A Non-intrusive Heuristic for Energy Messaging Intervention Modelled using a Novel Agent-based Approach

FATIMA ABDALLAH, SHADI BASURRA, AND MOHAMED MEDHAT GABER
School of Computing and Digital Technology, Birmingham City University, Birmingham, UK
Corresponding author: Fatima Abdallah (e-mail: fatima.abdallah@bcu.ac.uk).

ABSTRACT In response to the increased energy consumption in residential buildings, various efforts have been devoted to increase occupant awareness using energy feedback systems. However, it was shown that feedback provided by these systems is not enough to inform occupant actions to reduce energy consumption. Another approach is to control energy consumption using automated energy management systems. The automatic control of appliances takes-out the occupant sense of control, which is proved to be uncomfortable in many cases. This paper proposes an energy messaging intervention that keeps the control for occupants whilst supporting them with actionable messages. The messages inform occupants about energy waste incidents happening in their house in real-time, which enables occupants to take actions to reduce their consumption. Besides, a heuristic is defined to make the intervention non-intrusive by controlling the rate and time of the messages sent to occupants. The proposed intervention is evaluated in a novel layered agent-based model. The first layer of the model generates detailed energy consumption and realistic occupant activities. The second layer is designed to simulate the peer pressure effect on the energy consumption behaviour of the individuals. The third layer is a customisable layer that simulates energy interventions. The implemented intervention in this paper is the proposed non-intrusive messaging intervention. A number of scenarios are presented in the experiments to show how the model can be used to evaluate the proposed intervention and achieve energy efficiency targets.

I. INTRODUCTION

Global electricity consumption is experiencing a continuous increase over the past decades with a focus on electricity generated from fossil fuels [1]. This increase in energy consumption is leading to climate change effects, which are highly attributed to human activities [2]. In response to this human effect, the European Commission recommended that end-users will need to play a major role in reducing energy consumption in buildings [3]. Therefore, many efforts have been made to make energy consumption in buildings tangible using energy consumption feedback systems. These systems are considered one of the energy interventions that aim to change occupants energy consumption behaviour. Existing feedback systems suffer from abstract data, which is not usually understood by occupants and does not inform their actions to reduce consumption [4]. Besides, technological advancements enabled the development of smart energy management systems that provide the infrastructure to monitor and control consumption. The main approach of these systems is to control appliances on behalf of occupants, which was proven to breach their comfort [5]. This paper introduces a non-intrusive messaging intervention that takes advantage of exiting sensing and analysis technologies to send real-time sensible messages to occupants. The messages help occupants to be informed about energy waste incidents happening in the house, and thus take actions to reduce it. The intervention is designed to be non-intrusive by proposing a context-aware heuristic that control the time of the messages and their number per day based on the occupants location, activity and interest in the information.

In order to test the effectiveness of the intervention, we propose a novel layered Agent-Based Model (ABM). The model generates consumption data based on occupant activities, which makes the data more realistic and enables the...
The paper is outlined as follows. The next section presents literature review related to energy efficiency including energy interventions, energy feedback systems and energy management systems. It highlights limitations in these approaches and presents the argument of automated and human controlled approaches. Section III presents existing ABM’s showing the advantage of the layered ABM proposed in this paper. The details of the non-intrusive messaging intervention are presented in Section IV along with the technologies & techniques that enable its implementation in reality. Next, Section V details the layered ABM, which simulates the occupants daily behaviour, peer pressure, and the messaging intervention . Section VI presents the results of simulating a number of scenarios to show how the model can be used to evaluate energy interventions. The results discussion is presented in section VII, and finally, section VIII concludes the paper and suggests future directions.

II. RELATED WORK: ENERGY EFFICIENCY

A. ENERGY EFFICIENCY INTERVENTIONS TO CHANGE OCCUPANT BEHAVIOUR

One of the approaches to address the energy consumption problem in buildings is to influence occupants’ energy consumption behaviour through interventions. Interventions are defined as the interruption of peoples’ normal behaviour [6] by changing their values, attitudes, beliefs, and knowledge to motivate them to adopt an energy efficient behaviour. Existing interventions include commitment, goal setting, information (workshops, mass media campaigns, and home audits), modelling, incentives, and feedback [7]. The effect of these methods on peoples’ knowledge and energy consumption vary based on the intervention mechanism, and combining them can result in more reduction [7].

Energy interventions may directly or indirectly affect occupant behaviour, while the resulting behaviour can be a one-time action/decision, or a continuous behaviour that needs to be practiced all the time. Therefore, targets of interventions include raising awareness and pro-environmental motivation of energy consumers, encouraging one-time energy efficiency practices such as (1) buying energy efficient appliances, (2) using renewable energy, (3) encouraging energy conservation (turn off appliances, eliminate stand-by consumption, line drying, etc.), and (4) applying demand side response that involves reducing consumption during peak-times [8]. The intervention introduced and tested in this paper targets continuous direct behaviour including energy conservation and demand side management practices. Furthermore, it is considered an enhancement of feedback systems among the different intervention types. The next section explains in details the purpose, types, and limitations of existing feedback systems.

In many occasions, energy interventions take advantage of the peer pressure effect knowing that human behaviour is highly affected by the behaviour of others [9]. Peer pressure is the influence that members of the same community have on each other, which leads to change in behaviour when comparing ones behaviour with the behaviour of others. This effect is shown to be the most influential reason of environmental behaviour change [9]. This is because information received from personal relationships are better recognised and remembered than other sources of information [10]. In this paper, we add the peer pressure effect to the simulation model used to test the messaging intervention as one of the factors that affect human behaviour. This helps make the model more realistic and reflects the normal human behaviour.

B. ENERGY CONSUMPTION FEEDBACK SYSTEMS

As mentioned in the previous section, feedback is one of the interventions that aims to help occupants save energy. Consuming energy is considered abstract and invisible because it is used indirectly to perform daily tasks [11]. Therefore, it is agreed that giving people information about the amount they are using makes them aware of their consumption and ultimately allows them to control it. Direct feedback is available in various forms including meter reading, direct and interactive feedback via monitors, pay-as-you go meters, plug/appliance meters [6]. However, with the advancements in sensor and communication technologies, direct and interactive feedback is now the most common [12]. For example, in response to the European Commission plan to reduce 20% of the Union’s energy consumption [3], the UK has installed 8.5 million smart meters (along with feedback displays) so far up to 2017 [13].

Energy feedback displays have been widely researched to study their effectiveness and users interaction with them. For example, the effectiveness of simple energy displays (stationary and portable) was investigated in Yun [14]. The study shows that energy displays resulted in an average of 11% energy reduction and increased the energy awareness of occupants. Besides, commercial feedback systems were assessed qualitatively in Hargreaves et al. [15] by asking people about the motivation of earning display systems, ways of usage, observed behaviour change, and limitations of use. Along the same lines, Karjalainen et al. [16] systematically reviewed the different ways of presenting feedback. Several user interface prototypes were developed with varied comparison types, units of display, disaggregation levels, presentation types, and time scales. They found that presentation of energy costs, appliances consumption, and historical comparison are the most preferred by users.

Although these studies showed that feedback systems play a role in increasing occupants’ awareness, many studies highlighted a number of limitations. For example, Strengers [4] observed that a considerable number of users struggled in understanding the displayed data and converting them to...
meaningful information. This is because the displayed data are absolute and not related to the surrounding context. The same conclusion was reported in [17] where people wanted more context such as occupancy and temperature to interpret high/low consumption levels. In response to this challenge, a number of studies suggest to relate energy consumption to daily activities either by annotating consumption graphs with activities [18], or using calendars as an artefact to help understand consumption [19]. Similarly, Castelli et al. [20] propose to use the location of appliances and occupants, which they call room context. This helps identify energy wastage, match consumption with occupant presence, and link consumption with everyday activities.

Despite that these efforts make more meaningful information, they still view users as micro-resource managers [4], [21] who are expected to analyse the displayed data and change their behaviour such that it meets their preferences, everyday needs, and financial & environmental goals. Based on this, Pullinger et al. [21] identify one more specification for feedback displays, which is explaining what the information means in terms of behaviour change. In addition to detailed energy consumption data, this service requires collecting environmental data and Artificial Intelligence (AI) analysis techniques, which are not provided by existing feedback systems. In this paper, we try to fill-in this gap by proposing the idea of an energy messaging intervention, which provides occupants with sensible messages that tell them what to do to reduce their consumption, instead of only giving them the amount of energy they are using. We identify the technologies and techniques available to collect and analyse the required data, and test the effectiveness of this approach in an innovative layered simulation model.

C. ENERGY MANAGEMENT SYSTEMS

Another approach to help understand and handle energy consumption in buildings are Energy Management Systems (EMS), which provide the infrastructure to monitor and control energy consumption. They are defined as the monitoring, maintaining the sensors/actuators and ensuring the communication between the components of the system, and a middleware layer that offers the basic functionalities of an EMS (such as monitoring consumption, detecting user presence, and profiling preferences), which can then be used by application developers. The architecture was tested with a temperature control case study. Within the effort to test the applicability of smart grids, PowerMatching City [5] was established as a living lab demonstration project. Smart grids refer to the infrastructure that ensures two way communication between providers and end-users to balance the supply and demand of energy. PowerMatching City project includes an EMS that automatically controls the operation of appliances to minimise costs and take advantage of renewable energy. More recently, an energy aware smart home system was proposed in [27]. The system controls lighting and appliances consumption automatically based on occupant presence and natural lighting. The paper ensures efficient communication among the system components through IoT technologies.

In relation to the messaging intervention proposed in this
Therefore, giving occupants enough information on how to that they change their behaviour to achieve more comfort, that a technology has the potential to save energy, it is proven usually referred to as rebound effect. When people perceive limitation of energy reduction [37]. This applies specifically forming users how to take advantage of them causes the appliances ON in peak times [36] especially if it happens doors when the heating is ON, or manually putting heavy sometimes oppose the automation like opening windows and management strategy. In addition, human behaviour may occupants is more efficient than applying an automated light et al [34]. They gave people advice of when is the best time to turn on appliances. In this case, users said that they gained back the sense of control over appliances, and with the time they learned how to achieve their energy efficiency goals. Thus, empowering users with information of how to reduce their consumption maintains their feel of comfort.

Apart from losing the sense of control, automation is not always the best solution for energy efficiency. For example, Zhang et al. [35] found that increasing the awareness of occupants is more efficient than applying an automated light management strategy. In addition, human behaviour may sometimes oppose the automation like opening windows and doors when the heating is ON, or manually putting heavy appliances ON in peak times [36] especially if it happens that automatic actions interfere in occupants’ important life functions [32]. Besides, installing technologies without informing users how to take advantage of them causes the limitation of energy reduction [37]. This applies specifically when the technology does not require user involvement and is usually referred to as rebound effect. When people perceive that a technology has the potential to save energy, it is proven that they change their behaviour to achieve more comfort, which leads to less energy saving than expected [36], [38]. Therefore, giving occupants enough information of how to use the technologies and raising their awareness is more reliable than having a fully automatic system.

Along these lines, Leake et al. [39] suggest human centred computing paradigm to design smart homes, which uses a simple and transparent learning process. Therefore, in order to maintain human trust in the system and obtain informed and capable occupants, the system will need to interact with the occupants and provide explanations of its decisions. In addition, Geelen et al. [37] recommends to provide feedback that showsthe occupants what behaviours need to be changed.

In this paper, we introduce an intervention that takes advantage of technologies used in existing EMS to trigger occupants’ actions to reduce energy consumption. We suggest not to automatically control appliances, but rather to detect energy wastage and inform users about it. In this case users are supported with information about what and when actions are needed to control and reduce their consumption.

III. RELATED WORK: AGENT-BASED MODELS

This paper examines the effectiveness of the messaging intervention in a simulation model. The simulation approach was selected as an alternative to field experiments, which require launching the system in a real environment, collecting data for a period of time, and observing the interaction of occupants with the system. Although field experiments allow to capture real user experience, they have limited experimental variation and can only be studied for a limited period of time [40]. However, computer simulations allow more varied scenarios and long time frame for the study. It cannot be denied that simulation models are limited in capturing all the psychological aspect of the messaging intervention, however, we consider it as a first step for evaluating new ideas that could be implemented in the future. In this research, we use human behaviour theories in simulation models to capture psychological aspects at a high level of granularity.

Agent-Based Models (ABM) is a computational system in which a group of autonomous software components, called agents, interact in an environment based on their rules of behaviour, other agents around them and the state of the environment [41]. Rules of behaviour are defined for agents which are allowed to act and interact in the environment in order to observe changes at the macro and micro-levels. In ABM, the agent has the following properties: (1) autonomy (not controlled externally but by its own rules), (2) social ability (interacts with other agents in the environment), (3) reactivity (responds to changes in the environment), and (4) pro-activity (uses the rules, interactions, and reactions to reach a specific goal) [42]. ABM is best used when agents’ behaviour is non-linear (i.e affected by the surrounding environment), when agents’ location is not fixed and when agents are heterogeneous [43]. These features of agents and ABM, make it the most appropriate technique to model human behaviour and study the factors that influence it, and provides the rationale of selecting ABM compared to typical simulation techniques (such as discrete-event simulation and
One of the applications of human dynamic behaviour is energy consumption behaviour in buildings. In such models, occupants are modelled as agents responsible for energy consumption in a building/house environment over a period of time. In order to add the human behaviour aspect, the models characterise occupant agents by a personal attribute that determines its level of energy consumption. The way these models simulate the occupant agents behaviour and define their personal characteristic affects the level of details the model can generate. Besides, some models aim to evaluate energy interventions, which change occupants characteristics. These models often focus on the peer pressure effect, which is a natural human behaviour change factor.

A group of existing models generate the energy consumption data based on activities that the occupant agents perform in the building. For example, Carmenate et al. [45] developed an ABM to determine the causes of behavioural energy waste in an office environment. The model simulates the complex interaction between occupants, building units and appliances. The energy consumption of the office is generated based on the activities occupant agents perform in the building and their energy literacy level. Similarly, Zhang et al. [35] simulate occupant activities in a university building to test the effectiveness of an automated light management strategy opposed to the manual strategy. They categorise occupant agents into 4 agent types, which determine their energy saving awareness, and found that the manual strategy can be more efficient when increasing occupants awareness. This activity-based type of modelling ensures that the resulting energy consumption is accurate in comparison to other modelling techniques, which are based on fixed schedules and activities of occupants. Besides, it enables generating detailed data (occupants activities and location, and consumption data at appliance level), which facilitates detecting energy waste and determining its causes. Although these two models [35], [45]) are activity-based and generate detailed data, they lack the peer pressure aspect and do not include any intervention modelling and evaluation. An ABM that simulates an energy intervention approach is proposed in [46]. The research aims to test a number of building management and control approaches. One of the tested approaches includes a proactive meeting relocation capability. It suggests changing meeting rooms to smaller rooms or rooms that were previously occupied (i.e. previously heated) to save energy consumption. The occupant agents may or may not accept the suggestion based on the meeting constraints and their energy consciousness. However, the model does not capture the change of occupant agents energy consciousness/behaviour in effect of the proactive approach, which is usually the aim of energy interventions. Besides, similar to the previous models, the model does not simulate the peer pressure effect.

Another group of ABMs that simulate human energy consumption behaviour focuses on the effect of peer pressure in communities. For instance, Azar and Menassa [47] introduced human characteristics and interaction to typical energy simulation tools through an ABM. The occupant agents are characterised as low, medium or high consumers by which the occupant agents level of energy consumption is determined. Besides, the model simulates peer pressure, where occupant agents change their behaviour based on the level of influence of other agents and the number of agents in each level of consumption. A behaviour change is also triggered by discrete interventions (training or workshops), which are simulated by randomly selecting the affected individuals based on the success percentage of the intervention. Moreover, the same authors (Azar and Menassa [48]) developed an ABM to help identify the social network characteristics that lead to the most energy savings when applying discrete interventions. The effect of peer networks was also studied in [49], which varies the structure of peer networks. The authors found that targeting individuals with strong relationships in peer networks is better to encourage energy savings than targeting those with more relationships. However, their model does not simulate energy interventions. Energy Interventions and peer networks were also studied in Anderson and Lee [50] through an ABM. The model tests the effectiveness of individual and comparative feedback to neighbours for example feedback while varying the network types and strategies of which occupants to target and when to target them. As a result of occupants’ interaction and feedback intervention, the occupants change their energy use behaviour, which is measured by average consumption per week. All of these models that focus on peer networks, such as those discussed in [47]–[50]), are not activity-based and do not produce detailed occupants activities and energy consumption data. This is because they characterise occupants by average daily/weekly/yearly consumption [48]–[50] or generate the occupancy of the agents through general fixed schedules [47].

The ABM proposed in this paper combines strengths of these previous models and structures them in a layered model. The core layer generates occupant daily behaviour. It is activity-based and produces detailed occupants activities and energy consumption (every 10 minutes at appliance-level). This is possible because the core layer of the ABM is integrated with a probabilistic model based on big amounts of data. These detailed data enable real-time detection of energy waste and identification of its causes. Besides, the core layer characterises occupants by their personal energy consumption behaviour, which is changed due to peer pressure and energy interventions. Another layer included in this model is a family level peer pressure model, which is not usually implemented in ABMs that are activity-based. The model includes a customisable energy intervention layer where different types of interventions can be plugged and unplugged to test their effectiveness. The intervention implemented in this model is a messaging intervention that sends sensible feedback to occupants about energy waste incidents occurring in real-time. This is considered a continuous intervention opposed to other peer pressure models that
model discrete interventions only [47], [48]. In these models, the effect of discrete interventions needs to be assumed and applied randomly. Similarly, the model in [50] stochastically determines the possibility of checking the feedback, which is considered a continuous intervention. However, with the level of details generated in the core model, it is possible to model a realistic effect of continuous interventions. This is based on how much the occupants are exposed to the intervention and their compliance to it. The details of the layered model will be explained in Section V. Table 1 shows the differences among existing ABMs and the last row of it shows the features included in the layered model proposed in this paper.

IV. THE PROPOSED ENERGY MESSAGING INTERVENTION

In this paper, we propose a messaging intervention that combines the technologies used for automated control and the service of providing energy feedback. Instead of providing the amount of energy being consumed or comparing the household consumption with similar ones, the intervention provides the occupants with real-time messages about their current energy wastage and recommends actions to reduce their consumption. This is done by relating the energy consumption of appliances with the context of the house including occupant presence, activities, and schedule, as well as environmental data. The approach in this paper is to avoid taking automatic actions in order not to breach the occupants’ comfort, but to allow the occupants to take decisions whether to comply with the messages or not. An example of real-time messages would be: “Your television in the master bedroom is now ON while nobody is there, it is recommended that you turn off devices while not in use”, or “The lights in the living room are now ON while there is enough daylight in the room, you can take advantage of natural daylight to reduce your energy consumption”.

The following sections (1) detail the type of appliances that was implemented in the simulation model, (2) define a messages pushing strategy/heuristic to control the rate and number of messages to be sent to occupants, (3) present the factors that affect occupants energy consumption behaviour including compliance to the waste messages, and (4) present different enabling technologies and techniques that may be used to obtain and forward the messages in reality.

A. APPLIANCES TYPES

Detecting energy waste incidents involves different appliances and reasons for the waste, and consequently different suggestions to minimise or avoid the waste. In this sense, three general types of appliances can be identified based on the type of waste that may occur:

- Presence-dependent appliances (televisions, computers, game consoles, fans, lights, etc.), which are not supposed to be ON if they are not being used.
- Presence-independent and heavy appliances (washing-machine, tumble dryer, dishwasher, etc.), which are not recommended to be ON in peak-times, therefore can be scheduled as they do not depend on the occupants presence.
- Heating/cooling related devices where the waste may happen if windows/doors are opened while they are ON, or over-heating/cooling is detected in some areas of the house.

Detecting energy waste incidents of each of these types requires a different set of context data. In a previous paper [51], we identified the context data needed to obtain meaningful energy feedback for occupants, which include: occupant context, appliances context, and environment context. This paper focuses mainly on the presence-dependent appliances: *televisions, computers and lights* as a proof-of-concept. Energy waste from presence-dependent appliances is detected when they (1) are switched ON while occupants are not in the location of the appliance, (2) are not being used, or are not needed to be ON (e.g. keeping the lights ON while there is enough daylight in the room). This requires data about the occupant context (occupant location and ongoing activities), environment context (amount of natural daylight depending on the time of the day and weather conditions), and appliances context that is used to identify appliances that are turned ON.

B. MESSAGES PUSHING STRATEGY

Forwarding messages to the occupants is done by pushing notifications to the occupants’ mobile devices taking advantage of the wide spread of mobile technologies these days. However, in order to ensure that occupants are not continuously interrupted by the messages, a messages pushing strategy need to be defined. This is because notifications sent in high numbers, at a high rate, and/or at an inappropriate times can affect the users’ ongoing-tasks, hence causing frustration [52]. In addition, it may lead ultimately to un-installing the application [53]. Therefore, we propose a non-intrusive message pushing strategy that minimises the annoyance level of occupants, whilst ensuring that the family reaches the savings target set by the governmental bodies and policy makers. The strategy is implemented in the simulation model by a heuristic, which will be detailed in section V-C.

In order to define this strategy, we explore studies that aim to study user’s notification-interaction behaviour and build interruptibility management mechanisms. These studies aim to determine the most appropriate times and contextual situations to send notifications, and identify the factors that affect the interruptibility and receptivity of notifications. The aim is to reduce users’ interruptibility (i.e. interruption of ongoing activities) and increase receptivity (i.e. the probability that the user receives the notification and reacts to it). One study found that sending a notification when the user transits from one activity to another reduces interruptibility [54]. Other studies, such as [55]–[57], develop machine learning models that use contextual data to predict the appropriate times for sending notification messages. These context data include time of the notification, type and the sender of information,
location, emotional state, level of engagement in the activity, response time to notifications, and phone lock/unlock times. Another study found that the content factors of the message including interest, entertainment, relevance, and actionability affect more the receptivity of the message than the time of delivery [58].

Based on these studies, the proposed strategy aims to minimise occupant annoyance level caused by the feedback messages. This is achieved by the following:

- Sending messages only in appropriate times based on the occupant location and activity
- Limiting the number of messages sent to occupants per day based on their interest in the information
- Distributing the messages over the day
- Giving priority for high wastage incidents
- Adjusting the number of occupants to be targeted by the intervention based on the saving target

C. EFFECTIVE ENERGY CONSUMPTION BEHAVIOUR FACTORS

The possibilities of receiving the message does not mean that the occupants will comply to the messages anyway. There are several factors that determine whether the occupant will accept the suggestion of the intervention. These factors are outlined in Li et al. [59] who adapt the Motivation-Opportunity-Ability (MOA) model to the energy consumption behaviour. The MOA model is initially developed to explain consumers purchasing behaviour. The following points map the factors that affect occupant energy consumption behaviour and compliance to the feedback messages with motivation, opportunity, and ability.

- **Motivation** is defined as the needs, goals, and values that affect the level of interest and willingness to adopt the energy conservation behaviour. It represents the level of concern about personal energy consumption and personal relevance of the presented feedback information.
- **Opportunity** includes the relevant resources (external and environmental factors not in control of the person) that enable or prevent the behaviour. In terms of energy feedback it represents easily accessible controls, more understandable and accessible feedback. It also includes social opportunity such as peer pressure from other individuals in the environment.
- **Ability** is defined as the personal capabilities that enable the behaviour. It includes the knowledge capacity of interpreting energy related information, consequences of energy use, as well as the ways for saving energy.

The messaging intervention proposed in this paper enhances occupant *ability* and *opportunity* of control by exposing occupants to understandable information and making the information accessible through mobile devices. However, other parts of the MOA model are not affected by the messaging intervention. Therefore, we use the Personal Energy Rating (PER) attribute in the simulation model to determine how often occupants comply to the messages, and assume that these factors are embedded in the PER. The details of implementation of the PER attribute will be detailed in section V.

D. ENABLING TECHNOLOGIES

In order to realise the sensible real-time messages, several enabling technologies and techniques exist in research and in industry. These technologies and techniques are presented in the following points to help practitioners provide the intervention in reality. Note that the enabling technologies presented in this section serve in detecting energy waste for all appliances types not just presence-dependent appliances implemented in this paper.

- **Energy monitoring at appliance level**: This can be achieved using smart plugs, which detect when the appliance is turned ON and monitor the amount of energy being used. For more information about commercial smart plugs, Ford et al. [60] provide a comprehensive review of smart plugs available today. Another way of detecting appliances consumption is through smart appliances, which allow the monitoring of their energy consumption and status as well as control and

TABLE 1: Exiting Models Comparison and features

<table>
<thead>
<tr>
<th>Paper (authors, year)</th>
<th>Activity-based</th>
<th>Generates detailed data</th>
<th>Simulates occupant behaviour</th>
<th>Simulates peer pressure</th>
<th>Evaluates energy interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmenate et al., 2016</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Zhang et al., 2011</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Klein et al., 2012</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓ (occupants do not change behaviour due to intervention)</td>
</tr>
<tr>
<td>Azar and Menassa, 2012</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓ (discrete intervention)</td>
</tr>
<tr>
<td>Azar and Menassa, 2014</td>
<td>x</td>
<td>x</td>
<td>✓ (through average energy consumption per year)</td>
<td>✓</td>
<td>✓ (discrete intervention)</td>
</tr>
<tr>
<td>Chen et al., 2012</td>
<td>x</td>
<td>x</td>
<td>✓ (through average energy consumption per day)</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Anderson and Lee, 2016</td>
<td>x</td>
<td>x</td>
<td>✓ (through average energy consumption per week)</td>
<td>ding51</td>
<td>✓ (stochastic interaction between the occupants and the intervention)</td>
</tr>
<tr>
<td>Layered agent-based model</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓ (enables realistic continuous interventions simulation)</td>
</tr>
</tbody>
</table>
communication with the user [32], [37], [60]. Appliance consumption can also be obtained from aggregated consumption data through NILM (Non-Intrusive Load Monitoring) techniques [61]. Beside these direct energy monitoring methods, some appliances can be monitored indirectly through environmental sensors such as temperature, noise, vibration, etc. [62].

- **Environment monitoring:** The surrounding environment inside and outside the house can be monitored through different sensors such as temperature, humidity, illuminance, motion, presence, body detection (e.g., smart watches), doors/windows detectors, among others. In addition, virtual/software sensors can provide useful information such as occupant schedules and calendars, or live & forecast weather data.

- **AI techniques:** These techniques may be used for different purposes to analyse the collected context data. For example, Bayesian Networks [63] and Ontological & Probabilistic Reasoning [64] are used for activity recognition in households. Sleeping detection is also possible by utilising data from smart watches [65], which are considered as permanent monitoring devices. Other activity recognition, learning and prediction techniques can be found in [62]. Another application for AI techniques is NILM, which is usually based on Hidden Markov Models and artificial neural networks [61]. Optimisation algorithms are also used for appliances scheduling [66] in order to minimise energy costs and peak demand, and maximise user preferences and comfort.

- **Platforms for communication:** As energy waste detection requires the communication of different elements, communication platforms need to be in place to provide the connection among them. The most common way for this purpose are WSNs, which are used in references [25] and [26] cited in section II-C. In these approaches, sensors and actuators are set to communicate with each other in a single network. However, more recently the IoT paradigm was established where appliances and objects (e.g., smart appliances and smart plugs) can communicate and exchange data [67]. IoT technologies are proposed to ensure reliable communication in a complex environment [27].

- **System Architecture:** The general architecture of any EMS, including the messaging intervention tested in this paper, is outlined by De Paola et al. [62]. The system is composed of different components each having a specific functionality.
 - **Sensory and actuation infrastructure:** includes the energy and environment monitoring devices, as well as actuators, which allow to control the appliances.
 - **Middleware:** deals with the heterogeneous devices and sensors in the home and provides a common interface for processing.
 - **Processing engine:** performs the analysis of the collected context data such as activity recognition and detection of energy waste.

- **User interaction interface** provides the occupants of the house with notifications about the energy waste and collects their feedback and preferences about the system suggestions. This is suggested to be provided through mobile devices such as smartphones and smart watches.

The components that provide the proposed intervention can be centralised such that all communication and processing passes through a central server, or distributed so that the components communicate directly and the processing is done in distributed processing units [62]. Fig. 1 provides a general illustration of the system that can provide the messaging intervention.

V. THE LAYERED AGENT-BASED MODEL

The ABM proposed in this paper is designed using an innovative layered structure, which includes realistic and detailed occupant behaviour, peer pressure social aspect, and customisable interventions modelling. Fig. 2 shows the three layers of the model:

- **Layer One: Daily Behaviour sub-model,** which is the core model that simulates detailed and realistic occupants daily occupancy, activities, and energy consumption.

- **Layer Two: Peer Pressure sub-model,** which adds a more realistic human behaviour aspect by simulating the peer pressure effect on occupants’ energy consumption behaviour.

- **Layer Three: Messaging Intervention sub-model,** which detects energy waste and simulates the messages reception and compliance by occupants.

The last layer of the model (the messaging intervention sub-model) is a customisable layer where any type of intervention can be modelled, implemented and tested using the other two layers of the model. More than one intervention can also be added to test the effectiveness of multiple interventions. Here, the messaging intervention is implemented and applied as an enhancement to the existing EMS and feedback displays.

A. LAYER ONE: DAILY BEHAVIOUR SUB-MODEL

The messaging intervention is simulated in an ABM that was developed in Abdallah et al. [68], [69]. The ABM is implemented in Repast Simphony (https://repast.github.io) – a Java-based agent-based platform. The model simulates energy consumption behaviour of families and allows the simulation and detection of energy waste incidents caused by occupants behaviour. This is because the generated data are fine-grained (generated every 10 minutes at appliance-level) and activity-based where the appliances consumption is generated based on occupant presence and activities. Every occupant is represented by an agent that resembles an individual in a household environment and interacts with other occupants and appliances. Occupant agents are characterised by the
social parameters such as age and employment type (full-time job, part-time job, unemployed, retired and school), while the house is characterised by the total number of occupants, income, number of rooms, and number and types of appliances. The ABM generates realistic occupancy and activities based on the given occupants characteristics, then appliances consumption is generated as a result of occupants interaction with appliances agents.

The ABM was validated by incorporating probability distributions from an existing Probabilistic Model (PM) [70], which uses higher-order Markov Process. The PM is calibrated using Belgian Time-Use Survey (TUS) and the Household Budget survey. The surveys include real data from 6400 occupants in 3455 households. Table 2 shows the size of the sample that was selected from the surveys grouped by household composition with different employment types.

<table>
<thead>
<tr>
<th>Household Composition</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adult</td>
<td>1276</td>
</tr>
<tr>
<td>1 Adult with Children</td>
<td>179</td>
</tr>
<tr>
<td>2 Adults</td>
<td>366</td>
</tr>
<tr>
<td>2 Adult with Children</td>
<td>723</td>
</tr>
<tr>
<td>Total</td>
<td>2542</td>
</tr>
</tbody>
</table>

Occupancy and Activities Simulation

The simulation time is determined by the day of the week (d), which is distinguished between a workday or a weekend, and 144 time-steps per day (t) each representing 10 minutes. Every time step, the occupant agent either selects a new occupancy state and activity based on the probability distributions, or decrements the duration of an already running occupancy state/activity. The occupant agent selects an occupancy state (ost,t,d), which can be away, active at home, or sleeping, for a duration (dr). The occupancy state and its duration are selected based on the occupant’s previous state $os(t-1),d$, age, employment type (emp), day (d), and time (t) as shown in (1).

$$OS: \text{age, emp, } os(t-1),d, t, d \rightarrow os_t,d$$

$$age, emp, ost,d, t, d \rightarrow dr$$

(1)
When the occupant agent is active at home, it performs activities from the following set {Using the computer, Watching television, Listening to music, Taking shower, Preparing food, Vacuum cleaning, Ironing, Doing dishes, Doing laundry}. The decision of doing an activity (ac_{t,d}) for a specific duration (dr) depends on the occupant’s age, employment type (emp), day (d), and time (t) as shown in (2). This step is repeated for every activity to allow multitasking where the occupant can be performing more than one activity at a time given that the activities are compatible i.e. can be performed together.

\[AC : age, emp, t, d \rightarrow ac_{t,d}, dr \] (2)

The decision of which factors affect the prediction of occupants’ occupancy and activities is adapted from Aerts research [70]. The author proved through detailed analysis of the data from the Belgian TUS that the age, employment type, time of the day and day of the week are the most affecting factors.

The occupant agent’s location in the house is determined by the activity being performed every time-step. Each activity is assigned to a room or a set of possible rooms. The agent decides its location r_{t,d} based on its occupancy state os_{t,d} and the set of ongoing activities (AC_{t,d}) as shown in (3). The occupant agent can have a set of possible rooms when doing more than one activity at a time. In this case, the agent alternates randomly between the possible rooms.

\[OL : os_{t,d}, AC_{t,d} \rightarrow r_{t,d} \] (3)

Energy Consumption Behaviour Simulation
In addition to the occupant age and employment type, the ABM characterises occupants based on their personal energy consumption behaviour. This is because energy consumption behaviour is different from one occupant to another. Therefore, the occupant type attribute is added to determine how often the occupant applies energy saving actions such as turning OFF appliances when they are not in use or avoiding putting heavy appliances ON in peak times. For this purpose, the ABM utilises the categorisation introduced by Zhang et al. [71] who divide occupants to four types: ‘Follower Green’, ‘Concerned Green’, ‘Regular Waster’, and ‘Disengaged Waster’. Each of these types is reflected in the model by the Personal Energy Rating (PER) attribute between 0 and 100 based on a normal distribution as shown in the 2nd and 3rd columns of Table 3. PER is also used to determine how often occupants comply to the recommendations forwarded by the messaging intervention, therefore embeds the MOA factors identified in section IV.

Appliances are modelled as dummy agents that only react to occupant agents actions (turn ON and OFF). Every activity (ac_{t,d}) that the occupant performs is associated to an appliance a. When the occupant agent starts an activity, it turns ON the appliance associated to this activity. When the activity ends and based on the agent’s PER attribute and other occupant agents (O\textsubscript{a}) that may be using the same appliance, the agent decides whether to turn OFF the appliance or keep it ON. The actions of turning appliances ON and OFF is shown in (4).

\[TO_a : ac_{t,d} \rightarrow \{ turnOn_a \} \quad \rightarrow \{ keepOn, turnOff \}_a \] (4)

Turning lights ON/OFF is different from using appliances, because using lights depends on daylight and location. Every time the occupant agent is in a room r_{t,d}, it may decide to turn ON the light in this room based on the amount of natural daylight (daylight_{t,d}). The agent chooses to turn ON the lights when daylight_{t,d} \times 0.02 < 200lx as modelled in [70], which was also used to obtain real daylight data measured in lux (lx). When the agent leaves the room, it decides whether to turn OFF the light based on its PER attribute and other occupants (O\textsubscript{r}) in the room. The actions of turning lights ON and OFF is shown in (5).

\[TO_r : r_{t,d}, \{ turnOn, keepOff \}_r \rightarrow \{ turnOn, keepOff \}_r \] (5)

The ABM simulates presence-dependent appliances (televisions, computers, and lights), which are related to the agents occupancy state, location, and the activities: watching television and using the computer.

For the predictive validation of the implemented daily behaviour data, we refer to TAPAS (Take A Previous Model and Add Something) principle [72], which is one of the strategies to validate simulation models. This incremental strategy is one of the most successful strategies for models creation, where a new model is built upon a previously validated model. In this case, the predictive validity of the previous model (the PM in our case) is passed to the new one (the ABM). In order to verify that the implemented ABM actually generates the same data as the previous PM, and the generated data were plotted on the same graph for comparison. Fig. 3 shows the plot for occupancy data for three day types generated by the PM and the implemented ABM. The shown data is the average occupancy for 100 simulations of the scenario “one adult aged 25-39 with a full-time job” given that the two models are fed with the different random numbers generator. The figure clearly shows that the implemented ABM was able to generate identical data to the one generated by the existing PM [70]. To statistically prove that the data sets generated by the two models come from the same distribution, we perform Kolmogorov-Smirnov test. The results of the test are shown in Table 4, which shows that the p-value is close to 1. This indicates that the models produce the same distribution of data, thus the predictive validity of the occupancy and activities data is passed from the existing PM to our developed ABM. For further validation, the reader is referred to [68], [69].

B. LAYER TWO: PEER PRESSURE SUB-MODEL

The peer pressure sub-model used in this research is based on the approach proposed in [73], which models the effect of peer pressure on the energy consumption of family
The two theories were adapted – so they can be applied to simulate the effect of peer pressure on energy consumption in families. Accordingly, the threshold for behaviour change is defined as the difference between the individual’s occupant type and the average of others’ occupant types, knowing that the occupant type is what determines the energy efficiency behaviour of individuals.

The time step in this model is set to 4 weeks of simulation time (hereafter time period) since individuals usually take time to observe the behaviour of others to change their behaviour. In order to express occupant types in numerical values, every occupant type is given an integer value as shown in the 4th column of Table 3. For a family composed of N occupants, every time period T, each occupant agent i calculates the difference diff_{T,i} between its occupant type a_i and the average occupant types of others a_j, where j ∈ [1, N] : j ≠ i using (6).

\[
diff_{T,i} = a_i - \frac{\sum_{j=1,j\neq i}^{N} a_j}{N - 1}\tag{6}
\]

Behaviour change happens if \(|\diff_{T,i}| \) exceeds the threshold \(d \) where \(d \in [0, 4] \). A high threshold implies low sensitivity to cognitive dissonance and a low threshold implies high sensitivity to cognitive dissonance. The model simulates the stochastic nature of human behaviour due to uncertainty and differences in the speed of reaction by using a threshold lag attribute such that the occupant changes behaviour with probability \(p \in [0, 1] \) (a higher value of \(p \) means a higher rate of change). \(p \) is set to 0.5 as a middle point between high and low rate of change throughout the simulations in this paper. Once behaviour change is decided, the occupant type of the individual changes towards the average of others’ occupant types assuming that the occupant agent is adapting its behaviour to be similar to others. Behaviour change is
done by stepping between the occupant types one step at a time either to the green side or the waster side. The behaviour change process step is outlined in algorithm 1, which is repeated for every agent i at every time step T.

Algorithm 1: Behaviour Change Step

```
calculate $diff_{T,i}$ using Equation (6)

if $|diff_{T,i}| \geq d$ then
    $rand \leftarrow \text{Rand}(0,1)$ // Rand(0,1) is a uniform random generator between 0 and 1
    if $rand \leq p$ then
        if $diff_{T,i} > 0$ then
            $a_i = a_i - 1$
        else
            if $a_i < 4$ then
                $a_i = a_i + 1$
```

The peer pressure sub-model was conceptually validated in [73] proving that the model generates data that conforms to the used human behaviour change theories. The paper also defines interventions that change the occupant type of specific individuals (called occupant-level interventions), then uses the model to study the effect of the intervention and peer pressure on the occupant types of the family members and their energy consumption. The feedback messaging intervention proposed and tested in this paper is considered an application of the occupant-level intervention. Occupants may change their behaviour by changing their occupant type in effect of the messaging intervention. The messaging intervention simulation and behaviour change step as a result are explained in the next section.

C. LAYER THREE: MESSAGING INTERVENTION SUB-MODEL

As outlined in section IV, the approach proposed in this paper is detecting energy waste and forwarding the messages to the occupants. This layer models the energy detection feature and implements a heuristic to simulate the messages pushing strategy defined in IV. Then, it simulates the messages reception and compliance of occupants.

Energy Waste Detection

As the ABM simulates presence-dependent appliances, the energy waste incidents detected are related to the occupants location in the house, ongoing activities, and natural daylight as follows:

- Televisions and computers are detected as wasting energy when they are turned ON but not being used. The appliance is identified to be used when the activity associated to it (watching television and using the computer)

is being performed regardless of the location of the occupant in the house, because the ABM enables multitasking. For example, the occupant can be watching television and preparing food in the kitchen. In this case the television located in the living room is not detected to be wasting energy.

- Lights are detected to be wasting energy when the light is on and (1) the room is not in use, (2) the room is in use but natural daylight is enough to light the room, or (2) all the occupants in the room are sleeping. The room is considered to be in use if there is an occupant using it even if he/she is not in the room due to multitasking as explained above. This covers the case when people leave the lights on when they are returning to the room in a short while.

The above mechanism is provided as an example for energy waste detection. Any other detection mechanism can be implemented and tested, including mechanisms that utilise predicted activities and energy consumption of occupants or customise the waste detection to the occupant preferences.

Messages Pushing Strategy Simulation

The energy waste incidents are detected and updated every time-step based on the mechanism determined in the previous section. However, it is not possible to send the occupants a group of messages about their energy waste every 10 minutes asking them to turn off appliances and change their behaviour. Using the studies cited in section IV, we implement a non-intrusive strategy that selects to forward messages at appropriate times, and limits and distributes the messages to be sent to occupants in order to reduce annoyance and frustration. The strategy is implemented based on a heuristic defined in the following 4 steps:

1) Send messages in appropriate times

As shown in Ho and Intille [54], the appropriate time to send notifications to users is when they are transiting from one activity to another, which reduces interruptibility. Applying this factor to the messaging intervention, the messages are only sent to occupant agents when they transit from one occupancy state to another, from one activity to another, or from one location to another (inside the house).

2) Set a frequency cap per day

Many studies identify that the user’s level of interest in the information is one of the influential factors that affect receptivity of notifications. Therefore, we use this factor to limit the number of messages to be sent to occupant agents. Consequently, we define a frequency cap that determines the number of messages that can be sent per day. The frequency cap is determined based on the number of transitions the occupant agent performs during the day and its interest in the information, which is determined by the occupant type. Every occupant type is given a weight to determine the level of interest, setting the maximum for the ‘Follower Green’
type and the minimum for the ‘Disengaged Waster’ type with an arbitrary equal difference between any two consecutive consumer types as shown in the 4th column of Table 3.

Every time period T (set to 4 weeks – the same as the peer pressure sub-model), the frequency cap $f_{i,T}$ of every occupant agent i is calculated using (7).

$$f_{i,T} = nT_{ran(T-1)} \times w_a$$

(7)

where $nT_{ran(T-1)}$ is the number of transitions the occupant agent performed in period $T-1$, and w_a is the weighting of the agent’s occupant type.

The frequency cap $f_{i,T}$ is then divided on the number of days in the period T ($n_T = 28 = 4 \text{ weeks} \times 7 \text{ days per week}$) to ensure that the messages are distributed over the days. The frequency cap per day $f_{i,d}$ is calculated using (8).

$$f_{i,d} = \frac{f_{i,T}}{n_T}$$

(8)

The messaging intervention strategy keeps the number of messages sent to the occupant agent less than the frequency cap per occupant.

3) Adjust the number of messages per occupant per time step

In order to guarantee that the messages are distributed over the day, the strategy adjusts the number of messages to be sent to the occupant agent per time step while focusing on high energy wastage. This is done based on the remaining number of messages that can be sent to the occupant (hereafter occupant’s messaging capacity) and the expected number of waste incidents until the end of the day.

Every time step t, the number of messages to be sent to the occupant i is set using (9), (10), and (11).

$$nMsg_{i,t} = \left[\frac{c_{i,t}}{NExp_t} \right]$$

(9)

$$c_{i,t} = f_{c_{i,d}} - NMsg_{i,t}$$

(10)

$$NExp_t = NDet_t - NExp_d$$

(11)

where $nMsg_{i,t}$ is the number of messages to be sent to the occupant at time step t, $c_{i,t}$ is the occupant’s messaging capacity, $NExp_t$ is the remaining number of incidents expected at time step t until the end of the day, $NMsg_{i,t}$ is the number of messages received by the occupant so far, $NDet_t$ is the number of detected incidents so far, and $NExp_d$ is the total number of incidents expected per day. In this model $NExp_d$ is calculated from the last time period (4 weeks) then divided over the days. It was possible to calculate $NExp_d$ in the ABM, however in reality various machine learning algorithms can be applied to identify the expected incidents throughout the day.

4) Adjust the number of occupants per time period

Every period of time, the strategy adjusts the the number of occupants to be targeted by the intervention. The family is set an energy saving target (in percentage) to be achieved after one year of applying the intervention. This target is supposed to be set by policy makers and governmental bodies. Therefore, based on whether the percentage of saving is more or less than the target, the number of occupants is decided in a way that reduces the annoyance of occupants if they have already reached the target. This process is shown in Algorithm 2, which is repeated every time period T.

Algorithm 2: Adjust Number of Occupants

Ensure: $nTar_T \geq 0$ and $nTar_T \leq N$

if first time period T then

$$nTar_T \leftarrow N$$

else

if $s_T > tar + 1$ then

$$nTar(T+1) \leftarrow nTar_T - 1$$

if $s_T \geq tar - 1$ and $s_T \leq tar + 1$ then

$$nTar(T+1) \leftarrow nTar_T$$

if $s_T < tar - 1$ then

$$nTar(T+1) \leftarrow nTar_T + 1$$

$nTar_T$ is the number of targeted occupants at time period T, N is the total number of occupants in the family, s_T is the energy saving percentage before time period T, and tar is the energy saving target (in percentage) set for the family to reach. occupants with highest frequency cap are selected to be targeted by the intervention. The simulation is run for one year without the messaging intervention in order to calculate the energy saving percentage.

Messages Reception Simulation

The energy waste incidents are forwarded to the occupant agents’ mobile device (smartphone, tablet, smart watches, etc.) if they possess any. In this paper, we simulate the case of smartphones as they are the most spread and used types of mobile devices these days [76]. Real statistics were obtained for the possession and usage of smartphones from Deloitte Global Mobile Consumer Survey (Belgian edition) [76]. Table 5 shows the possibility of owning a smartphone based on the occupant’s age. Therefore, it is decided in the initialisation phase whether the occupant agent possesses a smartphone or does not.

1The Belgian edition of the survey was selected since the probability distributions used in the ABM are calibrated using the Belgian time-use survey.

2The age group 12-17 is not included in the Global Mobile Consumer Survey [76]. Instead, we used a survey by iVox and Wiko who found that 86.1% of children aged 13-16 possess smartphones in 2015. Reference: http://be-nl.wikomobile.com/4342-Wat-is-de-ideale-leeftijd-om-een-smartphone-te-bezitten (Accessed 2 May 2018). For the smartphone usage we used the data of the closest age group 18-24 as shown in Table 6.
TABLE 5: Smartphone Possession Probability by Age Group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Smartphone Possession Probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-17</td>
<td>86.1</td>
</tr>
<tr>
<td>18-24</td>
<td>90.0</td>
</tr>
<tr>
<td>25-39</td>
<td>92.0</td>
</tr>
<tr>
<td>40-54</td>
<td>83.0</td>
</tr>
<tr>
<td>55-64 1</td>
<td>83.0</td>
</tr>
<tr>
<td>65-75</td>
<td>56.0</td>
</tr>
</tbody>
</table>

 Possessing a mobile device does not mean that the occupant will always receive the message. To determine the mobile device check probability, the Global Mobile Consumer Survey was used. The survey includes data about how often people check their smartphone per day by age group (Table 6), and the percentage of people who check their phone while doing different activities during the day (Table 7). Based on these data, we calculate the percentage frequencies of checking the smartphone.

TABLE 6: Frequency of Checking the Smartphone by Age Group

<table>
<thead>
<tr>
<th>Age Group (age)</th>
<th>Frequency of checking the smartphone per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-17</td>
<td>70</td>
</tr>
<tr>
<td>18-24</td>
<td>70</td>
</tr>
<tr>
<td>25-39</td>
<td>46</td>
</tr>
<tr>
<td>40-54</td>
<td>28</td>
</tr>
<tr>
<td>55-64</td>
<td>28</td>
</tr>
<tr>
<td>65-75</td>
<td>11</td>
</tr>
</tbody>
</table>

TABLE 7: Percentage of Checking the Smartphone while Doing Different Activities

<table>
<thead>
<tr>
<th>Day Period</th>
<th>Activity</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>Within 5 minutes after waking-up</td>
<td>31</td>
</tr>
<tr>
<td>Daytime/</td>
<td>While on road</td>
<td>26</td>
</tr>
<tr>
<td>Work Time</td>
<td>While working</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>In a meeting</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>While Shopping</td>
<td>33</td>
</tr>
<tr>
<td>Evening</td>
<td>While on road</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>While Watching TV</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>While spending time with friends/family</td>
<td>33</td>
</tr>
<tr>
<td>Sleep</td>
<td>Within 5 min before sleeping</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>If sleeping was interrupted</td>
<td>40</td>
</tr>
</tbody>
</table>

of checking the smartphone for every age group and day period, which are mapped to the corresponding age groups and periods in the Belgian Time-Use Survey, and assume that the message is received once the phone is checked. The action of smartphone checking \((sc_{t,d})\) depends on the occupants’ age, occupancy state \((os_{t,d})\), day type (workday or weekend), and the time of the day as shown in (12).

\[
SC : age, os_{t,d}, t, d \rightarrow sc_{t,d} \tag{12}
\]

Messages Compliance Simulation
Whenever the occupant agent receives the message, it may comply to it by turning OFF the appliance that is causing the waste. This action happens based on the agent’s PER attribute, which embeds different personal and external factors that either allow or prevent the action from happening as outlined in Section IV.

When the message is sent to the occupant agent’s mobile device, the agent’s smartphone check probability \((sc_{t,d})\) is used along with its occupancy state \((os_{t,d})\), location \((r_{t,d})\) and PER to determine the reaction towards the message as in (13).

\[
MC : sc_{t,d}, os_{t,d}, r_{t,d}, PER \rightarrow \{\text{keepOn, turnOff}\} \tag{13}
\]

Behaviour Change Due to Messaging Intervention
The occupant agents may change their occupant type and consequently their PER assuming that they are becoming more energy aware as a result of the messaging intervention. This is decided by comparing the actual behaviour of the occupant agent and the mean value of the occupant type shown in Table 3. The actual behaviour of the agent is calculated using (14).

\[
aB = \frac{nOFF}{supNOFF} \tag{14}
\]

where \(aB\) is the ratio of the number of times the occupant agent turned the appliance OFF (nOFF) and the number of times it was supposed to turn OFF (supNOFF). If the \(aB\) exceeds the mean of the more-green occupant type, the agent changes its occupant type to the green side, thus increases its PER attribute. This step is executed every time period \(T\), then the peer pressure behaviour change step (Algorithm 1) is executed such that the occupant agent may affect others’ behaviour or the others may affect it. Every step executed by the occupant agent is demonstrated in Fig. 4 with the associated equation/algorithm used in the step. The step is executed until the total time of the simulation is reached (set to one year in the experiments).

VI. EXPERIMENTS AND RESULTS
The aim of these experiments is to show how the proposed simulation model can be used to test energy interventions. The family simulated in these experiments is composed of four occupants: two adults who are 25-39 years old in a full-time job, and two children 12-17 years old who go to school. For this family type, we simulate two scenarios by varying the occupant types and PER values (all follower green families, and all disengaged waster families) to test the effect of energy awareness on the effectiveness of the intervention. In order to test the effectiveness of the proposed message pushing strategy we run two types of scenarios, one where the proposed strategy is applied at its entirety as outlined in the previous section, and another where messages are sent whenever the occupants are active at home (hereafter \(naive\) strategy). With the naive strategy, it is assumed that
occupants stop complying to messages when their frequency cap is reached, while the messages continue to be sent by the messaging intervention in response to energy waste incidents. This follows the conclusion reached in [53], where users stop using the application when they receive a high number of notifications. Besides, we vary the savings target of the proposed strategy to get the maximum percentage of saving that can be achieved when applying it.

For every scenario, 100 households were simulated to capture the probabilistic nature of the model. Each household has different income levels, work routines for employed occupants, ages, appliances number and types, and number of rooms in the house, all drawn based on the probability distributions from the real data. Every household is run for one year without any intervention to get the baseline consumption of the house, then for another year while applying the proposed strategy or the naive strategy. The percentage of saving of every household is calculated using (15)

$$ S = \frac{(C_n - C)}{C_n} \times 100, $$

where S is the percentage of saving, C is the yearly consumption when applying the messaging intervention, and C_n is the yearly consumption when no intervention is applied.

In order to measure the level of annoyance that occurs as a result of sending out feedback messages, we calculate the percentage of messages sent in comparison to the frequency cap of the occupants (16)

$$ A = \frac{N_{Msg_{total}}}{f_{total}} \times 100, $$

where A is the level of annoyance of occupants, $N_{Msg_{total}}$ is the total number of messages sent to the occupants in the whole year, and f_{total} is the total frequency caps of all the occupants in the whole year. A value of annoyance less than 100 means that the occupants were not annoyed by the messages, and a value more than 100 means that they are annoyed by the messages which indicates high probability of switching off the notifications.

First, we show some general results (average savings and annoyance) of the simulated scenarios, then we present detailed results of the messaging intervention to show how the model can be used to test the performance of the strategy.

A. GENERAL RESULTS

Fig. 5 and Fig. 6 show the average and standard deviation of energy saving and annoyance of the simulated 100 households in each scenario. Scenarios that run with the naive strategy have the same indication when varying the energy saving target since the target does not affect the way the messages are sent. In order to get the maximum saving result of the messaging intervention when applying the proposed strategy, we start by simulating scenarios with low targets (10%) and increase it until we noticed that the average saving is not changing. When the average saving does not increase as the target increases, then this means that the proposed strategy is targeting the maximum number of occupants but the household could not achieve more savings. This is noticed when increasing the target from 20% to 30% where the saving increased only 1% with the green occupants and decreased 1% with waster occupants. Therefore, with the proposed strategy, the maximum average saving for green occupants is 13% and for waster occupants is 11%.

The energy savings of the intervention with the naive strategy ranges between 13-15 % for both green and waster families. While the savings achieved when applying the proposed strategy is between 7-13 %. However, when looking at the annoyance levels, we notice that the proposed strategy is able
to achieve these savings with low levels of annoyance (21-52% for green occupants, and 45-75% for waster occupants). While the annoyance level of all waster families with the naive strategy exceeds the frequency cap of the occupants by almost three times (287-294%). This indicates that the saving percentage 14-15% resulting from using the naive strategy could not be achieved in reality because of the high annoyance level. Besides, for green occupants, the proposed strategy achieved the same amount of savings (12-13%) with annoyance level 48-52% compared to 96% annoyance level when the naive strategy is applied. This indicates that the proposed strategy succeeded to keep occupants unannoyed while achieving reasonable savings. This is because it reduces the number of occupants to target when the savings target is reached, and distributes the messages over the day while focusing on high wastage. These results indicate that the proposed intervention strategy is more efficient than the naive one. The details of the proposed strategy will be presented in the next section.

Looking at the standard deviation of the reported results, we notice that results of all waster families is more scattered than green families. This is because waster occupants have the chance to change their occupant type and become more aware, thus achieving different energy savings. An example of two different scenarios will be presented in the next section to show the reason of these scattered results. In terms of achieving the savings target, the proposed strategy did not succeed to achieve the targets in average. The percentage of successful scenarios among the simulated households is 14%, 3%, and 1% for the targets 10%, 20%, and 30% respectively. This reveals that policy makers will need to adjust the messages pushing strategy and/or apply a combined intervention approach such that targets are achieved while minimising the annoyance levels of the occupants. The proposed model can help evaluate these strategies and interventions before implementing them in reality. Note that these results are specific for the family type tested in this experiment. Different results may be obtained when changing the inputs for the model. City level results can be obtained by feeding the model with the demographic distribution of the city to obtain the effectiveness of the intervention and strategy.

B. DETAILED STRATEGY RESULTS

This section presents detailed examples to show how the proposed strategy works. Fig. 7 compares how the messages are sent over the 24 hours period using the proposed strategy and the naive one. In Fig. 7a where the naive strategy is applied, messages are sent to occupants whenever they are active at home. It is noticed that most of the messages are sent once the occupants wake up in the morning, and the occupants stop complying to the messages in the middle of the 24 hour period (at 04:00 PM). After this time, the intervention continues sending the messages but it is assumed that the occupants stop complying to them when the number of messages received reaches their frequency cap. Fig. 7b shows how the messages are sent when the proposed strategy is applied. It is clear that the messages continue to be sent until the end of the day (at 10:00 PM), and no messages are sent after the frequency cap of each occupant is reached. This ensures that the messages are distributed over the day while focusing on high waste incidents.

Fig. 8 shows how the energy savings change over the year (tracked every 4 weeks) and how the proposed strategy changes the number of occupants to target accordingly (the left y-axis refers to the savings percentages, and the right y-axis refers to the number of occupants to target). Fig. 8a presents a scenario where the family succeeded to reach the energy saving target (30%) at week 28. As a result the proposed strategy started to decrease the number of occupants to target from 4 until it reaches 0 at week 44. By the end of the year, the family had 30% of energy saving. This saving percentage was possible because the occupants changed their occupant types from 4 disengaged wasters to 3 regular wasters and one follower green. This is due to both peer pressure and the effect of the messaging intervention. Fig. 8b shows a family that did not succeed to reach the savings target during the whole year. As a result, the number of occupants to target remained equal to the maximum (4 occupants). Talking about the occupant types of this family, all of the occupants remained disengaged wasters by the end of the year. This shows one of the reasons why interventions work in some cases but not in others. In addition, it indicates...
that in some cases, the messaging intervention is not enough to achieve the savings target, and another type of intervention needs to be combined with it to change occupants awareness and save more energy.

VII. DISCUSSION

This paper introduces an energy messaging intervention. Most existing energy feedback systems display abstract or contextualised energy consumption data [17]–[20]. However, these data need to be further analysed by occupants to determine energy waste causing activities/actions and minimise their consumption [4], [21]. In this paper, we identify the specifications and enabling technologies & techniques that can support occupants to reduce their energy consumption using sensible feedback; a feedback that tells occupants what appliances are causing high energy waste. Instead of controlling appliances on behalf of occupants, like most existing EMS [5], [24], [27]–[29], we propose to keep occupants in control. Therefore, we suggest that energy wastage messages are forwarded to occupants’ mobile devices giving them the choice whether to comply to the feedback message or not.

One challenge that exists when dealing with applications that forward messages to users is the intrusiveness of the messages. Such that the pushed notifications may be sent at the wrong times or in high number/rate. In order to overcome this challenge, we presented a heuristic approach by sending messages only when the occupants transit from one location/activity to another, setting a frequency cap to limit the number of messages, distributing them over the day, and reducing the number of occupants to be targeted when a saving target is reached.

In order to test this messaging intervention, we use a novel layered ABM that simulates the household’s energy consumption and the messaging intervention. Opposed to other ABM [47]–[50], the layered ABM is activity-based and generates detailed data, which enhances the accuracy of the simulation. In addition, it simulates occupants peer pressure effect on energy consumption behaviour in comparison to other models that do not simulate peer pressure [35], [45], [46]. The messaging intervention sub-model enables realistic simulation of interventions by using real statistical figures of the possession and usage of smartphones by occupants to simulate the occupants’ interaction with the intervention. Therefore, unlike existing models [47], [48], [50], the developed model simulates realistic interaction of occupants with energy interventions, where the result of the intervention can be affected by the occupant daily behaviour and social characteristics.

For the messaging intervention and in order not to annoy occupants with messages, we define a non-intrusive strategy to forward the messages to occupants. The experiments presented in the chapter showed that the proposed intervention strategy was effective as it achieves reasonable saving and...
keeps the occupants not annoyed when compared to a naive strategy. The presented scenarios also showed the details that can be generated and controlled in the simulation model. This will enable policy makers to evaluate the effectiveness of the intervention, its strategies, and any other energy intervention.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a non-intrusive messaging intervention that detects and sends waste incidents to occupants to help reduce energy consumption in buildings. It is considered a middle-point between techniques and technologies used for automatic control, and typical feedback displays. The paper has also presented the enabling technologies and techniques that are needed to realise the messaging intervention in reality. In order to avoid occupants annoyance from the notifications (which are suggested to be sent to their mobile devices), we have proposed a strategy that controls the number of occupants to target, the number of messages to send per occupant, and the time of sending the messages.

The intervention is evaluated using a novel layered ABM that combines strengths of existing ABM. It simulates detailed energy consumption and wastage, models the effect of peer pressure, and evaluates energy interventions. The presented experiments showed that the proposed intervention and strategy can result in acceptable energy saving while keeping the occupants comfortable (not annoyed by the messages). It also showed how the model can be used by decision makers to explain how interventions can be effective in some families but not in others and test different approaches of interventions. Although the results in this study are obtained through a realistic simulation model, real world testing is needed because there are many factors that can affect the success of interventions. However, such simulation analysis is needed as a first step towards the evaluation of new approaches that require lots of equipment and time to be installed and tested in real scenarios.

Concerning the proposed messaging intervention, a number of challenges may be observed when applying a human controlled approach. The first challenge is the possibility that the occupants do not comply to the messages. This may be affected by several internal (e.g. personal motivation), and external (e.g. inaccessibility to control the appliances) barriers. Therefore, it is important to identify and overcome these barriers through field testing. Besides, occupants’ trust in such a system may be breached if the energy waste incidents are not accurately predicted. This challenge can be addressed by developing and using accurate sensing devices analysis techniques, and taking feedback from the occupants about the provided messages. It is worth to mention that in behaviour change type of problems, there is no “silver-bullet type of solution” [8]. Therefore, it cannot be assumed that the proposed intervention will work in any case and type of household where several types of interventions may be needed. Besides, one of the future directions to further develop such interventions is to study it from the social psychological point of view in order to determine the best way of presenting the information – so that occupants are encouraged to take action.

The model presented in this paper is now implemented for lights, televisions and computers which are presence-dependent appliances. The model can be extended to simulate other types of appliances thus testing other types of interventions or actions to control energy consumption. These appliance types include presence-independent and heavy appliances (washing-machine, tumble dryer, dishwasher, HVAC systems etc.) which are not recommended to be switched ON in peak-times. This is called demand response which is applied when the price of electricity unit varies based on the time of the day. In this case, the messaging intervention could suggest to reschedule the heavy appliance to a non-peak time that is convenient for the occupants’ schedule and preference, or use an alternative such as line drying instead of using tumble dryer, renewable energy instead of electricity, etc. Demand response benefits both consumers (by reducing their energy bill), and providers (by reducing the generation costs and operating the electricity systems more efficiently) [22]. The other type of energy waste that can be tested is heating/cooling loss. This could happen when heating/cooling devices are ON when occupants are not present and pre-cooling/pre-heating is not scheduled, windows/doors are opened while the devices are ON, or over-heating/cooling is detected. The suggestions in these cases are to turn the device off or adjust the set point of heating/cooling. In order
to test these interventions, all the necessary context data will need to be added to the simulation model (specifically the core daily behaviour model) such as occupants schedule, occupants preferences, and internal & external temperature. Then the interventions related to these appliances can be modelled and tested. Besides, various strategies for sending messages out for occupants may be defined, implemented, and tested using the same model. This emphasises the customisable energy intervention testing feature of the model.

REFERENCES

FATIMA ABDALLAH is a current PhD researcher at the School of Computing and Digital Technology, Birmingham City University, UK. She received her B.S. degree in computer sciences and M.S. degree in information and decision support systems from the Lebanese University, Lebanon, in 2012 and 2014 respectively. Her M.S. project involved developing a context-aware middleware for mobile devices. Fatima has published a number of papers in international conferences in areas including mobile computing, energy consumption in buildings, and artificial intelligence. Her areas of expertise include agent-based modelling, context-aware computing, and artificial intelligence.

SHADI BASURRA Shadi Basurra is a Senior Lecturer in Computer Science at Birmingham City University, UK. Shadi received his Bsc (Hons) in Computer Science from Exeter University, UK, and MSc in Distributed Systems and Networks from Kent University at Canterbury, UK. He obtained his PhD from the University of Bath in collaboration with Bristol University. After his PhD, Shadi worked at Sony, developing Goal Decision Systems. He was awarded The Yemen President National Science Prize (2010), Best Presentation at Meeting of Minds at Bath 2012, MEX Scholarship 2013, (PhD Scholarship from Toshiba ltd, Great Western Research and Yemen gov. - 2009) and various academic grants. Shadi’s research interests include multi-agent systems, game theory, multi-objective optimisation, machine learning in IoT, energy efficiency in smart buildings, emulation of mobile ad hoc networks, nature inspired computing and social networks. He has published a number of peer-reviewed scientific articles at international conferences and journals, and has taught postgraduate and undergraduate courses in computer science and networking.

MOHAMED MEDHAT GABER is a Professor in Data Analytics at the School of Computing and Digital Technology, Birmingham City University. Mohamed received his PhD from Monash University, Australia. He then held appointments with the University of Sydney, CSIRO, Monash University, the University of Portsmouth, and Robert Gordon University. He has published over 150 papers, co-authored 3 monograph-style books, and edited/co-edited 6 books on data mining and knowledge discovery. His work has attracted well over four thousand citations, with an h-index of 32. Mohamed has served in the program committees of major conferences related to data mining, including ICDM, PAKDD, ECML/PKDD and ICMIL. He has also co-chaired numerous scientific events on various data mining topics. Professor Gaber was the program committee co-chair for the 17th IEEE International Conference on Mobile Data Management 2016. He is also a member of the International Panel of Expert Advisers for the Australasian Data Mining Conferences. In 2007, he was awarded the CSIRO teamwork award.