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Abstract

This paper uses the water allocation economy in Israel as a proxy for imputing
the value of agricultural amenities. A general equilibrium model is developed, and
incorporates agricultural amenities as byproducts of agricultural production, wa-
ter trade channels, and multiple water types. The premise is that until a decade
ago, water policy in Israel was interlinked with agricultural land-use policy. Inte-
grating a Monte-Carlo analysis, the model searches for a baseline minimum value
of agricultural amenity that makes household, in the counterfactual scenario, in-
different between the administrative and market mechanisms. The minimum im-
puted value is around 109% agricultural output. The intuition is that the gains
in economic welfare, from improved water use efficiency, are offset by the losses in
social welfare due to a reduction in available agricultural amenities.
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Highlights (3 to 5)

• The agricultural sector creates amenities as a byproduct of production.

• The paper imputes the value of agricultural amenities in Israel.

• Quantifying the value of amenities is crucial for correctly valuing agricultural
land.

• The method used is an economy-wide general equilibrium model.

• In Israel, the value of agricultural amenities is estimated at 109% the value of
this sector’s output.
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1 Introduction

Agricultural activities produce benefits above and beyond the market value of pro-
duction because they provide non-marketed amenities, such as ecosystem services
and farm landscape. Amenities also include less tangible, non-use value (such as ex-
istence and bequest) (Oglethorpe and Miliadou, 2000), and other aspects of cultural,
social and heritage preservation (Chan et al., 2012).1 They are typically not inter-
nalized by the sectors that create them, and are difficult to value in monetary terms
(OECD, 2008).

The failure to account for the non-marketed value of agricultural amenities causes
agricultural land to be undervalued and suboptimally allocated from society’s point
of view (OECD, 2005; Kan et al., 2009). For example, its loss to urbanization may
be irreversible and costly to the well-being of society (defined as the economic and
non-economic social aspects of welfare).

Therefore, it is highly important to measure the value of agricultural amenities in
order to correctly assign property valuation, appraisals and taxation (Borchers et al.,
2014), and design policies that support the agricultural sector through land subsidies,
targeting and zoning (Engel et al., 2008).2 To address this issue, the aim of this article
is to impute some of the non-marketed value of agricultural amenities.

A large body of empirical literature has already attempted to quantify the non-
marketed value of agricultural amenities using micro-level approaches. Examples
include works on the external effects of farmland in the context of urban-rural land
allocation (Borchers et al., 2014; Bergstrom and Ready, 2009; Bowker and Didychuk,
1994; Brunstad et al., 1999; Bergstrom et al., 1985; Bastian et al., 2002) and in Israel
(Kan et al., 2009), on agricultural landscape value (Drake, 1992; Brunstad et al., 1999;
Thiene and Tsur, 2013) and in Israel (Fleischer and Tsur, 2009), and on recreational
value of open space in Israel (Fleischer and Tsur, 2003, 2000). As Chan et al. (2012)
reports, fewer empirical studies have focused on the less tangible value. One relevant
example is Becker et al. (2012) that exmine the non-use value in water management
in Israel.

In this study, the contribution is twofold. It uses a macro-level approach, not pre-
viously applied for valuing amenities: an economy-wide, general equilibrium model

1The agricultural sector also produce negative externalities (e.g., non-point pollution, soil erosion,
and others). This study considers the net amenity value (positive minus negative) because of the
functional form used.

2A notable example is through payments for environmental services (PES) programs (e.g., Sánchez-
Azofeifa et al., 2007; Muñoz-Piña et al., 2008)
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with Monte Carlo analysis. In addition, it uses the Israeli water economy as a proxy
for the tangible and intangible amenity value that the public attributes to the agri-
cultural sector. The model incorporates agricultural amenities as byproducts of agri-
cultural production, and is based on the fact that when irrigation water is a limiting
factor in agricultural production, water pricing and quotas are effective in directing
social, political and environmental objectives (Thiene and Tsur, 2013).

Water can be allocated by an administrative mechanism, market-based mecha-
nism, or a combination of both.3 This paper imputes the public’s minimum willingness
to accept an administrative mechanism, even though it creates distortions, because
the rise in economic welfare generated by a hypothetical pure water market exactly
offsets the lost social welfare from less available amenities. A pure water market
improves economic welfare, when water inputs are used more efficiently, but reduces
social welfare because the agricultural sector sells away its water inputs, reduces
production, and therefore lowers the level of amenities available to households.

In Israel, the water allocation mechanism arises from a political arrangement of
resources. The definition of agricultural amenities, therefore, covers a wide range of
external benefits. de Groot et al. 2002 defines a topology of 23 ecosystem functions,
which link with ecological, socio-cultural and economic value that make-up the total
value of environmental goods. Hall et al. (2004) provide a review of the amenities that
the public wants from agriculture and the countryside. In Israel, for example, beside
the tangible amenities (e.g., food, landscape, and habitat) that the public attributes to
the farming community, the public also views them as the “forefathers” of the State of
Israel that gives them an intrinsic cultural, historical, and heritage value (Tal, 2007).

At the margin, this paper calibrates some of the agricultural amenities at around
109% its total economic output. However, the inframarginal value maybe much larger,
suggesting that the administrative mechanism in Israel provides higher social-economic
welfare compared to a pure water market. Furthermore, the findings indicate that de-
salination in Israel has been a cost-effective investment for alleviating the distortions
made by the administrative allocation.

The imputed agricultural amenity is a partial value of its total because: (i) There
are many other instruments besides water subsidies that support the agricultural
sector (some examples are tariffs, anti-trust exemption, permits for foreign work-
ers employment, etc)4, and using only one instrument underestimates the imputed
amenities. (ii) The conservative parameters that are used overestimate the size of the

3Zhao et al. (2013) provide a clear discussion of the cost and benefits of each.
4OECD (2017) provides an extensive review.
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water market (and therefore more welfare is gained), but underestimate the weight of
the agricultural amenities in households utility (thus again giving more weight to the
benefits of the water market). (iii) The estimates relate only to the effect of irrigated
lands, while amenities associated with rain-fed lands are ignored. Finally, (iv) Wa-
ter management policies are based on political processes (e.g., influenced by interest
groups), and not only on welfare maximization (Finkelshtain and Kislev, 1997); but
this is beyond the scope of this paper. Therefore, a portion of the imputed amenity
value may represent also these distortions.

To capture the welfare distortions from water policy in Israel, the model is cali-
brated to 2006 - a period of severe hydrological deficit. Using more recent data would
be an ineffective way to impute the value of agricultural amenities because the water
economy and agricultural land-use policy in Israel today are much less interlinked
compared to how they were a decade or two ago. Water subsidies to the agricultural
sector have been dramatically reduced, and land-use policy is now mainly managed
through regulation and direct subsidies, and much less through the water economy.
In addition, the low cost of desalination, and high volume of purified wastewater for
irrigation, have removed the acute resource constraint to a point where the Israeli
water authority has had to curb the over-supply of desalinated water while being
urged to lower water prices. Though water remains an issue of political power in the
Middle East (Beltrán and Kallis, 2018), the general debate on the shortfalls of the
administrative mechanism have largely subsided. Water has thus become less of a
limiting factor in agricultural production compared to 2006.

In what follows, Section 2 provides a background on the distortions of the admin-
istrative allocation in Israel. Section 3 introduces the economy-wide general equilib-
rium model with agricultural amenities. Section 4 presents the data of Israel. Section
5 summarizes the empirical results with some further discussion, and Section 6 con-
cludes. An on-line supplementary appendix is also available with further details.

2 Background on the distortions of the administra-
tive water allocation in Israel

Israel is an example of a country which has historically developed an administrative
water allocation mechanism to promote social and political objectives, such as settle-
ment and land policies, food security, and equitable consumption (Just et al., 1997;
Menahem, 1998). Prices and quotas are set by the Israeli Water Authority (IWA) - a
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governmental agency. It is illegal to resell water quotas, though some intra-regional
reallocation has been permitted. The agricultural sector was the main beneficiary
and obtained water inputs at subsidized rates, but to a lesser extent today.

By mid-2000s, the distortions generated by the administrative water allocation
mechanism in Israel were said to be responsible for a severe hydrological deficit in
the country - a water crisis. Various parliamentary investigative committees and re-
searchers concluded that for decades, water allocation had been mismanaged by over-
subsidizing the agricultural sector and underfunding water supply development. The
system was subjective, politicized, and included various governmental bodies respon-
sible for different objectives (Davidovich, 2008). The formation of unsolicited black
water markets in various regions was seen as an indication of these inefficiencies.5

Leading up to the water crisis, suggestions were made to introduce various types
of market mechanisms so that water would be consumed by those that valued it most
(for a review, see Parker and Tsur, 1997). However, this never materialized. After
2010, water tariffs were updated to reflect the full cost of supply, and reorganiza-
tion was made, but overall, the administrative mechanism did not change. Instead,
extensive investments were made to extend the supply of water.6

In conclusion, by mid-2000s, despite clear evidence of distortions, the administra-
tive mechanism continued to be the favored allocation system. The next section elicits
the household’s preferences for agricultural amenities by constructing a hypothetical
water market that is compared to the administrative mechanism.

3 The model

Applied, water-focused, computable general equilibrium (CGE) models have been de-
veloped to analyze many issues within the water economy (see detailed reviews by
Dinar (2014) and Luckmann et al. (2014)). None, however, use CGE models to elicit
the value of agricultural amenities.

Luckmann et al. (2016, 2014) and Baum et al. (2016) are recent examples of water-
focused CGE models that focus on Israel. They develop a highly detailed breakdown
of water types, production sectors, and households, and simulate counterfactual sce-

5Black water markets have been investigated by the State Comptroller in 2012, and deliberated by
the High Court of Justice (Bagatz) and the IWA. In March 2017, the IWA reaffirmed this practice as
illegal unless authorized by the state.

6By 2018, Israel operates five seawater desalination plants that provide more than two-thirds of
the drinking water to households, and uses almost 90 percent of its purified wastewater for irrigation.
See Haaretz (2014); Rinat (2016) for a general overview.
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narios that include drastic reductions in Israel’s water supply, an increase in desali-
nated water, and alternative water pricing. Diao et al. (2008) have studied conjunctive
ground and surface water policy in Morocco. These studies, however, analyze coun-
terfactual scenarios within an administrative water allocation mechanism.

Only a handful of CGE studies introduce water markets that resembles this paper.
For example, Hassan and Thurlow (2011) assess the effect of liberalizing regional and
national irrigation water markets in South Africa; Diao and Roe (2003) link water al-
location (administrative versus market) with protectionist trade policies in Morocco;
and Gómez et al. (2004) assess the economic gains from introducing a water market
in the Balearic Islands. Becker (1995) and Reznik et al. (2016) use partial equilib-
rium constrained maximization methods that introduce a water market in Israel, in
a similar way to how water trade channels are set in this paper.

The common theme in all the above studies is that a market mechanism leads to
economic gains because water inputs reach those users that value them most. This is
also the case in this paper. The novel contribution here, however, is that agricultural
production also creates a byproduct amenity that could be lost as a result of a water
market, a point which has not been studied in similar CGE models. Here, I impute
the value of agricultural amenities by weighing the additional benefits of a water
market with the losses incurred by a reduction in agricultural amenities. The model
thus shares some similarities with Thiene and Tsur (2013).

3.1 Setup

A water authority holds the property rights of water, and sets a framework of price
discrimination, quotas, and prohibits water trade. Water users decide on the amount
of water to buy within this framework. Households demand goods (including water)
and also agricultural amenities. Firms supply goods, and agricultural firms also sup-
ply amenities as byproducts of their production7, which however, they do not internal-
ize. In the counterfactual simulations, a hypothetical pure secondary water market is
enabled. The model measures the volume of water that would be reshuffled between
pairs of water users (relative to the baseline administrative allocation) and the price
adjustments that clear the market.

To do this, I set up an Arrow–Debreu equilibrium as a mixed complementarity
problem that is compactly expressed as 0 ≤ x ⊥ y ≥ 0.8 This allows for slack ac-

7Resembling Peterson et al. (2002); Vatn (2002).
8A complementarity constraint enforces that for variables x and y: x·y = 0, x ≥ 0, y ≥ 0. Intuitively,

this implies that either x or y must be 0, or both.
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tivities that represent the opening and closing of water trade channels. The model
is coded in GAMS9 using the MPSGE sub-language (Rutherford, 1995). Since the
model contains a substantial number of standard mathematical equations, only the
key equations linked to the water economy are presented. The online supplementary
content includes further equations, model code, and calibration.

3.2 Water authority, household, and production

The water authority produces two types of water: potable water WP and non-potable
water WNP . In the baseline, household h ∈ H and sector i ∈ N are allocated water
W̄P h, W̄P i, ¯WNPi ∈ W̄ and pay different water prices pWP,h, pWP,i, pWNP,i ∈ pw. The
objective of the water authority is full cost recovery, and therefore, the revenue from
selling water equals the cost of labor, capital, and intermediate inputs (on the right
hand side of equation 1), respectively:

pWP,hW̄P h +
∑
i

(
pWP,iW̄Pi + pWNP,i

¯WNPi
)

= pLLw + pK,wKw +
∑
i

piXiw (1)

A single household h has a rational and locally non-satiated preference relation,
with a continuous utility function U (·). Extending this model to multiple households
is simple, but would require assumptions about how amenities are distributed, and
how households are defined.10 The consumer’s problem is a conventional demand sys-
tem that has a two-level nested (hierarchical) constant returns to scale (CRS) struc-
ture, depicted in Figure 1. The lower nest is a Cobb-Douglas (CD) function, contained
within the upper level constant elasticity of substitution (CES) function. (See supple-
mentary appendix A.1 for further detail.)

Let Xi represent consumption of final goods from sector i with pi the consumer
price. Furthermore, Xamen in Figure 1 represents consumption of the amenity (dis-
cussed later in Section 3.4). WPh is the demand for potable water with price pWP,h.
Households are endowed with a supply of capital and labor K̄i, K̄w, L̄, and note that
capital is a sector specific input that represents a short-to-medium time horizon.11 σh

is the substitution elasticity between potable water and the aggregate consumption
9http://www.gams.com/

10For example, households could then refer to regions that control the water aquifers, neighboring
countries, or income group. In this model, household refers to total private consumption in Israel.

11As Hertel (2002) discusses in detail, within a time frame of three to five years, land inputs are
relatively rigid due to soil type, location, use-type, infrastructure, and legislative constraints. Capital
becomes a highly rigid factor if land makes up a large portion of it. Furthermore, capital has quite
different usages in various industries that takes time to adjust before being utilized for other purposes.
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Figure 1: The two-level nested utility
function
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of final goods.
On the production side, sector i produces a single final good Yi, using a four-level

nested CRS production function Yi = fi (Ki, INji, Li,WPi,WNPi) that requires capital,
intermediate inputs, labor and potable and non-potable water inputs, respectively.
Prices are defined as pK,i, pj, pL, pWP,i, pWNP,i ∈ p, respectively. The production func-
tion is illustrated in Figure 2, with σ1 to σ4 the substitution elasticity at each nested
level.12

At the baseline, prices are determined at the levels which clear output and factor
markets, so that

∑
i L = L̄, Ki = K̄i, Kw = K̄w, WNPi = ¯WNP i, and output equals final

demands Yi = Xi + Xiw + ∑
j INij. Furthermore, as long as water trade is prohibited,

the market clearing condition for Potable water is

WPi = W̄P i

WPh = W̄P h

pW,i 6= pW,j 6= pW,h

(2)

which, however, changes once water trade is enabled.
The water authority sets increasing block tariffs (IBT) that are differentiated

among water users. Users are not constrained by the total amount of water they
choose to purchase, but they pay higher charges within the IBT framework. This

12This structure eases the calibration of the substitution elasticities (reported in appendix B).
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means that the marginal values of water (MVW ) equal the real water prices:13

MVWi = ∂Yi
∂WPi

≤ pWP,i

pi
⊥ WPi ≥ 0, ∀i (3)

MVWh = ∂U

∂WPh
≤ pWP,h

pU
⊥ WPh ≥ 0 (4)

Note that equations (3) and (4) are written as full complementarity problems whereby
as long as the MVW equals the real cost of the water input, demand for water is
positive. Otherwise, if the real cost of water is greater than its MVW, demand for
water is zero. Finally, based on the calibration stage, each water user has a different
marginal value of water (MVW) such that

MVWi 6= MVWj 6= MVWh

3.3 Explicit water trade channels

This next section explains how water trade channels are set, and how the model
estimates the volume of water that is reshuffled in a secondary water market, once
trade is allowed in the counterfactual scenario.

As an example, assume that in the baseline with no water trade, sector 2’s marginal
value of water is higher than of sector 1. Following from equation (3), pWP,1

p1
= MVW1 <

MVW2 = pWP,2
p2

. If water trade would be allowed, sector 2 would prefer to buy some
additional water from sector 1 (and sector 1 prefers to sell), up to a point where
MVW1 = MVW2.

In the model, water users can be buyers or sellers, and having M = N + H water
users (i.e., N sectors and H households) leads to M2 trade configurations. Further-
more, define ψ to be the pre-trade relative marginal value of water. If user b ∈ M is
a buyer, and user s ∈ M is a seller, a possible trade channel is when MVWb

MVWs
= ψsb > 1;

otherwise, it cannot be a possible trade channel. This is summarized by

MVWb

MVWs

=

ψsb > 1 possible trade channel

ψsb ≤ 1 no trade
(5)

These conditions, therefore, limit the number of configurations to only T = M(M−1)
2

possible trade channels, with t ∈ T being one specific channel. (Table 2 will provide a
13The exception is at the kinks between two adjacent tariff blocks (Bar-Shira et al., 2006). To deal

with this, I will use an average MVW across all agricultural sectors which eliminates the kinks.
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concrete numerical example of equation 5.)
Thus, when water trade is enabled in a secondary water market, the units of water

for each channel, γt, that are transferred between seller s and buyer b are measured
by

0 ≤ γt ⊥ pWP,s,t − (1− ε) pWP,b,t ≥ 0, ∀t (6)

with pWP,s,t and pWP,b,t being the real water market prices for the seller and buyer,
respectively.14 For computational purposes, ε → 0 is a small number to ’help’ the
solver with slack activities, thus avoiding the problem of infinite solutions, i.e., a
degenerate model.15

There are various combinations (scenarios) of activating and deactivating water
trade channels that can be controlled, e.g., activating each channel separately, or all
together. Therefore, each of the t ∈ T channels has a binary action (designed by the
scenario); active or not-active, {A,NA} ∈ Action. There are {tA, tNA} ∈ T channels,
{iA, iNA} ∈ N firms, and {hA, hNA} ∈ H households, that are active or not-active,
respectively.

When Equation (6) is enabled for tA, water trade is allowed for a pair of users,
and water units, γtA > 0, are exchanged up to the point where sellers and buyers have
equalized water prices, pW,s,t = (1− ε) pW,b,t. If, however, the unit water price of a seller
is higher than the unit price of a buyer, pW,s,tA > (1− ε) pW,b,tA (a strict inequality), the
activity goes slack, γtA = 0, and there is no trade.

Enabling water trade, in the counterfactual scenario, updates the potable water
market clearing condition from Equation (2):

WPhA +∑
iAWPiA = W̄P hA +∑

iA W̄P iA

pWP,iA = pWP,jA = pWP,hA

WPiNA = W̄P iNA

WPhNA = W̄P hNA

pW,iNA 6= pW,jNA 6= pW,hNA

(7)

whereby for the active water trade channels, water charges are equalized, while other
non-active channels still view water as a sector specific input.

14In the calibrated baseline, total costs are set to unity, so water prices are in real terms.
15This insures that when multiple t channels are opened (active), only net transfers of water is con-

sidered. For example, a case of infinite solutions is when a first user sells to the second, the second
sells to the third, but the first also sells to the third. By adding ε, the solution is limited to one case
where, for example, the first sells to the second and to the third, while deactivating the second selling
to the third.
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3.4 Modeling agricultural amenities

Next, I explain how agricultural amenities are produced by the agricultural sector
and consumed by the representative household.

Focusing again on production, the agricultural amenityXamen is created as a byprod-
uct in fixed proportion to agricultural production Yagr∈i (i.e., a Leontief technology),
and has shadow price pamen. The sector does not internalize the amenities it gener-
ates because a fictive tax rate on the amenities, set to τamen = 100%, nullifies any
revenues from the amenities.

Omitting index agr, the profit maximization problem for the agricultural sector, is

Max π = (1− τamen) pamenXamen︸ ︷︷ ︸
=0

+ pY − Cost (·) (8)

s.t. Y ≥ min {Y, δXamen}

Y ≥ f (K, INj, L,WP,WNP )

with δ the calibrated parameter for the agricultural amenities (i.e., amenities are
omitted when δ = 0, and otherwise when above zero, δ > 0).

On the demand side, the household consumes goods (as previously discussed), but
also an agricultural amenity. The fictive tax revenue, pamenXamen, is directly trans-
ferred to the household as an endowment, so that they endogenously consume as
much amenity as is provided to them (see equation A.1 in the supplementary ap-
pendix).16 The substitution elasticity in utility between the amenities and other goods
is unity, which is an upper-bound at a macroeconomic level. A lower value will raise
the imputed amenities.17

Two issues to note regarding the functional form that generates the amenity:
First, the agricultural sector also produces negative externalities that lower welfare
(e.g., non-point pollution, soil erosion, nutrient runoff, greenhouse gases and others).
Since water policy was set while considering both positive and negative amenities,
the amenity imputed here represents the net amenity value (positive minus nega-
tive). Using a CRS function maintains this in the counterfactual scenarios. Second,
this fixed transformation function implies a zero transformation elasticity between
the agricultural commodity and the amenity, making it a lower-bound value.18

16Note that a counterpart of δ is θamen, the share exponent of the amenity in utility, which is clearly
defined in supplementary appendix A.1. When θamen = 0, amenities are omitted from the baseline
calibration, but present when θamen > 0.

17To my knowledge, there are no known values for these elasticities.
18Alternatively, using a constant elasticity of transformation function with higher parameter would
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Finally, it is important to realize that in this setup, different baseline calibrations
of the amenities will not affect the counterfactual general equilibrium outcomes of the
marketed commodities. There is only one counterfactual solution for the goods mar-
kets because (i) firms produce according to their profit maximization problem with-
out internalizing the amenities, and (ii) households consume as many non-marketed
amenities as provided to them. In this simple setup, the only difference between a
model with and without agricultural amenities will be the interpretation of welfare.

3.5 Closure rules for the government and international trade

Following standard applications in computable general equilibrium (CGE) models,
the government receives income from taxes and tariffs, and receives net-funds from
domestic households and the rest of the world. The government saves a fixed amount
of its income, and provides the public services by purchasing commodities in fixed
proportions. In counterfactual experiments, the closure rule is to fix the level of public
provision to the baseline level, by endogenously transferring net-income to (from) the
household so that the government maintains a balanced budget. These assumptions
avoid the problem of a ‘free gift’ which would create a problem to interpret welfare.

In terms of international trade, the model is a small open economy that cannot
affect world prices. In this static model, the closure rule is to fix the balance of pay-
ments (i.e., export and import prices quoted in foreign currency are exogenous) be-
cause it would be difficult to interpret welfare when the current account deficit rises,
for example, acting as a ‘free gift’ (Hosoe et al., 2010). In the long-run, the current
account should balance on average.

4 Calibrating the model to Israel

The model is calibrated to Israel’s 2006 social accounting matrix (SAM), which I de-
rive from the 2006 Use and Supply tables of 205 industries and the 2006 Satellite
Account of Water in Israel (Israeli Central Bureau of Statistics - CBS).19 GDP was
154.5 billion (bln) US Dollars ($), and household consumption was $82.1 bln.20

The data is aggregated to four main water users, to simplify the model and (mainly)
because the overall results would not significantly change had they been further dis-

only raise the imputed amenity value.
19The SAM is documented in supplementary appendix C.
20All data from CBS are provided in NIS. For convenience, these are converted to $, based on the

Bank of Israel annual average exchange rate in 2006 of NIS/$=4.4565.
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Table 1: Key water figures in Israel (2006)

Potable Water Non-Potable Water

User Mil.

Cubic

Meters

% of

Total

Expenditure

(mil. $)

Avrg MVW

($/CM)

Mil.

Cubic

Meters

% of

Total

Expenditure

(mil. $)

(1) (2) (3) (4) (5) (6) (7)

Agriculture 513.3 38 124 0.241 587.5 94 129

Manufacturing 71.6 5 47 0.660 30 5 10

Services 207.7 16 132 0.638 5.5 1 3

Household 543.5 41 503 0.926 0 0 0

Total 1,336.1 100% 807 623 100% 142

% Total Water 68% 32%

Export 102.2 35 0

Grand Total 1,438.3 984 623 142

Source: CBS and CBS Water Satellite Account; Bank of Israel: annual average exchange rate NIS/$=4.4565.

Table 2: Water trade channels (relative MVW, 2006)

Buyer m ∈M

Agricultural Manufacturing Services Household

Agricultural 1 2.736 2.643 3.838

Seller n ∈M Manufacturing 0.365 1 0.966 1.403

Service 0.378 1.035 1 1.452

Household 0.261 0.713 0.689 1

Note: The table summarizes the ratio of seller/buyer water marginal value. Bold values are the possible water trade channels.

aggregated. Table 1 provides a breakdown of water consumption. In 2006, 1336
million cubic meters (MCM) of potable water was consumed: 38% by the agricultural
sector, 41% by households, and the remainder by manufacturing and service sectors.
623 MCM was non-potable water (salinized, contaminated, sewage effluents, flood,
and brackish water) mainly consumed by the agricultural sector.

The average MVW for each water user is obtained by dividing their water expen-
diture by water consumption (see column 4 in Table 1). Then, water trade channels
are set in Table 2 by dividing the MVW for each pair of users from Table 1. In our
case, having four water users leads to sixteen water trade configurations. Following
from equation (5) in which ψsb > 1 (i.e., when the relative MVW is greater than one),
there are six possible channels (marked in bold) that indicate who would be the seller
and buyer in each channel. For example, in 2006, the household valued water by
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Table 3: Parameters used in the model
(1) (2)

Lower Mid Upper

Output supply price elasticities, η η ∼ Beta (α, β)

Agriculture 0.4 0.8 1.2 (3,3)

Manufacturing 1 3 5 (6,6)

Services 1 3 5 (6,6)

Water demand price elasticities, ε ε ∼ Beta (α, β)

Agriculture -0.1 -0.7 -2 (10,15)

Manufacturing -0.1 -0.7 -2 (10,15)

Services -0.01 -0.1 -1 (1,7)

Household -0.01 -0.1 -1 (1,7)

Potable/Non-potable substitution Elasticity, σ4

Agriculture 1.1

Manufacturing 0.2

Note: Column 1 are the range for supply-price and demand-price elasticities. These values, with the cost shares from the SAM,
calibrate the substitution elasticities between inputs for utility and production. Column 2 are the PDFs for the beta distributions
used in the Monte Carlo simulations.

approximately 3.838 times that of the agricultural sector,21 and therefore would buy
from the agricultural sector.

Other parameters

In Table 3, column 1 summarizes the output supply and water demand price elastici-
ties used in the model. Conservative values were chosen that overestimate the value
of the water market. Following a method outlined by Rutherford (2002) and Shoven
and Whalley (1992), which generalize any nested-structure that combines key elastic-
ities with the cost-shares from the SAM, these parameters approximate the unknown
substitution elasticities in the production and utility functions.22 Column 2 provides
the probability density function (PDF) for the beta distribution that generate the
Monte-Carlo simulations, with the lower and upper parameters from column 1.23

21Divide households MVW 0.926 by Agriculture MVW 0.241. Numbers are slightly different from
those reported in the table due to rounding error.

22Supplementary appendix B provides a detailed literature review of the elasticities and the approx-
imation method.

23See the supplementary appendix D for further detail on the Monte Carlo method.
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5 Results

Results are reported in two stages: (i) to provide context for why economic welfare
rises in this model, the main findings generated from a water market are reported. At
this stage, agricultural amenities are ignored from the initial calibration, as in most
economy-wide models that are based on national accounts data. (ii) I then impute the
minimum value of agricultural amenities that would make households indifferent
between the administrative and pure market mechanisms. This social aspects of
welfare brings us partially closer towards well-being.

5.1 A water market without agricultural amenities

Table 4 reports the results of a water market ignoring agricultural amenities.24 When
all water trade channels are open, 113 MCM of potable water would be traded within
the secondary water market (see column 1), which is 8.4% of the total potable supplied
in 2006. Although all six water trade channels are open, the agricultural sector is the
only net-seller, of which manufacturing buys 37 MCM, services buys 15 MCM, and
household buys 61 MCM.

The water market clears when water prices change sufficiently to allow the marginal
value of water to equalize for all users. Water price rises by 33.8% for agriculture, and
falls for the other users (see column 4). The market clearing potable water price would
be 0.323 $/MC (not reported but easily verified).

As expected, welfare rises because by enabling water trade, water inputs are put
to better use, and the production possibility frontier of the economy moves outwards.
The model computes a welfare gain of $27.8 mln (million, real 2006 prices) in terms
of equivalent variation in household expenditure (column 3).25 This is a small welfare
gain of 0.034% (relative to the baseline) simply because the water economy in Israel
is only around 0.4% of GDP; The share of potable water inputs from total input cost
was only 0.4% of household’s disposable income, 2.2% in the agricultural sector, and
less than 0.1% for manufacturing and service sectors.

Furthermore, as expected, agricultural production falls by around 0.5%, as it sells
water to the other users. Manufacturing sectors marginally raise production and
service sectors marginally lower it (0.05% and -0.004%, respectively). Prices of final
goods rise mainly because household income rises, which raises demand for all goods.

24Detailed results and the GAMS model are available from the author upon request.
25I do not report on changes to government spending, investments, and net exports because, as

previously explained, they were deliberately held constant (in real terms) in the model.
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Table 4: Model results (2006 prices, change from baseline)

% of Welfare % Change in water prices

Water total gains Non-

MCM potable $ mln Potable potable

(1) (2) (3) (4) (5)

All water trade channels open 27.8 8.9

(of which)

Agriculture sell 113 8.4 33.8

Manufacturing buy 37 2.7 -51.1

Services buy 15 1.1 -49.4

Household buy 61 4.6 -65.1

Total supplied 1336

Column 1 is the quantity of water traded. Column 2 is the percent of water traded from the total potable water supply (1336
MCM). Column 3 is the welfare gains in $US Million. Columns 4 and 5 are percent change of potable and non-potable water
price from the initial allocation.

Monte Carlo simulation without amenities

Comprehensive sensitivity testing was conducted to understand how the model be-
haves and to assess its reliability. Table 3 summarizes the upper and lower values
tested, which are well-above and below the accepted values reported in other stud-
ies. The direction of the results were as expected. Using these extreme, unlikely,
point-estimates in a mechanical way, I find the potential secondary water market to
be at a range of 14.4 to 367.2 MCM. The largest effect comes from changing the wa-
ter demand elasticities. Output supply price elasticity has a very minor role, mainly
because potable water inputs are a small share of total input costs. Furthermore, ex-
perimenting with capital as a fully tradeable input increases the size of the secondary
water market, but by a negligible measure.

I also use a Monte Carlo simulation to randomly generate a group of elasticity
parameters that jointly enter into the model. This is a more sophisticated way to
capture some of the notional characteristics provided by empirical literature (i.e., a
prior), even though the choice of PDF may be criticized for being subjective. However,
I have tried to make the best judgment based on available literature to counter this.
The model is then executed 30,000 times and results are collected and analyzed.26

Figure 3 plots the sample distribution of the potential secondary water market.
The sample average is 127 MCM, which is equivalent to around 9.5% of the total
potable water supply (i.e., 1336 MCM), with a standard deviation of 43 MCM. The 99%

26Supplementary content D provides further explanation and plots the sampled PDF.
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Figure 3: The potential size of water trade (PDF of the Monte Carlo simulation, MCM)
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Note: The sample average volume of water traded in the secondary water market is 127 MCM, with a standard deviation of 43
MCM. The 99% large sample confidence interval falls between [126.3, 127.5] MCM. Average welfare gain is $31.6 mln.

large sample confidence interval falls between [126.3, 127.5] MCM.27 At this confidence
interval, the welfare gain from introducing a water market is around $31.6 million.

To put this into perspective, an average desalination plant produces 125 MCM of
water per year, at a sunk-cost investment of less than $500 mln. The cheapest op-
erating cost is 0.5 $/CM (Shemer and Semiat, 2017), i.e., an average cost of around
$63 mln at full production per year. This is a cost-effective investment for alleviat-
ing water stress, especially when considering the non-marketed value of agricultural
amenities, discussed in the next section.

In a related analysis, Becker et al. (2012) compare two water management poli-
cies: (i) Divert water from the Sea of Galilee28 towards agricultural irrigation and
household use, or (ii) Desalinate the same amount. They show that ranking their
cost-effectiveness depends heavily on whether the non-marketed value are included.
Option 1 is preferable when considering only the economic value, but option 2 is
preferable when the non-marketed value are also included. This is discussed next.

27For a sample size n, the Central Limit Theorem states that the studentized mean is approximately
a standard normal: x̄−µ

s/
√
n
≈ N (0, 1) .

28The Sea of Galilee is the largest sweet water lake in the north of Israel. Water is pumped out and
supplied to the south of Israel by the national water canal.
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Figure 4: The negative relationship between the calibrated amenities and welfare
change
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indifferent in the counterfactual scenario.

5.2 Imputing the value of agricultural amenities

The value of agricultural amenities in monetary terms is unknown. The previous
section reported only the economic welfare based on marketed goods, as in traditional
models. I now extend the definition of welfare to include some of the social value of
non-marketed goods.

To impute the value of agricultural amenities, I raise its baseline value from 0
to $10 bln, and assess the change in social-economic welfare in the counterfactual
scenario (relative to the baseline). Figure 4 summarizes the results. Remember that
in all cases, commodity markets are identical to those reported in Section 5.1 (i.e.,
changes to production, prices, water trade and water prices are the same as with
no amenity). Recall that as long as the fictive tax on the amenities is 100%, the
agricultural sector does not internalize the amenity it creates, and the household
consumes all that is transferred to it. The baseline value of the agricultural amenity
is therefore irrelevant. What has changed is the definition of welfare (that moves
closer towards well-being).

Point a in Figure 4 shows that omitting the amenities from the calibration would
raise welfare by 0.034% (as previously reported). However, as the baseline value of
amenities is raised, the increase in welfare falls in the counterfactual scenarios. Agri-

17



Figure 5: The value of amenities required for indifference between administrative
and market allocation (PDF of the Monte Carlo simulation)
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Note: The 99% large sample confidence intervals falls between $[5.9, 6.4] bln. The figures show when households are indifferent
between the market and administrative mechanisms, i.e., when the sample welfare change is zero.

cultural firms do not internalize the byproduct amenities that they create and lower
production as they resell water inputs. The supply of available amenities is therefore
reduced, which lowers households welfare. For Israel 2006, I find that the minimum
imputed value that would make the public willing to accept the administrative mech-
anism, despite its distortions, is around $5.35 bln (point b, where the y-axis crosses
zero in Figure 4); A calibrated amenity value above point b would lower welfare com-
pared to the administrative mechanism.

Monte Carlo simulation including amenities and discussion

I now use the Monte Carlo method, as before, but also randomly select a value of the
amenities from a uniform PDF from 0 to $12 bln. A uniform PDF is chosen due to a
lack of reasonable prior, which gives equal probability to all randomly selected values
of the amenity. The model is executed 100,000 times, and all results close to zero
social-economic welfare change are analyzed (i.e., 178 occasions of 100,000 that fall
between−0.00005% ≤ 0 ≤ 0.00005%). Figure 5 plots the sample distribution, which has
an average of $6.2 bln, with a standard deviation of $1.32 bln. The 99% confidence
interval of the minimum value falls between $[5.9, 6.4] bln.

At the margin, this is around 109% of the agricultural output, or equivalent to 4%
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Table 5: Components of social welfare (bln $, 2006)
bln $ Amenities as % of

Imputed value of agricultural amenitiesa 6.2
Agricultural outputb 5.7 109%
Private consumptionb 82.1 7.5%
GDPb 154.5 4.0%

Source: a Model results, b CBS Israel (Use table 2006)

of the total 2006 GDP (summarized in Table 5). The inframarginal value of agricul-
tural amenities is much higher, which suggests that a rise in economic welfare by a
pure water market would not be sufficient to cover for the losses in social welfare.
This is not to say that a market-based mechanism, which correctly incorporates the
value of amenities, cannot provide similar or even better results (e.g., by using direct
farmer subsidies, or other means). Agricultural amenities would then need to be ap-
propriately “commodified”, which however, might not be feasible or not appropriate in
the first place, as discussed by Kosoy and Corbera (2010).29

Defining the net-social agricultural output as the sum of the economic agricultural
output plus its social output (i.e., the amenities), the imputed value of amenities is
roughly 52% of net-social output. In another study in Israel, Kan et al. (2009) evalu-
ate the changes to the net-social benefit from an intra-agricultural land reallocation
among crops. They calibrate their model based on a ratio of 33%, which they ex-
trapolate from an amenity-value function derived by Fleischer and Tsur (2009). The
calibration is possibly smaller than my result because Kan et al. only cover vegetative
agriculture, landscape value, and a portion of the Israeli population (i.e., the amenity
value rises with population size). My result, therefore, could be used by studies (sim-
ilar to Kan et al.) as an alternative amenity-value function.

To compare with other studies, the amenity value is divided by the area of agri-
cultural land. CBS Israel reports that agricultural cultivated irrigated land, in 2006,
was 183.6 thousand hectares (ha), from a total of 283 thousand ha that also included
unirrigated land. The newer National Topographical Database (Bental) estimates it
to be around 418.7 thousand ha.30 This means that based on my results, the amenity
value per hectare is in a range of $/ha 14.8 to 33.8 thousand. This is similar in size to
Thiene and Tsur (2013) who have used a hedonic price method to estimate the farm

29Kosoy and Corbera (2010) provide an excellent review of the dangers of over-commodifying envi-
ronmental amenities, which they call commodity fetishism.

30The discrepancy is explained by the methods: CBS collects and analyses survey data (e.g., for-
eign agricultural workers, water usage, farm insurance, and others), thus obtaining a partial picture.
Bental, on the other hand, is based on areal photos that show the actual usage.
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landscape for vineyards and orchards in Italy and their effects on irrigation water
allocation and pricing. Their study finds that the amenity value per ha ranges from
$/ha 9 to 63 thousand.31 The reason for their relatively large range is twofold. First,
they examine two crops (Vineyards and Orchards) which affect property values dif-
ferently. Second, they sample five different regions that vary in area. An alternative
approach is to divide the amenity value by the irrigated water consumption (513.3
MCM from Table 1). My figures result in $/CM 12.1, while Thiene and Tsur (2013)
report a range between $/CM 5 to 63.

6 Conclusion

Until a decade ago, in Israel, water pricing and quotas were used for promoting land-
use and settlement policies, food security and heritage preservation; water policy and
agricultural production were interlinked through the administrative water allocation
mechanism because irrigation water was a limiting factor of agricultural production.
Through this mechanism, the public internalized both the tangible aspects (e.g., food
production, landscape and habitat) and less tangible, non-use and cultural-heritage
value. The model extends the household welfare and agricultural production func-
tions to include agricultural amenities. By introducing a hypothetical pure water
market, the agricultural amenity value is imputed by comparing the gains in eco-
nomic welfare from the water market, with the lost social welfare from removing the
administrative water allocation.

At the margin, the value of agricultural amenities that makes the household in-
different between the two mechanisms is imputed at 109% of agricultural output.
The inframarginal value is likely to be much higher because only the welfare dis-
tortions of the administrative mechanism were assessed, while additional value was
omitted. These findings have relevance for developing policies to support the agri-
cultural sector. Farmland is often undervalued due to the failure to account for the
value of agricultural amenities. The loss of agricultural land to urbanization may be
irreversible and costly to the well-being of society.

31Converted to US$ with 1.3 per Euro, the average in 2012, around the time of its publication.
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Using Water Allocation in Israel as a Proxy for Imputing the
Value of Agricultural Amenities
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A The model: further detail

This is the supplementary appendix for the the paper “Using Water Allocation in
Israel as a Proxy for Imputing the Value of Agricultural Amenities”. This is a multi-
sector, multi-water type, computable general equilibrium (CGE) model, that is coded
in GAMS and MPSGE Rutherford (1995, 1999). It integrates a Monte Carlo method
for sensitivity testing.

A.1 Households and firms

As discussed in Section 3.2 of the paper, the household utility maximization problem
is:

max U (WPh, C (Xi)) =

β 1
σhWP

σh−1
σh

h + (1− β)
1
σh

[
z∏
i=1

{
Xθi
i

}]σh−1
σh


σh
σh−1

(A.1)

s.t.
∑
i

piXi + pWP,hWPh =pLL̄+
∑
i

pK,iK̄i + pK,wK̄w + pamenXamen

σh is the substitution elasticity between potable water and the aggregate consump-
tion of final goods, β is a share parameter in the CES function, θi is the share expo-
nents of the CD function for goods and amenity with

∑
i θi = 1. Note furthermore that

θamen ∈ θi is the share exponent of the amenity (i.e., when θamen = 0, no amenity is
present).

To simplify the notation of standard mathematical equations, I summarize more
complex nested functions in a non-mathematical form. For example, the two-level
nested function from equation (A.1) could be simply written as U = CES [WPh, C, β, σh]
for the top-level, and C = CD [Xi, θi] for the lower level.

Firm i’s profit maximization problem, but dropping subscript i for simplicity, is:
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max π = pY − pINj − pKK − pLL− pWPWP − pWNPWNP (A.2)

s.t. Y ≥ CES [K,NKL, α1, σ1]

NKL ≥ min [INj,WL, α2]

WL ≥ CES [L,W, α3, σ3]

W ≥ CES [WP,WNP, α4, σ4]

with α1 to α4 the share parameters of the first input, at each nested level, and σ1

to σ4 the substitution elasticity for the CES function. Note that NKL in the second
nest is a fixed-share Leontief function, which is a special case of a CES that has a
substitution elasticity of zero. Recall furthermore that the agricultural sector also
creates the byproduct agricultural amenities. See Equation (8) in the paper.

A.2 GAMS/MPSGE code

Below is the GAMS/MPSGE code for the most basic water model, with only one trade
channel and without a government and international trade. This is useful for those
who know the MPSGE language. All data in excel format can be obtain upon request.
The MPSGE code for the full model, which includes also Monte-Carlo simulations, is
available upon request.

$TITLE Water Market - Most Basic Model

* At this stage - ALL MADEUP NUMBERS

SETS I MATRIX ACCOUNTS /aAgri, aWater, cAgri, cWATERagr, cWATERhh, cNONDRINKW, Lab, Cap, HH/
a(i) activities /aAgri, aWater/
aa(a) only productive activities /aAgri/
awater(a) water sector /aWater/
c(i) All commodities /cAgri, cWATERagr, cWATERhh, cNONDRINKW/
cc(c) non water commodities /cAgri/
water(c) water /cWATERagr, cWATERhh, cNONDRINKW/
ALIAS(I,J);

* LOADS the Social Accounting Matrix (SAM)
$CALL GDXXRW 20170207_SAM.xlsx O=sam par=SAM rng=basic!D10:Q20 Cdim=1 Rdim=1
$GDXIN sam.gdx
Parameter SAM(i,j) balanced matrix;
$LOAD SAM
$GDXIN

*================ Loading Sub matrices ======================================================
PARAMETERS
Y0(a) Base year output
CA0(c,a) Intermediate demand
AC0(a,c) Marketed output
LD0(a) Labour demand or labour value added
LTD0 Total demand for labor
KD0(a) Capital demand or capital value added
VK0 Value of capital endowments - supply
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C0(c) Household consumption
CT_h0 Total consumption per household type
HL0 Labour income to households (labour supply)
;
Y0(a) = sum(c,SAM(a,c));
CA0(c,a) = SAM(c,a);
AC0(a,c) = SAM(a,c);
LD0(a) = SAM("lab",a);
LTD0 = sum(a, LD0(a));
KD0(a) = SAM("CAP",a);
VK0 = SAM("HH","CAP");
C0(c) = SAM(c,"HH");
CT_h0 = sum(c,C0(c));
HL0 = SAM("HH","lab");

Parameter
DS0(c) Domestic Supply
AS0(c) Aggregate supply (Armington)
;
AS0(c) = sum(a,AC0(a,c));
DS0(c) = AS0(c);

*=============================== W A T E R==================================================================
parameter wtah Water trade channel closed /0/;
Parameter MVW(c) Marginal value of water /cAgri 1, cWATERagr 0.029222677, cWATERhh 0.064399806, cNONDRINKW 1/;
Parameter amen(aa) Amenity value that can be anything /aAgri 100/;

*=============================== M O D E L ==================================================================
$ONTEXT
$MODEL:WATERMOD

$SECTORS:
Yprod(a) ! Sectoral Output
UTIL ! Households’ Utility
wt$wtah ! Secondary water market agriculture sells to household

$COMMODITIES:
PA(c) ! Armington price index
Pamen(aa)$(amen("aAgri")>0) ! Shadow price for agricultural amenity
PK(a) ! Return to capital
PL ! Wages
PU ! Utility level - consumption bundle and savings

$CONSUMERS:
RA ! Representative agent

$prod:wt$wtah
O:PA("cWATERhh") q:0.99999
I:PA("cWATERagr") q:1

* Regular sectors (excluding water sector)
$PROD:Yprod(aa) s1:0.5 s2(s1):0 s3(s2):0.5 s4(s3):1.1
O:Pamen(aa)$(amen("aAgri")>0) q:amen(aa) A:RA t:1
O:PA(cc) q:AS0(cc)
I:PK(aa) q:KD0(aa) s1:
I:PA(cc) q:CA0(cc,aa) s2:
I:PL q:LD0(aa) s3:

* drinking and non-drinking water
I:PA(water) q:(CA0(water,aa)/MVW(water) ) P:MVW(water) s4:

*water producing sector that allocates the initial water quotas
$PROD:Yprod(awater) t:0 s:0
O:PA(water) q:(AS0(water)/MVW(water)) P:MVW(water)
I:PK(awater) q:KD0(awater)
I:PA(cc) q:CA0(cc,awater)
I:PL q:LD0(awater)

$PROD:UTIL s1:0.1 s2(s1):1
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O:PU q:(CT_h0 + sum(aa,amen(aa)))
I:PA("cWATERhh") q:(C0("cWATERhh")/MVW("cWATERhh")) P:MVW("cWATERhh") s1:
I:PA(cc) q:C0(cc) s1:
I:Pamen(aa)$(amen("aAgri")>0) q:amen(aa) s1:

$DEMAND:RA
D:PU
E:PL q:HL0
E:PK(a) q:KD0(a)

$REPORT:
V:UWdemand(c) I:PA(c) PROD: UTIL
V:YWdemand(water,aa) I:PA(water) PROD: Yprod(aa)

$offtext
$sysinclude mpsgeset WATERMOD

PU.FX = 1;
Yprod.L(a) =1;
PA.L(c) = MVW(c);

WATERMOD.ITERLIM =2000;
$include WATERMOD.GEN
SOLVE WATERMOD USING MCP;

wtah=1;
$include WATERMOD.GEN
SOLVE WATERMOD USING MCP

B Approximating substitution elasticities in produc-
tion and utility

This section explains how the unknown substitution elasticities are calibrated at the
various nested levels of production and utility. (For an overview of the nested struc-
ture, see Figures 1 and 2 in the paper).

There are many different options for structuring the nested functions, and there-
fore, there are no known substitution values. Rutherford (2002) and Shoven and
Whalley (1992) generalize any nested-structure that combines key elasticities (de-
mand and supply price) with the cost-shares from the SAM. Column 1 of Table 6
summarizes the sector-specific elasticities that are used in this paper. These are mid-
values from the literature review from Israel and worldwide. Where possible, param-
eters from Israel were used. If none available, values from other countries were used.
Combining these with the cost shares from the social accounting matrix (column 2),
I obtain the calibrated substitution elasticities, σlevel,i, (column 3). Sections B.1 and
B.2 document the precise formula. In addition, Section D explains in more detail how
I use a Monte-Carlo method to simulate a distribution of the possible values in order
to obtain a range of results.

Many empirical studies have estimated the supply price elasticity for the agri-
cultural sector at around 0.8. (See Askari and Cummings (1977); Peterson (1988);
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Rao (1989) for a good review of the findings.) For manufacturing and service sec-
tors, a great deal of literature focuses on supply price elasticities of single sectors,
e.g., transport, housing, energy. To my knowledge, there are no aggregate level esti-
mate as required here.32 Generally, however, supply price elasticities are elastic, and
therefore set at 3.

Water demand price elasticity, εW,i, is reported in many empirical studies. For
example, van Heerden et al. (2008) provide water demand elasticities for various sec-
tors in a CGE model of South Africa. For the agricultural sector, in various coun-
tries, Bernardo et al. (1987); Booker and Young (1994); Moore and Hedges (1963);
Nieswiadomy (1985); Scheierling et al. (2004) among many find find values ranging
from -0.14 to -1. For the Israeli agriculture sector, -0.7 is an accepted figure by re-
searchers. For example, Eckstein (2001) estimates the agricultural demand price
elasticities in Israel to be between -0.5 to -0.8, Bar-Shira et al. (2006) estimate a de-
mand of -0.46, while Becker and Lavee (2002) state that it is closer to -1. For the
manufacturing sector, Williams and Suh (1986) and Wang and Lall (2002) estimate
the water demand price elasticities to be between -0.7 to -1, while I use -0.7.

Water demand price elasticities for households and service sectors, which are
mainly office buildings within residential areas, are based on surveys for residential
water demand. Hansen (1996); Arbués et al. (2003); Dalhuisen et al. (2003); Moelt-
ner and Stoddard (2004) among others report values ranging between -0.1 and -0.3.
Fishelson (1994); Bar-Shira et al. (2007); Dahan and Nisan (2007); Reznik et al. (2016)
estimate the residential water demand in Israel at around -0.1.

Finally, the substitution elasticity between potable and non-potable water, in the
fourth-level, is assumed to be 1.1 for agriculture and 0.2 for manufacturing, based on
the IWA.

B.1 Production

Production is structured as a four level production function, which was discussed in
Equation (A.2) and Figure 2. In the top-level, an aggregator NWLi is combined with
the immobile capital input. As Rutherford (2002, p.20) shows, for a function with one
immobile input, the substitution elasticity σ1,i is calibrated by

σ1,i = ηiθK,i
1− θK,i

(B.3)

32For example, literature that report for single sectors are Blackley (1999); Green et al. (2005);
Malpezzi and Maclennan (2001) that find elastic values for the housing market, as high as 20. Dahl
and Duggan (1996) reports a supply price elasticity of 1.27 in the U.S. energy market.
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Table 6: Calibrating the substitution elasticities, SAM 2006
Exogenous Endogenous

Output

Supply

Elasticitya

Water

Demand

Elasticitya

Potable/

Non-Potable

substitution

Elasticityb

SAM Cost Shares(2006, %)c Calibrated

Substitution

Elasticity

ηi εW,i σ4,i θK,i θW,1,i θW,2,i θW,3,i σ1,i σ2,i σ3,i

(1) (2) (3)

Agriculture 0.8 -0.7 1.1 19.7 4.5 5.6 15.0 0.20 0 0.82

Manufact. 3.0 -0.7 0.2 11.3 0.1 0.1 0.5 0.38 0 0.70

Services 3.0 -0.1 0.2 20.3 0.1 0.1 0.2 0.77 0 0.10

εW,h θW,h σ1,h

Household -0.1 0.6 0.094

Source: a Approximate mid-values reported in various papers. b Israel Water Authority. c Cost shares are from the Social
accounting Matrix. Source: Central Bureau of Statistics Israel.
Note: Calibrating substitution elasticities is done by combining the supply and demand elasticities with the cost shares following
equations B.3 and B.4.

θK,i is the benchmark value cost share of the (immobile) capital, which is obtained
from the social accounting matrix (SAM). ηi is the supply price elasticity obtained
from empirical studies.

In the second-level, it is common practice to aggregate intermediate inputs and
sub-aggregates in fixed-proportions, σ2,i = 0, especially at a high macro-level.

Finally, in the third-level, water and labor inputs are combined, and their substi-
tution elasticity σ3,i is calibrated by

σ3,i = εW,i + σ2,iθW,3,i − (σ2,i − σ1,i) θW,2,i − σ1,iθW,1,i
(θW,3,i − 1) (B.4)

with σ1,i and σ2,i being the elasticities from the upper levels. θW,1,i, θW,2,i, θW,3,i are the
water cost-shares relative to each nest, for the various sectors i, which are obtained
from the SAM. The derivation of Equation (B.4) is documented below.

B.1.1 Deriving equation B.4

This method was outlined by Rutherford (2002) for any generalized nested-structure.
Note that the second-level is known and assumed to be a Leontief function, which
is a special case of a CES function that uses a substitution elasticity of zero. The
fourth-level is aggregated into the third.

If I construct the cost function from a calibrated benchmark in which input prices
and total cost are unity, I can scale the benchmark values of the sub-aggregate cost
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as unity and express the demand for water as

W = [pW ]−σ3 pσ3−σ2
WL pσ2−σ1

NWL [pY ]σ1 W̄

The derivative of the the demand for water with respect to the input price of water,
at the initial allocation point where all prices are unity is

∂W

∂pW
|p=1=

[
−σ3 + (σ3 − σ2) ∂pWL

∂pW
+ (σ2 − σ1) ∂pNWL

∂pW
+ σ1

∂pY
∂pW

]
W̄ (B.5)

By Shephard’s Lemma, the derivative of the unit cost function with respect to
input prices, leads to the share of inputs at the benchmark calibration, as follows

∂pWL

∂pW
= pW W̄

pW W̄ + pLL̄
= θW,3

∂pNWL

∂pW
= pW W̄

pW W̄ + pLL̄+ pNN̄
= θW,2

∂pY
∂pW

= pW W̄

pW W̄ + pLL̄+ pNN̄ + pKK̄
= pW W̄

pY Ȳ
= θW,1

where an over-bar, �̄, indicates values at the benchmark.
Combining the above with Equation (B.5), obtain

∂W

∂pW
|p=1= [−σ3 + (σ3 − σ2) θW,3 + (σ2 − σ1) θW,2 + σ1θW,1] W̄

Define the elasticity of demand as εW |p=1= ∂W
∂pW

pW
W̄

, and therefore

εW |p=1= [−σ3 + (σ3 − σ2) θW,3 + (σ2 − σ1) θW,2 + σ1θW,1]

Finally, solving for for σ3 yields

σ3 = εW + σ2θW,3 − (σ2 − σ1) θW,2 − σ1θW,1
(θW,3 − 1) �

B.2 Household utility

As shown by Shoven and Whalley (1992) and used in many other applications (e.g.,
see Borger et al. (2008)), the the first-level substitution elasticity σ1,h between water
and the consumption bundle can be approximated by a function of the compensated
water demand price elasticities εw,h and the cost share of water θw,h (obtained from
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the SAM):
σ1,h = εw,h

θw,h − 1 (B.6)

Interestingly, because the water cost share is nearly zero, the substitution elastic-
ity equals minus the demand elasticity of water (see column 3 of Table 6). Finally,
in the second-level, final goods are aggregated using a Cobb-Douglas function with
σ2,h = 1, which is standard practice in many applied general equilibrium models.
Equation (B.6) is derived in the following section.

B.2.1 Deriving equation B.6

Similar to Section B.1.1, the household substitution elasticity is calibrated using wa-
ter demand price elasticities. At the calibrated benchmark, in which input prices and
total expenditure are unity, we can scale the benchmark values of the sub-aggregate
expenditure as unity and express the demand for household water as

Wh = W̄hp
−σ1,h
W,h p

σ1,h
U

where pU is defined as the expenditure function for a unit utility.
Differentiate the above with respect to household water expenditure, and obtain

∂Wh

∂pW,h
= W̄h

[
−σ1,hp

−σ1,h−1
W,h + σ1,hp

σ1,h−1
U

∂pU
∂pW,h

]
(B.7)

Again by Shephard’s Lemma, the derivative of the unit expenditure function with
respect to input prices will lead to the share of inputs at the benchmark calibration.

∂pU
∂pW,h

= pW,hW̄h

pW,hW̄h + pCC̄
= θW,h

Recalling that all prices are unity at benchmark, rearrange Equation B.7 as:

∂Wh

∂pW,h
|p=1 = W̄h [−σ1,h + σ1,hθW,h]

Finally, defining the compensated own-price elasticity of household water demand
as εW,h, and solving for σ1,h, obtain

σ1,h = εW,h
θW,h − 1�
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D Monte Carlo Simulations

I use a Monte Carlo method to randomly generate a group of elasticities that jointly
enter into the model. Column 2 in Table 3 provides the probability density function
(PDF) assigned with the lower and upper parameters from column 1. These PDFs are
based on the notional characteristics provided by empirical literature. The model is
then executed 30,000 for section 5.1 and 100,000 times for section 5.2, and results are
collected and analyzed. The code used for sampling in GAMS can be provided upon
request.

Table 3 provided the probability density functions which were used to sample the
various elasticities. For a beta distribution defined on the interval [a, b] with the pa-
rameters [α, β] Figures 6 to 8 plot the sampled output supply price elasticities η, and
Figures 9 to 12 plot the sampled water demand price elasticities ε. Finally, Figure 13
plots the uniform density function sampled for the value of amenities.

Figure 6: η Agriculture
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Figure 7: η Manufacturing
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Figure 8: η Services
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Figure 9: ε Household
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Figure 10: ε Agriculture
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Figure 11: ε Manufacturing
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Figure 12: ε Services
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Figure 13: Value of amenities
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