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Abstract 8 

In order to increase the methane yield from biomass, this paper investigates the mechanical pretreatment 9 

effect of a Hollander beater on the anaerobic digestion process of Pelvetia canaliculata macroalgae using 10 

a response surface methodology (RSM). Higher values on methane yield were obtained at lower F/I 11 

ratios, with an increase up to 2.5-fold at an F/I value of 0.3. A multi-objective optimization study was 12 

carried out with the aim of maximizing the methane yield while minimizing the pretreatment time. An 13 

optimum methane yield of 283 ml/gVS was obtained for 50 min pretreatment time and a ratio F/I of 0.3, 14 

which represents an increase of 45% compared to non-pretreated algae. 15 
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1 INTRODUCTION 28 

Macroalgae biomass production is currently a growing industry used in fertilisers, food, medicines, 29 

chemicals production and as a source of bioenergy [1,2]. Bioethanol, biogas and biodiesel can be 30 

obtained from macroalgae by different conversion methods including fermentation, anaerobic digestion 31 

and transesterification [3,4]. Macroalgae biomass for bioenergy production first received attention in 1973 32 

as part of the US Ocean Food and Energy Farm project and resulted in the construction of ocean farms 33 

for cultivation of the giant seaweed Macrocystis [5]. Macroalgae, unlike first generation biomass, do not 34 

compete with food crops and do not need large areas of arable land and fresh water resources, also their 35 

low lignin content makes their biodegradation easier compared to lignocellulosic biomass. They can be 36 

cultivated on longline systems, similar to those used for mussel production, in vertical or horizontal kelp 37 

rope systems [5,6]. 38 

Methane production from macroalgae is related to ash content and the level of storage sugars. It varies 39 

with biochemical composition and usually range from 120 to 480 ml/gVS [3]. Before undergoing anaerobic 40 

digestion, macroalgae should be suitably conditioned in order to offer a larger target surface area to the 41 

microorganisms in the digester and thus to improve and accelerate the degradation process [7–9]. The 42 

availability of the substrates for the enzymatic attack will be achieved through the increment of the 43 

specific surface area and breakdown the macroalgal structure. In recent years different technologies for 44 

biomass pretreatment have been developed in order to increase the availability of substrate for anaerobic 45 

digestion [10,11]. Maceration of Gracilaria vermiculophylla improved its methane yield by 12% from 430 46 

ml/gVS to 481 ml/gVS, further thermochemical pretreatment using NaOH increased the algae 47 

solubilisation but not its methane yield [12]. Reducing the particle size of Rhizoclonium with a warring 48 

blender from 1cm to 0.1mm increases the methane yield by 13%. The blended algae were then submitted 49 

to biological pretreatment with five different enzymes: lipase, xylanase, a- amylase, protease and 50 

cellulose; protease addition was the less effective with a methane yield of 116 ml/gTS while a 51 

combination of the five enzymes achieved a methane yield of 145 ml/gTS which means a 21 % extra 52 

methane yield compared to blended algae [13]. A pressure pretreatment using a prototype machine 53 

owned by TK Energi broke up the structure of Fucus vesiculosus into a homogenous slurry and improved 54 

the methane yield from 67 ml/gVS to 92 ml/gVS [14]. 55 

In this paper, an investigation of a mechanical pretreatment, named beating [15], of Pelvetia canaliculata 56 

macroalgae was reported. A parametric analysis has been carried out to investigate the effect of beating 57 
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time and feedstock/inoculum (F/I) ratio on the methane yield. Furthermore, a multi-objective optimization 58 

was conducted with the aim of maximizing the methane yield while minimizing the pretreatment time.  59 

2 MATERIALS AND METHODS 60 

2.1 Feedstock and inoculum 61 

Macroalgae were collected on-shore in Rothesay (Isle of Bute, Scotland) in March 2016 and used 62 

unwashed within 48 h. P. canaliculata, commonly known as Channelled wrack, is perennial brown 63 

seaweed characterized by a 15 cm-long dichotomous, narrow thallus with folded gutter-like branches 64 

(Figure 1). Living for about 4 years at the upper limit of the intertidal zone, populations of P. canaliculata 65 

are found on the Atlantic rocky shores of Europe from Iceland to Spain [16].  66 

 67 

 68 

Figure 1. Raw algae (left) and 30 min pretreated algae (right). 69 

The sludge used as inoculum was provided by the Energen Biogas Plant (Cumbernauld, Scotland) using 70 

food processing residues as feedstock, stored in a fridge at 4 °C and used within 48 h. The total solids 71 

(TS) and volatile solids (VS) of the sludge and the macroalgae were calculated by duplicate and were 72 

obtained by submitting random samples to105 °C (for TS) and 550 °C (for VS) until constant weight. The 73 

VS are expressed as percentage of TS. The methane production is provided in terms of volume per gram 74 

of VS (ml/gVS). The characterization of the algae and the sludge is detailed in Table 1.  75 

Table 1. Algae and sludge characterization. 76 

Parameters Inoculum 
Untreated 

algae 

30 min 

pret. algae 

60 min 

pret. algae 

Total Solids (%) 4.70±0.01 18.7±0.01 6.04±0.01 6.02±0.01 
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Volatile Solids (%) 62.98±0.09 81.68±0.06 81.68±0.06 81.68±0.06 

Ash content (%) 37.02±0.09 18.32±0.06 18.32±0.06 18.32±0.06 

 77 

2.2 Hollander beater pretreatment 78 

The pretreatment process was conducted using a modified Hollander beater. This beater is normally used 79 

in the paper industry for pulping [17]. However, most of mechanical biomass pretreatment processes can 80 

use existing facilities previously designed for other purposes and other materials with minor modifications. 81 

This is considered as a significant advantage for biomass mechanical pretreatment compared to other 82 

types of pretreatments [8,18].  83 

Hollander beater is made entirely of non-corrosive materials, the beater used in this study is made of 84 

stainless steel, and it is composed of an oval vessel divided along its major axis by a partition that do not 85 

reach the walls, so an elliptic channel is formed. In one of the sides of the channel a bladed drum is 86 

placed spinning at 580 RPM above a bedplate churning pulp up over the back fall where it slides down 87 

creating momentum to round the curve and continue the loop. The feedstock is exposed to the shear 88 

action of the rotating bars against the bedplate. The biomass should be soaked prior its treatment in the 89 

beater; in this study, the algae samples were fresh and there was no need to soak them before the 90 

pretreatment [19–21]. The capacity of the beater is about 900 g of dry biomass, but this can vary 91 

depending upon the type of feedstock. Samples were taken after 30 and 60 minutes of beating 92 

pretreatment. The samples were taken from the bend before reaching the bladed drum to take the most 93 

representative sample.  94 

2.3 Bioreactors 95 

The bioreactors consisted of 500 ml Erlenmeyer flasks with working volume of 400 ml connected through 96 

a system of valves and pipes to airtight bags (Linde Plastigas) for biogas collection. To clear up any trace 97 

of oxygen from the system and preserve the anaerobic conditions, nitrogen was flushed into the 98 

headspace of each reactor. The reactors were placed in a water-bath to keep the bioreactors at the 99 

mesophilic temperature of 37ºC. 100 

Reactors were fed with a fixed amount of 200 ml of sludge (inoculum), while different quantities of pulp 101 

(beated algae) were required to set the F/I ratio at 0.3, 0.5 and 0.7. The pH was adjusted to 6.70±0.15 102 

with potassium dihydrogen phosphate (KDP) as a buffer solution and measured by a pH meter Corning 103 
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model 120. The reactors corresponding to the untreated samples were feed with fresh algae. In order to 104 

assess the inoculum contribution to the methane production, control batches were prepared in the same 105 

way except for the algae addition. Flasks were daily shaken during the process in order to facilitate the 106 

degasification of the substrate and the contact between the biomass and the inoculum. Each test was 107 

conducted in duplicate, and the average results are reported in this paper. 108 

For gas volume measurement, a graduated upside-down cylinder that is connected to a bubbling flask 109 

was used in order to maintain the necessary oxygen-free conditions and to avoid air infiltrations. The 110 

methane content was test with a gas analyser (Drager X-Am 7000). The digestion was stopped when the 111 

methane production rate was found to be less than 1% of the overall volume produced [22]. The methane 112 

volumes are given for a dry gas in standard conditions of temperature (0°C) and pressure (1 atm).  113 

2.4 Design of experiments 114 

The experiment was planned according to a response surface methodology (RSM) for two factors, 115 

beating time and F/I ratio with three levels. The response was the methane production per g of VS of 116 

added macroalgae. RSM consists of a group of mathematical and statistical techniques used in the 117 

development of an adequate functional relationship between a response of interest, y, and a number of 118 

associated control (or input) variables denoted by x1, x2,…, xk.. Usually, a second order polynomial as 119 

shown in Equation 1 is used in RSM to describe this functional relationship. 120 

   jiijiiiiii xxbxbxbbY 2

0                                                (1) 121 

where the values of the model coefficients b0, bi, bii and bij are estimated using regression analysis 122 

[23,24]. In this study, the RSM was applied through a central composite design (CCD) to fit a model by 123 

least squares technique.  124 

Factor levels of independent input variables are respectively 0, 30 and 60 min for the beating time BT and 125 

0.3, 0.5 and 0.7 for F/I ratio.  126 

The adequacy of the models is tested through the analysis of variance (ANOVA). The statistical 127 

significance of the model and of each model term is examined using the sequential F-test and lack-of-fit 128 

test. If the Prob. > F of the model and of each term in the model does not exceed the level of significance 129 

(in this case α = 0.05) then the model may be considered adequate within the confidence interval of (1 - 130 

α). An adequate model means that the reduced model has successfully passed all the required statistical 131 

tests and can be used to predict the responses or to optimize the process. The values of R2, adjusted-R2, 132 



6 

 

predicted-R2, lack of fit and adequate precision of models are obtained to check the quality of the 133 

suggested polynomial. The response surface model and the subsequent statistical study was performed 134 

using the Design Expert software version 9. 135 

3 RESULTS AND DISCUSSION 136 

3.1 Methane production 137 

The methane production from P. canaliculata after beating pretreatment is shown in Figure 2. The 138 

inoculum contribution of methane production was subtracted from final figures and it was never higher 139 

than 10%. The methane production from 200 ml of inoculum (control batch) on day 7 was 23.28 ml, on 140 

day 14 was 38.80 ml and on day 21 was 46.56 ml.   141 

The beated samples achieved higher methane yields compared to the respective untreated samples, 142 

approximately 74% for the algae beated for 60 min, and 6% for samples beated for 30 min. Beating 143 

pretreatment increased the surface area of the biomass making it more accessible to the microorganisms, 144 

providing higher biodegradation rates and facilitating a fast hydrolysis.  For a ratio F/I 0.3, the methane 145 

production increase was most noticeable at early stages of the degradation. On day 7, the methane 146 

production from 60 min treated samples was 112% higher than the untreated samples, and on day 14 147 

was 78%. For ratios F/I of 0.5 and 0.7, the effect of pretreatment was much less noticeable.  It can also 148 

be noticed that by increasing F/I ratio and decreasing the digestion time (DT), the effect of the 149 

pretreatment decreases. For a ratio of 0.5, on day 14 of digestion the methane production from 60 min 150 

treated samples was 62% higher compared to untreated samples. For the same DT and BT and a ratio 151 

F/I 0.7, the increase on methane production was 19%. The methane production increase between treated 152 

and untreated samples was more significant at later stages of digestion than at start of the process 153 

(Figure 2). 154 
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 155 

Figure 2. Methane production for different pretreatment times: a) ratio F/I 0.3, b) ratio F/I 0.5 and c) ratio 156 

F/I 0.7.  157 

 158 

3.2 Experimental Design 159 

The experiment parameters, BT and F/I were checked in three levels. Beating time varied between 0 and 160 

60 minutes while ratio feedstock/inoculum varied between 0.3 and 0.7.  The response was set as the 161 
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methane production given in ml per g of volatile solids (ml/gVS). Parameters and results are shown in 162 

Table 3. 163 

Table 2. Experimental factors and responses for the methane model estimation 164 

Experiment 

number 

Experimental factors Response 

Beating time (min) Ratio F/I Methane yield (ml/gVS) 

1 0 0.5 120±15 

2 30 0.3 208±05 

3 30 0.5 110±09 

4 30 0.7 40±08 

5 0 0.3 196±21 

6 60 0.3 340±40 

7 60 0.7 135±12 

8 30 0.5 110±09 

9 0 0.7 100±05 

10 60 0.5 188±30 

For the modelling of the methane production through the RSM, the model F-value of 100.92 implies the 165 

significance of the model. There is only a 0.03% chance that an F-value this large could occur due to 166 

noise. The model terms of R2 = 0.9921, adjusted-R2 = 0.9823, predicted-R2 = 0.9329, all these values are 167 

very close to 1 and the adjusted-R2 and the predicted-R2 are within 0.2 indicating the adopted model is 168 

adequate. The adequate precision, which measures the signal to noise ratio, is 33.059. A ratio greater 169 

than 4 indicates an adequate signal and the model can be used to navigate the design space.  170 



9 

 

 171 

Figure 3. Response surface plots for methane production in 3D (a), graphical optimization (b), 172 

perturbation plot (c) and interaction plot (d). 173 

The response surface obtained from the model illustrated in Figure 3a shows that higher methane yields 174 

were obtained at higher beating times and at lower F/I ratios. The methane yield was found to increase 175 

with decreasing F/I ratio, both for treated and untreated samples. The methane yield for untreated algae 176 

at 0.3 F/I ratio was 196 ml/gVS and at 0.7 F/I ratio was 100 ml/gVS. According to the guideline 177 

“Fermentation of organic materials” [22], the optimum F/I ratio is 0.5. This study shows that this ratio can 178 

be reduced to 0.3 for the anaerobic digestion of macroalgae. Knowing the optimum F/I ratio allows a 179 

better exploitation of the feedstock. Feeding the reactor with high quantities of biomass that the inoculum 180 

is not able to process leads to a loss of feedstock, hence is not digested. Increases of 15-61 % in the 181 

methane production rate constant were observed in the beated samples for F/I ratio 0.3 (Table 3). For a 182 

ratio of 0.5, the methane production rate constant increases by 12.5 % for 30 min beating and did not 183 
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vary for 60 min beating. For a ratio of 0.7, the methane production rate constant decreased with 184 

increasing beating time. 185 

At the end of the incubation period, with a 50 % of methane content, the biogas yield was 356.36 ml/gVS. 186 

This result was higher than the value of 196.39 ml/gVS reported by Tedesco et al. (2013), but no F/I ratio 187 

was mentioned. However the result from Tedesco et al. agreed with the biogas production achieved in the 188 

present studio at a F/I ratio of 0.5, 220.38 ml/gVS [25]. An excessive particle size reduction of the 189 

substrate accelerates the hydrolysis and acidogenesis in the early stage of anaerobic digestion, resulting 190 

in accumulation of volatile fatty acids (VFAs) that leads to a decrease in pH, causing a decrease in 191 

methane production [8,26]. The final pH in this study remained constant around a value of 6.78±0.15 192 

similar to the initial pH. These values did not suggest the occurrence of any strong inhibition due to VFA 193 

accumulation.  194 

The perturbation plot in Figure 3c shows how the methane yield is affected by the input variables beating 195 

time and F/I ratio. Both variables have an exponential effect on the methane production. By increasing A 196 

(beating time) the methane yield will increase exponentially, meanwhile increasing B (F/I ratio) the 197 

methane yield will decrease also exponentially. The effect of pretreatment is observed to be more 198 

important at low F/I ratios as can be displayed from the interaction plot (Figure 3d), for an F/I ratio of 0.5, 199 

the methane yield improved exponentially with the beating time from a minimum of 12 min. For a F/I ratio 200 

of 0.7, the minimum methane yield was achieved at higher beating time (25 min) and then improved until 201 

reach a value around 120 ml/gVS. 202 

To verify the adequacy of the developed models, three confirmation experiments were carried out using 203 

new test conditions which are within the experimental range earlier defined. The experimental conditions, 204 

the actual and predicted values and the percentages of error are summarized in Table 4. Considering that 205 

anaerobic digestion is a biological process, the percentages of error are all within acceptable tolerances. 206 

Table 3. Validation experiments 207 

Experiment Beating time (min) Ratio F/I  Methane yield (ml/gVS) 

1 20 0.4 

Actual 130.38 

Predicted 137.53 

Error (%) -5.48 

2 35 0.6 Actual 80.73 
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Predicted 77.16 

Error (%) 4.42 

3 45 0.3 

Actual 258.03 

Predicted 254.98 

Error (%) 1.18 

Based on the response surface model, a multi-objective optimization study was conducted using the 208 

desirability approach to evaluate the best combination of each of the process parameters that results in 209 

the best process output, as judged based on a number of specific practical criteria. Solving multi-objective 210 

optimization problems using the desirability approach consists of a technique that combines multiple 211 

responses into a dimension-less measure of performance, called an overall desirability function. Each 212 

process parameter and response can be assigned an importance relative to the other parameters and 213 

responses. Importance varies from the least important value of 1 (+), to the most important value of 5 214 

(+++++). The optimization study by means of the desirability approach was conducted using Design-215 

expert v9 software. The numerical optimization provides the ideal input variables levels to achieve the 216 

highest methane yield and the graphical method results in a plot that associates the input variables levels 217 

to an area of target outputs defined by the user.  218 

The optimization criteria combine the productivity with the cost of the process. The aim is an effective 219 

treatment of the biomass (maximizing the algae digestibility) while minimizing the energy consumption of 220 

the pretreatment method. For the optimization, methane production was maximized with level 5 and 221 

beating time was minimized with level 1 while F/I ratio was permitted to vary in the same range as seen in 222 

Table 3. 223 

The optimal methane production (283 ml/gVS) from the numerical optimisation was found at BT= 50 min 224 

and F/I ratio= 0.3, allowing 45% extra methane when compared to the maximum methane production for 225 

untreated algae.  226 

The graphical optimization allows a selection of the optimum process parameters by means of visual 227 

inspection. The grey areas on the overlay plot (Figure 3b) represent the values that do not meet the 228 

proposed criteria; the target area in yellow is delimited by the curves corresponding to the optimization 229 

criteria set by the authors. The lower and upper limits were chosen according to the numerical 230 

optimization results, 198 ml/gVS and 283 ml/gVS. 231 
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4 CONCLUSIONS 232 

The experimental work shows the effect on the methane production from macroalgae of a new 233 

mechanical pretreatment. The methane production of P. canaliculata  increased by 74% when the algae 234 

was beated for 60 min, from a value of 196 ml/gVS correspondent to untreated algae to 340 ml/gVS. A 235 

pretreatment time of 30 min resulted in a methane yield of 208 ml/gVS. Higher methane yields were 236 

achieved at an optimum F/I ratio of 0.3, with a maximum increase of 2.5-fold compared to an F/I ratio of 237 

0.7. An optimization study was performed to reduce the operating costs associated to the pretreatment 238 

and to maximize the productivity. The optimization criteria was set for a maximized methane production 239 

while minimizing the pretreatment time. An optimum methane production of 283 ml/gVS was obtained for 240 

a 50 min beating pretreatment and an F/I ratio of 0.3. The study demonstrated the Hollander beater 241 

pretreatment increased the methane production of the macroalgae P. canaliculata through anaerobic 242 

digestion. Current results suggest that Hollander beater may be applied to others lignocellulosic feedstock 243 

for an improved digestibility. 244 

 245 
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