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Abstract Insider threat detection is an emergent concern for academia, industries,
and governments due to the growing number of insider incidents in recent years.
The continuous streaming of unbounded data coming from various sources in an
organisation, typically in a high velocity, leads to a typical Big Data computational
problem. The malicious insider threat refers to anomalous behaviour(s) (outliers)
that deviate from the normal baseline of a data stream. The absence of previously
logged activities executed by users shapes the insider threat detection mechanism
into an unsupervised anomaly detection approach over a data stream. A common
shortcoming in the existing data mining approaches to detect insider threats is the
high number of false alarms/positives (FPs). To handle the big data issue and to ad-
dress the shortcoming, we propose a streaming anomaly detection approach, namely
Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS),
for insider threat detection. E-RAIDS learns an ensemble of p established outlier
detection techniques (Micro-cluster-based Continuous Outlier Detection –MCOD–
or Anytime Outlier Detection –AnyOut–) which employ clustering over continu-
ous data streams. Each model of the p models learns from a random feature sub-
space to detect local outliers, which might not be detected over the whole feature
space. E-RAIDS introduces an aggregate component that combines the results from
the p feature subspaces, in order to confirm whether to generate an alarm at each
window iteration. The merit of E-RAIDS is that it defines a survival factor and
a vote factor to address the shortcoming of high number of FPs. Experiments on
E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets in-
cluding malicious insider threat scenarios generated at Carnegie Mellon University,
to test the effectiveness of voting feature subspaces, and the capability to detect
(more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-
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MCOD reports the highest F1 measure and less number of false alarm=0 compared
to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider
threats in real-time.

1 Introduction

A data stream is a continuous acquisition of data generated from various source(s) in
a dynamic environment, typically in a high velocity, leading to accumulation of large
volumes of data. This characterisation leads to a typical Big Data computational
problem. The dynamic nature of a data stream imposes a change in the data over
time. In real-time data streaming, a change refers to an anomalous data that deviates
from the normal baseline (e.g. credit card fraud, network intrusion, cancer, etc.).
The ultimate aim of such stream mining problems is to detect anomalous data in
real-time.

The absence of prior knowledge (no historical database) is often entangled to
a real-time stream mining problem. The anomaly detection system is required to
employ unsupervised learning to construct an adaptive model that continuously (1)
updates with new acquired data, and (2) detects anomalous data in real-time. The
system usually acquires data as segments and identifies the outliers in the segment as
anomalous. An outlier is an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism [22]. To
detect outliers in a stream mining problem, several approaches have been proposed,
nevertheless, unsupervised clustering have been successfully applied to identify the
patterns in the data and spot outliers [3]. In this work, we select the insider threat
problem as a real-world application to detect malicious insider threats (outliers) in
real-time. With the absence of labelled data (no previously logged activities exe-
cuted by users in an organisation), the insider threat problem poses a challenging
stream mining problem.

Insider threat detection is an emergent concern for academia, industries, and gov-
ernments due to the growing number of insider incidents in recent years. An insider
is a current or former employee, contractor, or business partner of an organisation
who has authorised access to the network, system, or data (e.g. trade secrets, organ-
isation plans, and intellectual property) [34]. Malicious insider threats are attributed
to insiders who exploit their privileges with the intention to compromise the con-
fidentiality, integrity, or availability of the system or data. According to the 2011
Cybersecurity Watch Survey [40], 21% of attacks are attributed to insiders in 2011,
while 58% are attributed to outsiders. However, 33% of the respondents inspect the
insider attacks to be more costly, compared to 51% in 2010. For instance, Harold
Martin, a former top-security contractor at the National Security Agency (NSA),
was recently convicted for stealing around 500 million pages of national defence
information over the course of 20 years [37]. Earlier in 2013, Snowden’s attack was
reported as the biggest intelligence leakage in the US [42]. Edward Snowden, a for-
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Fig. 1: Continuous data stream of behaviours.

mer contractor to the NSA, disclosed 1.7 million classified documents to the mass
media.

The challenge of the insider threat detection problem lies in the variety of ma-
licious insider threats in the data sets. Each malicious insider threat is devised of a
complex pattern of anomalous behaviours carried out by a malicious insider, thus
making it difficult to detect all anomalous behaviours per threat. Analytically, some
anomalous instances (behaviours) which exist in a dense area of normal instances
have a high similarity to normal instances. These anomalous instances are difficult
to detect and may be missed by the detection system.

Based on the challenge of the problem, we formulate this work with the aim to
detect any-behaviour-all-threat; it is sufficient to detect any anomalous behaviour
in all malicious insider threats. In other words, we can hunt a malicious insider threat
by at least detecting one anomalous behaviour among the anomalous behaviours as-
sociated to this threat. We call this approach threat hunting. The design of the pro-
posed approach with such a relaxing condition contributes in reducing the frequent
false alarms.

Fig. 1 illustrates a continuous data stream of behaviours (instances) including
normal behaviours and anomalous behaviours. Each arrow denotes a behaviour (in-
stance) X t executed by a user at a specific period of time. Let the blue arrows rep-
resent the normal behaviours. Let the green arrows and the red arrows represent
the anomalous behaviours which belong to the malicious insider threats T1 and T2
respectively. To detect a malicious insider threat T1, it is required to detect any
green behaviour X t . Hence, it is essential to detect any of the anomalous behaviours
per malicious insider threat; the aim to detect any-behaviour-all-threat. Note that
the proposed approach may detect more than one behaviour which belong to a
malicious insider threat, nevertheless, the ultimate aim is to detect one anomalous
behaviour per threat.

Based on the above argument, the feature space is defined as a set of features
which describe the users behaviour. Each feature is extracted from the data set logs
to represent a users behaviour related to a particular activity. A feature vector (i.e.
instance, behaviour) represent a set of feature values (i.e. actions, commands) eval-
uated at a period of time. A more detailed description about the feature space is
provided in Section 3.
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Several machine learning approaches have been suggested to address the insider
threat problem. However, these approaches still suffer from a high number of false
alarms. A recent real-time anomaly detection system, named RADISH, based on k
Nearest Neighbours (k-NN) is proposed by Bose et al. [5]. The experimental results
showed that 92% of the alarms flagged for malicious behaviour are actually benign
(False Positives –FPs–).

To address the shortcoming of the high number of false alarms, we propose
a streaming anomaly detection approach, namely Ensemble of Random subspace
Anomaly detectors In Data Streams (E-RAIDS). We presented a preliminary version
of E-RAIDS (coined RandSubOut) in [21]. E-RAIDS is built on the top of estab-
lished outlier detection techniques (Micro-cluster-based Continuous Outlier Detec-
tion –MCOD– or Anytime Outlier Detection –AnyOut–) which employ clustering
over continuous data streams. The merit of E-RAIDS is its capability to detect ma-
licious insider threats in real time (based on the definition of real-time in terms of
window iterations as discussed in section 4).

E-RAIDS learns an ensemble of p outlier detection techniques (either MCOD
or AnyOut), such that each model of the p models learns on a random feature sub-
space. The acquired data is accumulated in a temporary buffer of predefined capac-
ity (equals to a fixed window size). So that, at each window iteration, each of the
p models in the ensemble is updated with the acquired data, and local outliers are
identified in the corresponding feature subspace.

Let p=n + 1 denote the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). In this way,
E-RAIDS is capable to detect local outliers in the n feature pairs, as well as global
outliers in the whole feature space. Hence, E-RAIDS employs the idea of random
feature subspaces to detect local outlier(s) (anomalous behaviour(s)) which might
not be detected over the whole feature space. These anomalous behaviour(s) might
refer to malicious insider threat(s).

E-RAIDS introduces two factors: (1) a survival factor v fs, which confirms
whether a subspace votes for an alarm, if outlier(s) survive for a v fs number of win-
dow iterations; and (2) a vote factor v fe, which confirms whether an alarm should be
flagged, if a v fe number of subspaces in the ensemble vote for an alarm. E-RAIDS
employs an aggregate component that aggregates the results from the p feature sub-
spaces, in order to decide whether to generate an alarm. The rationale behind this is
to reduce the number of false alarms.

The main contributions of this chapter are summarised as follows:

• an ensemble approach on random feature subspaces to detect local outliers (ma-
licious insider threats), which would not be detected over the whole feature
space;
• a survival factor that confirms whether outlier(s) on a feature subspace survive

for a number of window iterations, to control the vote of a feature subspace;
• an aggregate component with a vote factor to confirm whether to generate an

alarm, to address the shortcoming of high number of FPs;
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• a thorough performance evaluation of E-RAIDS-MCOD and E-RAIDS-AnyOut,
validating the effectiveness of voting feature subspaces, and the capability to de-
tect (more than one)-behaviour-all-threat detection (Hypothesis 2) in real-time
(Hypothesis 1).

E-RAIDS extends the preliminary version RandSubOut [21], where it upgrades
the selection of the set of outliers (anomalous behaviours) identified at a window
iteration over a feature subspace to improve the detection performance of malicious
insider threats over the whole ensemble. This is later described in Section 3.3.1.
Unlike RandSubOut, we evaluate E-RAIDS on community data sets such that each
community is richer with malicious insider threats which map to a variety of scenar-
ios. Moreover, E-RAIDS is evaluated, not only in terms of the number of detected
threats and FP Alarms, however, in terms of (1) F1 measure (2) voting feature sub-
spaces, (3) real time anomaly detection, and (4) the detection of (more than One)-
behaviour-all-threat.

The rest of this chapter is organised as follows. Sect. 2 reviews the techniques
which utilised clustering to detect outliers, and the stream mining approaches pro-
posed for insider threat detection. Sect. 3 presents the proposed streaming anomaly
detection approach, namely E-RAIDS, for insider threat detection. Experiments and
results are discussed in Sect. 4. Finally, Sect. 5 summarises the chapter and suggests
future work.

2 Related Work

The absence of labelled data (i.e. low data maturity) reveals that an organisation
has no previously logged activities executed by users (no historical database). We
address the absence of prior knowledge using unsupervised streaming anomaly de-
tection built on top of established outlier detection techniques.

Clustering have been successfully applied to identify the patterns of the data
for outlier detection [3]. The continuous acquisition of data generated from various
sources defines the streaming environment of the insider threat problem. Several
clustering methods have been proposed to handle the streaming environment. The
state-of-the-art presents two primitive clustering methods: Balanced Iterative Re-
ducing and Clustering using Hierarchies (BIRCH) [46], and CluStream [1].

BIRCH is an incremental hierarchical clustering method which was first pro-
posed for very large data sets. BIRCH incrementally and dynamically clusters ac-
quired data instances. It maintains a tree of cluster features (information about clus-
ters) which is updated in an iterative fashion [20]. Thereafter, BIRCH was applied
to data stream clustering.

BIRCH was the first to introduce the concepts of micro- and macro- clusters [25].
CluStream is a data stream clustering method that employed those two concepts
for the clustering process: online micro-clustering, and offline macro-clustering. In
the online phase, CluStream scans the acquired data instances and creates micro-
clusters in a single pass to handle the big (unbounded) data stream. In the offline
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phase, CluStream only utilises the micro-clusters and re-clusters into macro-clusters
[20].

From BIRCH to CluStream, the concept of data stream clustering is applied,
despite the fact that BIRCH includes incremental processing of data instances. In-
cremental clustering processes one data instance at a time and maintain a predefined
data structure (i.e. model) that is incrementally updated without the need for model
reconstruction [39]. In fact, many incremental methods predate the data stream min-
ing methods. The intrinsic nature of data streams requires methods which implement
incremental processing of data instances, in order to handle the resource limitations
(i.e. time and memory) [39]. But unlike earlier incremental clustering methods, data
stream clustering methods require a more efficient time complexity to cope with
high data rates [27]. Indeed, the literature stresses the importance of considering the
inherent time element in data streams [39]. For instance, a typical data stream clus-
tering method exhibits the temporal aspect of cluster tracking [39]. The dynamic
behaviour of cluster over a data stream manifests in the evolving of existing clusters
over time; the emergence of new clusters; and the removal of clusters based on a
time stamp and/or size. Those cluster updates must be performed on the data struc-
ture (i.e. model) very efficiently [27]. Hence, the data stream clustering methods are
not only incremental, but are also fast in terms of the inherent temporal aspects.

In this work, data stream clustering is used to underpin the outlier detection tech-
niques for real-time anomaly detection. In the insider threat problem, the tempo-
ral aspect is substantial to consider, in order to detect malicious insider threats in
real-time (based on the definition of real-time in terms of window iterations as dis-
cussed in Section 4). Hence, data stream clustering methods are more adequate to
be utilised in this work than typical incremental clustering methods.

In the following we review the techniques which utilised clustering to detect out-
liers. Thereafter, we shed light on two outlier detection techniques (MCOD and
AnyOut) which employ data stream clustering. Those two techniques are later
utilised in the proposed framework.

We also review the streaming anomaly detection approaches proposed for insider
threat detection.

2.1 Clustering for Outlier Detection

It is important to distinguish our objective – to optimise outlier detection – from
that of a benchmark of clustering methods developed to optimise clustering (such as
DBSCAN [10], BIRCH [46]). The outliers in these methods [10, 46] are referred to
as noise, where they are usually tolerated or ignored. However, in our work, we refer
to outliers as anomalous (suspicious) behaviour(s) which may correlate to malicious
insider threats. Therefore, clustering is utilised to optimise the detection of outliers.

On the other hand, a benchmark of clustering methods to optimise outlier detec-
tion (such as LOF [6], CBLOF [23]) are developed. Breunig et al. [6] introduced the
concept of Local Outlier Factor (LOF) to determine the degree of outlierness of an
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instance using density-based clustering. The locality of instance (local density) is
estimated by the distance to its k nearest neighbours. Thus, the LOF of an instance
located in a dense cluster is close to 1, while lower LOF is assigned for other in-
stances. He et al. [23] present a measure, called Cluster-based Local Outlier Factor
(CBLOF), to identify the physical significance of an outlier using similarity func-
tion. The CBLOF of an instance is determined by (1) the distance to the its nearest
cluster (if it belongs to a small cluster), or (2) the distance to its cluster (if it belongs
to a large cluster).

However, the aforementioned methods do not tackle outlier detection in continu-
ous data streams. MCOD [27] and AnyOut [3] are two established outlier detection
techniques, which employ data stream clustering in continuous data streams. MCOD
and AnyOut are utilised as building block clustering techniques for the proposed E-
RAIDS approach. A detailed description and formalisation for these techniques is
found in Section 3.2.

2.2 Streaming Anomaly Detection for Insider Threat Detection

Few approaches have utilised streaming anomaly detection to detect insider threats
[35, 36, 41, 45] with no prior knowledge. We give a brief description for these
approaches in the following.

Among the emerging interest in deep learning, Tuor et al. [41] present a prelim-
inary effort to utilise deep learning in an online unsupervised approach to detect
anomalous network activity in real-time. The authors presented two models: a Deep
Neural Network model (DNN) which is trained on each acquired instance only once;
and a Recurrent Neural Network (RNN) which learns an RNN per user such that the
weights are shared among all users, however, the hidden states are trained per user.

Zargar et al. [45] introduce a Zero-Knowledge Anomaly-Based Behavioural
Analysis Method, namely XABA, that learns each user’s behaviour from raw logs
and network traffic in real-time. XABA is implemented on a big-stream platform
without predefined or preprocessed activity logs, to handle high rates of network
sessions. The authors indicated that XABA reports a low number of FPs, when
evaluated on a real traitor scenario.

One of the remarkable approaches is an ensemble of one class SVM (ocSVM),
namely Ensemble based Insider Threat (EIT), proposed by Parveen et al. [36]. The
authors proposed an ensemble approach, based on static ocSVM learners, to model
a continuous data stream of data chunks (i.e. daily logs). The EIT maintains an en-
semble of a k predefined number of models M, where the ensemble is continuously
updated at each day session upon the learning of a new model Ms. The EIT selects
the best k−1 models from the k models, having the minimum prediction error over
the data chunk Cs, and appends the new model Ms. The results show that ensemble-
ocSVM outperforms ocSVM, where it reports a higher accuracy and almost half
the number of FP. The authors extended their work in a future paper [35], where
the ensemble approach is applied to unsupervised Graph-Based Anomaly Detection
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(GBAD). The results show that ensemble-ocSVM outperforms the ensemble-GBAD
in terms of FP.

The above approaches have shown merit in addressing the insider threat detection
problem, however, as aforementioned, they do suffer from high false alarms. In this
book chapter, we utilise data stream clustering to detect outliers (malicious insider
threats), while reducing the number of false alarms.

3 Anomaly Detection in Data Streams for Insider Threat
Detection

This section identifies the feature space in the insider threat problem and the cat-
egories of the feature set extracted. It then describes and formalises established
continuous distance-based outlier detection techniques (MCOD and AnyOut). It
presents the proposed E-RAIDS for insider threat detection with a detailed descrip-
tion of the feature subspace anomaly detection and the aggregate component (en-
semble voting).

3.1 Insider Threat Feature Space

In this book chapter, we utilise the synthetic data sets, including a variety of ma-
licious insider threat scenarios, generated by Carnegie Mellon University (CMU-
CERT) [15]. The CMU-CERT data sets comprise system and network logs for the
activities carried out by users in an organisation over 18 months (e.g. logons, con-
necting removable devices, copying files, browsing websites, sending emails, etc.).
We extract a feature set from these logs in the CMU-CERT data sets according to
the literature [5, 29, 30]. This feature set allows us to assess the behaviour of users,
and compare it to the previous behaviour of the users or their community of users.
We extract each feature considering the evidence it would reveal about an undergo-
ing anomalous behaviour. For example, consider the feature logon after hours; this
feature if its values is greater than 1, it reveals an evidence of an unusual activity un-
dergoing after the official working hours. Thus, it contributes in the overall decision
of the system whether a malicious alarm should be flagged or not.

In the following, we give a more detailed description of the feature set used in
this work. We categorise the features into four groups with some examples of each.

• Frequency-based features: assess the frequency of an activity carried out by a
community of users over each session slot. (integer e.g. frequency of logon,
frequency of connecting devices);

• Time-based features: assess an activity carried out within the non-working
hours period of time. (integer e.g. logon after work hours, device usage after
work hours);
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• Boolean features: assess the presence/absence of an activity-related informa-
tion. ( f lag={0,1} e.g. non-empty email-bcc, a non-employee email recipient,
sensitive file extension);

• Attribute-based features: are more specialised features, which assess an activity
with respect to a particular attribute (feature) value. (integer e.g. browsing a
particular URL (job websites, WikiLeaks)); and

• Other features: assess the count of other activity-related information. (integer
e.g. number of email recipients, number of attachments to emails).

This feature set defines the feature space of the insider threat problem, and is
used to construct community behaviour profiles for users having the same role (e.g.
Salesman, IT admin). A community behaviour profile represents instances (i.e. vec-
tors of feature values) evaluated over session slots, where a session slot represents a
period of time from start time to end time. Each vector of feature values is extracted
from the behaviour logs of the community users during a session slot.

In this work, we define the session slot per four hours to find local anomalous
behaviour within a day which would not be detected per day. The rationale be-
hind choosing the session slot per four hours is that this period of time is long
enough to extract an instance (i.e. vector of feature values) which provides an ad-
equate evidence of anomalous behaviour. Thus, it supports the system to capture
the anomalous behaviours in feature space. If the session slot is chosen per min-
utes, for example, the extracted instances would lack the adequate evidence of the
occurrence of anomalous behaviour. On the other hand, if the session slot is cho-
sen per days/weeks, for example, the period of time will be too long to capture the
anomalous behaviour blurred among the normal behaviour in the extracted vector
of feature values.

After constructing the community behaviour profiles, we normalise each vector
of feature values (over a session slot) to the range [0,1], and associate it with a class
label {Normal,Anomalous}.

3.2 Background on Distance-based Outlier Detection Techniques

The state-of-the-art presents one of the most widely employed techniques for
anomaly detection, which are distance-based outlier detection techniques. Accord-
ing to the definition [26], an instance X t is an outlier, if there exists less than k
number of neighbours located at a distance at most r form X t .

In this work, we are interested in continuous outlier detection over a data stream,
where recent instances arrive and previous instances expire. The demo paper [14]
gives a comparison of four continuous distance-based outlier detection techniques:
STream OutlieRMiner (STORM) [2]; Abstract-C [44]; Continuous Outlier Detec-
tion (COD) [27]; and Micro-cluster-based Continuous Outlier Detection (MCOD)
[27]. COD and MCOD have O(n) space requirements, and they have a faster running
time than the exact algorithms of both [2] and [44]. Note that since all algorithms
are exact, they output the same outliers [14]. According to [14], COD and MCOD
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demonstrate a more efficient performance compared to STORM and Abstract-C in
terms of lower space and time requirements. Hence, the latter are excluded, but
not COD and MCOD. Furthermore, based on the experimental evaluation in [27],
MCOD outperforms COD over benchmark tested data sets. Hence, MCOD is se-
lected to be utilised as a base learner in the proposed E-RAIDS approach.

The state-of-the-art presents a further continuous distance-based outlier detection
technique, called Anytime Outlier Detection (AnyOut) [3]. However, AnyOut has
not been compared to the four techniques in the demo paper. We select MCOD and
AnyOut as base learners in E-RAIDS to compare their performance. It is worth to
note that the aforementioned distance-based outlier detection techniques are imple-
mented by the authors of [14] in the open-source tool for Massive Online Analysis
(MOA) [32].

In the following, a brief description of MCOD and AnyOut techniques is pro-
vided.

3.2.1 Micro-cluster-based Continuous Outlier Detection

Micro-cluster-based Continuous Outlier Detection (MCOD), an extension to Con-
tinuous Outlier Detection (COD), stems from the adoption of an event-based tech-
nique. The distinctive characteristic of MCOD is that it introduces the concept of
evolving micro-clusters to mitigate the need to evaluate the range query for each
acquired instance X t with respect to all the preceding active instances. Instead, it
evaluates the range queries with respect to the (fewer) centers of the micro-clusters.
The micro-clusters are defined as the regions that contain inliers exclusively (with
no overlapping). The micro-clustering is fully performed online [27].

Given that, the center mci of a micro-cluster MCi may or may not be an actual
instance X t ; the radius of MCi is set to r

2 , such that r is the distance parameter for
outlier detection; and the minimum capacity (size) of MCi is k+ 1. Below we give
a brief formalisation of MCOD.

Let k represent the number of neighbours parameter. Let PD represent the set of
instances that doesn’t belong to any micro-cluster.

The micro-clusters (i.e. centers of micro-clusters) in MCOD are determined as
described in [1]. In the initialisation step, seeds (with a random initial value) are
sampled with a probability proportional to the number of instances in a given micro-
cluster. The corresponding seed represents the centroid of that micro-cluster. In later
iterations, the center mci is the weighted centroid of the micro-cluster MCi.

• Step 1: For each acquired instance X t , MCOD finds (1) the nearest micro-cluster
MCi, whose center mci is the nearest to it, and (2) the set of micro-cluster(s) R,
whose centers are within a distance 3×r

2 from their centers.
• Step 2: If dist(X t ,mci) ≤ r

2 ; such that mci is the center of the nearest cluster
MCi, X t is assigned to the corresponding micro-cluster.

• Step 3: Otherwise, a range query q for X t is evaluated with respect to the in-
stances in (1) the set PD and (2) the micro-clusters of the set R.
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• Step 4: Consider n: the number of neighbours Nt ′ ∈P to X t , such that dist(X t ,Nt ′)≥
r
2 . If n > θk;θ ≥ 1, then a new micro-cluster with center X t is created and the
n neighbours are assigned to this micro-cluster.

• Step 5: A micro-cluster whose size decreases below k+1 is deleted and a range
query similar to that described for X t is performed for each of its former in-
stances.

• Step 6: An instance X t is flagged as an outlier, if there exists less than k instances
in either PD or R.

3.2.2 Anytime Outlier Detection

Anytime Outlier Detection (AnyOut) is a cluster-based technique that utilises the
structure of ClusTree [28], an extension to R-tree [19, 38], to compute an outlier
score. The tree structure of AnyOut suggests a hierarchy of clusters, such that the
clusters at the upper level subsume the fine grained information at the lower level.
ClusTree is traversed in top-down manner to compute the outlier score of an ac-
quired instance X t until it is interrupted by the subsequent (next) instance X t . Thus,
the descent down the tree improves the certainty of the outlier score, nevertheless,
the later the arrival of the subsequent instance the higher the certainty [3].

Given that, a cluster is represented by a Cluster Feature tuple CF = (n,LS,SS),
such that n is the number of instances in the cluster, LS and SS are respectively the
linear sum and the squared sum of these instances. The compact structure of the tree
using CF tuples reduces space requirements. From BIRCH [46] to CluStream [1],
cluster features and variations have been successfully used for online summarisation
of data, with a possible subsequent offline process for global clustering.

Let es represent a cluster node entry in ClusTree. Given defined two scores
to compute the degree of outlierness of an instance X t : (1) a mean outlier score
sm(X t)=dist(X t ,µ(es)), such that µ(es) is the mean of the cluster node entry es ∈
ClusTree where X t is interrupted; and (2) a density outlier score is sd(X t)=1−
g(X t ,es), such that g(xi,es) is the Gaussian probability density of X t for µ(es) as
defined in [3]. Below we give a brief formalisation of AnyOut.

In the case of a constant data stream:

• Step 1: Initialisation: Each X t in the data stream is assigned with an actual
confidence value con f (X t)=es(X t ).

• Step 2: Distribute the computation time for each X t based on the scattered con-
fidences.

• Step 3: For each acquired instance X t , AnyOut traverses the tree in a top-down
manner until the arrival of the instance X t+1 in the data stream.

• Step 4: At the moment of interruption, X t is inserted to the cluster node entry
e ∈ ClusTree, where X t arrives (pauses).

• Step 5: The outlier score of X t , according to the specified parameter sm(X t) or
sd(X t), is computed with respect cluster node entry es.
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Fig. 2: E-RAIDS framework.

• Step 6: The expected confidence value for the outlier score of X t is updated
based on the computation time. The confidence value (certainty) increases as
the computation time increases.

3.3 E-RAIDS Approach

The established continuous distance-based outlier detection techniques (MCOD and
AnyOut), described and formalised in section 3.2, are utilised as building block data
stream clustering techniques for the proposed E-RAIDS approach.

In this work, we propose a streaming anomaly detection approach, namely En-
semble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for
insider threat detection. In other words, E-RAIDS is an ensemble of an estab-
lished distance-based outlier detection technique (MCOD or AnyOut), such that
each model of the ensemble learns on a random feature subspace. The idea of E-
RAIDS is to employ an outlier detection technique on a feature subspace, to detect
local outliers which might not be detected over the whole feature space. These lo-
cal outliers may refer to anomalous behaviours (instances) attributed to a malicious
insider threat. Hence, the ultimate aim of the E-RAIDS approach is to detect any-
behaviour-all-threat (threat hunting as defined in Section 1); a process that leads to
a reduction of the number of false alarms.

Fig. 2 presents the E-RAIDS framework. The set of blue arrows represent a data
stream, where each arrow represents an instance (feature vector) X t acquired at a
session slot t. Consider the formalisations below:
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• window: a segment of a fixed size w that slides along the instances in a data
stream with respect to time (i.e session slots);

• buffer: a temporary short memory of allocated capacity (equals to w). It tem-
porarily accumulates the instances in a data stream. The buffer starts to accu-
mulate the instances in a data stream at the start of the window and stops once
the buffer is full after w number of instances. The full buffer is then input to the
base learner component to be processed; and

• window iteration wIter: an iteration of the window slide. It starts at the already
processed instances (in the previous buffer) procInst and ends at procInst +w.
For instance, wIter=0 starts at procInst=0 and ends at w. wIter=1 starts at
procInst=w and ends at 2×w. The window iteration wIter allows the synchro-
nisation between the window slide and the buffer accumulation.

Based on the aforementioned formalisations, at each window iteration wIter, the
buffer accumulates w number of instances. Once the buffer is full, the instances
in the buffer are input to the base learner component. A base learner component
refers to the distance-based outlier detection technique to be utilised (MCOD or
AnyOut). It employs a p number of base models to learn on randomly selected p
feature subspaces. A feature subspace FSi ⊆ F is defined as a subset of features
selected from the whole feature space f , where F = { f1, f2, . . . , fn}. The rationale
behind the idea of random feature subspaces is to detect local outlier(s) (anomalous
behaviour(s)) which might not be detected over the whole feature space.

Let p=n+ 1 represent the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). The p feature
subspaces are utilised to build the ensemble of p models {M1,M2, . . . ,Mn,Mp}, such
that {M1,M2, . . . ,Mn} learn on feature pairs, and Mp learns on the whole feature
space. In this way, E-RAIDS is capable to detect local outliers in the n feature pairs,
as well as global outliers in the whole feature space.

3.3.1 Feature Subspace Anomaly Detection

For each model Mi on a feature subspace FSi, we define the following data reposi-
tories and a survival factor:

• outSet: a temporary set of the outliers detected by a base learner (MCOD or
AnyOut) at wIter;

• outTempList: a list that stores the triples (1) an outlier out ∈ outSet, (2) the
wIter where it was first detected, and (3) a temporal count tempC which
counts the number of subsequent windows out was detected at. It has the form
〈out,wIter, tempC〉; and

• subVoteList: a list that stores the triples (1) a wIter, (2) a subVote parameter set
to 1 if the feature FSi votes for an alarm to be generated at wIter and 0 other-
wise, and (3) an outlier set subOutSet. It has the form 〈wIter,subVote,subOutSet〉.
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• v fs: a survival factor that confirms whether a feature subspace FSi votes for an
alarm to be generated at wIter. In other words, if an outlier out survived (has
been detected) for a v fs number of subsequent windows, then out is defined
as a persistent outlier. A persistent outlier boosts the chance of an alarm to be
generated at wIter.

Over each feature subspace FSi, the base learner (MCOD or AnyOut) processes
the buffer at the current wIter to update the model Mi. Mi identifies the outlier set
outSet, which includes (1) the outliers from the buffer at the current wIter; and (2)
the outliers from the previously learned instances before the model being updated.
The type (2) outlier refers to an instance that was identified as an inlier, however,
turned into an outlier in the current wIter.

For each outlier out ∈ outSet, if out does not exist in outTempList, a new triple
〈out,wIter,1〉 is appended to outTempList. In this case, tempC is assigned to 1 to de-
clare that it is the first time an outlier out detected. If out exists in the outTempList,
tempC is incremented by 1 in the triple for out.

For each outlier out ∈ outTempList, E-RAIDS checks (1) if tempC=v fs, then
out survived for a v fs number of subsequent windows. We call it persistent outlier.
Thus, a persistent outlier confirms that the FSi votes for an alarm at wIter. Thus,
subVote is set to 1 in the triple for wIter in subVoteList. (2) If wIter− tempC=v fs,
then out has turned into an inlier. We call it expired outlier. Thus, the triple for the
expired outlier out is removed from the outTempList. (3) If wIter− tempC < v fs,
then out is neither a persistent outlier nor an expired outlier. We call it potential
outlier.

Eventually, outTempList consists of persistent outliers and potential outliers (ex-
pired outliers has been removed). E-RAIDS appends persistent outliers and potential
outliers in outTempList to the subOutSet in the triple for wIter in subVoteList.

In the preliminary version RandSubOut [21], only the persistent outliers in
outTempList are appended to the subOutSet in the triple for wIter in subVoteList.
The subOutSet at wIter represents the set of anomalous behaviours detected over a
feature subspace FSi. As later described in Section 3.4, if the ensemble votes to gen-
erate an alarm, then the subOutSet for each feature subspace is utilised to evaluate
whether all malicious insider threats are detected (i.e. the aim of any-behaviour-all-
threat). The experiments carried out on both versions (E-RAIDS and RandSubOut)
showed that E-RAIDS outperforms the latter in terms of detecting more malicious
insider threats. Analytically, unlike RandSubOut, E-RAIDS considers further the
potential outliers in the subOutSet to check for detected malicious insider threats.
Thus, the use of potential outliers significantly boosts the detection performance of
the proposed approach.

Finally, the buffer is emptied to be prepared for the subsequent (next) window of
upcoming instances (wIter+1). A step-by-step pseudo code for the E-RAIDS base
learner procedure is provided in Algorithm 1.
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Algorithm 1: Feature Subspace
wIter← 0
foreach X t ∈ stream do

accumulate X t to buffer
if buffer is full then

outSet← get outliers detected by base
foreach out ∈ outSet do

if outinoutTempList then
a new triple 〈out,wIter,1〉 is appended to outTempList

else
increment tempC by 1 for out in outTempList

foreach out ∈ outTempList do
if tempC = v fs then

set subVote to 1 in subVoteList for the current wIter
remove out from outTempList
subOutSet← persistent out∪ potential outliers
append subOutSet to subVoteList at wIter

if wIter− tempC = v fs then
remove out from outTempList

increment wIter

empty buffer
return subVoteList

Algorithm 2: Ensemble of Random Feature Subspaces
foreach wIter do

foreach FSi ∈ FS do
subVote← get subVote for wIter from subVoteList for FSi
eVote← eVote+ subVote for wIter in eVoteList
subOutSet← get subOutSet for wIter from subVoteList for FSi
append subOutSet to eOutSet for wIter in eVoteList

if eVote = v fe then
flag an alarm

3.4 Ensemble of Random Feature Subspaces Voting

For the ensemble of p models {M1,M2, . . . ,Mn,Mp} on feature subspaces
{FS1,FS2, . . . ,FSn,FSp} respectively, we define the following data repository and
a vote factor:

• eVoteList: a list that stores the triples (1) a wIter, (2) an eVote parameter that
counts the number of feature subspaces that vote for an alarm, and (3) an outlier
set eOutSet that appends the subOutSet from each FSi votes for an alarm. It has
the form 〈wIter,subVote,subOutSet〉.
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• v fe: a vote factor that confirms whether an alarm to be generated at wIter by the
whole ensemble. In other words, if a v fe number of feature subspaces vote for
an alarm, then an alarm is generated at wIter.

As illustrated in Fig. 2, the E-RAIDS aggregate component aggregates the results
from the p feature subspaces, in order to confirm whether to generate an alarm or
not at each window iteration wIter. For each feature subspace FSi, if subVote=1
for wIter, E-RAIDS adds subVote to eVote for wIter in eVoteList. Furthermore,
E-RAIDS gets subOutSet for wIter from subVoteList, and appends to eOutSet for
wIter in eVoteList.

After getting the votes from all the feature subspaces in the ensemble, E-RAIDS
checks if eVote=v fe. If the condition is satisfied, then an alarm of a malicious insider
threat is generated at wIter. The voting mechanism is technically controlled by the
vote factor v fe, such that if a v fe number of feature subspaces vote for anomalous be-
haviour(s) at a window iteration wIter, then an alarm is generated. This accordingly
handles the case of a conflict, where p

2 (50%) of the feature subspaces in the ensem-
ble vote for anomalous behaviour(s) and the other p

2 vote for normal behaviour(s).
The ensemble technically checks if p

2 = v fe, then an alarm is generated.
A step-by-step pseudo code for the E-RAIDS aggregate procedure is provided in

Algorithm 2.

4 Experiments

We evaluated the effectiveness of the proposed approach on the CMU-CERT data
sets using Windows Server 2016 on Microsoft Azure (RAM 140GB, OS 64−bits,
CPU Intel Xeon E5−2673v3) for data pre-processing and Microsoft Windows 7 En-
terprise (RAM 12GB, OS 64− bits, CPU Intel Core i5− 4210U) for experiments.
First, MATLAB R2016b was used to pre-process the data set and generate com-
munity behaviour profiles per session slots of 4 hours. Second, we implemented
E-RAIDS-MCOD and E-RAIDS-AnyOut and carried out the experiments in Java
environment (Eclipse Java Mars) using the open-source MOA package [32].

4.1 Description of the Dataset

A significant impediment to researchers who work on the insider threat problem is
the lack of real world data. The real data logs the activities executed by the users in
an organisation. These data log files contain: private user profile information (e.g.
name, email address, mobile number, home address, etc.); intellectual property (e.g.
strategic or business plans, engineering or scientific information, source code, etc.);
and confidential content (e.g. email content, file content, etc.) [7]. Organisations
commonly refuse to give researchers access to real data to protect its users and
assets.
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In the current decade, there exists a great recent trend towards the utilisation of
the CMU-CERT data set(s) for the insider threat detection systems [5, 11, 12, 29, 41,
43]. The CMU-CERT data sets are synthetic insider threat data sets generated by the
CERT Division at Carnegie Mellon University [8, 15]. CMU-CERT data repository
is the only one available for insider threat scenarios (5 scenarios) and has recently
become the evaluation data repository for researchers addressing the insider threat
problem [5, 16, 41].

In the preliminary version [21], we used r5.1 CMU-CERT data set, where each
community consists of one malicious insider threat which map to one scenario.

For this chapter, we used r5.2 CMU-CERT data set which logs the behaviour
of 2000 employees over 18 months. Unlike the previously released data sets, the
communities in the r5.2 data set consist of multiple malicious insider threats which
map to different scenarios. Among those employees, we extracted the data logs for
employees belonging to the following two communities: Production Line Worker
com-P, and Salesman com-S. The community com-P consists of 300 employees,
17 malicious insider threats (associated to 366 anomalous behaviours), where each
threat maps to one of the scenarios {s1,s2,s4}. The community com-S consists of
298 employees, and 22 malicious insider threats (associated to 515 anomalous be-
haviours), where each threat maps to one of the scenarios {s1,s2,s4}. The commu-
nity com-I consists of 80 employees, and 12 malicious insider threats (associated to
132 anomalous behaviours), where each threat maps to one of the scenarios {s2,s3}.

4.2 Experimental Tuning

In this work, we define two experiments based on the proposed E-RAIDS approach.
The E-RAIDS-MCOD learns an ensemble of p MCOD base learners, such that each
MCOD base learner is trained on a feature subspace of the p feature subspaces.
Likewise, the E-RAIDS-AnyOut learns an ensemble of p AnyOut base learners.

The experiments are tuned for different values of parameters. Table 1 presents
the values for the parameters tuned in each of MCOD and AnyOut, with a short
description. Note that an extensive number of experiments was done to select the
presented tuning values for the parameters. The values were selected based on E-
RAIDS achieving the best performance in terms of the evaluation measures de-
scribed below.

For MCOD, the parameter k has a default value k=50 in the MOA package. In this
chapter, we present k={50,60,70} to evaluate the E-RAIDS-MCOD for different
number of neighbours. The parameter r, with a default value r=0.1, is presented for
a range for r={0.3,0.4,0.5,0.6,0.7} to check the influence of r.

For AnyOut, the parameter |Dtrain| is presented for 500 instances, knowing that
no threats are present at the beginning of the stream in these 500 instances. The
parameters con f Agr and con f did not show a significant influence on the utilised
data sets, so both are assigned to their default values, in the MOA package, 2 and
4 respectively. τ has a minimum value 0 and a maximum value 1, so it is presented
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Table 1: Tuned Parameters.

MCOD parameter description

k={50,60,70} number of neighbours parameter
r={0.3,0.4,0.5,0.6,0.7} distance parameter for outlier detection

AnyOut parameter description

|Dtrain|=500 training set size
con f Agr=2 size of confidence aggregate
con f =4 initial confidence value
τ={0.1,0.4,0.7} outlier score threshold
oscAgr={2,4,6,8} size of outlier score aggregate

for τ={0.1,0.4,0.7} to evaluate the influence of varying the outlier score threshold
on the outliers detected. oscAgr has a minimum value 1 and a maximum value 10,
so it is presented for the oscAgr={2,4,6,8}.

In general, for E-RAIDS approach with either MCOD or AnyOut base learner,
we present the vouch factor v fs=2, so it confirms an outlier as positive (anomalous)
after it survives for 2 subsequent windows. We present the vote factor v fe=1, so if
at least 1 feature subspace in the ensemble flags an alert, an alarm of a malicious
insider threat is confirmed to be generated.

Likewise, for both E-RAIDS-MCOD and E-RAIDS-AnyOut, the window size is
presented for w = {50,100,150,200}. As previously described, an instance (feature
vector) is a set of events executed during a pre-defined session slot. In this work, we
define a session slot per 4 hours. Let w represent the window size, which accumu-
lates the acquired instances in a data stream. If w=50 and v fs=2, then the instances
in each window are processed after 4× 50=200 hours ' 8 days. Based on the de-
scription of E-RAIDS, a threat (outlier) may be confirmed as an outlier at least over
the window it belongs to (after 8 days) or over the next window (after ' 8× 2=16
days). If w=200 and v fs=2, then the instances in each window are processed after
4× 200=800 hours ' 33 days. A threat (outlier) may be confirmed as an outlier at
least after 33 days) or over the next window (after ' 33×2=66 days). Note that the
malicious insider threats simulated in the CMU-CERT data sets span over at least
one month and up to 4 months. Hence, we hypothesise the following in Hypothesis
1.

Hypothesis 1: The E-RAIDS approach is capable to detect the malicious insider
threats in real-time (during the time span of the undergoing threat).

4.3 Evaluation Measures

Many research work has been done to detect or mitigate malicious insider threats,
but nevertheless has established standard measures to evaluate the proposed models
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[17]. The research practices show that the the insider threat problem demands to
measure the effectiveness of the models before being deployed, preferably in terms
of true positives (TP) and false positives (FP) [18].

In the state-of-the-art, a remarkable number of approaches were validated in
terms of FP measure [4, 5, 13, 31, 35]. This sheds light on the importance of the
FP measure to address the shortcoming of the high number of false alarms (FPs).
Furthermore, some approaches were validated in terms of: TP measure [31]; F1
measure [4, 33]; AUC measure [9, 11, 16]; precision and recall [24, 29]; accuracy
[24, 35]; and others.

The variety of the utilised evaluation measures in the state-of-the-art reveals the
critical need to formulate the insider threat problem and to define the measures
that would best validate the effectiveness of the propose E-RAIDS approach. In
the following, we give a formulation for the E-RAIDS approach and we define the
evaluation measures utilised in this work.

As aforementioned, the ultimate aim of the E-RAIDS approach is to detect all
the malicious insider threats over a data stream in real-time, while minimising the
number of false alarms.

The challenge of the insider threat problem lies in the variety and complexity
of the malicious insider threats in the data sets. Each malicious insider threat is
devised of a set of anomalous behaviours. An anomalous behaviour is represented
by an instance (feature vector) which describes a set of events (features) carried
out by a malicious insider. Based on the challenge of the problem, we formulate
the E-RAIDS approach with the aim to detect any-behaviour-all-threat (as defined
in Section 1). This means that it is sufficient to detect any anomalous behaviour
(instance) in all malicious insider threats. Hence, E-RAIDS approach is formulated
as a threat hunting approach, where a threat is detected if (1) a v fe number of feature
subspaces confirm an undergoing threat (flag alarm) over a window and (2) the
outliers, associated to the alarm flagged over the window, include at least a True
Positive (anomalous behaviour detected as outlier). Note that although the detection
of one behaviour confirms the detection of the threat, we hypothesise the following
in Hypothesis 2.

Hypothesis 2: The E-RAIDS approach is capable of detecting more than one be-
haviour from the set of behaviours which belong to a malicious insider threat. We
refer to as (more than one)-behaviour-all-threat detection in E-RAIDS.

Furthermore, the property of the E-RAIDS approach of using windows over data
streams introduces a refined version of the evaluation of False Positives (FP). In this
work, we use the FPAlarm to evaluate the false positives. So that if all the outliers
associated to the alarm generated over a window are actually normal, then the alarm
is considered a False Alarm (i.e. FPAlarm is incremented 1). A formal definition for
FPAlarm is given in the following.

We define the measures used to evaluate the performance of E-RAIDS, which
include a refined version of the default (known) evaluation measures, taking our
ultimate aim into account.
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• PT : Threats number of malicious insider threats associated to anomalous in-
stances. In other words, PT is the number of malicious insiders attributed to the
anomalous behaviours;

• TPT : True Positives a refined version of default TP to evaluate the number of
threats detected by the framework among all the PT malicious insider threats.
TPT is incremented if at least one anomalous instance (behaviour attributed to
the threat) is associated as an outlier to a flagged alarm;

• FPAlarm: False Positive Alarm a refined version of default FP to evaluate the
number of false alarms generated. An alarm is declared false if all the outliers
associated to the alarm are actually normal instances. This means that none of
the instances contributed to generating the alarm, therefore, false alarm;

• FNT : False Negatives a refined version of default FN to evaluate the number of
insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures.

The evaluation for E-RAIDS does not employ only the defined evaluation mea-
sures, however, it is required to prove the previously stated hypothesises to be true.

4.4 Results and Discussion

In the preliminary version [21], RandSubOut was evaluated in terms of TPT detected
threats and FPAlarm.

In this work, the results are presented and discussed for E-RAIDS-MCOD and
E-RAIDS-AnyOut as follows: in terms of (1) the pre-defined evaluation measures;
(2) voting feature subspaces; (3) real time anomaly detection; and (4) the detection
of (more than One)-behaviour-all-threat.

4.4.1 MCOD vs AnyOut Base Learner for E-RAIDS in terms of Evaluation
Measures

In the following, we analyse the performance of E-RAIDS with MCOD base learner
vs AnyOut base learner in terms of the pre-defined evaluation measures: T PT out of
PT ; FPAlarm; and F1 measure.

Tables 2 and 3 present the maximum T PT and the minimum FPAlarm attained
E-RAIDS-MCOD and E-RAIDS-AnyOut over the communities. The results are re-
ported in terms of the parameter values in the given sequence k,r,w for E-RAIDS-
MCOD and τ,oscAgr,w for E-RAIDS-AnyOut respectively.
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Table 2: Maximum T PT of Detected Insider Threats over Communities.

community E-RAIDS-MCOD Parameters k,r,w

com-P 16 50,0.3,100 60,0.4,50
60,0.6,100 60,0.7,150
70,0.4,50

com-S 21 70,0.4,150
com-I 10 50,0.4,50 70,0.3,100

community E-RAIDS-AnyOut Parameters τ,oscAgr,w

com-P 16 0.1,2,100-200 {0.3,0.7},2,50-200
com-S 20 0.1,2,50-100 0.3,2,50-100

0.7,2,150
com-I 12 0.1,2,50-200 0.3,2,50-100

0.7,2,{50,200}

Table 3: Minimum FPAlarm over Communities.

community E-RAIDS-MCOD Parameters k,r,w

com-P 0 50,0.4,200 60,{0.3,0.5,0.6},200
com-S 0 50,0.4,200 50,0.7,100

60,0.3,200 60,0.5-0.7,100
70,0.6-0.7,150

com-I 0 50,0.3,200 60,0.5,200
70,0.5-0.7,200

community E-RAIDS-AnyOut Parameters τ,oscAgr,w

com-P 2 ∀τ ,∀oscAgr,200
com-S 2 ∀τ ,∀oscAgr,150-200
com-I 1 0.1,{2,4},200 0.3,2-6,200

0.7,2-4,200

E-RAIDS-MCOD

Fig. 3 presents the variation of F1 measure as a function of window size w for E-
RAIDS with MCOD base learner over the communities. The results are reported
with respect to k and r parameter values.

A preliminary analysis of the F1 measure shows no evident pattern in terms of
any of the parameters k, r, or w. Over the community com-P, E-RAIDS-MCOD
achieves the maximum F1=0.9411;60,0.7,150. It detects the maximum TPT =16 out
of PT =17, thus missing one malicious insider threat. However, it flags only a false
positive alarm (FPAlarm=1). Furthermore, Table 3 shows that E-RAIDS-MCOD
reports the minimum FPAlarm=0 at w=200 for different values of k and r.

Over the community com-S, E-RAIDS-MCOD achieves the maximum F1=0.9523;
70,{0.6,0.7},150. It detects a TPT =20 out of PT =22, while flagging no false pos-
itive alarms (FPAlarm= 0). The maximum TPT =21 is attained at 70,0.4,150, how-
ever, flagging FPAlarm=2.

Over the community com-I, E-RAIDS-MCOD achieves the maximum F1=0.6451;
70,0.3,100. It detects a TPT =10 out of PT =12, thus missing two malicious insider
threats, while flagging FPAlarm=9. Nevertheless, Table 3 shows that E-RAIDS-
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MCOD reports the minimum FPAlarm=0 at w=200 for different values of k and
r.

We can deduce that the window size w=150,200 give the best performance for
E-RAIDS-MCOD in terms of the evaluation measures.

E-RAIDS-AnyOut

Fig. 4 presents the variation of F1 measure as a function of window size w for E-
RAIDS with AnyOut base learner over the communities. The results are reported
with respect to τ and oscAgr parameter values.

It is evident that there exists a positive correlation between F1 measure and the
parameter oscAgr for E-RAIDS-AnyOut. The variation of F1 measure at oscAgr=2
is the highest with respect to all the window sizes w=50 to 200 over both communi-
ties. Moreover, Figure 5a reveals a positive correlation between F1 measure and the
parameter w. The value of F1 measure increases as the window size w increases.

Over the community com-P, E-RAIDS-AnyOut achieves the maximum F1=0.9142;
∀τ,2,200. It detects the maximum TPT =16 out of PT =17, while reducing the false
positive alarms to FPAlarm=2. Table 3 shows that E-RAIDS-AnyOut reports the
minimum FPAlarm=2 ∀τ,∀oscAgr at w=200. Thus, the higher the window size,
the lower the FPAlarm. Table 2 shows that E-RAIDS-AnyOut reports the maximum
TPT =16 at oscAgr=2 in general terms ∀τ,∀w. Thus, the lower the oscAgr, the higher
the TPT detected.

Over the community com-S, E-RAIDS-AnyOut achieves the maximum F1=0.9090;
0.7,2,150. It detects a TPT =20 out of PT =22, while flagging two false positive
alarms (FPAlarm=2).

Over the community com-I, E-RAIDS-AnyOut achieves the maximum F1=0.9600;
∀τ,2,200. It detects a TPT =12 out of PT =12, while flagging one false positive alarm
(FPAlarm=1).

In terms of the evaluation measures, E-RAIDS-MCOD outperforms E-RAIDS-
AnyOut over the communities, where E-RAIDS-MCOD achieves a higher F1 mea-
sure over com-P and com-S, a higher TPT over com-S, and a lower FPAlarm=0 over
all communities.

4.4.2 MCOD vs AnyOut for E-RAIDS in terms of Voting Feature Subspaces

In the following, we address the merit of using feature subspaces in the E-RAIDS
approach. We compare the number of feature subspaces in the ensemble that voted
for a malicious insider threat in each of E-RAIDS-MCOD and E-RAIDS-AnyOut.
The rationale behind using a random feature subspace to train each model of the p
models in the ensemble, is to train the base learner (MCOD or AnyOut) on a subset
of the features and to detect local outliers which might not be detected over the
whole feature space.
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 3: The variation of F1 measure as a function of window size w for E-RAIDS
with MCOD base learner over the communities. The legend represents the r param-
eter values.

Figure 5 illustrates the number of votes which contributed in flagging an alarm of
a malicious threat with respect to the number of instances processed (given the win-
dow size w) over the communities. The number of votes actually corresponds to the
number of feature subspaces in the ensemble which generated an alert. We selected
E-RAIDS-MCOD and E-RAIDS-AnyOut with their parameters which showed the
best performance in terms of the evaluation measures. For com-P, Figure 5a shows
the E-RAIDS-MCOD at 60,0.7,150 and E-RAIDS-AnyOut at 0.1,2,200. For com-
S, Figure 5b shows the E-RAIDS-MCOD at 70,0.6,150 and E-RAIDS-AnyOut at
0.7,2,150. For com-I, Figure 5c shows the E-RAIDS-MCOD at 70,0.3,100 and
E-RAIDS-AnyOut at 0.1,2,200. Given that the |Dtrain|=500, this justifies why the



24 Diana Haidar and Mohamed Medhat Gaber

(a) com-P.

(b) com-S.

(c) com-I.

Fig. 4: The variation of F1 measure as a function of window size w for E-RAIDS
with AnyOut base learner over the communities. The legend represents the oscAgr
parameter values.

votes for E-RAIDS-AnyOut start after 500 train instances has been processed over
both communities.

Given the window size w, a window iteration wIter starts at the number of already
processed instances procInst and ends at procInst+w. For example, given w=100,
the first window iteration wIter=0 starts at procInst=0 and ends at procInst +
w=100; wIter=1 starts at 100 and ends at 200; etc.

A preliminary analysis of the results shows that E-RAIDS-AnyOut flags alarms
continuously ∀wIter after procInst=500. However, E-RAIDS-MCOD shows dis-
tinct alarms flagged, with no alarms at certain windows iterations. We recall that
E-RAIDS-MCOD outperforms E-RAIDS-AnyOut in terms of FPAlarm measure.
The continuous alarms flagged ∀wIter in E-RAIDS-AnyOut explains the higher
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 5: The number of votes which contributed in flagging an alarm of a malicious
threat with respect to the number of instances processed over the communities.

FPAlarm, as well as it reveals the uncertainty of E-RAIDS-AnyOut compared to
E-RAIDS-MCOD.

Knowing that the number of feature subspaces utilised in the ensemble is p = 17,
the number of votes ∀wIter in E-RAIDS-AnyOut has a minimum votes=11 and a
maximum votes=17, which reveals a level of uncertainty. The case where 17 fea-
ture subspaces vote for an alarm, indicates that all (17) models of the ensemble
detect at least one outlier (positive) associated to a malicious insider threat. On the
other hand, the number of votes in E-RAIDS-MCOD has a maximum votes=2. This
means that only 1 or 2 feature subspaces vote for an alarm. We recall the com-
plexity of the malicious insider threat scenarios in the CMU-CERT data sets. The
anomalous instances usually exist in (sparse or dense) regions of normal instances,
and rarely as global outliers with respect to the whole feature space. To address
this, the E-RAIDS approach aims to detect local outliers which may be found over
ANY (not ALL) of feature subspaces. Having all the feature subspaces in E-RAIDS-
AnyOut voting for a threat, compared to a couple (1 or 2) of feature subspaces in
E-RAIDS-MCOD, reinforces the uncertainty of E-RAIDS-AnyOut. The reason be-
hind the uncertain performance of AnyOut in the E-RAIDS approach may be due
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to that the outlier score of an instance X t is computed upon the arrival of a new in-
stance X t+1. Thus, the processing of the instance X t is interrupted at a certain level
of the ClusTree, and the outlier score is computed with a lower level of confidence
(i.e. uncertain).

4.4.3 Real Time Anomaly Detection in E-RAIDS

To prove the aforementioned Hypothesis 1 to be true, it is required to check if the
E-RAIDS detects the malicious insider threats in real-time (where real-time means
that the alarm is flagged during the time span of the undergoing threat). Based on
the previous conclusion regarding the uncertainty of E-RAIDS-AnyOut, and the
superiority of E-RAIDS-MCOD in terms of (1) the evaluation measures and (2) the
voting feature subspaces, we select E-RAIDS-MCOD to verify Hypothesis 1.

Fig. 6 illustrates the actual malicious insider threats vs the threats detected in
E-RAIDS-MCOD with respect to the number of instances processed over the com-
munities. The malicious insider threats are displayed in the legend over each com-
munity using the following label scenRef insiderID (e.g. s1 ALT1465) such that,
scenRef (e.g. s1, s2, or s4) represents the reference number for the scenario followed
in the malicious insider threat; and insiderID (e.g. ALT1465, AYG1697) represents
the user ID of the insider attributed to the threat. Hence, each colour in the legend
refers to a malicious insider threat.

We observe in Fig. 6 that a malicious insider threat is detected either (obs1) at
the current window iteration wIter where it is actually simulated, or (obs2) at the
subsequent (next) wIter. Hence, Hypothesis 1 is verified.

Based on the description of the E-RAIDS approach, a feature subspace votes
for a threat at wIter if at least an outlier survived for a v fs number of subsequent
windows, and consequently a specific threat is detected at wIter if (cond1) a v fe
number of subspaces vote (an alarm is flagged), and (cond2) at least outlier (posi-
tive) associated to the alarm belongs to the threat. However, the outliers associated
to the alarm (as mentioned in (cond2)) consist of persistent outliers (which survived
from wIter-1) and potential outliers (at the current wIter). A potential outlier, if
satisfies (cond2), allows real-time detection at the current wIter (obs1). A persistent
outlier, if satisfies condition (cond2), allows real-time detection as observed at the
subsequent wIter (obs2).

4.4.4 (More than One)-Behaviour-All-Threat Detection in E-RAIDS

The final analysis addresses Hypothesis 2. As defined in Section 1, the idea of threat
hunting aims to detect any-behaviour-all-threat, however, Fig. 6 shows the capability
of E-RAIDS-MCOD to detect more than one behaviour (not only one) from the set
of behaviours which belong to a malicious insider threat. It manifests as multiple
alarms (colour spikes) generated for a specific threat over a number of windows.
Hence, Hypothesis 2 is verified.
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 6: The actual malicious insider threats vs the threats detected in E-RAIDS-
MCOD with respect to the number of instances processed over the communities.

Analytically, this underlies in having multiple outliers, associated to the alarm(s)
flagged over window(s), which are actually true positives belonging to a specific
malicious insider threat.
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5 Conclusion and Future Work

This chapter addresses the shortcoming of high number of false alarms in the ex-
isting insider threat detection mechanisms. The continuous flagging of false alarms
deceives the administrator(s) about suspicious behaviour of many users. This con-
sumes a valuable time from their schedule, while investigating the suspected users.

We present a streaming anomaly detection approach, namely Ensemble of Ran-
dom subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat
detection. The ultimate aim of E-RAIDS is to detect any-behaviour-all-threat (threat
hunting as defined in section 1), while reducing the number of false alarms.

E-RAIDS is built on the top of established continuous outlier detection tech-
niques (MCOD or AnyOut). These techniques use data stream clustering to op-
timise the detection of outliers (which may refer to malicious insider threats). E-
RAIDS is an ensemble of p outlier detectors (p MCOD base learners or p AnyOut
base learners), where each model of the p models learns on a random feature sub-
space. The merit of using feature subspaces is to detect local outliers which might
not be detected over the whole feature space. These outliers may refer to anomalous
behaviour(s) which belong to a malicious insider threat. E-RAIDS presents also an
aggregate component to combine the votes from the feature subspaces, and take a
decision whether to flag an alarm or not.

We define two experiments: E-RAIDS-MCOD with MCOD base learner, and
E-RAIDS-AnyOut with AnyOut base learner. The experiments are carried out on
CMU-CERT data sets which include simulated malicious insider threats scenar-
ios. We compare the performance of E-RAIDS using each of MCOD and AnyOut
in terms of, (1) the evaluation measures: F1 measure, TPt of threats detected, and
FPAlarm flagged; (2) the effectiveness of the concept of voting feature subspaces;
(3) the capability of E-RAIDS to detect insider threats in real-time (Hypothesis 1);
and (4) the capability of E-RAIDS to detect more than one behaviour belonging
to an insider threat (Hypothesis 2) despite our formulation to the insider threat ap-
proach (threat hunting).

The results show that E-RAIDS-MCOD outperforms E-RAIDS-AnyOut, where
the latter shows a low level of certainty in the detection of outliers. E-RAIDS-
MCOD reports a higher F1 measure=0.9411 and 0.9523 over com-P and com-S, a
lower FPAlarm=0 over all communities, and misses only one threat TPT =16 and 21
over com-P and com-S. It is worth to also mention that the window size w=150,200
gives the best performance for E-RAIDS-MCOD compared to the tuned values. E-
RAIDS verifies the hypothesised capabilities in terms of the detection of more than
one behaviour per threat in real-time.
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