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Improvising through the senses: a performance approach with the
indirect use of technology
Tychonas Michailidis a, James Dooleyb, Niccolò Granierib and Balandino Di Donatoc

aSolent University, Southampton, UKAQ1
¶

; bRoyal Birmingham Conservatoire, Birmingham, UK; cGoldsmiths, University of
London, London, UK

ABSTRACT
This article explores and proposes new ways of performing in a technology-
mediated environment. We present a case study that examines feedback
loop relationships between a dancer and a pianist. Rather than using data
from sensor technologies to directly control and affect musical parameters,
we captured data from a dancer’s arm movements and mapped them onto a
bespoke device that stimulates the pianist’s tactile sense through vibrations.
The pianist identifies and interprets the tactile sensory experience, with his
improvised performance responding to the changes in haptic information
received. Our system presents a new way of technology-mediated performer
interaction through tactile feedback channels, enabling the user to establish
new creative pathways. We present a classification of vibrotactile interaction
as means of communication, and we conclude how users experience multi-
point vibrotactile feedback as one holistic experience rather than a collection
of discrete feedback points.

KEYWORDS
Vibrotactile; interactive
systems; dance; feedback
loop; haptic; audiovisual

1. Introduction

In electronic music performances, sensor tech-
nology is often used to capture data from per-
formers and, through different mapping and
interaction design strategies, to control digital
audio processing effects such as reverb, delay
or filtering, for example. Such approaches are
an inseparable part of how musicians and the
broader performance art community may inter-
act with electronic interfaces thus providing a
blank canvas to composers for mapping perfor-
mers’ actions to the required sonic response
(Birnbaum et al. 2007; Hunt, Wanderley, and
Paradis 2003). The wide availability of control-
lers and sensor-enabled devices together with
the implementation of different mappings argu-
ably impel creativity. However, due to the broad

possibilities of designing and interactions, per-
formers often struggle to develop their musical-
ity with electronic interfaces as they do with
acoustic instruments. For instance, the gesture
of extending the right hand above the head
may control the wet/dry parameter of a reverb
effect but could also control the audio playback
of a pre-recorded audio file. As a result, the
same gesture can produce very different sound-
ing results, something that is inherently lacking
in sound producing gestures in instrumental
music. Consequently, performers often struggle
to develop a connection with digital instru-
ments in the same way as they do with acoustic
instruments.

In this article, we present a system that
enables performers, through vibrotactile
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feedback, to explore new ways to interact with
one another. Through our case study, we
explore novel ways for communication using
haptic stimulation and examine the potential
this has to elicit new creative possibilities of
interpretation and improvization. Moving
away from ‘traditional’ feedback modes of inter-
action such as visual and aural, we explore how
tactile feedback can be used to facilitate the
creative process. We discuss the development
of a cross-disciplinary system and how this
can enable new forms of creativity between
different art forms.

Sigrist et al. (2013) suggest that vibrotactile
feedback can become part of the external feed-
back mechanisms able to stimulate control
and projection of movements. With that in
mind, we hypothesize that vibrotactile feedback
experience can also provide adequate sensory
information to performers that can become
part of a creative interplay and create new path-
ways that can influence the artistic outcome.
Moreover, we present a bespoke wireless wear-
able system that stimulates the tactile feedback
channel called Vibrotactile Armband
(VARM). VARM is a wearable device that can
receive different types of input signals from var-
ious software. Here, we use it as part of a more
extensive system where multimodal interaction
principles are applied between two performers.
One performer (a dancer in our case) controls
the vibrations through the Myo armband1, a
commercial device able to detect arm orien-
tation and the activity of the forearm muscles.
Movement data from the Myo are mapped to
vibrational signals in the VARM unit that is
placed on another performer’s body (pianist).

The use of haptics has been applied in a wide
range of different disciplines including medical,
gaming, automotive, arts and robotics to enable
a closed feedback loop between two agents (Sad-
dik et al. 2011). We believe that vibrotactile
feedback has unique features for exploring digi-
tal creativity. Our approach of examining the
creative relationship between a dancer and a
pianist through vibrations is a result of the

unique features of vibrotactile feedback
enabling interaction.

In the following sections, we present the
background information regarding the develop-
ment of the VARM and the use of vibrotactile
feedback as a method of communicating in
technology-mediated performances. A discus-
sion on the use of technologies in dance per-
formances and audiovisual interactions enable
us to identify common links between the
relationships of vibrotactile feedback and its
applications when interacting with technology.
We then examine the development stage of
the VARM followed by a description of the
interaction design and hardware. Finally, in
the case study we discuss our methods and ana-
lyse our findings from the three workshops that
were conducted with the system.

2. Music and vibrotactile feedback

The expressiveness of a musical performance
depends highly on our body’s sensory system
mainly aural, tactile and visual. Performers
receive sensory micro-nuances during a per-
formance, which allows them to interact and
react with their instruments and perform
with others. They develop a unique relation-
ship with their instrument through an
ongoing process of exploration and creative
development during long hours of practising
(D’Ausilio et al. 2010). Other forms of live
performances, where interactivity is a vital
component, also require different levels of
feedback information such as aural, visual
and tactile as part of their creative and expres-
sive interplay. While we understand the feed-
back modalities between instruments and
instrumentalist, the use of technology often
interferes and alters any already known and
established music related feedback pathways
that developed through years of practising.
This is not to say that technology used in per-
formances lacks any feedback channels but
instead presents diminished sensory feedback
information to the performer.

2 T. MICHAILIDIS ET AL.
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Instrumentalists build up a personal and
unique perceptual understanding of how
audio-tactile feedback is perceived; something
that is akin to the way we experience latencies
between action and the sound produced. The
introduction of any ‘unfamiliar’ latency due to
the use of technology impacts any prior learned
kinaesthetic-acoustic mappings and disrupts
the inner prediction of the instrument’s respon-
siveness (Polydorou, Michailidis, and Bullock
2015). Technology is not only keen to the intro-
duction of latencies related to audio but can also
disturb known performance nuances that alter
the behaviour of the instrument itself and
requiring certain aspects to be relearned
(Mäki-Patola 2005). The majority of Digital
Musical Instruments (DMIs), custom-made
controllers and augmented instruments are
more likely to be performed by their creators
since they are the most experienced regarding
the interaction, software design and their
sonic possibilities (Michailidis 2016).

In recent years, we have seen the develop-
ment of haptic and vibrotactile feedback appli-
cations in electronic music performance.
Vibrotactile feedback has been used by Michai-
lidis and Berweck (2011) as a confirmation aid
when using foot pedals to manipulate, trigger
and control features of digital audio. Performers
establish an excellent control of various digital
audio processing elements through vibrotactile
feedback which arguably contributes towards
the performers’ musicality (Hayes 2012;
Michailidis and Bullock 2011).

Vibrations are sensed on the user’s body
through the skin. As a result, the process of
experiencing the feedback is intimate to the
user and may be applied to situations where
aural and visual feedback are lacking or to
non-traditional ensemble approaches. The
‘natural’ characteristics of vibrotactile feedback
are different from aural and visual feedback,
i.e., is not potentially masked by loudness nor
does it require the performer to actively look.
Instead, it can directly provide feedback to the
performer and enhance closed feedback loop

systems and applications. A noteworthy
example is the research of Bouwer, Holland,
and Dalgleish (2013) who applied vibrotactile
feedback for learning rhythms and rhythmic
patterns. Maté-Cid et al. (2012) demonstrated
a significant improvement in learning relative
pitch as well as its use to support the learning
of violin bowing techniques (Grosshauser and
Hermann 2009; van der Linden et al. 2011).

It is important to consider that the research
detailed above pertains primarily to dynamic
and straightforward binary information of the
vibrotactile feedback. We should acknowledge
that, due to its temporal limitations, such feed-
back might not be able to present more than the
necessary semantic information. For example,
experiencing the number four can be achieved
with four short vibrations but understanding
larger numbers, such as fifty, would require
users to have a higher cognitive process to
focus on the received vibrotactile feedback.
Consequently, it would be unfair to expect per-
formers to acknowledge a long list of combi-
nations of complex vibrotactile stimuli in the
heat of the performance. It is hypothetically
possible, however, to devise or adopt a series
of patterns, such as Morse code, to represent
more complex semantic concepts but would
require the performer to learn a new set of sym-
bolic associations.

Research conducted by Frid et al. (2014)
identifies vibrotactile intensity levels of the
body with two motors placed at the back of
the torso equally distanced from the spine.
They concluded that the user could detect
three levels of intensity with equal increment
as noticeable changes in vibration. Khoo et al.
(2013) AQ2

¶
suggests similar findings regarding the

ability of arms to distinguish between three to
four levels of vibrations. Moreover, Van Erp
(2002) points out that four levels of intensity
are optimal due to the comfort-pain threshold
of the vibrotactile stimuli. Specifically, Van
Erp suggests that any wearable technology
should ensure comfort over extended periods
of time; no heat generations on the body from
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the motors; comfortable stimuli above the
threshold of detection; and using vibrotactile
stimulation with caution to avoid irritating the
user. The multi-localised approach, using
three different vibrotactile stimulation
approaches, single, nearest and funnelling,
showed reduced reaction times in identifying
the position of objects in space (Louison, Ferlay,
and Mestre 2017). A multi-localised approach
illustrates how a combination of motors in
different places on the body could provide
users with information regarding spatial
awareness.

3. Dancing with technologies

The relationship and dynamic coexistence
between dancers and new technologies on
stage have been extensively analysed and dis-
cussed in various texts over the years (Anker
2008; Broadhurst and Machon 2009; Kozel
2007). There have been seminal works in iden-
tifying theoretical and methodological
approaches about the role of dancers and how
they are affected by technologies, as well as
how audiences experience and perceive such
new relationships. Since dancing is predomi-
nantly a visual experience from the audiences’
perspective, the development of new technol-
ogies for image projection has seen greater
exploration. Francksen’s (2012) Shift sees the
dancer interacting with her digital self, pro-
jected onto the floor rather than on a conven-
tional screen. Whereas Gonzalez, Carroll, and
Latulipe (2012) propose five design principles
from making interactive dance through six
case studies all of which include projected
visuals.

For many dance practitioners, technology
enables them to explore new methods and
forms of dancing creating an adaptive system
that feeds and grows according to its develop-
ment. Dance practice informs the advance-
ments for new technologies in the same way
that new technologies influence the develop-
ment of new forms of dance. Nonetheless,

other technologies contributed towards new
experiences for performers and audiences
alike. For example, the development of interac-
tive light design systems (Wiethoff and Blöck-
ner 2010); interactive wearable sensor
technologies by Birringer and Danjoux (2009);
the use of augmented reality, motion capture
systems and 3D vision (Clay et al. 2014; John-
ston 2012); the use of artificial intelligence sys-
tems to recommend background images based
on the dancing style (Wen et al. 2016); using
Electroencephalography (EEG) and bio-signals
from a participant on stage to inform other dan-
cer’s (Hieda 2017). New technologies can push
dancers to new limits and allow us to explore
new dance forms.

3.1. Audiovisual interaction

According to Goodale and Milner (2013), there
is a distinction between how we perceive the
world around us and how we process visual
information related to actions. Vision for per-
ception is aimed at ‘identifying objects in the
visual world and attaching meaning and signifi-
cance to them’ whereas the vision for action
‘permits the execution of skilled actions directed
at those objects’ (Goodale and Milner 2013, 64).
Interestingly, our ‘vision for action’ can be
stimulated through observation. Expert ballet
dancers, for example, showed brain activity of
pre-learned moments during observation.
Visual input can trigger specific motor skills of
the observer as discussed by Calvo-Merino
et al. (2005) AQ3

¶
. This phenomenon is not just lim-

ited to visual stimuli. Dancers can accumulate
vibrotactile feedback as an extrinsic feedback
mechanism that can stimulate control and pro-
jection of movements (Sigrist et al. 2013). A
study by Haueisen and Knösche (2001) showed
how expert pianists when listening to a familiar
piano performance they exhibit involuntary
finger movement. Furthermore, a functional
magnetic resonance imaging (fMRI) study
demonstrates that professional musicians
exhibited higher audio-motor associations

4 T. MICHAILIDIS ET AL.
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than amateur musicians (Lotze et al. 2003). The
research continues to suggest that motor func-
tions and auditory areas of the brain are linked,
and one can be stimulated by the each other.
Such mirror-like mechanism can evoke the
same motor functions for both, listening to
musical excerpts or through observations of
movement (Volpe et al. 2016).

The language used to describe sound fre-
quently incorporates metaphors drawing upon
movement and visual such as flow, high, low,
soft, hard. These relationships act like image-
schematic metaphors generating physical-to-
abstract mappings, drawing on image-schemas
‘subconscious and embodied mental represen-
tations of basic sensorimotor experiences in
the world’ (Hurtienne and Meschke 2016,
324). Applying these types of relationship in
the context of audio software and user interface
design Wilkie, Holland, and Mulholland (2009)
indicate how extending the application of
image-schemas through conceptual metaphor
makes them a flexible and powerful construct.

These relationships appear intuitively cogent
and coherent and suggest that applying concep-
tual metaphors to audiovisual art can provide
fruitful results. The objectivity of conceptual
metaphors begins to disintegrate when we
examine specific relationships between sound
and visual elements. For example, questions
such as, what is the visual correspondent of a
low pass filter on white noise, or what is the
sonic equivalent of a slowly pulsating blue
square are ones that can generate a multiplicity
of possible outcomes. Audiovisual works
repeatedly encounter this problem as artists fre-
quently re-examine it. In section 5.3 we examine
these types of relationships and the problems we
identify with objectively mapping sound to
visuals to explore further any similarities with
vibrotactile feedback, as well as the relationship
of mapping movement to vibrotactile feedback
and vice versa. Since the integration of haptics
as a means of communicating between spatially
separated performers is not usual performance
practice, we wanted to examine if there are

any similarities or differences with visual feed-
back that could help us to understand better
the role of vibrotactile stimulation. This is not
to say that vibrotactile and visual stimulation
bare similar attributes but rather how perfor-
mers might have similar methods of decoding
visual stimulus with vibrotactile feedback.

4. Varm: a vibrotactile ARMband

VARM is a vibrotactile wearable system able to
provide vibrating feedback on the user’s body to
stimulate the tactile sensory channel. In our case
study, VARM is embedded within a bigger sys-
tem utilized in our workshops for the improvi-
zational performance between two performers.
The first performer, acting as the leader, gathers
movement data from the upper body through
Inertial Measurement Unit (IMU) and Electro-
myography (EMG) sensors. The second perfor-
mer, the follower, wears the VARM and receives
movement data in the form of vibrations cre-
ated by motors embedded in the VARM wear-
able. Considering bidirectional
complementarity concepts by Tanaka and
Knapp (2017), we combined IMU and EMG
data that could establish a strong movement
to sound relationships.

4.1. Architecture and implementation

4.1.1. Hardware
The design of the VARM system was developed
through an iterative process with the dancers.
Our initial requirements of the system were
centred on wireless communication so that
movement would not be restricted. We then
considered the weight of the device and the
efficacy of the vibrating motors bearing in
mind the different thresholds of vibrations on
the body. After initial tests, it was clear that an
armband design was optimal as it could support
four motors without compromising its usability.
To reduce the weight on the armband, we used a
separate box to host the battery and microcon-
troller that is wired to the armband.
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The VARM device consists of a central unit
placed on the performer’s torso and houses
the X-OSC device, a wireless IMU prototyping
board with up to sixteen Pulse Width Modu-
lation (PWM) outputs. The PWM outputs,
which are responsible for driving the motors,
are capable of 16-bit resolution ranging from
5 Hz to 250 kHz2. PWM outputs are controlled
via Wi-Fi connection through Open Sound
Control (OSC) messages. VARM is powered
using a 3.7v lithium battery 2000mAh enclosed
in the central unit with dimensions 80 × 96 ×
32 mm and weighs 175 grams. A female RJ11
Breakout Board (telephone socket) that is used
to connect the cable for the vibrating motors
allowing us to use coiled patch lead for flexi-
bility of movement. There are six enclosed
vibrating motors in total with dimensions of
25 mm and 8.7 mm, and vibrating amplitude
up to 7G3. The central unit hosts two of the
motors, and the remaining four can be attached
to a wearable armband.

The development of the device was realized
by adopting a user-centered design (UCD)
methodology informed by the collaboration of
two professional dancers. We chose to work
with dancers due to their greater sense of
body awareness compared with other perform-
ing arts and artist, thus making them potentially
more likely to engage with the expressive possi-
bilities of the vibrotactile experience. The devel-
opment process had a duration of nine months
with eight sessions in total and an average dur-
ation of five hours per session. Through our
UCD approach, we gave dancers the opportu-
nity to explore and familiarize themselves with
the system over an extended period which pro-
vided constructive feedback. During the ses-
sions, we observed how the dancers interacted
with each other through the VARM and its abil-
ity to facilitate the desired interaction. We pro-
vide them with simple tasks testing the
capabilities and limits of the system. As a result,
we have developed and tested several iterations
of the VARM system. An informal evaluation
(discussed in section 4.2) identifies possible

relationships between the gestural data and
vibrotactile feedback. Moreover, through the
three workshops, we examined these relation-
ships using the system in improvised perform-
ances between two performers, a dancer as the
leader and a pianist as the follower.

4.1.2. Software
We developed software to support the com-
munication and interaction between devices
and the performers. For the leader’s Myo arm-
band we used the Myo Mapper software (Di
Donato, Bullock, and Tanaka 2018). Myo Map-
per receives raw IMU and EMG data from the
Myo armband and converts those into scaled
values that can then be sent as OSC messages
to an OSC client on the same network. Myo
data were first pre-processed, using an appli-
cation developed using Max4, and consecutively
mapped into parameters to control the VARM.
The data mapping was performed using Weki-
nator software’s Multi-Layer Perceptron algor-
ithm (MLP) (Fiebrink and Cook 2010).
Wekinator is an open source interactive
machine learning software designed for artistic
applications.

4.2. VARM informal evaluation

During the development period, we observed
the dancer’s behaviours with the system
through a series of tasks and informal inter-
views and discussion system. Tasks include
identifying different dance gestures through
vibrations, recognizing different locations of
the motors and different vibrating intensities,
navigate in space and so on. This qualitative
approach aimed to evaluate the system as well
as the experience and the interactions between
movement and vibration. Furthermore, to
establish a relationship between movement
and vibration, the follower initially observed
the leader’s movement while experiencing the
vibrotactile feedback in real time. The follower
registers and associates visual gestures of the
leader with felt vibrations on the body. From
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very early on, both dancers acknowledge the
significance of experiencing vibrations in the
form of rhythmic patterns and how it contribu-
ted towards an understanding of movement. It
was paramount to establish new paradigms of
feedback association to address the significant
meaning and user’s understanding of the vibro-
tactile experience. During the development and
evaluation, we use four motors attached to the
armband as shown in Figure 1. Explicitly, for
the evaluation process, we linked the EMG
data to the intensity of the vibration of the
motors and the IMU sensor to the position of
the motors.

We propose a classification of vibrotactile
interactions that enables us to interpret and bet-
ter understand the relationships between
vibrational experience and upper body move-
ments: gestures, directionality and intensity.
Gestures examine how the follower recognizes
hand gestures through vibrations. Different
arm movements provide different vibrational
sensations to the follower established through
the Myo-to-VARM mapping functions. For
example, a cyclic movement of the right hand
of the leader will result in activating in a circular
motion the motors attached on the VARM. We

consider this as an active multi-point mapping
relationship where particular gestures trigger
different motors.

Directionality, focus on how the notion of
movement in space can be understood through
vibrations. During the evaluation process, both
the leader and the follower explored in what
ways direction and intention of movement can
be recognized through vibrations, i.e., the ability
to navigate and give directions to another per-
former through vibrations. For example, feeling
the vibration on the top of the arm signifies
forward movement where vibrations on the
left and right side assume left and right move-
ment. This approach has a static single-point
mapping relationship between movement and
vibration.

Moreover, intensity examines the follower’s
ability to acknowledge changes of intensity of
the vibrating motors. Our ability to perceive
differences in intensity of the vibrotactile feed-
back is vital in further creating a complex vibro-
tactile experience. We carried out a test to
examine the performers’ ability to recognize
the intensity of vibration during movement.
We asked the dancers to acknowledge any
changes in the intensity of the vibrational
motors, while randomly triggered. Both dancers
commented that they could promptly identify
differences between three levels of insensitivity
during the activation of one motor. We con-
clude that the following three levels of intensity
of the PWM duty cycle where optimal: 0.25,
0.65, 15. However, dancers reported during dis-
cussions that it was difficult and most of the
times incapable to distinguish between the
three proposed levels of intensity when operat-
ing all four motors. We believe that the proxi-
mity of the motors on the armband is
masking their ability to identify the intensity
levels. We also noticed an overall reduction of
the vibrotactile stimuli experienced during
hand movements. This observation suggests
that tactile feedback can be masked by hand
movements, reducing the ability to focus and
accumulate feedback from the motors.
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Figure 1. The VARM system: module box (on the
right), coiled cabling and the Velcro strap with four
motors attached.
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Through the informal evaluation process, we
observed that both dancers were able to identify
vibrotactile feedback under the proposed
classifications and interpreted the received
vibrations. Both dancers had the opportunity
to take the leader and follower roles. Our evalu-
ation showed that vibrotactile feedback could
provide adequate information to identify
specific gestures6, recognize the intensity of
vibrations as well as understand the concept of
navigation and directions in space as shown in
Figure 2.

5. Case study

The case study aimed to recognize and identify
any creative interplay that existed between
movement and vibrotactile feedback during
three workshops. The three workshops focused

on an improvizational performance between a
dancer acting as a leader and a pianist acting
as a follower. In particular, we explored how
upper body movement from a dancer can create
a ‘vibrotactile score’ for the pianist. Both perfor-
mers had no prior experience with the devices
used, and each workshop had a duration of
two and a half hours.

Movement data from the dancer are utilized
to control the vibrating motors worn by the
pianist, whose improvization responds to the
changes in vibration felt. The dancer then lis-
tens to the improvised music that influences
choreographic decisions, thus closing the
loop. In addition to auditory feedback, in
workshop three we used the audio produced
by playing the piano to generate visual content
projected on a screen. In doing so, we aimed
to reflect on how visual might influence the
dancer and if there are any similarities
between visual and vibrotactile feedback as
discussed in section 3.1 Audiovisual Inter-
action. As the pianist improvises in response
to the dancer’s movements, musical motifs
served to produce visualizations that would
further stimulate the dancer’s response7.
Examples of the projection of the generated
visual are shown in Figures 3–5. AQ4

¶

5.1. Workshop one

The pianist wears the VARM’s armband on the
right bicep, the same hand as the dancer wear-
ing the Myo armband. Both performers were
first informed about the system and allowed
20 minutes to practice and familiarize them-
selves with it. For this workshop, we used the
VARM v1 where the pianist received vibrotac-
tile feedback through three motors (left, front
and right) rather than four as described in the
informal evaluation process. EMG data from
the Myo was not used in this system, so as to
understand the relationship between the IMU
sensors and vibrations better. Having only
three motors enabled us to establish a baseline
of the pianist’s ability to detect and respond to
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Figure 2. The two dancers during the evaluation pro-
cess. Dancer at the back is the leader and provides
directions to the dancer at the front acting as the fol-
lower through vibrations.
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the vibrotactile experience and improvise. Also,
the interaction design and the movement data
mapping were different from the one described
in the informal evaluation section 4.2. VARM
Informal Evaluation as we wanted to represent
the dancer-pianist relationship better. Precisely,
the vertical movement of the dancer’s arm con-
trols the intensity of the vibrational motors on
the pianist, maintaining a relationship low
arm/low vibrational intensity and high arm/
high vibrational intensity. The horizontal move-
ment of the arm was responsible for activating
and deactivating the three motors by increasing
and decreasing the intensity of the motor. The
left, front and right motors were respectively
activated when the arm was oriented left, front
and right and associated with low, middle and
high register on the keyboard. The intensity of
the motors suggests the use of dynamics so
that high-intensity imply to play fortissimo
and low-intensity pianissimo.

Initially, we hypothesized that the pianist
would be able to distinguish different positions,
intensities and patterns and be able to perceive
the nuances of vibrotactile feedback in the
same manner as earlier findings, thus being
able to improvise based on the new sensory
modality. On the contrary, the pianist found it

very difficult to differentiate the feedback
received from each motor. Even though it was
possible to pinpoint the location of the motors
in a static position, the pianist needed to shift
his focus on the vibrotactile feedback to decode
the information sent by the dancer during the
performance. The pianist mentioned that he
could easily recognize the vibrations when
placed on opposite sides (left and right) but
found it harder to decode motors that are next
to each other. The pianist also mentioned that
at instances there was an overload of infor-
mation which limited his ability to improvise
and perform.

In contrast to the evaluation process carried
out with the two dancers, we were unaware of
the ability to communicate within a common
artistic framework between dancer and pianist.
During the evaluation process, the two dancers
demonstrated ease of understanding about the
way movement and vibrations are linked. How-
ever, the relationship between the pianist and
the dancers was very different. While we
acknowledge that there might be differences as
performers, we also consider that a dancer-dan-
cer relationship already had an established and
developed language regarding dance move-
ments and practices over the years. Dancers
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Figure 3. Generated visuals from the sound of the piano. Amplitude and frequency control the length, colour and
position of the lines.
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communicated intuitively through shared
experiences and non-verbal interactions. On
the contrary, due to their different artistic

backgrounds, the communication between the
dancer and pianist resulted in a diminished
communication between the two.
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Figure 4. Shows how the leader (dancer) and follower (pianist) are connected through the VARM device during
workshops two and three. Gestures from the leader are filtered through various software and then sent out to
the VARM device as vibrations for the follower to experience on the left and right hand. The second laptop
makes use of the leader’s data to control the projected visuals.
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Figure 5. Shows a series of pictures of dancer and pianist during workshop three that took place in the lab.
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5.2. Workshop two

A second iteration of the VARM system aimed
to overcome issues and limitations encountered
during the first workshop such as an overload of
vibrating information on the hand wearing the
armband and unable to locate motors due to
proximity. In VARM v2 the motors are split
across two armbands, left and right. The motors
were placed at the back and front in each arm-
band equally distant from each other. This
second iteration of the VARM enabled the pia-
nist to have a better distinction between left
hand (low register) and right hand (high regis-
ter) when vibrating.

Along with the hardware modifications on
the VARM we also include the use of the elec-
tromyogram signal (EMG) from the Myo arm-
band worn by the dancer (leader). EMG data
were linearly mapped into the two motors
placed in the central unit. To improve the pia-
nist-dancer communication, we proposed the
interpretation of movement and gestures into
rhythmical vibrotactile patterns. As rhythm is
a fundamental component in both dancing
and musical performance, we hypothesized
that exploring rhythmic patterns could be a
creative link in the ‘dialogue’ between dancers
and musicians. From here, the interpretation
of vibrating feedback information would be
through the objectivity of rhythm and how it
may enable further the understanding of con-
ceptual metaphors (e.g., raising the hand high,
signals the pianist to play higher pitched
material). As a result, we used short vibrating
pulses as feedback, rather than continuous
vibrations. The ability to use a combination of
vibrating pulses expands our possibilities con-
cerning the information received by the pianist.
For the VARM v2 iteration, when the leader
extends the hand forward, at chest level, acti-
vates the back motors on both hands of the fol-
lower. Any hand movement left or right
activates the front motors on left and right
hand. Through the proposed classifications of
gestures and directionality, the dancer generates

a ‘score’ in real time for the pianist indicating in
which register he should be playing (low,
middle or high). The central unit was respon-
sible for providing different vibration intensities
through EMG data as described through the
intensity classification. For example, right-
hand movements by the dancer ‘direct’ the pia-
nist to improvise on the high register where the
intensity of the vibrations on the chest provides
the dynamics of the improvization.

VARM v2 significantly improved the perfor-
mers’ experience and the communication
between each other. The pianist commented
to have been able to distinguish easily between
the vibrations sensed with the left and right
arm. He recognized vibrating rhythmic patterns
as well as the intensity levels on the torso. How-
ever, one noticeable limitation of the VARM v2
was the rapid changes in the rhythmic patterns
that distracted the pianist resulting in non-syn-
chronised events between the two. The dancer
could alternate between gestures and change
the speed of movement faster than the pianist’s
ability to decode the feedback.

5.3. Workshop three

In the last workshop, we investigated further the
relationship between musical tempo and the
dancer’s movement. In VARM v3 we changed
the functionality of the central unit to provide
a reference tempo through pulsed vibrotactile
feedback. In this third iteration, the intensity
of the motors was fixed and set to maximum
with a vibrating metronome of 75 Beats Per
Minute (BPM). We developed an algorithm
that enabled the dancer to control the tempo
through movement. Any constant movement
of the dancer for a duration between 12 and
24 seconds increases the tempo once by
10 bpm. Any movements below 12 seconds
have no impact on the tempo. Constant move-
ments for more than 24 seconds the value of the
tempo is re-initialised to its original value
( BPM). These thresholds were discussed and
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agreed with the dancer as she felt confident
enough to control the system. Overall, the dan-
cer can trigger tempo increments up to six times
up to a maximum tempo of 135 bpm. All move-
ments were tracked through the IMU sensors
embedded in the Myo armband.

By providing a constant rhythm to follow,
the vibrating metronome improves the overall
experience of the pianist enabling him to engage
with the dancer better than earlier workshops.
During the workshop, we noticed at times that
the pianist was not able to follow the exact
tempo but instead grasp the ‘feel’ of the
vibrations. He commented, ‘I could feel waves
of vibrations. I could not recognize what was
happening—I could not pinpoint all the time
what was left, right and centre, but I could feel
something repeating itself’. The pianist’s aware-
ness increased, and as such he was able to
respond to the vibrational patterns with greater
confidence. The vibrating metronome acted as a
reference point that can be relied upon and
allowed the pianist to identify emerging vibrat-
ing patterns better than before.

Furthermore, we introduced two scenarios to
examine if the generated visuals from the piano
influenced dancer’s improvization which poten-
tially influences the pianist. Visual projections
were realized through an oscilloscope-based
visualization software that directly maps the
sound’s pitch and amplitude to the generated
visual patterns. The dancer had no previous
experience of being stimulated through
screen-based visual feedback. In the first scen-
ario, the dancer performed without any visual
feedback and was facing away from the pianist.
Her improvization was influenced by aural
feedback alone. The dancer could follow the
sound of the piano and improvise accordingly
with relative ease. In the second scenario, the
dancer experienced the generated visuals
(Figures 3 and 5) as well as the sound of the
piano. She mentioned that the visuals were
harder to interpret compared with audio and
she felt distracted and overwhelmed by the pro-
cess. Her movements were not as fluent, and

continuity of movement was absent. This lack
of fluency was also communicated to the pianist
through the VARM: the pianist felt the absence
of continuity on the vibrations, thus reducing
the level of engagement between them. We sus-
pect that it was harder and more challenging to
cognitively process a combination of audio and
visual feedback on the spot considering the
overload of feedback information and the dan-
cer’s unfamiliarity with visual feedback8.

6. Conclusion

In this paper, we presented novel ways in which
performers may indirectly engage with the tech-
nology by stimulating the performers’ senses
through vibrotactile feedback. We developed
the VARM system that enables us to explore
how vibrotactile feedback establishes new
relationships between two performers and
enhances the artistic expression.

We propose three classifications for inter-
preting vibrotactile feedback between the leader
and the follower. Gestures enables the follower
to recognize specific movements through
vibrations; directionality looks at how vibrations
can assist navigation and direction in space, and
intensity acknowledges changes of intensity of
the vibrating motors. These proposed classifi-
cations enable us to understand the relation-
ships between movement and vibrations in a
performance environment and further
acknowledge a creative interplay between two
performers.

We presented a case study consisting of three
workshops where we further explored creative
ways using the three classifications. The vibro-
tactile feedback is applied as part of an improvi-
zational environment between a dancer and a
pianist. In each workshop, we provided an iter-
ation of the VARM system changing the way
data and vibrations were used. Throughout
the three workshops, we noticed a change in
the way the pianist interpreted the feedback.
In the first workshop, the piano sound was
more melodic with fixed tempo and fewer
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changes in dynamics, wherein the second and
third workshop, where the vibrating tempo is
applied, there was an increased use of rhythmic
motives with alternating tempos and changes in
dynamics. Even though these observations took
place in a relatively short period, we believe
there are further creative advantages to be
explored through vibrotactile feedback. We
noticed a stronger synchronization between
the dancer and the pianist when we introduce
the vibrating tempo in VARM v3. Having a
semi-fixed vibrating tempo enabled the pianist
to focus on other vibrating feedback infor-
mation that had a knock-on effect on the per-
formance and thus on the dancer.
Furthermore, we included two scenarios where
we introduced visual feedback for the dancer
in an attempt to explore any similarities with
vibrating feedback and visuals. We were unable
to come to any meaningful relationships and
conclusions due to the dancer being overloaded
with visual feedback and unable to cope with
the high amount of multimodal stimulation.

The pianist mentioned that the synchroniza-
tion between the two would have been harder to
achieve without the use of vibrotactile feedback.
Though the pianist noted at first that vibrations
appeared alien and outside the typical pianistic
experience, through practice, they became inte-
grated into the creative process. Throughout
our various iterations and changes during the
workshops we were able to balance the level of
vibrational stimulation to minimize invasive-
ness, yet meaningfully contribute to the creative
process. The performer said that the dynamic
nature of the vibrations, controlled by the dan-
cer, provided a useful form of communication
and interaction between them. Examining
workshops one and three, there are clear indi-
cations about the role and use of vibrotactile
feedback within the process. Even though the
setting was improvizational without a concrete
structure, there is clear evidence about the
effect and impact of vibrotactile feedback.

Moreover, there are also limitations and
potentially negative effects when vibrotactile

feedback is overused; this is also true for other
forms of feedback. For example, having a screen
with an overload of visual information might
have an adverse effect on the user. Similarly, try-
ing to listen to a person speaking while being in
a noisy environment is difficult due to the over-
whelming amount of audio information. When
vibrotactile feedback is applied, we should con-
sider a design approach based on the needs and
requirements of the situation to produce an
effective level of feedback to the user.

A significant observation is how users may
experience complex vibrating rhythmic patterns
as clusters rather than individual vibrating
points. When many vibrating sources activate
at the same time, in our case we used a maxi-
mum of six, users cannot accumulate the felt
experience of individual vibrations. As a result,
multi-point vibrations are perceived as events
over time thus forming a holistic experience.
The relationship is perhaps similar to the way
we experience music and our ability to group
rhythmic patterns and melodic lines as events
rather than individual notes. The pianist
found the use of vibrotactile feedback more
meaningful when experiencing rhythmic pat-
terns from the whole system rather than sensing
individual motors. This observation suggests
that we consider a broader view and application
when we employ a large number of vibrating
points at the same time as there is a difference
in how we experience single point vibrational
feedback.

Our approach and case study show encoura-
ging evidence how vibrotactile feedback can
become an innovative tool for interaction and
digital creativity.

Notes

1. https://www.myo.com.
2. http://x-io.co.uk.
3. Vibrating amplitude (G) refers to the intensity

of the vibration of motors.
4. https://cycling74.com.
5. Similar results are also proposed in the work

of Frid et al. (2014).
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6. Excerpts from two sessions with the dancers as
well as part of the evaluation process can be
viewed online https://youtu.be/
n1×0fVHA2iw.

7. The visual content realized using the GEM
library for Pure Data were generated through
mapping the piano sound’s acoustic properties
mainly the amplitude and frequency of the
piano control the length, colour and position
of the lines.

8. Excerpts from the case study between the
dance and the pianist can be viewed online
https://youtu.be/oxxiF0y7hFY.
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