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Abstract. Word embeddings are increasingly attracting the attention of
researchers dealing with semantic similarity and analogy tasks. However,
finding the optimal hyper-parameters remains an important challenge
due to the resulting impact on the revealed analogies mainly for domain-
specific corpora. While analogies are highly used for hypotheses synthe-
sis, it is crucial to optimise word embedding hyper-parameters for precise
hypothesis synthesis. Therefore, we propose, in this paper, a methodolog-
ical approach for tuning word embedding hyper-parameters by using the
stability of k-nearest neighbors of word vectors within scientific corpora
and more specifically Computer Science corpora with Machine learning
adopted as a case study. This approach is tested on a dataset created from
NIPS1 publications, and evaluated with a curated ACM hierarchy and
Wikipedia Machine Learning outline as the gold standard. Our quantita-
tive and qualitative analysis indicate that our approach not only reliably
captures interesting patterns like “unsupervised learning is to kmeans as
supervised learning is to knn”, but also captures the analogical hierarchy
structure of Machine Learning and consistently outperforms the 61%
sate-of-the-art embeddings on syntactic accuracy with 68%.

Keywords: word embedding, word2vec, skip-gram, hyper-parameters,
k-NN stability, ACM hierarchy, Wikipedia outline, NIPS.

1 Introduction
Word embeddings (WEs) are a class of natural language processing techniques
that represent individual words as real-valued vectors in a predefined vector
space. They were first introduced in the 1990s using statistical approaches [2,
8] with vectors computed as rows of lexical co-occurrence [8] through matrix
factorization [2].

However, interest in WEs has recently skyrocketed and has found many ap-
plications. The surge in interest is due both to popularity of neural networks [1]
which exploit WEs for NLP tasks, and the success of low-dimensional embed-
dings like word2vec [12] and GloVe [16]. Due to their ability to detect semantics
and meanings of words, WEs have been used as features in a variety of applica-
tions, such as document clustering [5] and classification [22], Linear Discriminant
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Analysis (LDA) [17], information retrieval [10], named entity recognition [20],
sentiment analysis [19], and semantic discovery [21].

Typically, the reported research work that used WEs as features computed
their vector representations with a default or arbitrary choice of embedding
hyper-parameters. Examples of these hyper-parameters include vocabulary size
and type (single words or phrases), vector dimensionality, that is, the length
of the vector representations of words, and context size which is the span of
words in the text that is taken into account - both backwards and forwards -
when iterating through the words during model training. However, as this paper
will show, these hyper-parameters of word embedding vectors are crucial to the
prediction performance as they directly affect the accuracy of the generated
analogies. Given that analogies can be used in hypotheses synthesis, consequently
an accurate analogy will led to a precise hypothesis. For example, “decision tree”
is a component of “ensemble” and “decision tree” is a “classifier”. So, by analogy
any classifier should be a component of ensemble.

This work concerns then hyper-parametrisation of WEs in a domain-specific
context with varying vocabulary sizes, and represents a gap in knowledge on
present practice of WEs. The considered topic is a key practical issue while
learning WEs, and is so chosen because not only is the literature on learning
embedding hyper-parameters rather limited [6, 14], it does not offer a method
to efficiently set these hyper-parameter values. Stimulated by this shortcoming,
the work we present in this paper lies within the context of word embedding
hyper-parametrisation for domain-specific use. The studied problem domain is
scientific literature and more specifically Machine Learning literature, which is a
subcategory of literature on Computer Science. The choice of a scientific domain
is motivated by an increasing interest in knowledge extraction from scholarly
data and scientific text to understand research dynamics and forecast research
trends. Since WEs have proved their ability to capture relational similarities and
identify relationships in textual data without any prior domain knowledge, this
work does not need to justify the use of WEs for knowledge extraction from
scientific literature; instead, the presented work is a methodical approach to
setting the hyper-parameters of WEs for scientific knowledge extraction.

The motivation here is to deeply understand the embedding behavior within
scientific corpora which is quite different to other corpora in terms of word
distributions and contexts. For instance, the term “learning” appears obviously
in the context of education in newspapers corpora; however, “learning” appears
in a completely different context within Computer science. Therefore, WEs for
scientific text are worth investigating.

There have been some efforts to integrate WEs in the scientific domain [3, 7,
22]; however, these efforts do not study learning the hyper-parameters suitable
for a scientific text, and instead use either arbitrary or default settings (Mikolov’s
settings [11]).

In this research work, we aim to fill this gap. We hypothesise that by devis-
ing an approach for setting hyper-parameters of WEs in the scientific domain,
this study adds a deep understanding of the sensitivity of embeddings to hyper-
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parametrisation. To make our point, we propose using the stability of k-nearest
neighbors of word vectors as a measure to set the hyper-parameters – mainly vec-
tor dimensionality and context size – of word vector embeddings; moreover, we
propose using common-sense knowledge from the ACM hierarchy2 and Wikipedia
outline of Machine learning3. As a result, this work adds breadth to the debate
on the strengths of using WEs for knowledge extraction from scientific text. To
the best of our knowledge, the proposed work represents the first attempt to
methodically set WEs hyper-parameters in a scientific domain.

We list the major contributions of this work as follows: (i) we propose the
stability of k-nearest neighbors of word vectors as an objective to measure while
learning word2vec hyper-parameters, (ii) we enhance the standard skip-gram
model by bigrams using word2phrase – that attempts to learn phrases by pro-
gressively joining adjacent pairs of words with a ‘ ’ character – as a method
for corpus augmentation, (iii) we create an analogy dataset for the Machine
Learning by manually curating ACM hierarchy and Wikipedia outline of Ma-
chine Learning, and (iv) we evaluate our work quantitatively and qualitatively
on a dataset comprising of abstracts published in the NIPS conference. Our
embedding detected interesting semantic relations in Machine Learning such as
“unsupervised learning is to kmeans as supervised learning is to knn”. The ob-
tained results are therefore both promising and insightful.

The rest of the paper is organised as follows. Section 2 summarises the exist-
ing approaches on word embedding hyper-parametrisation and gives an overview
on work that attempted to integrate word embedding in scientific domains.
Section 3 presents our methodology and how we employ stability of k-nearest
neighbors to optimise word2vec hyper-parameters. Section 4 describes the NIPS
dataset we have used, the analogy dataset we have created from ACM hierar-
chy and Wikipedia as gold standard, presents and discusses results. Finally, in
section 5 we conclude and draw future directions.

2 Related Work

Word embedding methods depend on several hyper-parameters that have crucial
impact on the quality of embeddings. For this reason, Mikolov et al. [12, 13] and
Pennington et al. [16] –the inventors of the popular low-dimensional embedding
word2vec and GloVe, respectively – have deeply studied the optimisation of the
embedding parameters, mainly the vector dimension and the context size. The
performance of the embeddings has been measured based on word similarity that
uses cosine distance between pairs of word vectors to evaluate the intrinsic qual-
ity of such word representations, and word analogies that capture fine-grained
semantic and syntactic regularities using vector arithmetic. The optimal param-
eters have been obtained through training on large Wikipedia and Google News
corpora. But, no evidence was given for generalisation of these parameters to
any other corpus with a general or specific topic and guarantee the performance

2 https://dl.acm.org/ccs/ccs flat.cfm
3 https://en.wikipedia.org/wiki/Outline of machine learning
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of embeddings. However, most of the work using WEs relies on these parameters
as the default ones.

Unlike work that uses default settings, literature on learning embedding
hyper-parameters is relatively short [6, 14]. Levy and Goldberg [6] followed Mikolov
et al. [11, 12] and Pennington et al. [16] and trained their embeddings on gen-
eral topic using Wikipedia corpus. They basically tested their model with dif-
ferent vector dimensions and different window sizes aiming to study the impact
of syntactic contexts – that are derived from automatically produced depen-
dency parse-trees – on detecting functional similarities of cohyponym nature.
While Miñarro-Giménez et al. [14] trained their word embeddings on a domain-
specific corpus of medical data in order to study the ability of word embeddings
(word2vec) to capture linguistic regularities on the medical corpora. Similar to
the previous work, Miñarro-Giménez et al. trained their word2vec embeddings
with different parameter settings, i.e., dimensionality of vector space, context
size, and different model architectures, i.e., continuous bag-of-words (CBOW)
and Skip-gram (SG) [11], and simultaneously compared the relationships iden-
tified by word2vec with manually curated information from National Drug File
– Reference Terminology ontology as a gold standard using word similarity and
word analogies in order to evaluate the effectiveness of word2vec in identifying
properties of pharmaceuticals and medical relationships. The obtained results
(49% accuracy) revealed the unsuitability of word2vec for applications requiring
high precision like medical applications. While this research work seems inter-
esting mainly with its appeal to setting hyper-parameters for domain-specific
word embeddings, it does not bring a defined method to efficiently set these
parameters.

Leading on from the aforementioned observation, the work we present in
this paper lies within the context of word embedding hyper-parametrisation for
domain-specific use. The proposed domain to investigate is the scientific domain
and more specifically C omputer Science with M achine learning, as a case study.

There have been some efforts to integrate word embeddings in the scientific
domain [3, 7, 22] for clustering scientific documents based on their functional
structures [7] or for identifying problem-solving patterns in scientific text [3] or
for paper-reviewer recommendation [22]. All the previous research work inte-
grated word embeddings as features for their learning algorithms using either
arbitrary or default settings (Mikolov’s settings [11]). However, none of them
has focused on training the embeddings and methodologically setting the hyper-
parameters suitable for scientific text.

To the best of our knowledge, the proposed work represents the first attempt
to methodologically set word embeddings hyper-parameters in the scientific do-
main.

3 Methodology

This study focuses on word2vec hyper-parameter optimisation applied to scien-
tific publications, i.e., how to tune the hyper-parameters that have the largest
impact in the prediction performance and what are the adoptable techniques
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to test the potential of word embeddings for identifying relationships from un-
structured scientific text. Accordingly, the k-NN algorithmic stability is adopted
to investigate the marginal importance of hyper-parameters of Skip-Gram archi-
tecture in a scientific setting. This allows us to identify three hyper-parameters,
namely vocabulary subsampling, vector dimensionality and context size which
can significantly affect the embedding performance. In this study, we use the
popular variant word2vec architecture Skip-Gram as it is consistently yielded
superior results comparing to CBOW architecture [11].

3.1 The Skip-Gram model

Previous results reported in the literature have shown that Skip-Gram [11] model
does not only produce useful word representations, but it is also efficient to train.
For this reason, we focus on it to build our embeddings for scientific text in this
study. The main idea of Skip-Gram is to predict the context c given a word w.
Note that the context is a window around w of maximum size L. More formally,
each word w ∈ W and each context c ∈ C are represented as vectors −→w ∈ Rd
and −→c ∈ Rd respectively, where W = {w1, · · · , wV } is the words vocabulary, C
is the context vocabulary, and d is the embedding dimensionality. Recall that the
vectors parameters are latent and need to be learned by maximising a function
of products −→w · −→c .

More specifically, given the word sequence W resulted from the scientific
corpus, the objective of Skip-Gram model is to maximise the average log prob-
ability: L(W ) = 1

V

∑V
i=1

∑
−l≤c≤l,c6=0 logProb(wi+c|wi) where l is the context

size of a target word. Skip-Gram formulates the probability Prob(wc|wi) using

a softmax function as follows: Prob(wc|wi) = exp(−→wc·−→wi)∑
wi∈W exp(−→wc·−→wi) where −→wi and

−→wc are respectively the vector representations of target word wi and context
word wc, and W is the word vocabulary. In order to make the model efficient
for learning, the hierarchical softmax and negative sampling techniques are used
following Mikolov et al. [11].

Word embedding vectors learned with Skip-Gram can be used for computing
word similarities. The similarity of two words wi and wj can simply be measured
with the inner product of their word vectors, namely similarity(wi, wj) = −→wi·−→wj .
Recall that cosine distance is the measure used to calculate the similarity between
embedding vectors −→wi and −→wj as following:

similarity(wi, wj) = cosineDistance(−→wi,−→wj) =
−→wi · −→wj

‖−→wi‖ · ‖−→wj‖
(1)

As discussed in the Introduction section, we aim to evaluate the representa-
tion capability of WEs within scientific text using word similarities as a pivot to
stabilise the embedding hyper-parameters.

Skip-Gram model uses a target word w to predict the surrounding window of
context words. It weights nearby context words more heavily than more distant
context words [11, 12]. Results of word2vec training are sensitive to parametri-
sation. To this end, the aim of hyper-parameter optimisation is to find a tuple
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of hyper-parameters that yields an optimal model minimising the loss func-
tion for negative samples (w, c̄) where c̄ does not necessarily appear in the
context of w. This loss function L is defined as follows: L = −log(σ(−→w ·
−→c )) −

∑n
k=1 log(σ(−−→w · −→̄ck)) where σ is the sigmoid function. For each pair

(w, c), the Skip-Gram model forms n negative pairs (w, c̄k)k∈{1,···,n} by sam-
pling words that are more frequent than some threshold θ with a probability:

Prob(c) = freq(c)−θ
freq(c) −

√
θ

freq(c) where freq(c) represents the frequency of the

word c.
word2vec has different hyper-parameters, but sub-sampling that automati-

cally affects the corpus size, vector dimensionality and context window are de-
scribed by the developers of word2vec [11, 12] as the most important ones for
achieving good results. Consequently, in this study we focus of these hyper-
parameters to produce a distributed representation of words in scientific text
and evaluate the quality of embeddings in a domain-specific vocabulary.

Sub-sampling: vocabulary size It has been proved in the literature [11, 12,
16] that word2vec embedding quality increases as the corpus size increases. This
is expected as longer corpus typically produce better statistics. Following on
from this premise, we aim to investigate the role of vocabulary size in generating
accurate embeddings for scientific text.

Unlike previous work that intuitively increments the vocabulary size by com-
bining corpus, we propose to use the same corpus trained in two different ways
that led to different vocabulary sizes. First, we train word2vec with unigrams.
Second, we train the model with bigrams by using word2phrase – defined by
Mikolov et al. [12] – that learns phrases by progressively joining adjacent pairs
of words with an ‘ ’ character. Additionally, we sub-sample the frequent words
on two steps which result into two different vocabulary sizes. Firstly, we remove
all stop words and highly frequent academic words appearing in all publications.
Secondly, we restrict the vocabulary to words that occur at least 10 times in
the scientific corpus. According to Mikolov et al. [11], this sampling has proved
to work well in practice. It accelerates learning and significantly improves the
accuracy of the learnt embedding vectors, as it will be shown in Section 4.

Vector dimensionality and context window The optimisation of vector
dimensionality and context window parameters is supposed to be very crucial
to achieve accurate results. The quality of embeddings increases with higher di-
mensionality under the assumption that it increases together with the amount of
training data. But after reaching some point, the marginal gain will diminish [11].

The window size hyper-parameter corresponds to the span of words in the
text that is taken into account, backwards and forwards when iterating through
the words during model training. Similarly to the vector dimensionality hyper-
parameter, the larger window size results in more topicality. Nevertheless, after
a certain point, the marginal gain decreases.

Due to the sensitivity of these hyper-parameters and since hyper- parametri-
sation is generally known to be data and task dependent [4], we expect optimal
hyper-parameter setting to be different for scientific text. Thus, we propose to
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study the marginal importance of word2vec hyper-parameters defined above us-
ing the stability of k-nearest neighbors of word vectors based on word similarities
computed with cosine distance (Equation (1)) between embedding vectors.

k-NN stability for word2vec hyper-parametrisation Stability is an impor-
tant aspect of a learning algorithm. It has been widely used in clustering prob-
lems [18] to assess the quality of a clustering algorithm. Also, it has been applied
in high-dimensional regression [15] for training parameter selection. Analogously
and considering that word embedding presents high-dimensional word represen-
tations that led to word clusters, we propose to apply the k-nearest neighbors to
tune the hyper-parameters of word2vec. k-NN is used to cluster similar words
based on their cosine similarities.

The basic idea of word embedding stability is the following: embedding qual-
ity inevitably depends on tuning hyper-parameters defined previously, namely
vector dimensionality and context window. If we choose accurate values of the
tuning hyper-parameters, then we expect that the k similar words to a target
word w from different embeddings should be similar. Specifically, we propose
to fix one hyper-parameter, tune the second one by trying different values and
training the model for each value. After each training, word similarities are com-
puted and k-nearest neighbors words are defined. The k-NN stability is defined
as a simple overlap rate of similar words resulted from two embeddings with
different settings.

stability =
SwEh
∩ SwEh′

k
× 100 (2)

where SEh
and SEh′ are two sets of similar words to a target word w resulted

respectively from two embeddings Eh and Eh′ with different hyper-parameter
values. k is the number of nearest neighbors to w given by the cosine similarity.
In this study, k is set to 5. This choice is motivated by our aim to keep the
word similarities as fine-grained as possible in order to evaluate the quality of
word2vec within scientific text.

3.2 Scientific linguistic regularities and analogies

word2vec embeddings gain their success from their ability to capture syntactic
and semantic language regularities. Surprisingly, they characterise each relation-
ship by a relation-specific vector offset [13]. For example, the famous analogy
“king is to queen as man is to woman” is encoded in the vector space by the
vector arithmetic “king - man + woman = queen”. More specifically, the word
analogy task aims at answering the question “man is to woman as king is to — ?”
given the two pairs of words that share a relation (“man:woman”, “king:queen”)
where the identity of the fourth word (“queen”) is hidden.

Motivated by this ability of word2vec to identify relationships and capture
analogies in textual data without any prior domain knowledge, we evaluate this
ability in a domain-specific corpus, namely, scientific publications. Our aim is to
assess as to what extent word2vec is able to correctly answer analogical questions
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in scientific text given the complexity of scientific language comparing to natural
language.

The scientific word analogy we adopt is to query for scientific regularities
captured in the vector model through simple vector subtraction and addition.
More formally, given two pairs of words (a : b′) and (b : b′), our aim is to answer
the question ( a is to a’ as b is to —?). Thus, the vector of the hidden word
b′ will be the vector (a′ − a + b), suggesting that the analogy question can be
solved by optimising:

arg max
b′∈W

(similarity(b′, a′ − a+ b)) (3)

where W is the vocabulary and similarity is the cosine similarity measure defined
in Equation (1).

This task is challenging for scientific language as no gold standard is available
to evaluate the efficiency of word2vec in identifying linguistic regularities on un-
structured scientific text, unlike existing work that use either the gold standard
defined by Mikolov et al. [13] for general natural language tasks or predefined
ontologies like NDF-RT ontology4 for medical domain. To overcome this prob-
lem, we manually curate relationships related to machine learning research area
from the ACM hierarchy and the Wikipedia Machine Learning outline, and we
define a test set of analogy questions as semantic questions following the rela-
tion described above. The semantic questions are formed based on the hierarchi-
cal tree structure of both the ACM and Wikipedia outline that led to different
“Parents-Children” relationships. For example, “supervised learning” and “unsu-
pervised learning” are considered two parents for the two children “classification”
and “clustering” respectively. Accordingly, the analogical question should be
“classification to supervised learning is as clustering to —?” To correctly answer
the question, the model should identify the missing term with a correspondence
counted as a correct match by finding the word “unsupervised learning” whose
vector representation is closest to the vector (“supervised learning” - “classifi-
cation” + “clustering”) according to the cosine similarity. Recall that for the
specificity and complexity of scientific language and respecting the interchange-
ability of scientific terms, instead of using the exact correspondence as the cor-
rect match, we adopt an approximate correspondence that considers an answer
as correct if it belongs to the 10 nearest words given by cosine similarity in or-
der to guarantee the applicability of our embeddings in scientific text. This is
applied only for semantic questions. However, for syntactic questions, we adopt
an exact correspondence. For example, the syntactic question “classifier to clas-
sifiers is as forest to —?” is considered correctly answered if and only if the
word “forests” is the closest to the vector (“classifiers” - “classifier” + “forest”)
according to the cosine similarity.

In addition to the semantic questions manually curated from ACM and
Wikipedia, we define syntactic questions which are typically analogies about
verb tenses/forms and singular/plural forms of nouns, in order to test the abil-
ity of word2vec to capture the syntactic regularities of scientific language.

4 National Drug File -Reference Terminology
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4 Experimental Evaluation

4.1 NIPS dataset: Description and Vocabulary Setup
To evaluate word embedding for scientific language, we used a subset of 2789
papers in the area of Machine Learning, published in NIPS (Neural Information
Processing Systems) between 2012 and 2017. The dataset is publicly available
on Kaggle5 and contains information about papers, authors and the relation
papers-authors. We used the papers database that defines six features for each
paper: the id, the title, the event type, i.e., poster, oral or spotlight presentation,
the PDF name, the abstract and the paper text.

The dataset needs to be pre-processed before being used for training the
embedding model, since word2vec is very sensitive to vocabulary granularities
like punctuation, lowercase, stop words, etc. which have a direct impact on the
quality of generated word embeddings. After removing all punctuations and
lowercasing the corpus, the pre-processing has the following steps:

(i) We removed stop-words using Stanford NLP stop word list6 enriched by
a list of 170 academic stop words that we defined from common academic vo-
cabulary like “introduction, abstract, table, figure, etc.”, (ii) We constructed bag
of words where words are either unigrams used for standard word2vec train-
ing or bigrams used for word2phrase learning. The two settings resulted into
different vocabulary sizes |Wunigrams| = 35k and |Wbigrams| = 96.7k, and (iii)
We discarded less frequent words that appear less than 10 times in the vocab-
ulary in order to accelerate learning. This led to a different vocabulary size
|Wdownsampled| = 57k.

4.2 word2vec training details: Hyper-parameters optimisation
As described in Section 3, k-NN stability was used to optimise the word2vec
hyper-parameters, namely, vector dimensionality and context window size.

Vector dimensionality. k-NN stability, with k = 5, was used to evaluate
the influence of the vector dimensionality hyper-parameter using vector models
generated with 20, 30, 50, 100, 150, 200, 300 and 500 dimensions, skip-gram
architecture and three different vocabulary sizes as described in Section 4.1.

In Table 1, we show the results of k-NN stability values that vary vector length
and vocabulary size. word2vec model was initially learned with 20-vector dimen-
sion. This trained model was used as a seed setting to start computing k-NN
stability. More specifically, k-NN stability at 30-vector dimension was computed
based on the 20-vector dimension following Equation (3) and respectively each
k-NN stability value is computed based on the results generated by the previous
dimensionality setting. The reported results correspond to the stability average
of the top 100 frequent words (unigrams and bigrams) in the vocabulary.

It has been clearly seen from the three vocabulary sizes that the stability
increases considerably as the dimensionality increases. But after reaching some

5 https://www.kaggle.com/benhamner/nips-papers/data
6 github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns

/surface/stopwords.txt
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point, it diminishes or becomes slightly invariant. For instance, for the unigram
vocabulary, k-NN stability reached 67% with 100-dimension vector performing
good results comparing to 30 and 50 dimensions. However, it remains basically
steady with a slight increase of 1% at 200-dimension. This increase is not remark-
able enough to consider 200-dimension better than 100-dimension since a higher
dimension of the vectors implies a bigger size of the resulting vector model and
more training time. Then, we notice that the stability decreases with larger di-
mensions (300 and 500). Consequently, these results suggest that 100-dimension
vector consistently yielded better stability with unigrams vocabulary.

Similarly, bigrams vocabulary shows a substantial improvement in k-NN sta-
bility from 30-dimension to 200-dimension with 68%. Then, it increases slightly
with 300 and 500 dimensions with a 1% gain. Hence, for this vocabulary, we can
fix the optimal dimensionality value to 200. Interestingly, the stability results
of the unigram vocabulary and the bigram vocabulary confirm the hypothesis
that vector dimensionality and the amount of training data should be increased
together to have better results. As a matter of fact, 100 has shown to be the
better vector length for unigram vocabulary of 35k size, while 200 is better for
bigram vocabulary of 96.7k size. On the other hand, by looking at the stability

Table 1: k-NN stability for vector dimensionality optimisation
D30 D50 D100 D150 D200 D300 D500

unigrams 42% 53% 67% 67% 68% 66% 65%

bigrams 51% 47% 56% 64% 68% 70% 71%

downsampled bigrams 58% 61% 65% 73% 81% n/a n/a

values at high dimensions (300 and 500), we noticed the excess in stability of
bigrams vocabulary comparing with unigrams vocabulary. This is comprehensi-
bly justified by three facts: (i) this confirms the hypothesis that word2vec model
quality increases as corpus size increases [14], (ii) this proves that n-gram en-
hanced skip-gram model performed better than regular skip-gram based only
on unigrams, (iii) this confirms the specificity of scientific language and mainly
the Computer Science area that contains an important number of bigrams like
“machine-learning”, “artificial-intelligence”, etc.

Based on these findings, mainly (i) and (ii), we ignored the 300 and 500 di-
mensions for training the downsampled vocabulary which is resulted from down-
sampling the bigram vocabulary as the vocabulary size is obviously smaller (57k).
It is worthy to note that this downsampling improved the training speed and
most importantly made the k-NN stability values more important with 81% at
200-dimension while it was 68% with bigram vocabulary at the same dimension.
This was expected as downsampling makes the word representations significantly
more accurate [12].

Overall, the k-NN stability results obtained through vector dimensionality
optimisation show that bigram enhanced skip-gram model performs better with
scientific language, 200 is the optimal vector length for the used dataset and the
downsampled bigram vocabulary significantly outperforms the two other vocabu-
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laries in term of k-NN stability and computation time. Note that for all word2vec
training rounds with different vocabularies and different vector dimensionalities,
the hyper-parameter window context was set to 5, the default window size value
provided by gensim7.

Window context Similarly to the setting followed to optimise vector- dimen-
sionality, k-NN stability was adopted to find the optimal window size for the
used scientific corpus in this study. Building on previous results, the trained
vocabulary used is the downsampled vocabulary and the vector dimensionality
is 200. word2vec embeddings were generated with skip-gram model and 7 dif-
ferent window sizes ranging from 2 to 8. word2vec was initially trained with
a context window of size 2 as a starting point. Then k-NN stability was com-
puted respectively based on the previous embedding results. Figure 1 presents
the values of k-NN stability that vary context window size. It is clearly seen
from the figure that the optimal window size is 6 with a stability of 70% for the
used scientific corpus. Our results confirm the fact that larger window size re-
sults in more topicality and accordingly better accuracy of word representations.
However, the marginal gain decreases after a certain point. Overall, our findings

Fig. 1: k-NN stability for context window size optimisation

show that the combination of 200-vector dimension with context window of size
6 and downsampled bigram vocabulary proved to be the best configuration of
skip-gram word2vec model. Additionally, the proposed k-NN stability – based on
word similarity as embedding properties, that we adopted in this study to opti-
mise the word2vec hyper-parameters for scientific text – confirms all hypotheses
related to word embeddings supported in the literature and even goes beyond
them by giving a standard way to be sure about the stability of results.

4.3 Analogy evaluation

As described in section 3.2, the word analogy task attempts to query for scien-
tific regularities captured in the embedding model – trained with the previously
optimised hyper-parameters – through simple vector subtraction and addition.

The analogy dataset we created contains 1991 analogical questions, divided
into 1871semantic questions and 120 syntactic questions. The semantic questions

7 https://radimrehurek.com/gensim/
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were manually curated from ACM hierarchy (406 questions) and Wikipedia out-
line of Machine Learning (1465 question). The number of relationships generated
from Wikipedia are by far greater than the ACM counterpart. This justified by
the fact that ACM is more coarse-grained as it covers all the Computer Science
area, while the Wikipedia outline is a fine-grained hierarchy generated specif-
ically for Machine Learning with very detailed algorithms and applications of
the area. We remove from the analogy dataset all questions that contain words
that do not exist in our vocabulary in order to fairly evaluate embedding analo-
gies. This resulted into 1573 questions (322 ACM questions and 1251 Wikipedia
questions). Similarly to semantic questions, syntactic questions were a manually
generated subset that we created from the scientific text using typical analogies
about verb tenses/forms and singular/plural forms of nouns, in order to test the
ability of word2vec to capture the syntactic regularities of scientific language.
The number of questions is relatively small due to our aim to only preliminarily
test the word2vec ability to cover syntactic scientific regularities that do not
differ from natural language, while the semantic questions do. That is why we
focus more on these latter. Our analogy dataset is available online for more
reproducibility and any further use by researchers8.

For evaluating our embeddings in capturing linguistic regularities and analo-
gies, we performed both quantitative and qualitative analysis.

Quantitative analysis In this analysis, we empirically evaluate our proposed
bigram-enhanced word2vec model trained with hyper-parameters experimen-
tally tuned. Our goal of these experiments is two-fold. First, we aim to evaluate
whether our hyper-parametrisation method of word2vec is useful for resulting
embeddings able to cover linguistic regularities and analogies within scientific
text. Second, we aim to assess whether word embeddings are worth using in
domain-specific vocabularies such as the scientific one.

To do so, we computed the accuracy of word embeddings to answer the se-
mantic and syntactic questions following the methodology detailed in Section 3.2.
For semantic questions, 50 out of 322 ACM questions were correctly answered
with an accuracy of 15.52% while 75 Wikipedia questions were correct out of a
subset of 413 questions from the 1251 questions in the dataset, with an accuracy
of 18%. The difference in accuracy between ACM and Wikipedia questions was
expected as Wikipedia relationships were more detailed and covered Machine
Learning names of algorithms and applications that widely occur in the vocab-
ulary, while ACM was more coarse-grained. Although, the accuracy of both of
them is very low. This could be justified by three different reasons. First, the
corpus size we used is relatively small with only 57k while it has been shown
that word2vec quality increases as corpus size increases. For instance, Mikolov
et al. [12] trained their model on a corpus of 1B and obtained a semantic accu-
racy of 61%. Second, the used NIPS dataset is about very recent publications
(between 2012 and 2017). So that, the vocabulary is more probably about re-
cent topics and accordingly recent Machine Learning vocabulary, i.e., names of
algorithms and applications might gain more frequencies in the text than the

8 https://github.com/AmnaKRDB/Machine-Learning-Analogies
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(a) r1 vector offset (b) r2 vector offset

Fig. 2: Vector offsets examples of Machine Learning semantic relationships

old ones, which in turn would highly affect the word representations, at the time
when ACM hierarchy or Wikipedia outline are time-independent and contain
generic Machine Learning vocabulary. Third, the scientific language is complex
and does not contain explicit and accurate relationships as natural languages
does. For instance, ‘accuracy’ and ‘error rate’ in the machine learning literature
are used in similar contexts, despite having opposite semantics.

For all these reasons, the semantic accuracy of word embedding within the
used scientific corpus is considered modest. But, it is promising as it is inter-
pretable and improvable on one hand. On the other hand, it reveals challenges
about scientific word embedding. More specifically, it is worth investigating the
convergence and divergence of some Machine Learning algorithms and applica-
tions over time which consistently affects the word representations. Interestingly,
it is challenging to find a suitable way to train and evaluate word embeddings
in such dynamic vocabularies.

For syntactic questions, we computed the accuracy across the 120 questions
we defined. Interestingly, we found 82 questions out of 120 correctly answered
with an accuracy of 68%. This result is interesting despite the small size of our
vocabulary. It outperforms the syntactic accuracies of Mikolov etal. [12] which
reached 61% with 1B vocabulary and 300-dimension vector.

Qualitative analysis The embedding we learned revealed interesting patterns
in Machine Learning vocabulary through relation-specific vector offsets. For in-
stance, it captured different semantic relationships mapping Machine Learning
techniques and related algorithms such as r1“unsupervised learning is to kmeans
as supervised learning is to knn”, and r1“classification is to knn as regression is
to linear regression”. We illustrate these patterns by plotting word vector rep-
resentations with t-distributed stochastic neighbor embedding (t-SNE) [9] as a
qualitative way to evaluate our embeddings following Yao et al. [21]. Figure 2a
and Figure 2b show the t-SNE representations of r1 and r2 respectively.
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In addition to the t-SNE visualisation used to qualitatively evaluate the ac-
curacy of our embeddings to detect interesting patterns in the scientific text,
we suggested to evaluate the capability of our model to capture the hierar-
chy structure “Parent-Children”. To do so, we computed and compared simi-
larities between every word “parent” and the corresponding words “children”.
The model is considered accurate if the distances are approximately equal.
For instance, the distances between the parent “supervised learning” and its
children {“classification”, “regression”, “ranking”, “cost sensitive”} are approx-
imately equal with slight differences as presented here respectively (0.369; 0.241;
0.173; 0.223) similarly to the parent “unsupervised learning” and its children
{“clustering”, “dimensionality reduction”, “topic modeling”, “anomaly detection”,
“mixture modeling”, “source separation”} with approximately similar distances
(0.259; 0.307; 0.237; 0.145; 0.145; 0.135; 0.253).

Similarly, we followed the same reasoning to compare the average distances
between “Parents-Children”. The model is accurate if the average distance be-
tween every parent and its children is similar to others parents’ average distances.
With respect to the example above, we computed the average distance of the par-
ents “supervised learning” and “unsupervised learning” with their corresponding
children. And interestingly, we found that the average distances are respectively
equal to 0.25 and 0.22 which proves the accuracy of our embedding to detect
granularities of scientific text, not only the semantic relationships but also the
hierarchical structure.

5 Conclusions and future work
Despite their popularity in overwhelming state of the art performance in se-
mantic similarity and analogy tasks, word embeddings are still treated as black
boxes and uniformly use the hyper-parameters without a methodological setting.
From this perspective and aiming to provide a precise hypotheses synthesis, this
work addressed word embedding hyper-parametrisation for domain-specific use,
namely the scientific domain. By proposing the stability of k-nearest neighbors
of word vectors, we were able to methodologically set the hyper-parameters suit-
able for scientific text. Our method has been validated quantitatively and qual-
itatively on semantic and syntactic analogies curated from ACM and Wikipedia
as gold standard and has proved its effectiveness.

As a short term objective, we plan to apply our method on larger scientific vo-
cabulary, then generalise it on different research areas. For long term objectives,
we plan to investigate more settings for word embeddings within the scientific
area, aiming to detect trendy and evolving patterns by performing time-aware
vocabulary augmentation and sliding windows.
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