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Power Infrastructure Sector Reforms, Power Generation and Private Investments: A Case 33 

Study from Ghana’s Power Sector 34 

 35 

Abstract: This paper assesses the impact of power infrastructure investments in the developing 36 

economy of Ghana following sector restructure and reform and develops a forecasting model for 37 

predicting the future trend in electricity generation and electricity tariff. Secondary data sourced 38 

via the World Bank PPIAF/PPI Project Database for the period 1994 to 2013 and Energy 39 

Commission for the period 2000 to 2014 were used to analyze Ghana’s power generation 40 

statistics using descriptive, exploratory data analysis and polynomial prediction models. Results 41 

reveal that reform has stimulated independent power producer (IPP) investment, particularly in 42 

thermal generation capacities to complement hydro alternatives. It is predicted that in the 43 

medium term the electricity tariff will continue to rise while electricity generation will decline if 44 

additional investments in power infrastructure are not made. This paper provides a case study 45 

that critically appraises Ghana’s power sector reform; exposes the gap between policy 46 

implementation and policy objectives attainment; and proposes a simple yet novel polynomial 47 

prediction model that can facilitate short-to-medium term planning of generation and tariff 48 

management.  49 

 50 

Keywords: Private investments; private sector participation; restructuring; power sector reform; 51 

independent power producers; models; forecasting. 52 

 53 

Introduction  54 

Preserving energy security is crucial for promoting economic development and improving social 55 

equality in developing countries (Stern, 2002; EU, 2006; Finon and Locatelli, 2007). Within 56 

Ghana, population expansion and sustained economic growth at 6-7% annually has created an 57 
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insatiable demand for electricity since 1990 with residential and commercial sectors accounting 58 

for 70% of total consumption (World Bank, 2013). Among the various electricity generation 59 

options, hydropower has traditionally dominated and constitutes 69% of the energy mix for 60 

industry and services sectors (Foster and Pushak, 2011; World Bank, 2013; Gand, 2009; IMF, 61 

2012). However, global climatic change and specifically, drought threatens Ghana’s energy 62 

security and has engendered successive governments to diminish an over-reliance upon 63 

hydropower in preference for thermal power generation. Thermal electricity now contributes 64 

almost half of the reliable generation capacity but further diversification is inevitable (World 65 

Bank, 2013; Foster and Pushak, 2011). For example, gas-fired thermal generation is 66 

progressively replacing unreliable hydropower or costly oil-fired generation (World Bank, 2013; 67 

Ashong, 2010; Malgas, 2008). Compared to other African developing countries, Ghana has 68 

progressed its energy infrastructure development aspirations - as exhibited by improvements in 69 

generation capacity (Eberhard et al., 2011; Banerjee et al., 2009; Gwillliam et al., 2008; World 70 

Bank, 2013). Moreover, independent power producers (IPPs) now form an integral part of 71 

Ghana’s sustainable power policy reform and collaborate with government to facilitate additional 72 

generation capacity (IFC, 2012). Yet, despite progress made, considerable challenges persistently 73 

confront Ghana, including: irregular maintenance and underperformance of generation plants; 74 

transmission failures; underinvestment; overridden debt; and operational inefficiencies 75 

(Gramlich, 1994; Badu et al., 2012; UNECA, 2011; World Bank, 2013). Given these prevailing 76 

challenges, the Ghanaian government has orchestrated sweeping power generation restructure 77 

including: separating the technical functions of production, transmission and distribution; 78 

withdrawing from the market to encourage private investment; creating a competitive market 79 

structure thus ensuring competition; issuing shares ownership of utility companies via stock 80 
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markets to raise necessary finance; and establishing independent legislative and regulatory 81 

framework to oversee the sector (e.g., the Public Utilities and Regulatory Commission, the 82 

Energy Commission Pursuant to the Public Utilities and Regulatory Commission Act, 1997 (Act 83 

538) and the Energy Commission Act, 1997 (Act 541)) (Joskow and Schmalensee, 1983; Jamasb 84 

and Pollitt, 2005; Newbury, 2000; Pollitt, 2004; Eberhard and Gratwick, 2011; Andersen and 85 

Sitter, 2009; Badu et al., 2012; UNECA, 2011). The government’s ambition being to achieve 86 

universal access to electricity by 2020 and become West Africa’s leading exporter of power 87 

(IMF, 2012; Badu et al., 2012; UNECA, 2011; Andersen and Sitter, 2009; World Bank/IFC, 88 

2010).    89 

 90 

However, whilst the literature is replete with commentaries on power sector reforms at both 91 

national and international levels (Joskow, 2006; Erdogdu, 2013; Joskow, 2000; Newbury, 2000; 92 

Pollitt, 2004; Jamasb and Pollitt, 2005; Ishii and Yan 2004), studies that measure the impact of 93 

these reforms in developing countries are desperately needed. This research therefore: analyzes 94 

the trend of power infrastructure investments in Ghana’s power sector post reform; assesses the 95 

ensuing impact upon promoting private investments; and develops a simple but novel polynomial 96 

prediction model that can forecast the future trend in electricity generation and electricity tariff. 97 

This critical literature review and complementary synthesis and analysis of data affords valuable 98 

information to Ghana’s policymakers to reform and shape future policies for attracting greater 99 

private sector investment. 100 

 101 

 102 

 103 
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Infrastructure Investments in Ghana’s Power Sector: An Overview   104 

Public funds, donor assistance and concessionary loans have traditionally afforded the key 105 

sources of finance for power generation projects in West Africa (c.f. PSIRU, 2012; Shingore, 106 

2009; Eberhard et al., 2009; Banerjee et al., 2009; Gwillliam et al., 2008). Investment attracted is 107 

often insufficient for developing major power projects that are inherently capital intensive (Badu 108 

et al., 2012; OECD, 2012; Shingore, 2009; IMF, 2012). Notwithstanding prevailing investment 109 

constraints, successive governments have progressed energy infrastructure developments when 110 

compared to other developing countries in Africa. During in the mid-2000s, 44.3% of Ghana’s 111 

population had access to electricity, when compared to 15.4% for low-income countries such as 112 

Togo and Benin and 59.9% for middle-income countries such as Nigeria and South Africa 113 

(Eberhard et al., 2009; Banerjee et al., 2009; Gwillliam et al., 2008). Despite this progress, 114 

enormous challenges confront the sector (Gramlich, 1994; Badu et al., 2012; UNECA, 2011). 115 

For example, the Volta River Authority (VRA) and Electricity Company of Ghana (ECG) face 116 

weakened financial stability (e.g. net losses, rising receivables and inter-utility debts) and are 117 

unable to undertake new investments or rehabilitate aging power generation and distribution 118 

infrastructure projects. VRA remains reliant upon government loans and other external credit 119 

sources to buy crude oil for operating its grossly underperforming thermal plants at Takoradi and 120 

Tema. Similarly, the Akosombo and Kpong hydro plants are inadequately maintained. The ECG 121 

is currently investing US$100 million annually vis-a-vis an estimated US$200 million needed to 122 

meet minimum investment requirements (World Bank, 2013). Long-term investment forecasts 123 

anticipate that US$1 billion is required to upgrade the transmission infrastructure during the 124 

period 2010–2020, with most investments taking place during 2015 (ibid). Due to its financial 125 

strength, Ghana Grid Company (GRIDCo) plans to raise private finance without government 126 
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guarantee to execute its ambitious investment plans to upgrade its transmission systems (ibid). 127 

However, power transmission debts owed by ECG and the Volta Aluminum Company (VALCO) 128 

have exerted a toll upon GRIDCo’s profitability (ibid)  129 

 130 

To end the recurrent cycle of load shedding, additional investments are needed to increase 131 

existing generation capacity and upgrade existing transmission and distribution plants (IMF, 132 

2012; World Bank, 2013). Load shedding is a method of reducing demand on energy generation 133 

system by temporarily switching off energy distribution to different regions of Ghana – this helps 134 

to reduce excessive load on generating plant. Investment in gas-fired thermal generation 135 

represents a favorable alternative to unreliable hydropower and costly oil-fired generation 136 

(World Bank, 2013; Ashong, 2010; Malgas, 2008). The World Bank has already invested 137 

US$700 million into the development of the Sankofa Gas Project to increase Ghana’s power 138 

generation and improve the volume of clean and inexpensive natural gas supply. It is anticipated 139 

that the guarantees will attract US$7.9 billion worth of new private investment and add 1,000 140 

megawatts (MW) of power to the national grid when completed in 2018. The development of the 141 

combined cycle gas turbine plant (located in deep water 60km offshore of Western Ghana) will 142 

facilitate gas supply through the West African Gas Pipeline (WAGP) from Nigeria and 143 

electricity costs may reduce given such investments (World Bank, 2013). Nonetheless, gas-fired 144 

projects have also encountered several challenges, most notably, delays in completing the Jubilee 145 

gas project. Furthermore, supply disruption on the West Africa Gas Pipeline (WAGP) has 146 

created a gas shortage that undermines Ghana’s gas-fired power generation potential (Foster and 147 

Pushak, 2011; World Bank, 2013).  148 

 149 
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Power Sector Restructuring 150 

Globally, recent decades have seen many countries invested hugely in liberalizing electricity 151 

markets (Erdogdu, 2013). Chile was the first country globally to implement a comprehensive 152 

electricity sector reform in 1982. Despite initial challenges regarding market structure and 153 

regulatory arrangements, the reform was successful (Pollit, 2004; Erdogdu, 2013). Joskow 154 

(2000) suggested that the persistent high price and price differentials of electricity were the 155 

driving force behind the electricity markets restructuring in several states in America. The 156 

northeast region and California were the first to restructure their power sectors in 1996 and 1997 157 

because of their much higher prices than the nation’s average (Joskow, 2006; Erdogdu, 2013). 158 

White (1996) examined the causes of this price gap and estimated its magnitude across the 159 

different states. This study (ibid) revealed dramatic differences in the price gap across states and 160 

suggested a more competitive structure for the power market in high-cost states. In New 161 

Zealand’s electricity market, Nillesen and Pollitt (2011) studied the impact of the forced 162 

ownership policy (used for unbundling electricity distribution) upon electricity prices, quality of 163 

service and costs. Their study argued that ownership unbundling did not achieve the desired 164 

results of expediting competition in the electricity supply industry; nonetheless, the reform 165 

brought about lower costs and higher quality of service.  166 

 167 

In the European Union (EU), major electricity market reforms did not occur until the EU’s first 168 

Directive to its 15 member countries in 1996; this sought to partially open their retail markets by 169 

2000 in a gradual effort to liberalize their electricity market (Trillas, 2010). By 2000, apart from 170 

Greece, all EU member countries, had opened their retail markets (Jamasb and Pollitt, 2005; 171 

Pollitt, 2009). In Asia, IPPs were first allowed into the Japanese electricity industry in 1995 as 172 
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part of electricity reforms that sought to encourage cost cutting competition (Nakano and 173 

Managi, 2008). Although partially inclined, the liberalization effort has stimulated market 174 

competitions and contributed to about 30% share of total electricity demand (Asano, 2006). In 175 

Africa, most reforms implemented have been poorly designed and have mainly aimed at 176 

encouraging foreign private direct investment in power markets. South Africa is one of the few 177 

countries to have introduced a substantial reform program in their electricity industries. Initially 178 

the policy was designed to favour the minority white population group until the policy saw a 179 

fundamental shift in focus by the new democratic government in 1994 (Erdogdu, 2013). In 180 

African countries, state-run power utilities such as Energie Electrique de Côte d‘Ivoire (EECI), 181 

Société d‘Electricité du Senegal (SENELEC) and Energie du Mali (EDM) are classic examples 182 

of public institutions that have embraced private sector involvement following liberalization 183 

(UNECA, 2011). In selected market studies, Erdogdu (2013) investigated the impact of the 184 

electricity industry reforms on electricity price-cost margins using panel data from 63 developed 185 

and developing countries covering the period 1982–2009. The research (ibid) concluded that the 186 

implementation of similar reforms have different impacts across the different countries - this 187 

supports the argument that the adoption of the same reform from one country to another may not 188 

achieve similar results.  189 

 190 

In Ghana, the energy policy reforms began during the early 1990s when the Ghanaian 191 

Government sought assistance from World Bank to finance the 660 MW thermal plant located at 192 

Takoradi in the Western Region of Ghana (Wamukonya, 2003; UNCTAD, 2007). The project 193 

was financed on the basis that Ghana would reform the power sector to deliver an effective 194 

regulatory environment for promoting private investments and efficiency in internal operations 195 
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and revenue management (World Bank, 1995). On the back of this contractual obligation, the 196 

Ghana Power Sector Development Policy 1994 was developed. This policy contained a specific 197 

reform proposal, summarized by six fundamental requirements, namely to: i) introduce IPPs 198 

through Build Operate Transfer (BOT) arrangements to augment hydro and thermal generation 199 

capacities; ii) ensure transparent rules for coordinating generation and transmission operations; 200 

iii) introduce private investors into ECG’s distribution operations; iv) separate Northern 201 

Electricity Department (NED) from VRA’s transmission systems into a separate grid entity; v) 202 

introduce comprehensive regulated pricing regimes; and vi) create a regulatory body responsible 203 

for ensuring sector competition, granting licenses, regulating prices and monitoring performance 204 

agreements (PURC ACT, 1997; Malgas, 2008).  205 

 206 

Following policy reforms, VRA (which was formerly responsible for all power generation and 207 

transmission in Ghana) was restructured; GRIDCo acquired its transmission assets and functions 208 

in 2008; and NED was unbundled from VRA into a separate, semi-independent, wholly owned 209 

subsidiary entity entitled NEDCo which assumed the distribution function of VRA in Northern 210 

Ghana (World Bank, 2013). This transition was encouraged by the World Bank, International 211 

Monetary Fund (IMF) and other international financial institutions (Erdogdu, 2014; Williams 212 

and Ghanadan, 2006a). The Bui Power Authority (BPA) took over hydropower generation at the 213 

Black Volta Basin and saw the completion of the US$790 million Bui hydroelectric plant (400 214 

MW) financed from multiple sources – namely: US$263.5 million concessionary loans from the 215 

Government of China; US$298.5 million export buyer’s credit from the Export-Import Bank of 216 

China; US$60 million from the Government of Ghana; and an additional US$168 million 217 

obtained from other project lenders (World Bank, 2013). Once state utilities were unbundled, 218 
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transparent rules and regulations were essential to maintaining competitive markets (Joskow and 219 

Schmalensee, 1983; Jamasb and Pollitt, 2005; Newbury, 2000; Pollitt, 2004; Woodhouse, 2005; 220 

Alesina, et al., 2003; Ishii and Yan 2004). However, Ghana’s power sector reform embraced: i) 221 

the Public Utility Regulatory Commission (PURC) to act as a tariff regulator and licensor and ii) 222 

the Energy Commission (EC) to independently monitor the market, without a comprehensive 223 

legal framework backing their powers (Ashong, 2010; PURC, 2007; OFGEM, 2010). A 224 

complete reform of VRA has therefore proven ineffective because it dominates power generation 225 

plant ownership in Ghana despite the reform (Malgas, 2008). The sector’s regulatory policies are 226 

predominantly politically orientated and promote a social agenda and/ or protect national 227 

industry. These myopic ‘vote winning’ policies (which include the controversial fuel price and 228 

electricity tariffs subsidies) have affected ECG’s financial sustainability. Consequently, ECG (as 229 

an off-taker) is unable to pay power producers and therefore IPP investors have been discouraged 230 

(Balouga, 2012; World Bank, 2013).  231 

 232 

Hence, Ghana’s power sector reform remains largely inconsistent and has progressed far slower 233 

than originally envisaged (Erdogdu, 2014). Consequently, the public sector continues to 234 

dominate ownership despite efforts to engender sector reform (Haney and Pollitt, 2013; Pollitt, 235 

2008).  236 

 237 

Methods and Approach  238 

This paper employed descriptive and exploratory data analysis techniques to analyze the trend of 239 

power infrastructure investments following sector restructure and reform. While descriptive 240 

analysis quantitatively summarizes features of dataset, exploratory data analysis involves the use 241 
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of graphics and visualization techniques to identify significant features of the dataset (Saunders 242 

et al., 2009; Williams, 2007; Chatfield, 1995). The econometric approach of time series analysis 243 

was adopted for forecasting future trend in electricity generation and electricity tariff.  244 

 245 

Data  246 

Secondary data was compiled from databases sourced from the World Bank Public-Private 247 

Infrastructure Advisory Facility (PPIAF)/ Private Participation in Infrastructure (PPI) Project, 248 

Energy Commission, VRA, GRIDCo, and Bank of Ghana from 1994 to 2014. The PPIAF/ PPI 249 

database contains power project investment information (in millions of US$) and records of the 250 

private sector’s intention to invest into large public infrastructure assets as opposed to actual 251 

disbursements. Data on projects is however, limited to these large projects. The data from the 252 

Energy Commission, VRA and GRIDCo covers energy statistics, power generation facts and 253 

figures, and IPP investments, spanning from 2000 to 2014 were used for the econometric 254 

modeling. Nonetheless, the small dataset available constitutes a limitation of the study. Once 255 

collected, data was checked for precision and then entered onto a Microsoft Excel spreadsheet 256 

and Statistical Package for the Social Sciences (SPSS). All charts, graphs and analysis were 257 

produced from Microsoft Excel spreadsheet and SPSS.   258 

 259 

Econometric Modeling  260 

In order to determine the appropriate model, time series datasets were first plotted to study 261 

patterns inherent within the data. Figures 1 and 2 are scatter plots for the two types of data series 262 

consisting of electricity generation and electricity tariff over the period 2000 to 2014.  263 

 264 
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Insert Figures 1 and 2 265 

Both plots show a nonlinear trend, indicating that the underlying pattern of the datasets follow 266 

upward trends which reflects growth in electricity generation and electricity tariff over time. This 267 

type of relationship is a curvilinear trend best represented by a polynomial regression function of 268 

suitable degree, which is linear in the coefficients (Vallence and Fabrice, 2016). Following the 269 

standard linear model for time series, where it is assumed that there is some relationship between 270 

a response variable Yt and a predictor variable Xt = (Xn-1, Xn-2. . . Xn-p), which can be written in 271 

the general form:  272 

Ŷt = β0 + β1Xt + ɛt,         (1) 273 

Polynomial regression extends the linear model by adding extra predictors, obtained by raising 274 

each of the original predictors to a power in order to provide a non- linear fit to data. The general 275 

polynomial regression model can be expressed as: 276 

Ŷt = β0 + β1 Xt + β2 Xt
 2 + β3 Xt

 3 + … + βk Xt
 k + ɛt,    (2) 277 

Where Ŷt is the linear trend forecast in period t; β0 is constant; β1 is linear coefficient, β2 is 278 

quadratic coefficient, and β3 is cubic coefficient; β0 … βk are unknown fixed regression 279 

coefficients to be estimated; Xt is time period; K is the degree of the polynomial; and ɛt is the 280 

random error.  281 

 282 

Estimation Method 283 

The polynomial regression functions of any suitable degree exhibit a form of linearity in the 284 

coefficients (Vallence and Fabrice, 2016). As such, the least squares method was employed for 285 

simple linear regression to estimate coefficients β0… βk in order to produce a non-linear fit. The 286 
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overall significance of the estimation model was tested and based on the null hypothesis as 287 

against the alternative hypothesis that:  288 

H0: The proposed polynomial models of a suitable degree fit the data significantly better 289 

than linear trend model.  290 

Ha: The proposed polynomial models of a suitable degree do not fits the data significantly 291 

better than linear trend model. 292 

Diagnostic checking 293 

Diagnostic checking confirms whether the estimated model is statistically adequate or 294 

inadequate. The statistical adequacy of time series modeling involves the assumption that the 295 

error terms are independent (Tobías and Saez, 2004; Vallence and Fabrice, 2016). A violation of 296 

this assumption, known as autocorrelation, renders the parameter estimates of the forecasting 297 

model inefficient and makes the model appear better than its predictive capability (Vallence and 298 

Fabrice, 2016). To diagnose autocorrelation in our datasets, Durbin-Watson statistic was 299 

computed viz: 300 

  d = 
∑ (𝑒𝑡−𝑒𝑡−1)

2𝑇
𝑖=2

∑ 𝑒2𝑡
𝑇
𝑖=1

 301 

Where T is the number of observations; et is the error at time t. As a rough rule of thumb, if d is 302 

less than 1, the errors are positively correlated; if d is 2 or above, there is no autocorrelation; and 303 

if d is more than 3, the errors are negatively correlated. The null hypothesis was then tested 304 

against the alternative hypothesis that: 305 

H0: The proposed models have no positive autocorrelation in the data 306 

Ha: The proposed models have positive autocorrelation in the data 307 

 308 

 309 
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Forecasting Accuracy and Model Selection 310 

The accuracy of proposed models for forecasting the time series relative to the actual historical 311 

data was then assessed. Three alternative measures were adopted, namely: mean absolute 312 

deviation (MAD), mean square error (MSE) and mean absolute percentage error (MAPE). The 313 

formula for calculating each forecast error is given as follows: 314 

MAD = 
∑ |𝑌𝑡−Ŷ𝑡|
𝑛
𝑖=1

𝑛
 315 

MSE = 
∑ |𝑌𝑡−Ŷ𝑡|

2𝑛
𝑖=1

𝑛
 316 

MAPE =  
∑ |

𝑌𝑡−Ŷ𝑡
𝑌𝑡

|𝑛
𝑖=1

𝑛
 x 100 317 

Where Yt and Ŷt are the actual observed values and the predicted values respectively while n is 318 

the number of the predicted values. The accuracy of the forecast is evaluated based on the 319 

estimation of error; thus the smaller the value of MAD, MSE and MAPE, the better the forecast 320 

accuracy. Table 1 shows the criteria of MAPE for model evaluation based on Lewis (1982) 321 

(Shitan et al., 2010).  322 

 323 

Data Analysis and Empirical Results 324 

Descriptive and Exploratory Data Analysis 325 

Table 2 presents descriptive summary statistics for generation capacity, electricity generation, 326 

and electricity end-user tariff.  327 

Insert Table 2 328 

Overall, Ghana’s total installed electricity generation capacity at the end of 2014 was 2,814 MW. 329 

The current mean generation capacity since the integration of thermal generation capacity into 330 

the national grid is 1,963 MW, with an average annual percentage growth of 5.26%. The lowest 331 
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and highest capacities were recorded as 1,418 MW and 2,813 MW in 2000 and 2014 332 

respectively. Hydro capacity contributes 55.8% of the total generation capacity. The remainder is 333 

shared between thermal (at 44.1%) and renewable (predominantly solar at 0.1%), making 334 

hydroelectric and thermal plants the two major types of generation facilities. The Akosombo 335 

hydroelectric plant contributes 64.6% of the total hydro generation capacity. As at the end of 336 

2014, eight thermal generation plants are installed and operational. The Takoradi Power 337 

Company (TAPCO-T1), which came online in the last quarter of 2000, is the highest contributor 338 

at 26.4% of the total thermal generation; followed by Takoradi International Company (TICO-339 

T2) installed in 2013 at 17.5% and Sunon Asogli Power Plant (SAPP) installed in 2010 at 16% 340 

of the total thermal generation respectively. The 2,813 MW generates 12,963 Gigawatt hours 341 

(GWh) of energy from the twelve installed generation facilities at the close of 2014. The total 342 

and mean generations at the same period stand at 132,976 GWh and 8,865.07 GWh respectively. 343 

These statistics indicate that power generation has witnessed a major boost since the introduction 344 

of non-hydro generation facilities; with a 5% average percentage growth annually in power 345 

generation. Since the integration of non-hydro generation into the national grid, the average end 346 

user tariff per GWh stands at GHC 0.1509, with an average percentage growth of 30.32% 347 

annually. In addition, capacity, generation and tariff variables are indicate low volatile, as their 348 

standard deviations are below their means.  349 

Insert Figure 3 350 

Figure 3 compares the average end user electricity tariffs with installed capacity and power 351 

generation. The trends illustrates that the improvement in MW and GWh of power has a 352 

corresponding increase in the cost of power paid by the final consumer. Notwithstanding, power 353 

generation has suffered major setbacks during periods of low rainfall most notably during 2007 354 
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when drought plunged the country into darkness. Despite the generation short fall of hydro, 355 

generation from this source contributes 64.7% of the entire generation mix, with the Akosombo 356 

hydroelectric plant producing 77.6% of the total hydro generation. Thermal generation accounts 357 

for 35.3% of the total generation mix, with the SAPP, TAPCO-T1 and TICO-T2 accounting for 358 

27.4%, 19.5% and 15.6% respectively. Despite the huge opportunity that solar power presents, 359 

Ghana has not harnessed this green energy effectively to boost power generation (see Figure 4).  360 

Insert Figure 4 361 

The types of fuel that feed the thermal plants for power generation include: natural gas; light 362 

crude oil (LCO); and dual (natural gas and LCO) fuel. Out of the eight installed thermal plants, 363 

five (representing 62.5% of installed thermal plants) run on either LCO or natural gas; one 364 

(12.5%) uses either diesel fuel oil (DFO) or natural gas, while the remaining two plants run on 365 

natural gas and LCO. It is planned that an estimated 2,206 MW capacity will be added to the 366 

national grid, expected to come online between 2015 and 2018 (EC, 2014) (see Table 3).  367 

Insert Table 3 368 

When these additional capacity investments are made, thermal will contribute 90.7% of the 369 

expected planned projects (ibid). A 1000-megawatt (MW) thermal power plant to be built by 370 

General Electric will drive this capacity investment by contributing 52.5% of thermal generation 371 

capacity and 47.6% of total generation capacity. Renewable energy driven by solar will 372 

contributes 9.3% of total energy capacity (ibid). It is anticipated that Mere Power Nzema (Blue 373 

Energy, UK) will lead this drive by contributing 75.6% of total renewable energy. By the end of 374 

2018, total generation capacity is expected to be 5,038 MW, with planned capacity adding 43.8% 375 

to the total capacity) (see Table 2).  376 

Insert Figure 5 377 
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Figure 5 reports upon investment (US$ million) over the period 1994 - 2013. The undulating 378 

trend reflects surges and dips in investment committed between the various projects 379 

implemented, and Ghana’s economic prosperity over this period. A natural gas transmission 380 

project received the highest investment volume (US$ 590 Million) and was executed by the West 381 

African Gas Pipeline Company Ltd in 2005 whilst the project that received the lowest investment 382 

volume (US$ 100 Million) is the Osagyefo Power Barge (an electricity generation project) in 383 

2007. By capacity, the public sector entity VRA controls 74.4% of the total generation capacity 384 

while IPPs currently manage 25.6% (split into: 14.1% hydro via the BUI hydropower project; 385 

and 11.5% thermal via the Sunon Asogli power plant). At present there is no private investment 386 

in renewable generation (see Table 4).  387 

Insert Table 4 388 

The statistics regarding the preferred contractual model of entry for private sector participation 389 

are as follows: greenfield model 70% (seven); concessions 20% (two), and management and 390 

leasing 10% (one). 50% of greenfield projects have been implemented through build, own, and 391 

operate (BOO) sub-type model, while build operate and transfer (BOT) and merchant sub-type 392 

models share the remaining 20%. Concession projects have taken the forms of build, rehabilitate, 393 

operate, and transfer (BROT) (10%) and rehabilitate, operate and transfer (ROT) (10%). The 394 

management and leasing method of entry has been implemented via management contract. 395 

Notably, none of these projects were executed by the privatization model (see Figures 6 and 7). 396 

Insert Figure 6 and 7 397 

In total, about 80% of private sector participated projects have been successful with the 398 

remaining 20% being a failure. Successful projects are defined as projects that have been well 399 

executed or are in operation whilst failed projects are projects that have been either cancelled or 400 
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have experienced massive disruption and delays during construction and operation. Most of the 401 

successful projects are greenfield projects (60%) followed by concession (10%), and 402 

management and leasing contracts (10%). The 20% of failed projects are equally shared between 403 

one concession project and one greenfield projects (see Figure 8).  404 

Insert Figure 8 405 

The segment analysis reveals that 60% of all successful projects are electricity generation 406 

projects. This is probably because most PPP projects been electricity generation projects and so 407 

contractors and clients accumulate knowledge and experience iteratively from one project 408 

completed to another. The remaining 20% of successful projects are shared equally between 409 

electricity distribution and natural gas transmission projects. Curiously, all the projects that failed 410 

to reach full potential are electricity generation projects – there is no explanation for this and 411 

further research and investigation is required to determine causal factors (see Figure 9). 412 

Insert Figure 9 413 

 414 

The Results of Forecasting Models 415 

Model Fitting 416 

The summary results of the linear model and proposed polynomial model to the 6th degree for 417 

electricity generation are presented in Table 5 along with the goodness-of-fit measures. This 418 

Table reveals among other things that the R2 (coefficient of determination) values of the models 419 

ranges from 76% to 95%. The R2 measures the overall degree of the strength of association 420 

between the predicted scores and the actual series data. The results show a significant 421 

improvement of the R2 values of polynomial fits (ranging from 93% to 95%) from the linear 422 

model of 76%, indicating that the polynomials are better fit than the linear model. However, 423 
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when comparing the polynomials, it is apparent that as the number of degrees of the function 424 

increases, there is a corresponding marginal improvement in the R2 values. Moreover, fitting the 425 

polynomials of variant degrees, the F-tests display statistical significance at p ≤ 0.05, satisfying 426 

the null hypothesis that the proposed polynomial model fits the data well when compared to the 427 

linear model for electricity generation. However, based on the statistical significance of R2 and 428 

F-tests alone, it cannot be concluded with certainty that one degree of the polynomial model is 429 

better than the other.   430 

Insert Table 5 431 

Therefore to make a meaningful decision, the forecast errors of each polynomial as the basis of 432 

selecting the suitable degree are ascertained; the model with the lowest or minimized forecast 433 

errors is thus selected for forecasting. From Table 5, all the forecasting errors measures (i.e. 434 

MAD, MSE and MAPE) display a reduction in the forecast errors as the degree of the function 435 

increases from 2nd to the 4th degree but marginally deteriorated at the 5th degree and thereafter 436 

saw an improvement at the 6th degree. Therefore, since the polynomial model of 4th degree has 437 

the lowest forecasting errors it is selected for forecasting.  438 

Table 6 shows the summary results of the linear model and proposed polynomial model to the 439 

6th degree for electricity tariff. The R2 values of the models ranges from 83% of the linear model 440 

to 99% of the 6th degree polynomial model, signifying that the polynomials are better fit than the 441 

linear model. Comparison among the polynomials reveals that R2 values slightly improves as the 442 

number of degrees of the function increases. The F-tests is statistically significant at p ≤ 0.05 443 

across all the degrees, satisfying the null hypothesis that the proposed polynomial model of a 444 

suitable degree fits the data well than linear model for electricity tariff. Similarly, it cannot be 445 

concluded with certainty that one degree of the polynomial model is better than the other.   446 
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Insert Table 6 447 

However, a cursory examination of the accuracy measures shows that the polynomial model of 448 

5th degree has the minimized forecasting errors of MAD and MSE, although its MAPE (0.16%) 449 

is slightly higher than polynomial model of the 4th and 6th degrees. Thus, a polynomial model of 450 

5th degree is the selected forecasting model for electricity tariff. 451 

Diagnostic checking  452 

Diagnostic checking was conducted to examine the residuals of the selected estimated models to 453 

determine whether they are independent. When compared with other degrees, the selected 4th 454 

degree polynomial for electricity generation and 5th degree for electricity tariff have the highest 455 

Durbin-Watson statistic (d) of 2.28 and 2.27 respectively (see Table 5 and 6). It can be 456 

concluded that the residuals are independent - are not serially correlated  - and that the null 457 

hypothesis can be accepted i.e. that the selected models have no positive autocorrelation in the 458 

data. This therefore renders the models efficient for forecasting.  459 

 460 

Forecasting 461 

To select suitable models for making a medium term (three years) prediction of electricity 462 

generation and electricity tariff respectively, the estimated 4th and 5th degree polynomial 463 

equations are specified as:  464 

Ŷ = 7786 - 145.63x - 107.61x2 + 22.136x3 -0.8506x4  465 

Ŷ = - 0.1206 + 0.1833x - 0.0657x2 + 0.0104x3 - 0.0007x4 + 2E-05x5  466 

The actual and forecasted values are shown in Table 7 and Figures 10 and 11. It is observed that 467 

for the three successively years (2015 to 2017), electricity generation would decline while 468 

electricity tariff would rise. The implications for this forecast are that if additional investments 469 
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are not made to supplement hydropower, a repeat of past power crises due to generation shortfall 470 

is unavoidable.  471 

Insert Figures 10 and 11 472 

Discussion and Policy Recommendations 473 

The reform of Ghana’s power sector has witnessed an investment boost from IPPs who now 474 

contribute 726 MW of power - representing 25.6% of the total generation capacity (as at 2014). 475 

IPPs participation has created an upward surge in power generation and has filled the generation 476 

shortfall created by the Akosombo hydroelectric plant during periods of low rainfall. Despite this 477 

effort, existing generation capacity remains insufficient to address the country’s energy needs. 478 

Additional investments are urgently needed to augment the existing capacity as well as 479 

upgrading the existing transmission and distribution infrastructure to avoid the recurring power 480 

crisis. Various planned generation capacity projects must be executed over the next 5-10 years to 481 

maintaining a healthy reserve margin and ensuring the reliable operation of Ghana’s electric 482 

system. These additional investments are urgently required to ensure economic growth and cater 483 

for urbanization and population growth, and a favorable investment environment (legal, fiscal 484 

and regulatory) is fundamental to fulfilling this need (World Bank, 2013).  485 

 486 

Unlike the generation segment, both the transmission and the distribution segments have not seen 487 

any major private investments. One change in the transmission sector is the incorporation of 488 

GRIDCo in 2006 as a private limited liability company to take over the transmission assets and 489 

functions of VRA from 2008 onwards. This change has guaranteed a major  investment  boost  in  490 

developing, modernizing  and  strengthening  the  National  Interconnected  Transmission  491 

System  (NITS) to improve efficiency and reliability. Similarly, the only private sector 492 
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participation in the distribution sector was a management and leasing contract sponsored by 493 

Electricite de France 1994 to bring efficiency in electricity distribution in ECG’s operation. 494 

Since then, ECG has not received any major private investment. It is hoped that the Ghanaian 495 

Government in collaboration with Millennium Development Authority (MiDA) would carry out 496 

their plan to privatize ECG through concession in order to access the US$498 million Compact II 497 

Program funds to improve the efficiency of ECG. The current and future investments in thermal 498 

plants, coupled with unreliable hydro generation, means that thermal will dominate Ghanaian 499 

power generation. This paradigm shift will affect production costs and consequently, increase 500 

electricity tariffs. This is because the fuel sources for thermal (e.g. natural gas, light crude oil and 501 

diesel) are more expensive making the cost of thermal generation more than twice the cost of 502 

hydro-power generation. It is imperative that Ghana’s Government and IPPs direct new 503 

investments into non-hydro generation plants, particularly into renewable energy sources which 504 

are abundant, freely available and have minimal environmental impact. A concerted effort must 505 

be made to complete existing power network infrastructure developments such as the joint 506 

Ghana/ Nigerian West African Gas Pipeline (WAGP); the Jubilee gas project; and the Sankofa 507 

gas project which has the potential of producing about 1,100 MW of electricity. Apart from 508 

providing feed for thermal plants, exploiting Ghana’s plentiful natural gas resources will cater 509 

for the emergence of power barges and increasing demand for gas by the non-power sector 510 

between now and 2018. A power barge (or power ship) is a special purpose ship, on which a 511 

power plant is installed to serve as a power generation resource. This projection may not be met 512 

if prudent and timely investments are not made.  513 

 514 
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In anticipation of a gas supply shortage, most thermal plants have been retrofitted to use light 515 

crude oil. This has significant cost implications for the end user who may be required to pay 516 

higher tariffs that could be socially exclusive particularly for the poor and infirm. Such a strategy 517 

could represent political suicide for a prevailing Ghanaian government whose predecessors have 518 

failed to adequately implement a full-cost pricing policy. To date, many sector policies have 519 

rather aimed at short-term social agendas and protecting national industry (such as the subsidy of 520 

electricity tariffs). The subsidy of electricity tariffs to VALCO has had a catastrophic impact 521 

upon VRA and ECG who are unable to sell power below their true cost and have incurred losses. 522 

The implementation of the comprehensive regulated pricing regime is therefore largely 523 

redundant, as one of the policy reforms objectives. Hence, finding a suitable and politically 524 

palatable (perhaps cross-party) approach and demonstrating transparency for regulating 525 

electricity tariffs is urgently needed to attract private investment.  526 

 527 

Conclusion 528 

Ghana’s power sector reform sought to ensure an effective regulatory environment for promoting 529 

private investments and efficiency in internal operations and revenue management. Despite this 530 

effort, the power sector continues to be confronted with enormous challenges. It is imperative for 531 

the Ghanaian government to continue to reform the power sector to stimulate private sector 532 

investments in power generation plants and in upgrading of the existing transmission and 533 

distribution plants. New investments in power generation should be directed to renewable energy 534 

(such as wind and solar) and natural gas sources. These innovative generation sources have the 535 

benefits of ensuring accessible, reliable and affordable electricity for the consumer. If the 536 

government wants to achieve its generation capacity target, be power sufficient and end the cycle 537 
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of load shedding, investments in such innovative generation sources should be made. To ensure 538 

the financial sustainability of ECG, the government has pay its debt owed to ECG. This will 539 

empower ECG to improve its human and technical capacities to improve efficiency in revenue 540 

mobilization and management, and reduce the high incidence of technical losses. Future research 541 

is required to: identify mechanisms to remove or reduce direct government financing in power 542 

utility companies in Ghana; develop and administer innovative and sustainable financial models; 543 

and further investigate the business case for using a greater proportion green energy generation. 544 

Given the sensitive political nature of major reform juxtaposed against the urgent need to deliver 545 

sustainable energy generation and transmission, Ghana’s government may have to accept that 546 

cross-party collaboration is needed if a severe energy crisis is to be avoided.   547 
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Table 1: MAPE Values for Model Evaluation 718 

MAPE (%) Evaluation 

MAPE ≤ 10% High Accuracy Forecasting 

10% ≤ MAPE ≤ 20% Good  Forecasting 

20% ≤ MAPE ≤ 50% Reasonable Forecasting 

MAPE ≥ 50% Inaccurate Forecasting 

Source: Lewis (1982) cited in Shitan et al., 2010. 719 
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Table 2: Descriptive summary statistics 753 

 Obs.  Mean  SD Min. Max. Total 

Total generation  mix (GWh) 15 8865.07 2412.38 5881.00 12963.00 132976.00 

Growth rate (%) 14 0.05 0.12 -0.19 0.24 0.70 

Average end-user tariff  (GHC) 15 0.15 0.12 0.02 0.46 2.26 

Growth rate (%) 14 0.30 0.09 -0.05 1.00 4.24 

Total generation capacity (MW) 15 1963.20 433.35 1418.00 2831.00 29448.00 

Growth rate (%) 14 0.05 0.07 0.00 0.23 0.74 

Hydro generation (GWh) 15 6314.27 1459.93 3727.00 8387.00 94714.00 

Growth rate (%)  0.04 0.07 -0.34 0.7 0.60 

Thermal generation (GWh) 15 2550.33 1307.23 613.00 4634.00 38255.00 

Growth rate (%) 14 0.27 0.15 -0.62 1.43 3.76 

Renewable generation (GWh) 15 0.47 0.32 0.00 4.00 7.00 

Growth rate (%)  14 0.02 0.09 0.00 0.33 0.33 
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Table 3: Fuel Type by Plant and Planned Projects 781 

 Water LCO/ 

Natural 

Gas 

DFO/ 

Natural 

Gas 

Natural 

Gas 

LCO Solar Total Planned 

Projects 

Hydro 3 - - - - - 3  

Thermal - 5 1 1 1 - 8 2001 

Renewable - - - - - 1 1 205 

Total 3 5 1 1 1 1 12 2206 

Source: Constructed from Energy Commission’s National Energy Statistics, 2000 -2014 782 
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Table 4: Ownership Structure in Generation Capacity 815 

 VRA IPP 

Hydro 1,180 400 

Thermal 922 326 

Renewable 3 - 

Total 2,105 726 

Source: Constructed from World Bank PPIAF and PPI Project Database  816 
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Table 5: summary forecasting statistics for electricity generation 836 

Coefficients Linear 
Polynomials 

2nd degree 3rd degree 4th degree 5th degree 6th degree 

β0 5096.21 

(662.57)*** 

7672.25 

(630.35)*** 

8916.27 

(870.4)*** 

7785.96 

(1287.23)*** 

7546.22 

(2083.66)*** 

3865.38 

(3146.18) 

β1 471.11 

(72.87)*** 

-438.08 

(181.29)*** 

1244.06 

(455.93)*** 

-145.63 

(1036.44) 

164.67 

(2321.09) 

6042.61 

(4498.98) 

β2  56.82 

(11.02)*** 

178.79 

(65.12)*** 

-107.61 

(251.93) 

-226.67 

(829.63) 

-3241.91 

(2164.37) 

β3   -5.08 

(2.68) 

22.14 

(23.31) 

40.95 

(126.63) 

728.50 

(475.59) 

β4    -0.85 

(0.72) 

-2.15 

(18.61) 

-79.35 

(52.33) 

β5     0.03 

(0.21) 

4.21 

(2.81) 

β6      -0.09 

(0.06) 

       

N 15 15 15 15 15 15 
R2 0.76 0.93 0.94 0.95 0.95 0.96 

F-test 41.79*** 75.34*** 62.28*** 48.67*** 35.14*** 33.65*** 

MAD 1001.09 527.59 452.79 353.31 356.33 3.32 

MSE 12.89E05 4.01E05 3.02E05 2.65E05 2.65E05 2.07 

MAPE (%) 12.78 6.57 5.77 4.79 4.80 4.24 

d 0.62 1.78 2.27 2.28 2.27 2.44 

       
Legend: * statistically significant at ** at 95% (p<0.05) level ; standard errors in parentheses 
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Table 6: summary forecasting statistics for electricity tariff 848 

Coefficients Linear 
Polynomials 

2nd degree 3rd degree 4th degree 5th degree 6th degree 

β0 -0.0470 

(0.0284) 

0.0600 

(0.0288) 

-0.0137 

(0.0351) 

0.0180 

(0.054) 

-0.1206 

(0.0624) 

0.0617 

(0.076) 

β1 0.0247 

(0.0031) 

-0.0130 

(0.0083) 

0.0347 

(0.0184) 

0.0039 

(0.0433) 

0.1832 

(0.0695)*** 

-0.1078 

(0.0967) 

β2  0.0024 

(0.0005)*** 

-0.0049 

(0.0026) 

0.0032 

(0.0105) 

-0.0657 

(0.0248)*** 

0.0837 

(0.0465) 

β3   0.0003 

(0.0001) 

-0.0005 

(0.0010) 

0.0104 

(0.0038)*** 

-0.0236 

(0.0102)*** 

β4    0.0000 

(0.0000) 

-0.0007 

(0.0003)*** 

0.0031 

(0.0011)*** 

β5     0.0000 

(0.0000)*** 

-0.0002 

(0.0000)*** 

β6      0.0000 

(0.0000)*** 

       

N 15 15 15 15 15 15 
R2 0.83 0.94 0.96 0.97 0.98 0.99 

F-test 62.70*** 92.92*** 99.36*** 72.12*** 103.00*** 191.27*** 

MAD 0.0367 0.0222 0.0170 0.0179 0.0135 0.0064 

MSE 0.0024 0.0008 0.0005 0.0005 0.0004 0.0000 

MAPE (%) 45.51 27.95 11.16 0.15 0.16 0.04 

d 0.77 1.49 1.79 1.71 2.27 3.15 

       
Legend: * statistically significant at ** at 95% (p<0.05) level ; standard errors in parentheses 
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Table 7: Actual and Forecasts of the annual electricity generation electricity tariff  871 
 872 

Year 

Electricity Generation Electricity Tariff 

Actual  

Values (GWh) 

Predicted values 

(GWh) 

Actual  

Values (GHC) 

Predicted values 

(GHC) 

2000 7222 7554 0.017 0.007 

2001 7859 7228 0.034 0.056 

2002 7273 6909 0.065 0.065 

2003 5881 6681 0.071 0.062 

2004 6038 6603 0.074 0.060 

2005 6788 6717 0.073 0.069 

2006 8430 7044 0.078 0.087 

2007 6978 7584 0.097 0.113 

2008 8324 8316 0.148 0.141 

2009 8958 9199 0.148 0.168 

2010 10167 10174 0.211 0.192 

2011 11200 11157 0.245 0.216 

2012 12025 12047 0.232 0.252 

2013 12870 12722 0.307 0.321 

2014 12963 13040 0.464 0.455 

2015  12836  0.700 

2016  11927  1.119 

2017  10109  1.795 
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