
ZERO-DELAY LARGE SIGNAL CONVOLUTION USING
MULTIPLE PROCESSOR ARCHITECTURES

Nicholas Jillings1, Joshua D. Reiss2, and Ryan Stables1

1Digital Media Technology Lab, Birmingham City University, Birmingham UK ,
nicholas.jillings@bcu.ac.uk, ryan.stables@bcu.ac.uk

2Centre for Digital Music, Queen Mary University of London, London, UK,
joshua.reiss@eecs.qmul.ac.uk

Abstract
Zero latency convolution typically uses the Direct Form
approach, requiring a large amount of computational re-
sources for every additional sample in the impulse re-
sponse. A number of methods have been developed to
reduce the computational cost of very large signal convo-
lution. However these all introduce latency into the sys-
tem. In some scenarios this is not acceptable and must be
removed. Modern computer systems hold multiple pro-
cessor architectures, with their own strengths and weak-
nesses for the purpose of convolution. This paper shows
how correctly combining these processors can lead to a
powerful system which can be deployed for real-time,
zero-latency large signal convolution.

1 Introduction
Convolution is used to perform a range of computational
processes in audio production, including the application
of digital filters, or reverberation effects [1]. This is
traditionally implemented as Direct Form (Eq. 1), but
its computational cost increases dramatically as the im-
pulse length increases [2], illustrated in Figure 1. Sev-
eral methods have been proposed to reduce the per-sample
computational cost. The major breakthroughs are multi-
block uniform partitions (MBUP) [3], multi-block non-
uniform partitions (MBNUP) [4] and the Gardner method
[5]. These algorithms generally trade computational effi-

ciency for system latency or complexity. Ideally however,
a desirable system will reduce computational cost without
introducing system latency.

y[n] = x[n] ∗ h[n] =
M−1∑
m=0

x[n]h[m− n] (1)

The convolution process is traditionally executed on the
computers’ CPU [6], where vector instruction sets can im-
prove performance [7]. Modern GPU processors however,
can also perform general purpose computing work in ad-
dition to image and video rendering [8]. Many aspects
of computational research have been accelerated by in-
troducing GPUs, such as image processing [9], machine
learning [10, 11] and audio processing [12], offloading
work from CPUs. This however, is only useful for certain
scenarios as system latency is introduced [13, 14].

Computational tasks on the GPU only benefit if there
is sufficient parallelism to saturate a GPU processor
[13, 14, 15]. GPUs can have significant latencies waiting
for shared resources, such as memory access. The host
interface bus and GPU architecture can add extra limita-
tions and latencies [14]. Tasks which do not meet these
criteria may under-perform compared to a CPU [14, 15].

Section 2 identifies a number of key algorithms for per-
forming convolution. The test methodology is then out-
lined in section 3, with results presented in section 4. Fi-
nally, section 5 proposes a novel system for zero-delay
convolution, by combining both CPU and GPU architec-
tures.

1



0 100 200 300 400 500 600 700 800 900 1000

Impulse Length (M)

0

50

100

150

200

250

300

350

400

M
A

D
D

 O
p

e
ra

ti
o

n
s
 p

e
r 

S
a

m
p

le
s

Cost per sample of Convolution Techniques

Direct Form
Single Block
MBUP N=32
MBUP N=128
MBNUP N=32
MBNUP N=128
FDL N=32
FDL N=128

Figure 1: Operation counts for a number of convolution
algorithms with increasing partition size, as outlined in
[16]. These calculations assumed an FFT factor of k =
2.0.

2 Convolution Methods
Direct Form convolution (as shown in Eq. 1) requires M
multiplications and M − 1 additions per sample, where
M is the length of the impulse response. This quickly
becomes expensive to implement on modern hardware as
shown in Figure 1.

Early methods to lower the cost, without inducing large
latencies or resampling [17], involve partitioning a long
impulse response into smaller individual sub-filters [3, 18,
19]. The impulse signal h is divided into a set of sub-
filters hk, with lengths equal to the partition size N , where
1 ≤ N ≤ M . Here, hk is defined as a subset of h, where
h[n] ∈ hk, and Nk ≤ n < N(k + 1). The same process
is applied to the input signal x to give two sets of vectors:
[h0, h1, ..., hj ] and [x0, x1, ..., xj ]. These frames are then
processed in the frequency domain, as shown in Eq. 2,
which is typically more efficient than the Direct Form, but
requires buffering.

yj = IFFT

(
K∑

k=0

HkFFT (xj−k)

)
(2)

Shorter partitions require fewer samples to buffer, de-
creasing the latency, but increasing computation as the
smaller FFT sizes are less efficient (see Figure 1 - MBUP).
The resulting frames are then summed and passed through
an IFFT to get yj . This function can be further optimised
by performing the FFT and storing the frequency domain

xj DFT H0

∑
IFFT yj

Z−1 H1

∑
Z−1 Hk

∑

Xj Y ′j

Xj−1 Y ′j−1

Xj−k Y ′j−k

∑

Figure 2: Block diagram of the frequency delay line

H0 X0 X1 X2 X3 X4 X5 X6 X7
. . .

H1 X0 X1 X2 X3 X4 X5 X6
. . .

H2 X0 X1 X2 X3 X4 X5
. . .

Figure 3: Uniform Partition with three sub-partitions [3].

information, giving it the term Frequency-domain Delay
Line (FDL) [6, 20], shown in Figure 2.

Partitioning the signal in this way simplifies parallel
processing [20, 21] since certain computations can be per-
formed ahead of time. In Eq. 2, only a convolution with
xj will require a delay, as xj−1 and xj−2 are already
stored in memory. Figure 3 outlines the process schedul-
ing for a uniform partition. In practice, all scheduling
happens at once and the intermediary result is stored to
ensure real-time execution. This also has a uniform exe-
cution profile since the same number of frames are pro-
cessed and every frame is the same size.

Nonuniform partition scheduling (illustrated in Figure
4) benefits from the low latency of small partitions and
the efficiency of large partitions [4]. By doubling the
partition size every time the cost drops, the same signal
length can be covered in fewer partitions. Therefore the
system latency is equal to the size of the first partition.
However, the computational load is nonuniform, mean-
ing a new frame may not need to be processed by every
sub-filter every time. But each sub-filter must still be pro-
cessed within Nk/fs seconds, where Nk is the length of
the kth partition. By processing small partitions first, it
is then feasible to perform a Direct Form convolution for
H0 and a nonuniform method for the rest [5], as shown in
Figure 5.

2



H0 X0 X1 X2 X3 X4 X5 X6 X7
. . .

H1 X0X1 X2X3 X4X5
. . .

H2 X0X1X2X3
. . .

Figure 4: Nonuniform Partition with three sub-
partitions[4].

H0 x0 x1 x2 x3 x4 x5 x6 x7 . . .

H1 X0 X1 X2 X3 X4 X5 X6
. . .

H2 X0X1 X2X3 X4X5
. . .

H2 X0X1 X2X3
. . .

Figure 5: Gardner technique with four sub-partitions [5].

3 Methodology

Three convolution algorithms (Uniform Partitions [3],
Nonuniform Partitions [4] and Gardner [5]) were tested
on a set of mobile, consumer-level processors (Tables 1
and 2), spanning several CPU and GPU generations and
architectures. On the CPUs, the algorithms were com-
piled as C functions using available instruction extensions
(SSE, AVX and FMA). For the GPUs, the algorithms used
OpenCL (AMD, Intel) and CUDA (nVidia) compiled ker-
nels. The processes used single precision floating points
as consumer GPUs do not have hardware for double preci-
sion calculations. The algorithms were executed off-line
to obtain the maximum throughput of the processors for a
wide range of impulse response lengths (32 ≤ M ≤ 224)
and partition sizes (32 ≤ N ≤ M ). Each combination of
M and N executed for 10 seconds. During this time pe-
riod, the number of samples processed is observed, pro-
viding the throughput as samples per second. If this is
greater than the sample rate fs then the system can be
considered real-time.

10
2

10
3

10
4

10
5

10
6

10
7

Impulse Resonse Length (M)

10
0

10
2

10
4

10
6

10
8

T
h

ro
u

g
h

p
u

t 
(s

a
m

p
le

s
/s

)

Direct Form on all processors

i7-720QM
i7-2635MQ
i7-4700MQ
GTX 260M
GTX 780M
AMD 6490M
HD 4600

Real-Time (44.1kHz)

Figure 6: Throughput of all processors operating the Di-
rect Form.

4 Individual Processor Perfor-
mance

4.1 Direct Form

The performance of the Direct Form algorithm for all pro-
cessors is shown in Figure 6. The red line is the minimum
throughput for a system to be real-time. Above this, the
processor can be used in a real-time system. The figure
shows only the tested CPUs are able to meet this con-
straint. CPUs execute this with a multiply-accumulation
loop, giving a nearly linear response; doubling M halves
the throughput. Generational differences vary the maxi-
mum signal that can be computed. Here, the CPUs were
affected by the cache [22], where each experienced a drop
in performance when M exceeded half the size of the L3
cache.

None of the tested GPUs could process the signal in
real-time. The discrete GPUs failed because the high data
rates of the PCI-E interface are only achieved when large
frames of data are transferred infrequently [14]. The in-
tegrated Intel HD 4600 GPU was expected to perform
well since it uses the same memory pathways as the CPU.
However the processor is significantly less powerful re-
sulting in longer execution times.

3



Test Machine Alienware M15x MacBook Pro 2011 Alienware 17
Package Name Intel Core i7-720QM Intel Core i7-2635QM Intel Core i7-4700MQ
Code Name Nehalem Clarksfield Sandy Bridge Haswell-MB
Cores (Phy/Vir) 4 (8) 4 (8) 4 (8)
Base Clock (Turbo) 1.6GHz (2.8GHz) 2.0GHz (2.9GHz) 2.4GHz (3.4GHz)
Memory Capacity 8GB 4GB 16GB
L1/L2/L3 Cache 32KB / 256KB / 6MB 32KB / 256KB / 6MB 32KB / 256KB / 6MB
Vector Instructions SSE4.2 SSE 4.2, AVX SSE4.2, AVX, AVX2, FMA

Table 1: Specifications of the CPU packages tested

Test Machine Alienware M15x MacBook Pro 2011 Alienware 17
Package Name nVidia GTX 260M AMD Radeon HD 6490M Intel HD 4600 nVidia GTX 780M
System Interface PCI-E v1 x16 PCI-E v2 x16 SoC Interconnect PCI-E v3 x16
Package RAM 1024MB 256MB 0MB 4096MB
Language CUDA 1.1 OpenCL 1.2 OpenCL 1.2 CUDA 3.0

Table 2: Specifications of the GPU packages tested

N i7-720Q i7-2635QM i7-4700MQ GTX 260M GTX 780M Intel HD 4600 AMD HD 6490M
64 796 756 1,288 1,569 3,471 811 455
256 804 616 1,395 1,593 3,623 1,041 618

1024 696 546 1,265 1,346 3,348 942 543
16384 493 338 969 438 2,193 414 255

Table 3: Audio frames processed per second operating the uniform-partition convolution for various partition sizes
(N ) with M=65,536.

4



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Impulse Length (M)

10
4

10
5

10
6

10
7

10
8

T
h

ro
u

g
h

p
u

t 
(s

a
m

/s
)

Uniform Partion (i7-4700MQ)

N=8

N=32

N=64

N=2
23

AVX ST

Real-Time Fs=44100

N=16

Figure 7: Intel i7-4700MQ operating uniform-partition
test of various partition sizes (N ) compared with the same
processor executing the Direct Form using AVX (black
line)

4.2 Uniform Partitions

The uniform partition is the simplest way to efficiently
parallelise the convolution algorithm [3]. Table 3 gives
the number of frames processed per second for each pro-
cessor, where multiplying the frames per second with the
partition size N gives the throughput value. For the CPUs,
if the partition size doubles the throughput roughly dou-
bles, since the number of processed frames is fairly con-
sistent. Table 3 shows that increasing N by a factor of
256 (64 to 16,384) only drops the number of frames by an
average factor of 1.73. Figure 7 shows an example of this
using the i7-4700MQ CPU.

The discrete GPUs could all process real-time, even
with a small N , due to the increased efficiency from trans-
ferring frames of audio less frequently. When the number
of filter coefficients is less than the number of workers,
the processor is under-utilised. In this state, adding more
work does not decrease the processor throughput. Fig-
ure 8 provides an example of this using the GTX 780M,
however all other tested GPUs exhibit similar behaviour.
When the GPUs are fully saturated they exhibit similar
performance gains to the CPUs, where doubling N does
not significantly reduce the frames processed per second,
shown in Table 3 . The integrated HD 4600 GPU had in-
stability in testing, likely caused by the CPU consuming
resources.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Impulse Length (M)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

T
h

ro
u

g
h

p
u

t 
(s

a
m

/s
)

Uniform Partition (GTX 780M)

N=32

N=64
N=128

N=256

Figure 8: GTX 780M operating FDL test of various par-
tition sizes (N ). The red line is 44100 samples/second,
above this line the system is real-time.

N0 i7-720Q i7-2635QM i7-4700MQ
64 31,231 27,129 63,531

256 9,676 7,953 20,151
1024 3,156 2,540 6,566

Table 4: Audio frames processed per second operating the
nonuniform partition convolution for various initial parti-
tion sizes (N0) with M=65,536.

4.3 Nonuniform partitions

Nonuniform partitioning was the most efficient method
of operation on the CPU as shown in Table 4, compared
with Table 3. The nonuniform method can run with zero-
delay by operating the first partition in the time domain,
rather than the frequency domain [5]. It is not possible
to execute the non-uniform method on a GPU due to the
varying partition sizes. The GPUs execute the FFT as a
series of identical transforms, processing several vectors
at once (batch execution). It would be inefficient to use
the GPU for several, non-uniform transforms. Equally
it would be complex to map the shared memory of non-
uniform blocks onto fixed worker pool sizes.

5 Multi-Processor Convolution

To achieve large-signal convolution with zero-delay in
real-time multiple processors can be used. A CPU and
GPU topology can achieve this using a partitioned process

5



with Direct Form as the first partition. The results show
the CPU is the only processor type capable of performing
the Direct Form in real-time (Figure 6). The results also
show the GPU outperforms the CPU in the partitioned al-
gorithms (Table 3). A system which achieves both zero-
latency for large signal convolution using both the CPU
and GPU in the same processing chain is proposed.

In this section MC and MG are the impulse lengths the
CPU and GPU can process individually (M = MC +
MG). N0 is the length of the first partition, executed on
the CPU and NG is the length of the partitions on the
GPU.

5.1 Maximize convolution size
The first architecture outlines how to maximize the convo-
lution size that can be processed on a system whilst meet-
ing real-time constraints. The first filter partition must be
processed using the Direct Form on the CPU. All CPUs
have a point where the Direct Form becomes more ex-
pensive than the frequency domain convolution [5]. This
point is the ‘cross over’ between the two methods. To al-
low a partition-based system to operate ahead of schedule,
guaranteeing real-time performance [5], the Direct Form
computation must be double this value.

The remaining CPU cores can perform the FDL (see
Figure 2) or the nonuniform partition to cover more of
the signal. Each core can operate larger partition sizes
than the previous since its processing time can be masked
by the combined length of the previous cores. For in-
stance, if two cores process a total of 1,024 samples then
the third core can operate at a partition size of up to 512
samples. The GPU then processes the remainder of the
signal using an FDL, the most efficient type investigated.
The GPU can select a partition size up to half of the entire
impulse length covered by the CPU (NG = 0.5MC). Fig-
ure 9 gives a simplified overview of the communication
and synchronising between the processors.

As an example, the Alienware 17 platform (see Tables
3 and 4) can process 133,777,344 samples per second us-
ing this method. One CPU core operates a Direct Form of
N0 = 128, its tested cross-over point. The next core op-
erates an nonuniform partition up to the tested M = 224

with a first partition size of N0/2 = 64. This gives the
CPU a theoretical processing length of MC = 128 + 224.
The HD 4600 processor could also operate high volumes,

CPU A CPU B CPU C GPU

Figure 9: Example cycle of the multiprocessor schedul-
ing. CPU A performs the Direct Form with CPUs B and C
operating the frequency delay line at half frame size. The
combined delays allows the GPU to process four times the
frame length per invocation

however it will reduce CPU throughput since it is on-chip,
so is unused. The GTX 780M could use any tested par-
tition rate, limited only by the amount of RAM on-board
(4096MB, or MG = 1.17 × 108). The total number of
samples then equals M = MC + MG = 128 + 224 +
1.17× 108 which equals 3,033.5s (at fs = 44100).

5.2 Minimize CPU load

The CPU is a heavily shared resource, having to maintain
other software tasks on a modern machine. It is there-
fore undesirable to operate the CPU at 100%. As with the
previous method, one CPU core must operate the Direct
Form at double the cross-over point. The GPU can then
perform an FDL with a partition size up to NG = MC/2.
If more samples are needed, the CPU can perform limited
FDLs to extend the total length of time.

To provide an example, the Alienware 17 platform’s
CPU can operate a very small fraction of the total impulse
response. The CPU must still perform a Direct Form at
N0 = 128, the calculated efficiency cross-over. Therefore
MC = N0 since it only performs this task. At this level
the GTX 780M can actually perform a very high through-
put (see Table 2), achieving MG = 221. In this case the
total convolution length M is 2,097,280 samples (47.55s
at fs = 44100). This is significantly shorter than the max-
imum length, but the theoretical CPU operating time is
35.532ns per sample or 0.157% of maximal capacity.

6



6 Conclusion
This paper has introduced a novel method for processing
large convolution kernels in real-time with zero system
latency. It has outlined the existing methods for perform-
ing low-latency convolution on discrete signals. These
methods were executed on a number of modern system
architectures and their effectiveness were evaluated. Any
weaknesses were identified, such as CPU code efficien-
cies and GPU memory communication latencies. The
proposed method combines the CPU and GPU in a pro-
cessing chain, outlining a method for maximum perfor-
mance using the CPU and GPU at full capacity. It also
shows the GPU can offload the majority of this work, al-
lowing for large signal convolution of over 2 million sam-
ples with a theoretical CPU usage of under 1%.

References
[1] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith,

and J. S. Abel, “Fifty years of artificial reverber-
ation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 5, pp. 1421–1448,
July 2012.

[2] J. O. Smith III, Mathematics of the Discrete Fourier
Transform (DFT), with Audio Applications, 2nd ed.
http://www.w3k.org/books/: W3k Publishing, 2007,
ISBN 978-0-9745607-4-8.

[3] C. Burrus, “Block realization of digital filters,”
IEEE Transactions on Audio and Electroacoustics,
vol. 20, no. 4, pp. 230–235, Oct 1972.

[4] G. P. M. Egelmeers and P. C. W. Sommen, “A new
method for efficient convolution in frequency do-
main by nonuniform partitioning for adaptive fil-
tering,” IEEE Transactions on Signal Processing,
vol. 44, no. 12, pp. 3123–3129, Dec 1996.

[5] W. G. Gardner, “Efficient convolution without in-
put/output delay,” in Proc. of the 97th Audio Engi-
neering Society Convention. San Francisco, CA,
USA: Audio Engineering Society, Nov. 1994.

[6] E. Battenberg and R. Avizienis, “Implementing real-
time partitioned convolution algorithms on conven-
tional operating systems,” in Proceedings of the 14th

International Conference on Digital Audio Effects.
Paris, France, 2011.

[7] T. Kite, “IIR filters for audio test and measurement:
Design, implementation, and optimization,” in
Audio Engineering Society Convention 137, Oct
2014. [Online]. Available: http://www.aes.org/e-lib/
browse.cfm?elib=17507

[8] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. E. Lefohn, and T. J. Purcell, “A
survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80–113, 2007. [Online]. Available: http:
//dx.doi.org/10.1111/j.1467-8659.2007.01012.x

[9] J. Ao, S. Mitra, and B. Nutter, “Fast and efficient
lossless image compression based on cuda parallel
wavelet tree encoding,” in 2014 Southwest Sympo-
sium on Image Analysis and Interpretation, April
2014, pp. 21–24.

[10] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-
column deep neural networks for image classifica-
tion,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, June 2012, pp. 3642–3649.

[11] D. Steinkraus, I. Buck, and P. Y. Simard, “Using
GPUs for machine learning algorithms,” in Eighth
International Conference on Document Analysis
and Recognition (ICDAR’05), Aug 2005, pp. 1115–
1120 Vol. 2.

[12] N. Tsingos, W. Jiang, and I. Williams, “Using
programmable graphics hardware for acoustics and
audio rendering,” J. Audio Eng. Soc, vol. 59,
no. 9, pp. 628–646, 2011. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=15979

[13] L. Savioja, V. Välimäki, and J. O. Smith, “Audio
signal processing using graphics processing units,”
JAES, vol. 59, no. 1/2, pp. 3–19, Jan/Feb
2011. [Online]. Available: http://www.aes.org/e-lib/
browse.cfm?elib=15772

[14] N. Jillings and Y. Wang, “CUDA accelerated audio
digital signal processing for real-time algorithms,”
in Proc. of the 137th Audio Engineering Society

7



Convention. Los Angeles, CA, USA: Audio En-
gineering Society, Oct. 2014.

[15] R. Vuduc, A. Chandramowlishwaran, J. Choi,
M. Guney, and A. Shringarpure, “On the limits
of GPU acceleration,” in Proceedings of the 2nd
USENIX conference on Hot topics in parallelism,
vol. 13. USENIX Association, 2010.

[16] G. Garcia, “Optimal filter partition for efficient con-
volution with short input/output delay,” in Proc. of
the 113th Audio Engineering Society Convention.
Los Angeles, CA, USA: Audio Engineering Society,
Oct. 2002.

[17] D. A. Burgess, “Techniques for low cost spa-
tial audio,” in Proceedings of the 5th Annual
ACM Symposium on User Interface Software and
Technology, ser. UIST ’92. New York, NY,
USA: ACM, 1992, pp. 53–59. [Online]. Available:
http://doi.acm.org/10.1145/142621.142628

[18] A. Torger and A. Farina, “Real-time partitioned con-
volution for ambiophonics surround sound,” in Pro-
ceedings of the 2001 IEEE Workshop on the Appli-
cations of Signal Processing to Audio and Acoustics
(Cat. No.01TH8575), 2001, pp. 195–198.

[19] C. Mller-Tomfelde, “Low-latency convolution for
real-time applications,” in Audio Engineering So-
ciety Conference: 16th International Conference:
Spatial Sound Reproduction, Mar 1999.

[20] F. Wefers and J. Berg, “High-performance real-
time FIR-filtering using fast convolution on graph-
ics hardware,” in Proc. of the 13th Conference on
Digital Audio Effects, Grax, Austria, Sep. 2010.

[21] J. A. Belloch, A. Gonzalez, F. J. Martı́nez-
Zaldı́var, and A. M. Vidal, “Real-time massive
convolution for audio applications on gpu,” The
Journal of Supercomputing, vol. 58, no. 3,
pp. 449–457, 2011. [Online]. Available: http:
//dx.doi.org/10.1007/s11227-011-0610-8

[22] T. Ilmonen and T. Lokki, “Extreme filters-cache-
efficient implementation of long iir and fir filters,”
IEEE Signal Processing Letters, vol. 13, no. 7, pp.
401–404, July 2006.

8


