatch=currentSystemTime; 

Perform Insert/Select 

endTimeForBatch = currentSystemTime -        

startTimeForBatch; 

totalTime = totalTime + 

endTimeForBatch; 

Calculate the average time taken for the 2 rounds 

totalTime = totalTime/2; 

Record batchSize and time taken 

Increment batchSize by 10 

batchSize = batchSize+10 

Calculate average time across all batches 
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Table 3 - Average Performance of Reads and Writes Across Multiple Databases. 

 

 

 

 

 

 

 

 

 

 

 

 

Database(Test Info) 1.1.52 Select 1.1.53 Insert 

1.1.54 MySQL 1.1.55 250 ms 1.1.56 100 

ms 

1.1.57 MongoDB as Document / key-

value store 

1.1.58 2 ms 1.1.59 50 ms 

1.1.60 MongoDB as Time Series Store 1.1.61 46 ms 1.1.62 127 

ms 

1.1.63 Informix  1.1.64 5 ms 1.1.65 250 

ms 

1.1.66 Informix with Time Series data 

blade 

1.1.67 7000 ms 1.1.68 250 

ms 

1.1.69 Influx 1.1.70 ~100,000 

ms 

1.1.71 750 

ms 

1.1.72 Kairos 1.1.73 385 ms 1.1.74 285 

ms 
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Figure 4 - Graph Depicting Performance of Reads Across Multiple DB’s 
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Figure 5 - Graph Depicting Performance of Writes Across Multiple DB’s 

 
 

 


