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ABSTRACT 
The existing leakage assessment methods are not accurate and timely, making it difficult to 

meet the needs of water companies. In this paper, a methodology based on Independent Component 
Analysis with Reference (ICA-R) algorithm was proposed to give a more accurate estimation of 
leakage discharge in multi-leaks water distribution network without considering the specific 
individual single leak. The proposed algorithm has been improved to prevent error convergence in 
multi-leak pipe networks. Then an EPANET model and a physical experimental platform were built 
to simulate the flow in multi-leak WDNs, and the leakage flow rate is calculated by improved ICA-R 
algorithm and FastICA algorithm. The simulation results are shown the improved ICA-R algorithm 
has better performance. 

Keywords: physical leakage flow; blind source separation; Improved Independent Component 
Correlation algorithm with reference(ICA-R) 

1 Background  
Accurate quantification of leakage in water distribution network (WDN) is the basis of leakage 

control. According to the IWA international water balance calculation standard, system input volume 
in water distribution network consists consists of into 4 parts: billed authorized consumption, unbilled 
authorized consumption, apparent losses and real losses [1]. Therefore, these 4 parts of system input 
of WDNs can be classified into 2 components: leakage flow rate and actual consumed water flow, 
the leakage flow rate corresponding to real losses and actual consumed water flow corresponding to 

the other 3 components. Thus, it shows the following relationship in steady state: 

𝑄் = 𝑄஺ + 𝑄௅ 

where 𝑄்  is the total water supply flow, 𝑄஺  is actual consumed water flow and 𝑄௅ is 
leakage flow rate. 

However, both 𝑄௅ and 𝑄஺ are almost impossible to be directly measured. Conventionally, 
leakage flow rate could be estimated by two kinds of methods: top-down approaches and bottom-up 
approaches [2]. Top-down approaches are basd on the evaluation of different components of the 
overall water balance. Thus, water company could only obtain a rough estimation of the total annual 
leakage volume. Bottom-up approaches generally require field tests such as 24 Hour Zone 
Measurement (HZM) or Minimum Night Flow (MNF) analysis[3], and the difference between each 
leaks were generally neglected, resulting in a potential of huge deviation. Thus, a more accurate 

leakage estimation model is required in multi-leaks pipe systems. 
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 In last two decades, statistical signal processing methods, such as Kalman filter and Wavelet 
transform [4-6], etc., has been widely used in leakage detection and localization[9]. However, few 
research focus on the estimation of leakage flow rate. In this study, a novel method called Independent 
Component Analysis with Reference (ICA-R) algorithm is introduced to calculate leakage flow rate. 
Independent component analysis (ICA) is an active branch of digital signal processing in recent years. 
It can recover the independent components of the source signal only by using the mixed signal of the 
source signal without knowing the distribution type and the mixed parameter of the source signal, 
which is one of the blind source separation(BSS) algorithm. It can separate the source signals from 
the mixed-signals when both the source signals and the way of how the source signals mixing are 

unknown. 

In this paper, a methodology based on Independent Component Analysis with Reference 
(ICA-R) algorithm was proposed. And an example EPANET model and a physical experimental 
platform were built to simulate the flow in multi-leak WDNs, and the leakage flow rate is calculated 
by improved ICA-R algorithm and FastICA algorithm. The results are compared by The Pearson's 

correlation coefficient between source signal and leak discharge signal. 

2 Methods 
2.1 Separation Model Construction by ICA-R Algorithm 

Generally, the data acquired by SCADA system in WDNs is the discharge data and pressure 
head data in time-series. In BSS theory, these observed data are considered as instantaneous linear 
mixing of the source signals, the mixing model of BSS is defined as follows: 

                                                        (2) 
where 𝑠ଵ(𝑡) is defined as the trend sequence of Q୅ in time series, source signal and sଶ(t) 

is defined as the trend sequence of Q୐ in time series, source signal. When X is whitened: 

𝑋෨ = 𝑄௪௛௜௧௘𝑋                  (3) 

where, 𝑋෨ is a matrix deformation after X is whitened, 𝑄௪௛௜௧௘is the whitening matrix of X.  

 The aim of ICA-R algorithm is to solve equation (2) to gain the trend of actual consumed 
water flow in time series sଵ(t) and leakage flow rate sଶ(t). According to the central limit theorem, 
the distribution of the sum of the two independent random signals is closer to the Gauss distribution 
than any one of these two signals. Thus, the separation model by ICA-R algorithm is built to as 
followed: 

ቊ
𝐽(𝜔) = 𝜌[𝐸{𝐺൫w𝑇𝑋෨൯ − 𝐺(𝑣௚௔௨௦௦)}]

𝑠. 𝑡. ℎ(𝑤) = 𝐸{𝑦ଶ} − 1 = 0
     (4) 

where, y is the simulated source signal in time series, it is an estimation of one source signal, 
J(·) is the function used for solving negative entropy,ρ is a positive constant, vguass is a random 
Gaussian variable with a zero mean and unit variance, ω is the element of separation matrix W. 

Then a Lagrange function is built as followed: 

⎩
⎪
⎨

⎪
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                  (5) 
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 where, ( )J w  is objective function， ( , , )G w   is inequality constraint， ( , , )H w   is 

equality constraint. μ and λ are negative Lagrange multiplier，γ is a penalty function，γ>0；

punishment item 
ଵ

ଶ
𝛾||ℎ(𝑤)||was added to ensure the positive definite of Jose matrix constant. 

Equation (4) is solved by the Newton iterative method as Equation (6), and the iteration stops 
when Equation (7) occurs. 

⎩
⎪
⎨
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⎧ 𝑤௜ାଵ = 𝑤௜ − 𝜂𝑅௭௭
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(6) 

𝑔(𝑤) = 𝜀(𝛾, 𝑟) −  ≤ 0                              (7) 

where, η is learning rate, normally η=1；𝑅௭௭ covariance matrix of albino matrix Z；is the 
threshold, if the constraint function g(w) is less than 0, the output separation signal Y is considered to 
be the source signal.  

The separation results of BSS are not equal to the true value of 𝑄஺ and 𝑄௅ although their 
trends are the same. The amplitude solving must be performed to obtain the true value. 

2.2 Error Convergence Prevention of the Algorithm 
The convergence rate of the algorithm described in 3.1 is closely related to the value of the 

threshold, and the different thresholds can sometimes lead to the error convergence to the extremal 
point. 

Mi Jianxun [8] gives the explanation of this phenomena: when the Newton iteration is used to 
solve the Lagrange function, the inequality constraint 𝑔(𝑤) is used to compel the infeasible domain 
to converge to the feasible domain, and the convergence speed is regulated by μ. When w the is aloof 
from the feasible region, μ will increase and accelerate the convergence of w. However, if randomly 
generated μ enters the feasible region at the beginning, it will cause the inequality constraint to be 
invalid, and μ will be 0 at the beginning, but w may not yet reach the global optimal attraction domain. 
At this time, it will be separated from other independent regions. However, there are only one 
independent component in the inequality constraints, w will move away from the feasible region of 
the inequality constraint and cause the constraint activation, μ increases, w re-enters the inequality 
feasible domain, μ becomes 0 again, and so the oscillation keeping oscillated repeatedly. If the 
independence of source signal is not strong, that is, there is an intersection between the independent 
signals, and this part of the intersection exactly meets the feasible domain of the separation vector w, 
then w will be pulled to another independent component, even if the reference Different signals also 
cause w to converge to the same independent component. 

In order to prevent error convergence, the negative Lagrange multiplier μ is monitored in 
every step of iteration. Once the second growth of μ is prevented, the output error of the independent 
component can be eliminated. The measures taken here is to restart the algorithm and set a new 
separation vector w, which will cause the two growth of w0 to rotate 90 degrees, so that the new 
weight vector w can be prevented from the error convergence: 

𝑤 = (𝑤்𝑅௓௓𝑤)ି
1
2𝑤                                    (8) 

2.3 Evaluation Methods of the Result of Separation Model 
Since the separated signal obtained before the amplitude solving has no real physical meaning, 

it can only be analyzed by the curve trend and compared with the source signal to evaluate the merits 
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of the reduction effect. Therefore, the Pearson correlation coefficient is used in this paper. The 
Pearson correlation coefficient is used to measure the degree of correlation between the two variables. 
The Pearson coefficient between them does not change even the two curves are separately stretched, 
compressed, and translated. The Pearson correlation coefficient is calculated as follows: 

2 2 2 2

( ) ( ) ( )

( ) ( ) ( ) ( )
xy

E XY E X E Y

E X E X E Y E Y
 


 

                     (9) 

 Obviously the closer the average relative error is to 0, the closer the average of the separation 
signal to the average of the source signal, and the better the separation performance. 

 After the amplitude solving, the true value of the separated signal should be consistent with 
the source signal. Thus the average relative error is defined to evaluate of the result of separation 
model, which is defined as follows:  

y s

y
 


                                    
(10) 

 The closer the average relative error is to 0, the closer the average of the separation signal to 
the average of the source signal, and the better the separation effect. 

2.4 Amplitude Solving of Separation Model 
Since the separated signal is scaled and translated on the basis of the real source signal, the 

true value can be obtained as long as the separated signal is restored in accordance with the following 

steps: 

First, the separation signals sଵ(t) and sଶ(t)  are first processed as follows so that they 

become signals with a mean of 0 and a variance of 1: 

൞
𝑙଴(𝑡) =

ൣ௦భ(௧)ି௦భ(௧)തതതതതതത൧

௦௧ௗ[௦భ(௧)]

𝑦଴(𝑡) =
ൣ௦మ(௧)ି௦మ(௧)തതതതതതത൧

௦௧ௗ[௦మ(௧)]

                           (11) 

 where, 𝑙଴(𝑡) and 𝑦଴(𝑡) are the separation signal of the actual water use and the leakage flow 

rate signal with the mean of 0 and unit variance of 1,relatively; std[·] is mathematical operation to 

find the standard deviation. 

 Therefore, the relationship between true value and separation signal could be described with 

equation (12): 

         
൜

𝑄஺(𝑡) = 𝑙଴(𝑡) ∙ 𝜎௅ + 𝜇௅

𝑄௅(𝑡) = 𝑦଴(𝑡) ∙ 𝜎௒ + 𝜇௒
                         (12) 

 Where 𝑄஺ is actual consumed water flow and 𝑄௅is leakage flow rate. 𝜎௅ and 𝜎௒ are the 

standard deviation of the separation signal; 𝜇௅ and 𝜇௒ mean value of the separation signal. 

 𝜎௅ and 𝜎௒ could be obtained by solving overdetermined equations. Thus, once a group of 

true value of 𝑄஺ and 𝑄௅ was known，𝜇௅ and 𝜇௒ could be obtained by solving equation (12). 
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In practice, the minimum night flow (MNF) method is generally used for the approximate 
estimation because there is almost no user water consumption at around 4 o'clock in the night. In the 
example pipe network with EPANET which is described in section 2.5, the amount of water loss and 
water consumption at 4 am are used as known quantities; and in the experimental test, a group of 
leakage flow rate and actual water use flow rate was measured directly to model the minimum night 

flow. 

2.5 Model Testing and Validation 
To validate the model built in 3.1 and 3.2, an example pipe network by EPANET model and a 

physical experimental platform were built to simulate the flow in multi-leak WDNs, as shown in figure1.  

 

Figure 1. The EPANET model with 7 specified leaks marked by red circle (left) and 

 the physical pipe network experimental platform (right) 

The EPANET model includes15 loops, 62 nodes and 66 pipe segment. It is considered to have 
2~ 7 leaks, respectively, thus 6 working conditions of the model are simulated. During the simulation, 
the real value of the leakage flow rate is simulated by adding an emitter at the specified node, with 
leakage coefficient α being 0.6 and leakage exponent β being 0.5. Taking the model with 7 leaks for 
example, the pressure head and the total flow rate are considered as source signals, as shown in 

figure2.  

 
Figure 2. The pressure head (left) and the total flow rate (right)  

at the entrance of EPANET model 
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 To evaluate the performance of the improved ICA-R algorithm, the trend of actual consumed 

water flow in time series sଵ(t) and leakage flow rate sଶ(t) are then calculated by both improved 
ICA-R algorithm and FastICA algorithm [9]. Taking the EPANET model with 7 leaks for example, 
the  leakage discharge trend separated by FastICA and by improved ICA-R algorithm are shown in 
figure3. The Pearson's correlation coefficient was 16.64% between source signal and leak discharge 
signal calculated by FastICA, and Pearson's correlation coefficient between ICA-R and source signal 

is 99.98%. Apparently the separation using improved ICA-R algorithm shows less deviation.  

 

Figure3. Leakage discharge trend separated by FastICA (left) and by improved ICA-R 

algorithm(right) in EPANET model 

 The physical pipe network experimental platform consists of 12 loops, 67 nodes and 88 pipe 
segments. The experimental platform WDN is considered to have 2~6 leaks, thus 5 working 
conditions of the model are simulated. Taking the model with 6 leaks for example, the pressure head 

and the total flow rate are considered as source signals, as shown in Figure4. 

 
Figure 4. The pressure head (left) and the total flow rate (right)  

at the entrance of physical experimental platform 

 Then the leakage discharge is separated by FastICA and by improved ICA-R algorithm, 
respectively. In each working condition, the Pearson's correlation coefficient between source signal 
and leak discharge signal calculated by FastICA and by ICA-R algorithm in the physical experimental 

platform is summarized in table 1.  
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Table 1. The Pearson's correlation coefficient between source signal and leak discharge signal 

calculated by FastICA and by ICA-R algorithm in the example EPANET model 

Number of leaks Pearson's correlation 
coefficient by ICA-R 

algorithm 

Pearson's correlation 
coefficient by 

FASTICA algorithm 

2 36.37% 76.79% 

3 34.93% 92.19% 

4 40.73% 95.32% 

5 40.73% 90.73% 

6 77.47% 94.15% 

 

Taking experimental platform of pipe network with 6 leaks for example, the leakage discharge 
trend separated by FastICA and by improved ICA-R algorithm are shown in Fig3.Pearson's 
correlation coefficient was 16.64% between source signal and leak discharge signal calculated by 
FastICA, and Pearson's correlation coefficient between ICA-R and source signal is 99.98%. 

Apparently the separation using improved ICA-R algorithm shows less deviation. 

 
Figure5. Leakage discharge trend separated by FastICA (left) and by improved ICA-R 

algorithm(right) in physical experimental platform 

3 Conclusions 
In this paper, in view of the problems existing in the traditional ICA algorithm, the improved 

ICA-R algorithm is proposed, and it is applied to quantize the leakage flow rate. In both example 
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EPANET model and the test through physical pipe network experimental platform, it is found that 
the separation effect of ICA-R is relatively stable, and the Pearson correlation coefficient of the 
separation signal and the source signal is generally higher than 90%. Even in the face of weak 
correlated or irrelevant source signals, ICA-R is shown better performance than FastICA. The 
improved ICA-R algorithm shows high reliability in laboratory testing, field testing is needed for 
future work. 
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