
1

BIM AND SENSOR BASED DATA MANAGEMENT SYSTEM FOR CONSTRUCTION

SAFETY MONITORING

ABSTRACT

Purpose: This research investigates the integration of real-time monitoring of thermal conditions

within confined work environments through wireless sensor network (WSN) technology when

integrated with Building Information Modelling (BIM). A prototype system entitled Confined

Space Monitoring System or CoSMoS (which provides an opportunity to incorporate sensor data

for improved visualization through new add-ins to BIM software) was then developed.

Design/ methodology/ approach: An empirical study was undertaken to compare and contrast

between the performance (over a time series) of various database models to find a back-end

database storage configuration that best suits the needs of CoSMoS.

Findings: Fusing BIM data with information streams derived from wireless sensors challenges

traditional approaches to data management. These challenges encountered in the prototype

system are reported upon and include issues such as hardware/ software selection and

optimisation. Consequently, various database models are explored and tested to find a database

storage that best suits the specific needs of this BIM-wireless sensor technology integration.

Originality/ value: This work represents the first tranche of research that seeks to deliver a fully

integrated and advanced digital built environment solution for automating the management of

health and safety issues on construction sites.

2

KEYWORDS

Building information modelling, digital built environment, health and safety management, sensor

data, data management

INTRODUCTION

According to U.S. Bureau of Labor Statistics (BLS), a total of 796 fatal injuries were recorded in

the U.S. construction industry in 2013 from which 14% of fatalities were due to the exposure to

hazardous environment and 2% were caused by fire and explosions (BLS, 2013). One major

operational area of safety concern on construction sites is workers operating in confined spaces.

Occupational Safety and Health Administration (OSHA) has defined a confined space as: “any

space that has limited means for entry or exit and that is primarily not designed for continuous

worker occupancy” (OSHA, 2014). OSHA (2015) estimates that there are 53 worker deaths and

injuries, 4,900 lost workday cases and 5,700 non-lost time accident annually. Lack of oxygen in

confined spaces is the main cause of accidents faced by construction workers (IACS, 2007).

OSHA suggests that in confined spaces oxygen content should be continuously monitored both

during and prior to starting work. If the oxygen content in air drops by 19.5% by volume or

increases from 22% by volume then entry into a confined space should be avoided (OSHA,

2011). Consequently, effective ‘real-time’ monitoring of oxygen and temperature levels in a

confined space environment is needed to improve worker safety.

3

The built environment is increasingly becoming digitized and advanced smart city technologies

may present new opportunities to more effectively monitor environmental conditions and for this

research, hazardous parameters (Pӓrn et al., 2017). BIM is one of several prominent digital

technologies that has gained extensive practitioner and academic interest within the Architectural,

Engineering, Construction and Owner-operated (AECO) sector. BIM provides a multi-

collaborative platform for sharing both semantic and geometric information throughout the

project management team during the asset’s entire lifecycle (Vanlande et al., 2008). Similarly,

wireless sensor network (WSN) technology has gained prominence within the management of

built environmental assets post construction (Li and Becerik-Gerber, 2011). A WSN incorporates

a wireless network of spatially distributed autonomous devices or sensors (often called nodes) to

provide real time monitoring of physical or environmental conditions (such as temperature, sound

and pressure) within built environment systems (Cook and Das, 2004). These nodes are often low

cost/ complexity and relay information either to a ‘sink’ for local usage or a ‘gateway’ for remote

user access via networks connected to the internet (Zhu et al., 2010). Attempts to integrate BIM

with different sensing technologies have already been made to specifically improve:

environmental monitoring (Piza, et al., 2005); building performance (Guinard et al., 2009;

Katranuschkov et al., 2010; Attar et al., 2011; Setayeshgar et al., 2013); facility management

(Cahill et al., 2012; Ozturk et al., 2012); and health and safety (H&S) management (Shiau and

Chang, 2012; Guven et al., 2012).

4

These aforementioned studies provide motivation to develop a BIM-Sensor based solution to

improve H&S of construction workers particularly when working within confined spaces. The

research specifically explored the integration of BIM and WSN with the objective of monitoring

environmental conditions within confined spaces - an often ignored area where the physical

condition and safety of operators is at high risk. A prototype system entitled Confined Space

Monitoring System or CoSMoS was then developed and evaluated (Riaz et al., 2014). This paper

reports upon the latest developments of this on-going research work and commensurate

improvements to the prototype system which was transformed into a superior solution by

addressing the inherent limitations identified during the study. The paper also highlights

challenges faced due to collection of real time sensor data and resulting data management issues.

To improve the performance of CoSMoS, the work sought to determine the most appropriate

choice of database system that fits the application’s requirements. Consequently, various database

models are explored and tested to find a database storage that best suits the needs of CoSMoS.

COSMOS BACKGROUND: DATA MANAGEMENT CHALLENGE

The prototype CoSMoS (Riaz et al., 2014) was developed as a proof of concept where the

development environment comprised of: Crossbow's TolesB mote (Wireless Sensors); Autodesk

RevitTM Architecture 2013 (BIM Software); Visual Studio.Net (Software Development

Environment); and SQL Server (Database Management System). CoSMoS data aggregation,

storage and management framework (refer to Figure 1) highlights the back-end sensor application

that was programmed to: read TelosB gateway mote; convert acquired raw sensor values in a

5

human understandable format; and push the data to a data storage layer. The self-updating BIM

model in CoSMoS depends upon a database link between RevitTM external application and a

database system. Therefore, overall application data management performance not only dealt

with centralized sensor data storage but also included BIM integration and visualization.

<Insert Figure 1 about here>

The data storage layer stores sensor values with ‘SensorID’, ‘Sensor type’, and ‘Timestamp’ in a

SQL Server (DBMS) and relational format. Storing each sensing mote’s unique identification

(ID) is critical to later correlate the acquired sensor values to the BIM model of a confined space.

Once huge sensor data is collected from multiple motes, the next challenge posed relates to

efficiently managing and retrieving relevant data from a database. The developed prototype

system uses an SQL server which is a traditional method to store data, based on the Relational

Database Management Systems (RDBMS). Recent research highlights that sharp a growth of data

makes traditional RDBMSs inadequate to handle huge volume and heterogeneity of sensor data

(Mai et al., 2014). However, there the literature offers no consensus on which type of database

performs best for real time sensor applications.

TRADITIONAL RELATIONAL DATABASES IN SENSOR DATA CONTEXT

Existing literature on using traditional relational databases to store dynamically changing sensor

data illustrates that adding more capacity to such a database requires greater processing and

6

storage power on a single machine (Shah et al., 2009). The literature also reveals several key

challenges, namely:

 rigid: RDBMS provides a well-defined structure which is required for transactional data but

is too rigid for sensor data (van der Veen et al., 2012);

 expensive: with dynamically changing data it is too expensive to maintain indexes on time

(Pungilă et al., 2009, Shah et al., 2009); and

 less scalable: relational databases are built for consistency and availability so there is less

tolerance for network partitions making it difficult to scale horizontally (van der Veen et

al., 2012).

The extant literature also highlights some characteristics of a good sensor database which include

the need to be: energy efficient; scalable; self-organizing; and robust against node failures and

topology changes (Elnahrawy, 2003). Moreover, the underlying system should benefit from

general characteristics of sensor data, such as their spatio temporal nature. Consequently,

literature highlights the use of different types of time series software that benefit from the

temporal nature of sensor data by having indexes on time. For example, time series DataBlade is

used as a potential solution to performance degradation that result from reasoning over a huge

volume of data (Shah et al., 2009).

7

Database Types:

To overcome these challenges posed by RDBMS, several types of databases have been proposed

such as NoSQL and Time Series Databases (TSDB) (Mai et al., 2014; Dix, 2016). RDBMS (or

SQL databases) store data in database objects called tables. A table is a collection of related data

entries and consists of columns and rows (Harrington, 2010). A NoSQL (often interpreted as ‘Not

only SQL’) database provides a mechanism for storage and retrieval of data that is modelled in

means other than the tabular relations used in relational databases. For example, column stores,

document stores, key-value stores are some of the examples of the data models which come

under NoSQL (Nayak et al., 2013). A TSDB on the other hand, is a software system that is

optimized for handling time series data, arrays of numbers indexed by time (a date-time or a date-

time range) (Fu, 2011).

Literature highlights StoneDB (a NoSQL database) as a possible solution to storing sensor data

(Elnahrawy, 2003). Hypertable is also underlined as a potential solution which can overcome the

limitations of scalability posed by traditional RDBMS however it is limited by the fact that it can

store only strings (Sikkens, 2010). Existing research compares databases such as MySQL,

MongoDB, CouchDB and Redis on scalar sensor data. Results show that NoSQL databases,

particularly MongoDB, performed better in write intensive systems with the use of bulk inserts,

followed by MySQL, CouchDB, and Redis (Mai et al., 2014). Table 1 gives a snapshot of

databases reviewed within the extant literature. It also documents the category and advantages of

each database.

8

<Insert Table 1 about here>

DATABASE CHOICES FOR COSMOS:

To improve the performance of CoSMoS and following a careful review of literature, it was

decided to evaluate MySQL as a representative of relational databases, MongoDB as a

representative of NoSQL, MongoDB with time series concept to test the benefits of having

indexes on time and finally Informix, Influx and Kairos databases as representative of the time

series group.

MySQL is the world's most popular open source relational database and can cost-effectively help

to deliver high performance, scalable database applications (Converse, 2004). Here data is stored

in tables consisting of rows and columns. Since the existing prototype system for CoSMoS

already uses MySQL, it seemed a viable choice as a representation of traditional RDBMS.

MongoDB is an open-source document database that provides high performance, high

availability and automatic scaling (Chodorow, 2003). A record in MongoDB is a document,

which is a data structure composed of field and value pairs. The extant literature revels that

MongoDB has good performance for write intensive applications (Mai et al., 2014) and because

CoSMoS is write intensive, MongoDB appeared to be a good choice. Using MongoDB as a Time

Series concept, multiple readings are stored into a single document - this further improves the

efficiency of the schema as repeating data structures can be isolated (Membrey et al., 2010).

MongoDB with a time series concept for storing sensor data has not been discussed extensively

9

within extant literature and hence, was chosen to be explored further in this research. Hypertable

also made a viable candidate however, when millions of rows of integers are required to be stored

into string conversion it can get rather expensive in terms of data processing and hence is

eliminated from further consideration.

Informix, Influx and Kairos belong to the relatively new Time Series group of databases and are

not discussed thoroughly in the literature (which predominantly discusses Time Series data blade

in general only) (Ahsan and Vijay, 2014). Hence, in this research the three mentioned Time

Series databases were benchmarked for sensor readings. IBM® Informix® Time Series software

is a built-in feature of Informix that greatly expands database functionality by adding

sophisticated support for managing time series (time-stamped) data (IBM, 2015). Influx is a Time

Series database that can perform standard functions such as min, max, sum, count, mean, median

and percentiles. Moreover, it uses a SQL-like query language designed for working with time

series and analytics (Influx, 2015). Finally, Kairos is a Time Series database that can be run using

a back-end store of Apache Cassandra, Apache HBase, or H2 (Bader et al., 2017). It supports

millisecond granularity when used with Apache Cassandra and allows to group and aggregate

data in flexible ways.

TEST APPROACH

The main goal was to devise a standard means of testing the performance of writes and reads

across different databases, with the table structures resembling that being used by the CoSMoS

10

prototype. To achieve this objective, two core areas of development required greater

consideration, namely: i) sensor network setup and deployment; and ii) software and database

development environment – each of these areas is now discussed in some further detail.

Sensor network setup and deployment

The sensing network store routing tables and execute routing protocols to route sensor readings

from one mote to another. Choosing the correct network architecture for routing sensor readings

is important for the network to be scalable and reliable. In doing so, the architecture must keep

the sensor network active and working effectively. Sensor network architecture for CoSMoS has

been designed for single-hop communications, having single aggregator mote and multiple

sensing motes. Sensing motes have been programmed using a specialized programming language

NesC on a TinyOS platform. For sensor data aggregation, a TinyOS utility named ‘BaseStation’

has been run for the operation of aggregator motes. BaseStation works as a bridge between the

BIM server serial port and radio network. When it receives a data packet from the serial port, it

transmits it on the radio channel; when it receives data packets over the radio, it transmits it to the

serial port of BIM server. Because TinyOS has a tool chain for generating and sending packets to

a mote over a serial port, using a BaseStation allows PC tools to communicate directly with mote

networks (Levis and Gay 2009). To establish communication with a mote over the server’s serial

port, MOTECOM environment is set to get reading from the aggregator mote running

BaseStation utility. Whereas, PORT depends on the platform and where the mote has been

plugged in. For Linux/UNIX machines, it is /dev/ttyUSBn for a serial-over-USB port as

11

mentioned below. A built-in ‘SerialForwarder’ program is also used to open a data packet source

and allow CoSMoS connect to it over a TCP/IP stream in order to use sensor data source.

Export MOTECOM = serial@/dev/ttyUSB0: telosb

java net.tinyos.sf.SerialForwarder -comm serial@/dev/ttyUSB0:telosb

Once motes have been programmed and deployed in a building, motes will initialize and

implement operations such as neighbor discovery, data sensing, sensor data processing and

sensor data transmissions.

Software and database development environment

For the prototype system, two temperature sensing motes are placed in two different locations of

the building under development. Aggregator motes are programmed to aggregate the sensor

values received from other sensing motes and forward them along with its own sensed value to a

serial port. Aggregator motes are connected to a BIM server using a standard Universal Serial

Bus (USB) interface. The back-end sensor application is written in Microsoft Visual Studio 2012

(Software Development Environment) running on a RevitTM server to read the aggregator mote.

Sensor application is programmed to: read TelosB gateway mote; convert acquired raw sensor

values in a human understandable format; and store sensor values with ‘SensorID’, ‘Sensor type’,

and ‘Timestamp’ in Comma Separated Values (CSV) file. Storing each sensing mote’s unique

identification (ID) is critical to later correlating the acquired sensor values for the confined space

12

within the BIM model. A data connection is established between RevitTM Architecture software

and Database Management System (DBMS) using a RevitTM application programming interface

API. The primary objective is to select the most appropriate DBMS for CoSMoS, so that database

performance can be optimised. Consequently, various database models are explored and tested to

find a database storage that best suits the needs of CoSMoS. For consistency all tests conducted

were run on the same machine with hardware and software configurations as reported upon in

Table 2.

<Insert Table 2 about here>

Figure 2 shows the CoSMoS database schema for BIM and sensor data storage. Here

SensingMote and AggregatorMote are the categories of the basic sensor mote that have functions

to acquire data through WSNGateway, save and forward sensor readings to a DataServer. The

application for H&S manager retrieves data through RevitTM Server using an external interface

that can be viewed (via a graphical user interface (GUI)) on a DesktopClient or MobileApp. This

database design provides a detailed view of how BIM and sensor data is linked to give a real-time

visualization for monitoring confined spaces. To test the performance of different databases, a

homogeneous data schema for execution is maintained for consistency.

<Insert Figure 2 about here>

13

Subsequent steps involve creating a table with a timestamp, sensor reading and roomID, followed

by population of sensor data using multiple inserts. A detailed algorithm for multiple insert/

select is illustrated in Figure 3. It should be noted from the algorithm that the values are averaged

for two rounds of Insert/ Select Operations so as to remove any effects of sudden CPU surge due

to other background OS processes like paging.

<Insert Figure 3 about here>

1. RESULTS AND ANALYSIS

Table 3 lists the average performances of read and write operations across the evaluated

databases. A PERL script was written to measure the time for these operations.

<Insert Table 3 about here>

Testing initially started with the relational database MySQL where the average time measured for

read operation was 250 ms whereas, for write it was 100 ms. However, relational databases are

renowned to start degrading with increasing data. When data volume is a key consideration and

an application is expected to receive several millions to billions of entries per day, NoSQL and

time series storage are considered suitable.

14

The NoSQL data model with MongoDB (as its representative test subject) was then tested.

MongoDB is well known for its good performance of read/ write operations because unlike a

relational database that stores data in structured rows, MongoDB is free of any rigid structure and

stores data in documents. Therefore, MongoDB with high insert rates is preferred to increase

query performance and flexibility particularly when handling sensor data and, geometric and

semantic BIM information. Table 3 confirms that MongoDB gives better performance for both

operations (when compared to other viable alternatives) - read and write times being 2ms and

50ms respectively. However, this performance may degrade due to numerous document scanning

when queries attempt to perform aggregation of sensor readings to create sensor data

visualizations on BIM software. To improve performance of such aggregated queries, a nested

json (java script object notation) approach is tested using MongoDB as a Time Series data store.

Furthermore, due to the flexible structure of MongoDB's json document, aggregated average,

minimum and maximum values for each document can also be recorded, thus saving redundant

aggregation computes. This implementation has already been successfully used by the MongoDB

software development team for performance monitoring applications where five billion entries

are carried out per day across 10 servers. Table 3 reveals that MongoDB ‘as a time series’

concept takes 127 ms for inserts and 46 ms for selects and is thus much faster than MySQL but

slower in comparison to MongoDB ‘as a regular document store’ concept. This can be accepted

as the use of a time series concept comes in handy when aggregates such as average or max/min

of readings are to be performed. Hence, it is a fair compromise and well suited for the CoSMoS

application under consideration.

15

Evaluation

The evaluation commenced by comparing the relational database MySQL and Informix (used as

relational database without the Time Series concept). Table 3 reveals that Informix (as a

relational database) outperformed MySQL in read operation but was slower in write operation

when averaged over 50 different batch tests. Informix was then tested as a time series database

(refer to Table 3) to reveal that the average time for select/ read operation in Informix (when used

with the time-series concepts), shoots from 5ms to 7000ms; this is 30 times slower than that of

MySQL. In order to better understand this observed slow performance of Informix for read

operation, experts on the Informix developer forum and dbforums.com were contacted and based

on received suggestions, the code was changed to insert all the records under the same ID column

thus allowing all sensor values to fall under the same record. However, this further degraded the

performance from 7000ms read time to average time of around 14690ms.

Considering the lack of proper documentation for Informix and its poor results on read

operations, other open source Time Series data store alternatives were tested (such as Influx and

Kairos). As mentioned earlier, Kairos is a time series database, which is primarily written for

Apache Cassandra (as a free and open source distributed database management system) but

works on Apache HBase as well (as a free open source, non-relational distributed database

written in Java). Apache Cassandra was chosen as the underlying database for testing as it is

fastest performer amongst the supported databases for Kairos (Apache HBase is known to be

slower than Kairos) (Goldschmidt, 2014). Table 3 reveals that Kairos gave better performance

16

when compared with other Time Series databases such as Informix and Influx. However,

MongoDB (as a time series concept) outperforms all other Time Series data stores.

The performance for read and write operations are also depicted using graphs, presented in

Figures 4 and 5 respectively. Figure 4 confirms that MongoDB as a time series concept

outperforms all other tested time series databases. For write operations, Informix used as a

relational database and MySQL exhibits almost similar performance (refer to Figure 5).

However, performance degrades for Informix when used with the time series blade and becomes

worse when values are inserted into the same bucket (refer to Figure 5). Moreover, Kairos

performed better than Informix (with time series) and Influx. Finally, Figure 6 confirms that

MongoDB has the best performance in the time series category.

<Insert Figures 4 and 5 about here>

LIMITATIONS AND FUTURE WORK

To ensure consistency and derive standard results, all the above tests were run on a 64-bit

Windows machine. However, performance may vary from machine to machine and better or

faster hardware can give improved results. Even though consistent efforts were made to ensure

the comprehensiveness of the test results, results for Informix may not reflect the best

performance due to lack of comprehensive documentation for the subject. In addition to the tested

databases, other time series databases which are gaining popularity (such as Graphite and

17

OpenTS) should be examined. However, other time series databases require a Linux based test

environment and are unavailable for more commonly used platforms like Windows.

Furthermore, environmental monitoring wireless sensing motes have serious resource constraints

(Madden et al., 2002; Zhao et al., 2003). In particular, they have limited: communication

bandwidth (1-100 Kbps); storage; transmission data rate; processing capabilities; and battery life,

which may cause motes to operate for a restricted number of hours. For example, the wireless

sensing mote used for this research has an 8MHz processor, 10 KB programming memory and

250 Kbps data rate only. These mote limitations require special network management algorithms

for sensor data streams that can explicitly incorporate these resource constraints, for example,

incorporating an idle mote to sleep mode for energy as well as data efficient mechanisms.

For this research, the performance of various databases in the presence of dynamically changing

sensor data was assessed in terms of identifying a best fit for the CoSMoS application. These

tests, were performed locally on a single machine but future work should assess how performance

of the databases differ for: a distributed network where data is stored at different locations;

platform virtualization for multitasking; and when placed on a cloud based (vis-a-vis local

personal computer (PC)) platform to reduce overhead costs and improved accessibility. Since

time series data is being used, it would be useful to apply knowledge discovery techniques to find

useful patterns to predict anomalies. For CoSMoS, where sensors are constantly monitoring

oxygen levels and temperature in confined spaces, detecting patterns in sensor data will help to

18

collect data that propagates useful information which in turn can generate new knowledge (such

as, anomaly detection when sensor reading goes beyond the predicted pattern). Smoothing, curve

fitting, linear regression and autocorrelation are several techniques mentioned within extant

literature that can be used to identify patterns in time series data (Harrell, 2013). These standard

statistical techniques are however limited in terms of their ability to generate intelligence and

new knowledge – hence, future developments should seek to implement machine learning (Hana

and Golparvar-Fardb, 2016) (including computational intelligent algorithms such as generic

algorithms (Kumar and Cheng, 2015) to optimise data driven predictions and decision making

(Catbas and Malekzadeh, 2017). Future work for CoSMoS development will explore the inherent

value of these scientifically advanced techniques for finding patterns and knowledge in time

series data that will invariably augment decision support and so engender higher levels of safety

conformance.

CONCLUSION

The digital built environment and the advanced technological solutions that deliver such, afford

huge potential to continuously monitor environmental and hazardous conditions that impact upon

human health and safety. Realising the true potential of these technological solutions, will require

greater far integration and coalescence between them – the primary objective of CoSMoS was not

only to show improvement in system performance per se but also illustrate the potential of digital

integration to solve real-life construction problems.

19

With regards to performance and depending on the nature of data being stored, the overall

performance of a database system will vary across different database models and applications.

This research illustrates that the choice of database depends not only upon system architecture

but also on its ability to: communicate at very high data exchange rates; insert performance at

high data rate; and hold extremely large data amounts. To ensure optimal performance of any

sensor based application (including CoSMoS), an optimised database model must be chosen that

best suits the data needs of the application. CoSMoS deals with a continuous stream of time

series sensor data and therefore required a database that accounts for the nature of this data and

scales well with an increase in data volume. Traditional RDBMS or SQL databases do not fulfill

this requirement owing to their rigid structure, hence other alternatives like NoSQL and time

series databases were explored which allow database scaling to as many servers as required by

distributing content among them. After a careful review SQL database (MySQL) was tested

against NoSQL (MongoDB) and time series databases (Informix, Influx, Kairos, MongoDB with

time series concept). Tests were designed to measure performance of read and write operations

across databases populated with CoSMoS sensor readings. Results revealed that MongoDB

performed the best both in terms of read and write operations amongst all the databases.

However, given the temporal nature of CoSMoS data and taking into consideration the case

where aggregation is required, MongoDB used as a time series store was considered as the best

choice for the application.

20

Future work is however required to include: developing of a more sophisticated pattern analysis

criteria to support decision support and generate new knowledge from the data and information

accrued within CoSMoS; and extending the capabilities of CoSMoS to cover a wider range of

environmental, health and safety issues. Such developments will contribute towards creating a

fully autonomous and intelligent digital built environment.

ACKNOWLEDGEMENTS

The authors wish to thank Srilakshmi Chintala and Muhammad Arslan for their various

contributions to this research work.

21

REFERENCES

Ahsan, K. and Vijay, P. (2014) Temporal Databases: Information Systems. Bloomington:

Booktango.

Attar R., Hailemariam E., Breslav S., Khan A., and Kurtenbach G. (2011) Sensor-enabled

Cubicles for Occupant-centric Capture of Building Performance Data. ASHRAE Annual

Conference pp. 1-8. Available via: http://www.autodeskresearch.org/pdf/6774_Final.pdf

(Accessed: January 2, 2016).

Bader, A., Kopp, O. and Falkenthal, M. (2017) Survey and Comparison of Open Source Time

Series Databases. Available via: ftp://ftp.informatik.uni-

stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-06/INPROC-2017-06.pdf

(Accessed: February 25, 2017).

Bureau of Labor Statistics (BLS) (2013) Census of Fatal Occupational Injuries (CFOI) - Current

and Revised Data. Available via: http://stats.bls.gov/iif/oshcfoi1.htm, (Accessed: December 5,

2015).

Cahill B., Menzel, K. and Flynn D. (2012) BIM as a Centre Piece for Optimised Building

Operation. Available via:

http://zuse.ucc.ie/~brian/publications/2012/BIM_centre_piece_OBO_ECPPM2012.pdf

(Accessed December 21, 2015).

Catbas, F.N. and Malekzadeh, M. (2017) A Machine Learning-Based Algorithm for Processing

Massive Data Collected from the Mechanical Components of Movable Bridges, Automation in

Construction, Vol 72, pp. 269–278.

ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-06/INPROC-2017-06.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart_fi/INPROC-2017-06/INPROC-2017-06.pdf
http://stats.bls.gov/iif/oshcfoi1.htm
http://zuse.ucc.ie/~brian/publications/2012/BIM_centre_piece_OBO_ECPPM2012.pdf

22

Chodorow K. (2013) MongoDB: The Definitive Guide, Powerful and Scalable Data Storage. 2nd

Edition. Sebastopol: O'Reilly Media, Inc.

Converse T., Park J. and Morgan C. (2004) PHP5 and MySQL bible, Vol. 147, London: John

Wiley & Sons.

Cook D. and Das S. (2004) Smart Environments: Technology, Protocols and Applications,

London: John Wiley & Sons.

Diao Y., Ganesan D., Mathur G. and Shenoy P.J. (2007) Rethinking Data Management for

Storage-centric Sensor Networks, Conference on Innovative Data Systems Research (CIDR),

Vol. 7, pp. 22-31. Available via:

 http://web.mit.edu/tibbetts/Public/CIDR_2007_Proceedings/papers/cidr07p03.pdf (Accessed:

July 5, 2016).

Dix P. (2016) Why Time-Series Matters For Metrics Real-Time and Sensor Data. Available via:

https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-

sensor-data/ (Accessed: November 2, 2016).

Elnahrawy E. (2003) Research Directions in Sensor Data Streams: Solutions and Challenges,

Available via:

http://eolo.cps.unizar.es/docencia/doctorado/Articulos/DataStreams/Research%20Directions%

20in%20Sensor%20Data%20Streams.%20Solutions%20and%20Challenges.pdf (Accessed:

January 2, 2016).

Fu T.C. (2011) A Review on Time Series Data Mining. Engineering Applications of Artificial

Intelligence, Vol. 24 No.1, pp.164-181.

http://web.mit.edu/tibbetts/Public/CIDR_2007_Proceedings/papers/cidr07p03.pdf
http://eolo.cps.unizar.es/docencia/doctorado/Articulos/DataStreams/Research%20Directions%20in%20Sensor%20Data%20Streams.%20Solutions%20and%20Challenges.pdf
http://eolo.cps.unizar.es/docencia/doctorado/Articulos/DataStreams/Research%20Directions%20in%20Sensor%20Data%20Streams.%20Solutions%20and%20Challenges.pdf

23

Golab L. and Özsu M.T. (2003) Issues in Data Stream Management, ACM Sigmod Record, Vol.

32, No.2, pp.5-14.

Goldschmidt T., Jansen A., Koziolek H., Doppelhamer J. and Breivold H.P.(2014) Scalability

and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial

Processes, IEEE 7th International Conference on Cloud Computing (CLOUD), pp. 602-609.

Available via: http://www.koziolek.de/docs/Goldschmidt2014-IEEE-CLOUD-preprint.pdf

(Accessed: July 5, 2016).

Guinard A., McGibney A. and Pesch D. (2009) A Wireless Sensor Network Design Tool to

Support Building Energy Management. 1st ACM Workshop on Embedded Sensing Systems

for Energy-Efficiency in Buildings, pp. 25-30.

Guven G., Ergen E., Erberik M., Kurc O. and Birgönül M. (2012) Providing Guidance for

Evacuation During an Emergency Based on a Real-time Damage and Vulnerability

Assessment of Facilities, Computing in Civil Engineering pp. 586-593. Available via:

https://www.e-education.psu.edu/geog588/sites/www.e-

education.psu.edu.geog588/files/file/Guven_etal_2012.pdf (Accessed: August 13, 2016).

Hana, K.K. and Golparvar-Fardb, M. (2016) Appearance-based Material Classification for

Monitoring of Operation-level Construction Progress Using 4D BIM and Site Photologs,

Automation in Construction, Vol. 53, pp. 44–57.

Harrell F.E. (2013) Regression Modelling Strategies: with Applications to Linear Models,

Logistic Regression, and Survival Analysis. New York: Springer Science & Business Media.

https://www.e-education.psu.edu/geog588/sites/www.e-education.psu.edu.geog588/files/file/Guven_etal_2012.pdf
https://www.e-education.psu.edu/geog588/sites/www.e-education.psu.edu.geog588/files/file/Guven_etal_2012.pdf

24

Harrington J. L. (2010) Introduction to SQL, Morgan Kaufmann Series in Data Management

Systems, Boston, USA: Morgan Kaufmann.

IACS, Confined Space Safe Practice (rev.2), Available via:

http://www.iacs.org.uk/document/public/Publications/Guidelines_and_recommendations/PDF/

REC_72_pdf212.pdf/ 2007, (Accessed: December, 5, 2015).

IBM. (2015) IBM Informix, Available via: http://www-

01.ibm.com/software/data/informix/timeseries/ (Accessed: December 5, 2015).

Influx. (2015) The Influx Data Platform, Available via: https://influxdb.com, (Accessed:

December 5, 2015).

Katranuschkov P., Weise M., Windisch R., Fuchs S. and Scherer R. J. (2010) BIM-based

Generation of Multi-model Views, Available via:

http://www.hesmos.eu/plaintext/downloads/paper_114_final.pdf (Accessed: March 3, 2016).

Kumar, S.S. and Cheng, J.C.P. (2015) A BIM-Based Automated Site Layout Planning

Framework for Congested Construction Sites, Automation in Construction, Vol. 59, pp. 24–

37.

Levis P. and Gay D. (2009) TinyOS Programming, Cambridge, UK: Cambridge University Press.

Li, N. and Becerik-Gerber, B. (2011) Performance-based evaluation of RFID-based indoor

location sensing solutions for the built environment. Advanced Engineering Informatics. Vol

25, Issue 3, pp. 535–546

Madden S., Franklin M. J. and Hellerstein J. M. (2002) TAG: a Tiny Aggregation Service for Ad-

Hoc Sensor Networks, Proceedings of 5th Annual Symposium on operating Systems Design

http://www-01.ibm.com/software/data/informix/timeseries/
http://www-01.ibm.com/software/data/informix/timeseries/
http://www.hesmos.eu/plaintext/downloads/paper_114_final.pdf
http://www.sciencedirect.com/science/journal/14740346
http://www.sciencedirect.com/science/journal/14740346/25/3
http://www.sciencedirect.com/science/journal/14740346/25/3

25

and Implementation (OSDI). Available via: http://db.lcs.mit.edu/madden/html/madden_tag.pdf

(Accessed: March 03, 2016).

Mai P.T.A., Nurminen J.K. and Di Francesco M. (2014) Cloud Databases for Internet-of-Things

Data, IEEE International Conference on Cyber, Physical and Social Computing 2014

(CPSCom 2014) and IEEE International Conference on Green Computing and

Communications 2014 (GreenCom 2014), IEEE, Taipei, pp. 117-124. Available via:

https://pdfs.semanticscholar.org/dc28/d92ac4e2dd3c9a77abfce80594a424797c1f.pdf.

(Accessed: January 29, 2016).

Membrey P., Plugge E. and Hawkins D. (2010) The Definitive Guide to MongoDB: the noSQL

Database for Cloud and Desktop Computing, New York: Apress.

Nayak A., Poriya A. and Poojary D. (2013) Type of NOSQL Databases and its Comparison with

Relational Databases, International Journal of Applied Information Systems, Vol. 5 No. 4, pp.

16-19.

OSHA (2014) What are Confined Spaces? Available via:

https://www.osha.gov/SLTC/confinedspaces/, (Accessed: December 3, 2016).

Ozturk Z., Arayici Y., and Coates S. P. (2012) Post Occupancy Evaluation (POE) in Residential

Buildings Utilizing BIM and Sensing Devices: Salford Energy House Example, Available via:

http://usir.salford.ac.uk/20697/1/105_Ozturk.pdf (Accessed: March 13, 2016).

Pärn, E.A., Edwards, D.J. and Sing. M.C.P. (2017) The Building Information Modelling

Trajectory in Facilities Management: A Review, Automation in Construction, Vol. 75, pp 45-

55.

http://db.lcs.mit.edu/madden/html/madden_tag.pdf
https://pdfs.semanticscholar.org/dc28/d92ac4e2dd3c9a77abfce80594a424797c1f.pdf
http://usir.salford.ac.uk/20697/1/105_Ozturk.pdf

26

Piza H.I., Ramos F.F. and Zuniga F. (2005) Virtual Sensors for Dynamic Virtual Environments.

1st IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing,

pp. 177-180.

Pungilă C., Fortiş T.F. and Aritoni O. (2009) Benchmarking Database Systems for the

Requirements of Sensor Readings, IETE Technical Review, Vol. 26, No. 5, pp.342-349.

Riaz Z., Arslan M., Kiani A.K. and Azhar S. (2014) CoSMoS: A BIM and Wireless Sensor Based

Integrated Solution for Worker Safety in Confined Spaces, Automation in Construction, Vol.

45, pp. 96-106.

Setayeshgar S., Hammad A., Vahdatikhaki F., and Zhang C. (2013) Real Time Safety Risk

Analysis of Construction Projects using BIM and RTLS, Available via:

http://www.iaarc.org/publications/fulltext/isarc2013Paper224.pdf (Accessed: December 21,

2015).

Shah N., Tsai C.F. and Chao K.M. (2009) Monitoring Appliances Sensor Data in Home

Environment: Issues and Challenges, Proceeding of the IEEE Conference on Commerce and

Enterprise Computing, Vienna, Austria, pp. 439-444. Available via:

https://pdfs.semanticscholar.org/5714/e46af2e0090d57cd5a5e10d7543e97c39a79.pdf

(Accessed: July 21, 2016).

Shiau Y. C. and Chang C. T. (2012) Establishment of Fire Control Management System in

Building Information Modelling Environment, Available via:

http://onlinepresent.org/proceedings/vol5_2012/11.pdf (Accessed: October 21, 2015)

http://www.iaarc.org/publications/fulltext/isarc2013Paper224.pdf
https://pdfs.semanticscholar.org/5714/e46af2e0090d57cd5a5e10d7543e97c39a79.pdf
http://onlinepresent.org/proceedings/vol5_2012/11.pdf

27

Sikkens B. (2010). The Storage and Retrieval of Sensor Data and its Annotations, Available via:

http://essay.utwente.nl/59484/1/scriptie_B_Sikkens.pdf (Accessed: January 4, 2016).

United States Department of Labor, Occupational Safety and Health Standards, Available via:

http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9797/

2013 (Accessed December 5, 2015).

United States Department of Labor, OSHA-Regulations (Standards-29CFR), Available via:

http://www.osha.gov/ (Accessed: November 25, 2015).

Van der Veen J.S. van der Waaij B. and Meijer R.J. (2012) Sensor Data Storage Performance:

SQL or NoSQL, Physical or Virtual, Proceeding of the 5th International Conference on Cloud

Computing (CLOUD), IEEE, Hawaii, USA, pp.431-438. Available via:

https://www.ceid.upatras.gr/webpages/faculty/vasilis/Courses/SpatialTemporalDM/Papers/SQ

LorNoSQL2012.pdf (Accessed: September 22, 2015)

Vanlande R., Nicolle C., and Cruz C. (2008) IFC and Building Lifecycle Management.

Automation in Construction, Vol.18, No.1, pp.70-78.

Zhao J., Govindan R. and Estrin D. (2003) Computing Aggregates for Monitoring WSN, 1st

IEEE International Workshop on Sensor Network Protocols and Applications. Available via:

http://www.cs.cornell.edu/~destrin/resources/conferences/2003may-Zhao-Estrin-

Computing.pdf (Accessed: October 26, 2016)

Zhu Q., Wang R, Chen Q, Liu Y., and Qin W. (2010) IOT Gateway: BridgingWireless Sensor

Networks into Internet of Things. IEEE/IFIP 8th International Conference on Embedded and

http://essay.utwente.nl/59484/1/scriptie_B_Sikkens.pdf
http://www.cs.cornell.edu/~destrin/resources/conferences/2003may-Zhao-Estrin-Computing.pdf
http://www.cs.cornell.edu/~destrin/resources/conferences/2003may-Zhao-Estrin-Computing.pdf

28

Ubiquitous Computing (EUC), 11-13 Dec. 2010. Available via:

http://ieeexplore.ieee.org/abstract/document/5703542/ (Accessed: September 20, 2015)

http://ieeexplore.ieee.org/abstract/document/5703542/

29

Figure 1 – CoSMoS Data Framework

30

Table 1 - Snapshot of the Various Databases Reviewed in Literature

31

1.1.1 Database 1.1.2 Type 1.1.3 Advantages 1.1.4 Comments 1.1.5 Reference

1.1.6 MySQL 1.1.7 SQL 1.1.8 Consistency and availability. 1.1.9 Does not scale well 1.1.10 (van der Veen

et al., 2012)

1.1.11 Oracle

Berkeley DB

1.1.12 SQL Enables prediction of patterns

consistency and availability.

1.1.13 Open source embedded database

engine, offered as a library that directly links

into applications.

1.1.14 Pungilă et al.,

2009

1.1.15 Hypertable 1.1.16 NoSQL 1.1.17 Supports applications requiring

maximum performance, scalability,

reliability resistant to component

failures.

1.1.18 Distributed data storage system

1.1.19 stores only strings.

1.1.20 (Sikkens,

2010)

1.1.21 Cassandra 1.1.22 NoSQL 1.1.23 Can cope with very large

amounts of data spread out across many

commodity servers.

1.1.24 Structured key-value store using the

mechanism of eventual consistency

1.1.25 relaxes either consistency or

availability.

1.1.26 (Mai et al.,

2014)

1.1.27 MongoDB 1.1.28 NoSQL 1.1.29 Includes a powerful query

language that allows for regular

expressions and Javascript functions to

be passed in as checks for matching keys

and values.

Provides a key-value store that manages

collections of BSON (binary JSON)

document relaxes either consistency or

availability.

1.1.30 (Mai et al.,

2014)

1.1.31 PostgreSQL 1.1.32 SQL 1.1.33 ACID (atomicity, consistency,

isolation, durability) compliant and is

fully transactional.

1.1.34 Traditional open source SQL

database

1.1.35 does not scale well.

1.1.36 (Pungilă et al.,

2009)

1.1.37 Informix 1.1.38 Time

Series

1.1.39 Consolidates and organizes time-

stamped data much more efficiently than

traditional, relational databases.

1.1.40 IBM® Informix® TimeSeries

software is a built-in feature of Informix that

greatly expands database functionality by

adding sophisticated support for managing

time series (time-stamped) data.

1.1.41 (Pungilă et al.,

2009, IBM, 2015)

32

1.1.42 Influx 1.1.43 Time

Series

1.1.44 Has no external dependencies. 1.1.45 Designed to track data from tens of

thousands of sensors rates of once a second

or more. Using the Influx JavaScript library

one can build custom sensor analytics.

1.1.46 (Influx, 2015)

1.1.47 Kairos 1.1.48 Time

Series

1.1.49 KairosDB supports millisecond

granularity when used with Cassandra.

1.1.50 KairosDB can be run using a back-

end store of Cassandra, HBase, or H2.

1.1.51 (Goldschmidt,

2014)

33

Table 2 - Hardware and Software Configurations of Test Machine

Criteria Specification

CPU Type AMD A6-6310 Quad-Core APU processor 2.40GHz

System memory 8GB RAM

Hard Drive 1 TB

Operating System Windows 7, 64 bit, TinyOS 2.1.2 packages

BIM software Autodesk RevitTM Architecture 2013

34

+forwardQuery()
+forwardData()
+processData()

WSNGateway

-id : int
-reportingInterval : int
-type : string

+sendData()
+receiveData()

Mote

-id : int
-reportingInterval : int
-type : string

+readSensor()
+processData()
+forwardData()
+forwardQuery()

SensingMote

-id : int
-reportingInterval : int
-roomID : long
-type : string

+readSensor()
+processData()
+forwardData()
+forwardQuery()
+aggregateData()

AggregatorMote

-id : int
-reportingInterval : int
-roomID : long
-type : string

1..*

1

+saveData()
+updateData()
+requestData()

DataServer

1

1..*
+sendData()
+updateData()
+requestData()
+setconnection()
+collectData()
+saveData()

RevitServer

1..*

1

+viewData()
+updateData()

User

1

1

+viewData()
+updateData()
+setConnection()

MobileApp

+viewData()
+updateData()
+generateSensorReport()
+displaySensorsProperties()
+displayNotificationHistory()
+changeSensorID()
+changeSensorReportingInterval()

desktopClient

Figure 2 - CoSMoS Database Schema

35

Figure 3 - Algorithm for Benchmarking Performance of Database for Insert/Select Operations

Establish connection to database

While batchSize <= 500

Start timer

totalTime = 0;

For each batch size measure time over 2 rounds

startTimeForBatch=currentSystemTime;

Perform Insert/Select

endTimeForBatch = currentSystemTime -

startTimeForBatch;

totalTime = totalTime +

endTimeForBatch;

Calculate the average time taken for the 2 rounds

totalTime = totalTime/2;

Record batchSize and time taken

Increment batchSize by 10

batchSize = batchSize+10

Calculate average time across all batches

36

Table 3 - Average Performance of Reads and Writes Across Multiple Databases.

Database(Test Info) 1.1.52 Select 1.1.53 Insert

1.1.54 MySQL 1.1.55 250 ms 1.1.56 100

ms

1.1.57 MongoDB as Document / key-

value store

1.1.58 2 ms 1.1.59 50 ms

1.1.60 MongoDB as Time Series Store 1.1.61 46 ms 1.1.62 127

ms

1.1.63 Informix 1.1.64 5 ms 1.1.65 250

ms

1.1.66 Informix with Time Series data

blade

1.1.67 7000 ms 1.1.68 250

ms

1.1.69 Influx 1.1.70 ~100,000

ms

1.1.71 750

ms

1.1.72 Kairos 1.1.73 385 ms 1.1.74 285

ms

37

Figure 4 - Graph Depicting Performance of Reads Across Multiple DB’s

38

Figure 5 - Graph Depicting Performance of Writes Across Multiple DB’s

