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Nonlinear flexural behaviour of RC columns including bar buckling 

and fatigue degradation 
Mohammad M Kashani1, Mohammad R Salami2, Katsuichiro Goda3, Nicholas A Alexander4 

Abstract 

An advanced fibre-based modelling technique is developed to characterise the nonlinear flexural 

behaviour of rectangular reinforced concrete (RC) columns by accounting for the influence of 

inelastic buckling and low-cycle fatigue degradation of vertical reinforcement. The proposed uniaxial 

material model of reinforcing steel is calibrated using 22 rectangular RC column tests. The influence 

of inelastic buckling of vertical reinforcement on the nonlinear cyclic response of rectangular RC 

columns is investigated. The calibrated model is capable of accurately predicting the nonlinear 

response of rectangular RC columns up to complete collapse by taking into account the additional 

failure modes of the RC columns.  
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1. Introduction

The modern seismic design practice has improved the seismic response of reinforced concrete (RC) 

structures under earthquake loading when compared to older structures. Nevertheless, destructive 

damage has been observed in recent large earthquakes and financial loss due to such events can be 

devastating (Mander and Rodgers 2015). This is the consequence of designing structures for ductility. 

In other words, structures are design for a reduced strength to a specific seismic hazard level. The RC 

structures are the prescriptively detailed in their potential plastic hinge locations for ductility. 

However, at the time when these codes were written, the adverse effect of low-cycle fatigue combined 

with inelastic buckling of longitudinal reinforcement on performance of RC structures (Mander and 

Rodgers 2015) were not very well understood. Furthermore, the existing performance-based 

earthquake engineering (PBEE) relates structural damage to the economic impact to promote risk 

mitigation decisions (Moehle and Dierlein 2004). It requires accurate response models to predict the 

seismic demand of RC structures under multiple hazard levels and suitable damage models that relate 

to the consequences of the earthquake damage. Finally, the PBEE framework links the 
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structure/component demands with damage state to estimate the economic loss. Accordingly, several 

researchers (Berry and Eberhard 2003, 2005; Lehman and Moehle 2004) have studied the 

relationships between the demand parameters, such as drift ratio or strain at critical section, and 

damage parameters, such as cover concrete spalling, bar buckling and low-cycle fatigue degradation, 

experimentally.  

The 2010-2011 Christchurch earthquake revealed that if an earthquake event occurs and results in a 

visible damage in the structure, it is very likely that the cyclic degradation of that event (with or 

without the effect of buckling) may have consumed some of the available fatigue life of the structure. 

Moreover, if several large earthquakes in a sequence have occurred (mainshock-aftershock sequence), 

the owner is in a quandary regarding the service life of the asset. Therefore, the owner might be 

require to restore the asset to a pre-earthquake damage condition. Given the low-cycle fatigue and 

buckling are permanent damage, the damaged components and their associated connections within 

the structure may be required to be reconstructed with new materials. Accordingly, there is an urgent 

need for advanced computational tools to predict the performance of existing structures subject to 

large earthquake events. 

 Recent advances in computational tools have improved the capability of finite element (FE) 

modelling techniques in nonlinear analysis of structures subjected to earthquake loading. Among the 

recent advanced methods, a fibre-based FE technique using a distributed-plasticity beam-column 

model and lumped-plasticity model are widely used. In the fibre model, the element cross section is 

discretised into a number of fibres. The material nonlinearity is represented by assigning nonlinear 

uniaxial material models to concrete and reinforcing steel. In the lumped-plasticity model, 

nonlinearity of a beam-column element is introduced at the two ends of the element (i.e. hinges) using 

nonlinear springs, which are connected by an elastic beam-column element. Ibarra et al. (2005) and 

Haselton et al. (2011) showed that when a suitable hysteretic model is assigned to the springs, the 

lumped-plasticity model can predict the nonlinear behaviour of RC elements reasonably well. 

However, the problem of this approach is that the hysteretic model needs to be calibrated against 

certain experimental data in every single element/structure and cannot be generalised to other cases. 

Furthermore, once the lumped-plasticity is calibrated against a set of experimental data, it does not 

capture the different failure modes of RC components. More importantly, a calibrated lumped-

plasticity model might be able to simulate the cyclic degradation of an RC component but still cannot 

capture the remaining low-cycle fatigue life (in case of partial damage) of that component after a 

given cyclic load history. In contrast, the distributed-plasticity approach using nonlinear fibre beam-

column elements, once their material models are calibrated, can be applied to various cases, and thus 

are not constrained by specific test data. However, the conventional nonlinear fibre beam-column 
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element models (Taucer et al. 1991; Spacone et al. 1996a, b) are not capable of simulating the cyclic 

deterioration of RC components due to reinforcement buckling, low-cycle fatigue degradation and 

concrete crushing. In order to improve this, other researchers (Monti and Nuti 1992; Rodriguesz et 

al. 1999; Gomes and Appleton 1997; Dhakal and Maekawa 2002a; Kunnath et al. 2009; Bae et al. 

2005; Kashani et al. 2015a,b Kashani 2014) have developed uniaxial material models that can capture 

inelastic buckling behaviour of reinforcing bars with and without the effect of low-cycle fatigue 

degradation.  

To this end, these available models have not been validated in fibre-based models. The initial work 

conducted by Kashani et al. (2015a,b) resulted in development of a uniaxial material model for 

reinforcing bars that accounts for inelastic buckling and low-cycle fatigue degradation. This current 

paper extends the previous work and implement this comprehensive material constitutive model 

within an advance fibre-based finite element model. The proposed modelling technique addresses the 

issue related to simulating the nonlinear flexural response of rectangular RC components (beams and 

columns) in building structures that fail due to inelastic buckling and/or low-cycle fatigue degradation 

of reinforcing bars. This model employs a nonlinear fibre beam-column element. The proposed 

uniaxial material model is developed using the experimental and numerical analysis data of isolated 

bars outside of concrete (Kashani 2014). Therefore, a comprehensive parametric study needs to be 

conducted to calibrate this material model to account for the influence of horizontal tie reinforcement 

(also known as confining reinforcement) on cyclic response of buckled reinforcing bars inside RC 

columns. It should be noted that in this approach, only one material model need be calibrated. Once 

the material model is calibrated it doesn’t need any further calibration and can be used in any analysis. 

Through the parametric study the cyclic degradation of hysteretic loops of the uniaxial material model 

of reinforcing bars is calibrated against an extensive experimental dataset of 22 rectangular RC 

columns. This new modelling technique is able to predict the nonlinear behaviour of RC columns 

accounting for the influence of inelastic buckling and low-cycle fatigue degradation. It can accurately 

capture the multiple failure modes of RC components simultaneously and thereby significantly 

improves the accuracy of structural response simulation due to severe earthquake ground motions. 

This is demonstrated by implementing the model in a typical RC frame to show the influence of 

incorporating more complex failure mechanisms on the collapse assessment of the structure. The 

other significant contribution of this study is to evaluate the progression of the low-cycle fatigue 

damage and consumption of fatigue life of RC components. This is extremely important for post-

earthquake damage assessment of structures. For instance, if a structure is subjected to a sequence of 

earthquake events, it is possible to estimate the extent of damage after an earthquake and subsequently 

the economic loss. Therefore, the proposed research in paper has a significant impact in both industry 
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and society. It can also support the insurance companies responsible in insuring buildings after large 

earthquake events for reliable estimation of the residual capacity of damaged RC structures after large 

earthquake sequence.     

2. Experimental data 

The University of Washington–Pacific Earthquake Engineering Research Centre (UW-PEER) RC 

column test database (Berry et al. 2004) provides an opportunity to study and optimise the model 

parameters of axially loaded RC components. The database documents the geometry, material 

properties, and reinforcement details of the columns. It also includes the force-displacement data, and 

the observed displacements at the onset of multiple damage states. In this study, 22 experiments where 

column buckling played a critical role are considered for model calibration and validation. Table 1 

summarises the details of the selected columns and their references. In Table 1, L is the column length, 

L/D is the ratio of column length to column diameter, ρl is the ratio of longitudinal reinforcement area 

to total cross sectional area, ρh is the volumetric ratio of horizontal reinforcement, and P/(Agfc) is the 

axial force ratio, where P is the axial force applied to the column, Ag is the gross cross sectional area 

of column, and fc is the compressive strength of concrete. The details of material properties can be 

found in the UW-PEER column database and in the relevant reference that is shown in Table 1. It 

should be noted that the experimental tests include a series of cantilever and double-ended column 

tests that are identified in Table 1 and illustrated in Fig. 1. 

 

Fig. 1 Column test configuration: (a) Cantilever and (b) Double-Ended 

To account for the P-Δ effects, the column forces provided in the database are resolved into vertical 

and horizontal components. The vertical component can be approximated by P (i.e. axial load 

indicated in the database). The horizontal component of the vertical actuator needs to be added to (or 
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subtracted from) the force applied by the horizontal actuator to obtain the net horizontal force. The 

experimental tests that are used in this research can be classified into three cases as shown in Fig. 2 

and are indicated in Table 1. The database manual provides simplified equations for correcting the 

horizontal actuator force to account for the P-Δ effects. Further discussion and P-Δ correction 

equations are available in (Berry et al. 2004).  

 

 

Fig. 2 P-Δ cases reported in the UW-PEER database manual 

 

 

Table 1 Experimental column dataset 

 
ID 

 
Reference 

Test 
Type 

Span 
to 

Depth 
ratio 

Concrete 
Strength 

(MPa) 

Vertical 
Reinforcement 

Ratio, ρl  

Horizontal 
Reinforcement, 

Ratio ρh 

Axial 
Force 
ratio, 
P/(Agfc) 

 
P-Δ 

cases	

1 Ang et al., No. 3 (1981) DE 4.00 23.6 0.0151 0.028 0.38 II 

2 Ang et al., No. 4 (1981) DE 4.00 25.0 0.0151 0.022 0.21 II  

3 Soesianawati et al., No. 1 (1986) DE 4.00 46.5 0.0151 0.009 0.10 II  

4 Soesianawati et al., No. 2 (1986) DE 4.00 44.0 0.0151 0.012 0.30 II  

5 Soesianawati et al., No. 3 (1986) DE 4.00 44.0 0.0151 0.008 0.30 II  

6 Soesianawati et al., No. 4 (1986) DE 4.00 40.0 0.0151 0.006 0.30 II  

7 Zahn et al., No. 7 (1986) DE 4.00 28.3 0.0151 0.016 0.22 II  

8 Zahn et al., No. 8 (1986) DE 4.00 40.1 0.0151 0.02 0.39 II  

9 Tanaka and Park, No. 1 (1990) DE 4.00 25.6 0.0157 0.025 0.20 II  

10 Tanaka and Park, No. 2 (1990) DE 4.00 25.6 0.0157 0.025 0.20 II  

11 Tanaka and Park, No. 3 (1990) DE 4.00 25.6 0.0157 0.025 0.20 II  

12 Tanaka and Park, No. 4 (1990) DE 4.00 25.6 0.0157 0.025 0.20 II  

13 Tanaka and Park, No. 5 (1990) C 3.00 32.0 0.0125 0.017 0.10 II  
14 Tanaka and Park, No. 6 (1990) C 3.00 32.0 0.0125 0.017 0.10 II  

15 Park and Paulay, No. 9 (1990) C 2.97 26.9 0.0188 0.022 0.10 II  

16 Atalay and Penzien, No. 6S1 
(1975) 

DE 5.50 31.8 0.0163 0.009 0.18 II  
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17 Wehbe et al., A1 (1998) C 3.83 27.2 0.0222 0.004 0.10 I 

18 Wehbe et al., A2 (1998) C 3.83 27.2 0.0222 0.004 0.24 I 

19 Wehbe et al., B1 (1998) C 3.83 28.1 0.0222 0.005 0.09 I 

20 Saatcioglu and Grira, BG-4 (1999) C 4.70 34.0 0.0293 0.013 0.46 III 

21 Saatcioglu and Grira, BG-5 (1999) C 4.70 34.0 0.0293 0.027 0.46 III 

22 Saatcioglu and Grira, BG-8 (1999) C 4.70 34.0 0.0293 0.013 0.23 III 

 Mean  4.00 31.87 0.018 0.016 0.23 NA 

 Standard Deviation  0.56 6.82 0.005 0.008 0.11 NA 

 Max  5.50 46.50 0.029 0.028 0.46 NA 

 Min  2.97 23.60 0.013 0.004 0.09 NA 

C: Cantilever, DE: Double-Ended as shown in Fig. 1 
 
3. Finite element model of rectangular RC columns 

There are two FE formulations to model the nonlinear flexural response of beams and columns using 

the distributed-plasticity technique (Taucer et al. 1991; Spacone et al. 1996a, b). These methods are 

known as displacement-based and force-based formulations. In the displacement-based formulation, 

the displacement fields along the element are expressed as a function of nodal displacements. The 

assumed displacement fields are approximations of the actual displacement fields and therefore, 

several elements per member are required to obtain a good approximation of the exact response. In 

the force-based formulation, the internal force fields are expressed as a function of nodal forces. 

Force-based elements are the most common type of the element formulations that are currently used 

in nonlinear analysis of framed structures. This is because they allow for the spread of plasticity over 

the length of the element using only one element with multiple integration points. In this research, 

the forced-based formulation is adopted.    

To model the material nonlinearity within the element, the fibre section technique is used. The fibre 

section is a method that approximates the cross section of column using a number of steel and concrete 

fibres at selected locations along the element (known as integration points). The nonlinear section 

response is then captured by moment-curvature response of the fibre sections. In the force-based 

formulation, a moment-distribution along the length of the column is considered. The curvatures at 

each integration point are subsequently estimated for the given moment at that section. Finally, the 

column response is obtained by weighting the sectional responses at the integration points. Therefore, 

selection of the location of integration points is crucial for realistic prediction of the nonlinear 

response. In RC beams and columns, inelastic behaviour usually occurs near the ends of the 

component (i.e. plastic hinge region). Therefore, a Gauss-Lobatto integration scheme, in which the 

integration points are placed at the ends of the element as well as along the column length, is suitable 

(OpenSees 2011). 
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It is noteworthy to mention that softening type behaviour structural component, results in strain 

localisation at the critical section in the forced-based elements. This will result in inaccurate 

prediction of the response at local and/or global level (Coleman and Spacone 2001; Pugh 2012). 

Coleman and Spacone (2001) proposed a simple material regularisation technique to solve this 

problem. The proposed material regularisation technique is based on the observed failure mode of 

concrete cylinder in compression tests. Pugh (2012) successfully applied this method to predict the 

nonlinear cyclic response of RC shear walls using force-based fibre beam-column elements. Using 

this concept the constitutive material model needs to be modified based on the integration length for 

the critical section to avoid the localisation problem.  

In this research, a different method is employed to avoid the strain localisation due to the post-

buckling response of reinforcing bars. This method has successfully been used by Kashani et al. 

(2016) in modelling nonlinear behaviour of circular columns. In this method, the whole column is 

modelled using two elements (Fig.3) and the integration length of the first section of the first element 

is set equal to the buckling length. With this approach, the dissipated energy under the post-buckling 

response of the material model for reinforcing steel remains unchanged. Kashani et al. (2016) reported 

that if the total length of the first element sets to 6Leff where Leff is the buckling length (Leff is defined 

in Section 4 of this paper), the length of the integration point at the end of the element is equal to Leff. 

Using this method, the length of the first element at the bottom of the column is adjusted based on 

the buckling length for each column. Based on the recommendations suggested by Berry and 

Eberhard (2006) a forced-based element with five integration points is considered for modelling the 

top part of the column. The numbers of fibres and the section and decomposition method are based 

on the recommendations given by Berry and Eberhard (2006). To model the strain penetration and 

the slippage of reinforcement anchored to the foundation, a zero-length section element available in 

the OpenSees (OpenSees 2011; Kashani 2014) is used. The detailed discussion of the zero-length 

section is given in Section 5.3 of this paper. 
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Fig. 3 Proposed finite element model using forced-base nonlinear fibre beam-column element   

A displacement control with an adaptive solution algorithm is developed using the Tcl code in the 

OpenSees to run the nonlinear analysis. To ensure the numerical convergence of the solution, the 

norm of displacement increment is checked against a defined tolerance. This command is 

implemented in the OpenSees to conduct a convergence test which uses the norm of the solution error 

vector of the matrix equation to determine if convergence has been reached. The tolerance is set to 

10-4 over the maximum of 35 iterations. The analysis starts with a Newton-Raphson solution 

algorithm. When the convergence is not achieved, the displacement increment is cut by a factor of 

0.1 and this is repeated twice. In case where the convergence is not achieved by cutting the step sizes 

twice, different solution algorithms are trialled. The solution algorithms used in the adaptive solution 

strategy include: Newton-Raphson, modified Newton-Raphson, Newton-Raphson with Line Search 

and Krylov-Newton algorithms. Further details of the algorithm commands are available in OpenSees 

(2011). These algorithms were very effective in obtaining accurate and robust results in nonlinear 

analyses. 

4. Calculation of buckling length of vertical reinforcement in rectangular columns 

Dhakal and Maekawa (2005b) studied the buckling behaviour of vertical reinforcement in rectangular 

columns. Using an energy method, they derived the buckling mode shape accounting for the influence 

of tie stiffness on buckling length. This model was used in FE analysis of a cantilever column that 

was subjected to lateral and axial loads. The results of this model agreed fairly well with experimental 

results. In the Dhakal-Maekawa model, the vertical reinforcing bar is considered as a beam fixed at 

both ends of the buckling length to emulate the restraining mechanism of horizontal ties. A cosine 

shape function satisfying the fixed boundary condition is then employed to define the deformed 

configuration of the buckled bar. As the buckling of reinforcing bars is an inelastic buckling 

phenomenon, the elastic flexural rigidity EsI cannot be used. Dhakal and Maekawa (2005b) suggested 



 

9 
 

an average flexural rigidity EI, defined in Eq. (1), which has been validated against an extensive set 

of experimental data. 

1004
ys IEEI

σ
=                                         (1) 

where I, Es and σy are the second moment of area, elastic modules and yield strength of the vertical 

reinforcement in mm4 and MPa, respectively. Further discussion about the development and 

implementation of this model is available in (Dhakal and Maekawa 2005b; Kashani 2014). The 

calculated buckling lengths together with reinforcement details of the column dataset are available in 

Table A1 of Appendix A.   

5. Uniaxial material models  

5.1. Concrete model 

In this research, a material model developed by Park et al. (1982) is used. This model is known as 

Concrete02 in the OpenSees. It has a parabolic curve up to the maximum concrete stress and a linear 

post-peak softening branch afterward. The model also includes a linear tension stiffening. Further 

details of the model parameters, equations and implementation are available in the OpenSees (2011). 

Fig. 4 shows an example of cyclic response of this model for confined and unconfined concrete. In 

Fig. 4, σ is the concrete stress, the σc is the maximum compressive stress of concrete, ε is the concrete 

strain and εc0 is the concrete strain at maximum compressive stress. In Fig. 4, the cyclic loops of 

confined concrete shown for values of psi up to -6 will continue until. They are not presented in the 

figure for clarity of Fig. 4. Further details about this model is available in Park et al. (1982).    

 

Fig. 4 Cyclic response of concrete uniaxial material model (Concrete02 in the OpenSees)   

5.2. Reinforcing steel model 

5.2.1. Conventional uniaxial material model of reinforcing steel 

The cyclic response of this reinforcing steel material model is defined by the Giuffre-Menegotto-

Pinto (1973) equations (GMP) which have been modified by Fllipou et al. (1983). This model is 
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available in the OpenSees known as Steel02 uniaxial material model. The Steel02 accounts for the 

Bauschinger effect (Bauschinger 1887), but does not account for cyclic strength and stiffness 

degradation due to bar buckling and fatigue. An example cyclic response of the conventional steel 

model in the OpenSees is shown in Fig. 5. This model is used as benchmark to evaluate the influence 

of buckling and cyclic degradation on prediction of inelastic response of rectangular RC columns. 

 

Fig. 5 Cyclic response of the conventional uniaxial material model of reinforcing steel (Steel02 in the OpenSees) 

5.2.2. Uniaxial material model including the effect of inelastic buckling 

Kashani et al. (2015a) developed a new phenomenological uniaxial material model for reinforcing 

bars. The new material model accounts for the influence of inelastic buckling and low-cycle fatigue 

degradation. The material parameters are calibrated based on experimental and numerical simulation 

data of isolated bars.  

The basic tension envelope employs a continuous function that enables a smooth transition from the 

linear elastic to the strain hardening region. This improves the numerical stability during the 

computational process. Therefore, this model is used to define the tension envelope (Eq. (2)).  

( ) ( )
( )

2
1 1

1
2 1y

y y

µ µ ε ε
σ σ δ

µ ε ε

⎡ ⎤⎛ ⎞− +⎢ ⎥= + − +⎜ ⎟⎜ ⎟⎢ ⎥− ⎝ ⎠⎢ ⎥⎣ ⎦

                                                                                    (2) 

where µ = Eh/Es is the hardening ratio with Es and Eh equal to the elastic modulus and hardening 

modulus for the steel, σy is the yield stress, ε is the current strain, εy is the yield strain, and δ is a shape 

parameter. Eq. (2) represents a hyperbola with two asymptotes, one with slope Es and the other with 

slope Eh. The shape parameter, δ, defines the curvature radius of the transition between the linear 

elastic and hardening regions of the curve. Further details of this model are available in Kashani et 

al. (2015a).  

The basic compression envelope of the model employs an exponential function to characterise the 

post-yield bucking response of the reinforcing bars. This is defined in Eq. (3):  
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where ρ1 is the initial tangent of the post-buckling response curve, ρ2 is the rate of change of the 

tangent, ε is the current strain, εp = ε - εy is the plastic strain, σ* is the asymptotic lower stress limit of 

the post-buckling curve, and all other variables are as previously defined. The parameters ρ1, ρ2, and 

σ* are defined by the yield strength and the geometrical slenderness ratio of the reinforcing steel: 

( ) 43.74572.41 −= pp λλρ                                                    (4) 

( ) ( )2 318.40 exp 0.071p pρ λ λ= −                                                              (5) 

d
Leff
yσ

σ 75.3* =                                                           (6) 

d
Leffy

p 100
σ

λ =                                                                                        (7) 

where σy has units of MPa. Further discussion and detailed derivation of the above equations are 

available in Kashani et al. (2015a). 

It should be noted that the preceding model is developed using the experimental data of isolated bars. 

To account for the influence of horizontal tie reinforcement, the model needs further calibration. 

Therefore, a generic Hysteretic model in the OpenSees is fitted to the above model for calibration of 

cyclic parameters to account for the effect of horizontal tie reinforcement (Fig. 6). Details of 

calibration process and parametric study are discussed in Section 6 of this paper. 

 
Fig. 6 Compression envelope of Hysteretic model fitted to the Kashani’s model using trilinear curve 

5.3. Slip model for zero-length element 

In the seismic design of RC structures, plastic hinges are formed at the column/beam ends. This will 

induce a substantial strain penetration along the longitudinal bars into the joint that eventually results 

in slippage of the longitudinal bars. Lowes and Altoontash (2003) adopted a bar-slip model for the 
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end slip of longitudinal reinforcement in beam-column joints. Berry and Eberhard (2006) provide 

recommendations on implementation of such slip models in the OpenSees. Based on their 

recommendation, the zero-length section element available in the OpenSees can be used to model the 

slippage of reinforcing bars. Accordingly, the uniaxial material models of steel and concrete in the 

zero-length section element should be modified. In this research, the model developed by Lowes and 

Altoontash (2003) with recommendations suggested by Berry and Eberhard (2006) is adopted. 

Further details of the model development and implementation of the model in the OpenSees are 

available in Berry and Eberhard (2006).  

5.4. Modelling material failure due to low-cycle fatigue degradation 

The OpenSees has a generic fatigue material model that can be wrapped to any steel model without 

changing the stress-strain state of the parent material. This material model accounts for the effect of 

low-cycle fatigue and is known as uniaxial Fatigue material model in the OpenSees (Uriz 2005). The 

cycle counter algorithm is used in conjunction with the Coffin-Manson relationship (Eq. (8)) and 

Miner’s rule to describe the low-cycle fatigue failure (Manson 1965; Miner 1945).  

( ) αεε −= ffp N2                                                                             (8) 

where εp is the plastic strain amplitude (εp = εa – εe; εa is the total strain amplitude and εe is the elastic 

strain), 2Nf  is the number of half-cycles to failure and α and εf  are the material constants. 

The material constants α and εf are the input parameters in the Fatigue model. Once the Fatigue 

material reaches a damage state of 1.0, the stress of the parent steel material becomes zero. An 

example graph of the Fatigue material model wrapped to Steel02 is shown in Fig. 7. 

 

Fig. 7 Fatigue material model to predict the fracture of reinforcement due to low-cycle fatigue 
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6. Parametric study to calibrate model parameters   

6.1. Pinching parameters 

In this section, different combinations of pinching parameters are considered to obtain suitable 

hysteretic model parameters using the experimental column dataset (Table 1). This is to account for 

the influence of horizontal tie reinforcement on the pinching response of the reinforcing bars due to 

inelastic buckling under cyclic loading. The pinching response in the Hysteretic material model in 

the OpenSees is defined by two pinching parameters, i.e. pinch x and pinch y. The pinch x and pinch 

y range from 0 to 1 and control strain and stress, respectively. The pinch parameters used in this study 

are similar to the ones used by Kashani et al. (2016) for circular columns (Fig. 8). The considered 

combinations are summarised in Table 2. Further discussion about the pinching response in available 

in Kashani et al. (2016). 

 

         
                                             (a)                                                                                          (b) 

 
                                                      (c) 
Fig. 8 Pinch combinations used in the parametric study: (a) combinations 1 to 3, small pinching (b) combinations 

4 to 6, moderate pinching and (c) combinations 7 to 9, severe pinching 

 

             Table 2 Pinch combination used in the parametric study 

Combination  1 2 3 4 5 6 7 8 9 
pinch x 0.2 0.2 0.2 0.4 0.4 0.4 0.7 0.7 0.7 
pinch y 0.8 0.6 0.4 0.8 0.6 0.4 0.8 0.6 0.4 
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Berry and Eberhard (2006) have successfully used the average energy error as a measure to calibrate 

the model parameters in nonlinear fibre element modelling of circular RC bridge piers. In this 

research, a similar method is used to measure the accuracy of the simulation results in the parametric 

study. The error ratio in hysteretic energy dissipation is defined in Eq. (9).  

experiment

modelexperiment

E

EE
E

−
=Ω                                                      (9) 

In this study, the dissipated energy of the hysteretic cycles up to the maximum drift capacity is 

considered. The maximum drift capacity is determined as the drift at which point the column strength 

falls below 80% of the maximum column strength. It should be noted that the low-cycle fatigue is 

excluded from the parametric study. The influence of buckling of bars on fatigue material constants 

is investigated separately and is available in Kashani et al. (2015b). 

 
        Table 3 Statistical information of the error ratio (ΩE) in the parametric study 
 
6.2. Comparison of the hysteretic energy dissipation 

Fig. 9 shows the hysteretic energy dissipation error, ΩE, of each column test unit for all the pinch 

combinations. Table 3 shows the statistics of ΩE for each pinch combination across the whole 22 

column dataset. The mean errors in pinch combinations 5 to 9 are generally larger than others. The 

errors in combinations 1 and 3 are about 16% on average, whereas the errors in combinations 2 and 

4 are around 13%. Between combinations 2 and 4, it was found that the combination 2 has the smallest 

average error in predicted response.  

The correlation between the pinching parameters and column properties (ρl, s/d, etc.) is investigated. 

It is found that there is no significant correlation between these parameters. Therefore, the 

combination 2 is adopted as the suitable model for further analyses. Comparison of the results of this 

study and the results obtained by Kashani et al. (2014) for circular columns shows that the pinching 

response in circular columns is slightly more severe than rectangular columns. They reported that the 

pinching combination 5 is the optimal combination for circular columns. 

In general, what causes these differences is the results of cyclic degradation of material after inelastic 

buckling of vertical reinforcement. This behaviour can be affected by a number of factors such as 

Combination 1 2 3 4 5 6 7 8 9 Steel02 
Mean 0.151 0.132 0.163 0.138 0.169 0.206 0.190 0.235 0.296 0.176 

Standard 
Deviation 0.142 0.119 0.087 0.118 0.085 0.085 0.077 0.104 0.129 0.172 

Max 0.571 0.428 0.370 0.422 0.371 0.421 0.381 0.440 0.512 0.630 
Min 0.008 0.002 0.005 0.001 0.004 0.054 0.047 0.008 0.050 0.003 
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axial force ratio, effective buckling length of vertical bars, confinement reinforcement, and ration of 

flexure rigidity of vertical bars and stiffness of tie reinforcement. Quantification of these parameters 

is a very complex problem and is an area for future research.  

 

        

 

Fig. 9 Comparison of the hysteretic energy dissipation of pinch combinations 

7. Comparison and discussion of the results of buckling included model with experimental 

data 

To validate the basic FE model, preliminary analyses are conducted using the conventional Steel02 

element without any buckling and degradation effect. A graphical comparison between the two 

examples of computed and observed experimental results is shown in Fig. 10. Fig. 10 shows that the 

FE model using Steel02 can accurately simulate the nonlinear column response and strength before 

the column starts to lose strength due to cyclic loading. However, once the column starts to degrade 

under cyclic load, the Steel02 cannot simulate this response. There are two main reasons for the 

differences between these responses. Firstly, the spacing of tie reinforcement (s/d) has influence on 

the crushing of confined concrete as well as buckling of vertical reinforcement. Secondly, the axial 

force ratio applied to the column is relatively large. Because the response of the Steel02 material 

model doesn’t include the inelastic buckling, the change of buckling length and axial force ratio 

cannot be captured in the simulation. Table A1 in Appendix A shows a summary of the calculated 

buckling lengths, axial force ratio, and other relevant information about the experimental results. 
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                                                       (a)                                                                                (b)  

Fig. 10 Examples of computed force-displacement responses of the RC columns using Steel02 material model 

A graphical comparison of the computed response of the OpenSees fibre model using the optimised 

uniaxial material model and the experimental data is shown in Fig. 11. Fig. 11 indicates that the 

computed results of the optimised model are in a good agreement with the results observed in the 

experimental tests. For example, consider Fig. 11(a) and (b) which show the Wehbe’s columns A2 

and B1. All the details of these two columns are identical apart from the axial force ratio and s/d. The 

column A2 has an axial force ratio of 0.24 and s/d = 5.85, whereas the column B1 has an axial force 

ratio of 0.09 and s/d = 4.35. The difference in s/d results in a change in the buckling mode but the 

overall buckling length remained similar. The computed Leff /d ratio of the test units A2 and B1 are 

11.5 and 17.4, respectively. Although the spacing of horizontal tie reinforcement is closer in column 

B1, the stiffness of ties is not sufficient to restrain the bars against buckling. Furthermore, given the 

axial force applied to A2 is almost 2.5 times of the axial force applied to B1, the column A2 crushes 

much quicker.  

Comparing the computed results of these columns using the fibre model with Steel02 and the 

optimised buckling material model shows that this behaviour cannot be captured in the fibre model 

with Steel02 (Fig. 10 and Fig. 11). This is because the buckling of vertical reinforcement results in 

softening of stress-strain behaviour of reinforcement in the post-buckling region. This increases the 

compressive stress of core confined concrete. As the compressive stress of core concrete increases, 

the combined effect of core expansion and the out of plane deformation of vertical bars due to 

buckling results in the fracture of horizontal tie reinforcement. Therefore, the core confined concrete 

crushes much quicker than a case where buckling of vertical reinforcement is not an issue. This 

mechanism results in a severe strength loss and cyclic degradation of the column which is clearly 

shown in Fig. 11(a-d).  
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Fig 11(e-f) shows two cases with Leff /d < 10. Comparison of the results shows that the computed 

response using the model with Stee02 is very similar to the model with buckling. This is because that 

the softening response of the buckled bars with Leff /d < 10 is not very steep. As a result the core 

concrete does not crush quickly after buckling.   

         
                (a)                (b) 

           
                (c)                (d) 
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                (e)                (f) 

Fig. 11 Comparison of computed response of calibrated fibre using optimum buckling material model and 
experimental results 

For quantitative comparison of the computational model with experimental results, the error in 

computed initial stiffness (Kinitial), strength at 1% drift (F1) and the strength at maximum drift (Fmax) 

are considered (Eq. (10)). The initial stiffness, Kinitial, is defined as Fy/Δy where the Fy is the force at 

first yield of reinforcement and Δy is the corresponding displacement, and the maximum drift 

capacity, Fmax, is the force at the maximum drift that column experienced during the physical test. 

Table A2 in Appendix A shows the results of this comparison including the statistics of the error 

metrics.  

exp

exp

eriment computed

eriment
η

η η

η

−
Ψ =                                                   (10) 

where ηexperiment is the experimental value of the considered variable (Kinitial, F1, and Fmax) and ηcomputed 

is the computed predicted value of the considered variable (Kinitial, F1, and Fmax). 

To show the influence of combined inelastic buckling and low-cycle fatigue degradation, the fatigue 

damage is evaluated for all the columns. Fig. 12 shows the accumulated fatigue damage of the four 

of the columns shown in Fig. 11. 
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Fig. 12 Comparison of computed response of calibrated fibre using optimum buckling material model and 

experimental results 

It is clear from Fig. 12 that Wehbe’s column B1 and Saatcioglu’s column BG5 have experienced 

more fatigue damage compared to Wehbe’s column A2 and Saatcioglu’s column BG8. This is in a 

good agreement with the experimental findings reported in Wehbe et al. (1998) and Saatcioglu and 

Grira (1999). As mentioned before, the Leff/d ratios of vertical reinforcement in Whebe’s columns A2 

and B1 are 11.5 and 17.4, respectively, whereas those in Saatcioglu BG5 and BG8 are 7.8 and 11.7, 

respectively. The extremely high axial force ratio (0.46) in Sattcioglu’s column BG5 resulted in rapid 

fatigue damage despite the short Leff/d ratio. However, it is clear that sever buckling of vertical 

reinforcement in Wehbe’s column B1 resulted in more severe damage and degradation compared to 

Saatcioglu’s columns despite having a very low axial force ratio (0.09). This is also in a good 

agreement with the experimental results of low-cycle fatigue tests of reinforcing bars with the effect 

of inelastic buckling [44]. Therefore, it is evident from Fig. 12 that the fatigue and cyclic degradation 

should be considered in nonlinear seismic analysis of RC structures.    

8. Application of the proposed model in nonlinear dynamic analysis of RC framed structures 

To show the significance of the issues related to fibre-based material modelling of bar buckling and 

fatigue degradation in nonlinear dynamic analysis of RC structures, an example is set up. The RC 

structure is a single storey frame that originally analysed by Haselton et al. (2011). The details of the 

proposed hypothetical RC frame are shown in Fig. 13. The vibration period of this structure is 0.32 

s. 
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(a) 

 

(b) 

Fig. 13 Details of the hypothetical RC frame: (a) elevation view of the 2D frame and (b) cross section details of 

beams and columns 

A static pushover analysis of the RC frame is conducted and the results of the models with and without 

accounting for buckling of longitudinal reinforcement are compared. Fig. 14 shows that the model 

without accounting for buckling of longitudinal reinforcement is not able to model the strength loss 

of the structure due to combined buckling and concrete crushing beyond about 3% drift. The model 

including the effect of buckling shows about 10% strength loss at 0.05 drift ratio, but the model 

without considering buckling effect shows a plateau. This is due to premature crushing of core 

concrete after buckling of vertical reinforcement. This behaviour cannot be captured without 

including the buckling effect in the model. This is more critical in nonlinear time-history analysis 

where the low-cycle fatigue of longitudinal reinforcement is also very important.  
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Fig. 14 Comparison of the nonlinear pushover analysis of the RC frame using the lumped-plasticity approach 

reported in Haselton et al. (2011) and the proposed model developed in this paper 

One of the most popular methods for collapse assessment of RC structures is incremental dynamic 

analysis (IDA) (Vamvatsikos and Cornell 2002). In this method, the performance of a structure under 

a wide range of intensity measures (IMs) can be investigated. Therefore, IDA is performed on the 

example frame using two different material models subject to an earthquake ground motion from the 

1995 Kobe earthquake, recorded at Shin-Osaka. The first model uses the conventional nonlinear fibre 

beam-column model without buckling and degradation effect; whereas the second model uses the 

new fibre beam-column model that accounts for inelastic buckling and low-cycle fatigue degradation 

of reinforcing bars. The time-history and the response spectrum of the input ground motion is shown 

in Fig. 15. 

 

Fig. 15 Input earthquake ground motion and its response spectrum 



 

22 
 

The IDA results for both models are shown in Fig. 16. Fig. 16 clearly shows that the conventional 

fibre beam-column model overestimates the collapse capacity of the RC frame. In Fig. 16, the 

response of the model including the effect of buckling and fatigue, shows that the structure collapses 

at about 0.12 drift ratio. However, the model without considering the effect of buckling shows a 

hardening type response, and cannot predict the structural collapse. This is extremely important in 

seismic fragility analysis of existing structures, as overestimating the collapse capacity of structures 

can have implications (e.g. catastrophic collapse of bridges) in large earthquake events (Ni Choin et 

al. 2016; Kashani et al. 2017).  

 

Fig. 16 The results of IDA for the RC frame with and without considering inelastic buckling of reinforcement 

 

9. Conclusions 

An advance modelling technique for nonlinear analysis of rectangular RC components considering 

the inelastic buckling and low-cycle fatigue degradation of vertical reinforcing bars is developed. The 

numerical model is calibrated and validated against a comprehensive set of experimental data using 

the UW-PEER experimental RC column dataset. The main conclusions and outcomes of this research 

can be summarised as follows: 

1. The methodology used for prediction of buckling length of vertical reinforcement in RC columns 

showed a good agreement with the observed experimental results.  

2. The conventional reinforcing steel material model (Steel02) can simulate the nonlinear behaviour 

of RC columns prior to buckling failures. However, significant degradation after severe buckling 

of vertical reinforcement cannot be simulated using Steel02. 
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3. The proposed technique using advanced material models that account for the influence of 

inelastic buckling and low-cycle fatigue is able to simulate the nonlinear behaviour of RC up to 

significant strength loss, i.e. complete collapse. 

4. The proposed model in this paper has significantly improved the existing modelling technique 

available in the literature. The major advantage of this modelling technique in comparison to the 

lumped-plasticity method is that it is generic and does not need calibration for every structure. 

This model is readily available in the OpenSees platform to other researchers and engineers in 

practice in earthquake engineering community to be used in nonlinear dynamic analysis of RC 

framed structures. 
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Appendix A 

     Table A1 Experimental column dataset 

 
ID 

 
B 

(mm) 

 
H 

(mm) 

 
L 

(mm) 

Concrete 
Cover 
(mm) 

Number 
of Bars 

Bar 
Diamete
r (mm) 

Tie 
Spacin
g (mm) 

Tie 
Diameter 

(mm) 

Yield 
Strengt
h (MPa) 

Ultimate 
Strength 

(MPa) 

 
Leff/db 

Axial 
Load 
(kN) 

Int. 
Bars 

Y 

Int. 
Bars 

X 
1 400.0 400.0 1600.0 24.5 12 16.0 100.0 12.0 427.0 670.0 6.3 1435.0 2 2 
2 400.0 400.0 1600.0 22.5 12 16.0 90.0 10.0 427.0 670.0 5.6 840.0 2 2 
3 400.0 400.0 1600.0 13.0 12 16.0 85.0 7.0 446.0 702.0 10.6 744.0 2 2 
4 400.0 400.0 1600.0 13.0 12 16.0 78.0 8.0 446.0 702.0 9.8 2112.0 2 2 
5 400.0 400.0 1600.0 13.0 12 16.0 91.0 7.0 446.0 702.0 11.4 2112.0 2 2 
6 400.0 400.0 1600.0 13.0 12 16.0 94.0 6.0 446.0 702.0 11.8 1920.0 2 2 
7 400.0 400.0 1600.0 13.0 12 16.0 117.0 10.0 440.0 674.0 7.3 1010.0 2 2 
8 400.0 400.0 1600.0 13.0 12 16.0 92.0 10.0 440.0 674.0 5.8 2502.0 2 2 
9 400.0 400.0 1600.0 40.0 8 20.0 80.0 12.0 474.0 721.0 8.0 819.0 1 1 

10 400.0 400.0 1600.0 40.0 8 20.0 80.0 12.0 474.0 721.0 8.0 819.0 1 1 
11 400.0 400.0 1600.0 40.0 8 20.0 80.0 12.0 474.0 721.0 8.0 819.0 1 1 
12 400.0 400.0 1600.0 40.0 8 20.0 80.0 12.0 474.0 721.0 8.0 819.0 1 1 
13 550.0 550.0 1650.0 40.0 12 20.0 110.0 12.0 511.0 675.0 11.0 968.0 2 2 
14 550.0 550.0 1650.0 40.0 12 20.0 110.0 12.0 511.0 675.0 11.0 968.0 2 2 
15 400.0 600.0 1784.0 24.0 10 24.0 80.0 12.0 432.0 0.0 10.0 646.0 1 2 
16 305.0 305.0 1676.0 32.0 4 22.0 127.0 9.5 429.0 657.0 5.8 534.0 0 0 
17 380.0 610.0 2335.0 28.0 18 19.1 110.0 6.0 448.0 731.0 11.5 615.0 2 5 
18 380.0 610.0 2335.0 28.0 18 19.1 110.0 6.0 448.0 731.0 11.5 1505.0 2 5 
19 380.0 610.0 2335.0 25.0 18 19.1 83.0 6.0 448.0 731.0 17.4 601.0 2 5 
20 350.0 350.0 1645.0 29.0 12 19.5 152.0 9.5 455.6 660.0 7.8 1923.0 2 2 
21 350.0 350.0 1645.0 29.0 12 19.5 76.0 9.5 455.6 660.0 7.8 1923.0 2 2 
22 350.0 350.0 1645.0 29.0 12 19.5 76.0 6.6 455.6 660.0 11.7 961.0 2 2 
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                             Table A2 Statistical information of the error in pinch combinations 

ID Ψkinitial ΨF1 ΨFmax 

1 0.115 0.062 0.180 

2 0.110 0.056 0.033 

3 0.318 0.020 0.041 

4 0.081 0.008 0.574 

5 0.024 0.006 0.194 

6 0.003 0.016 0.180 

7 0.072 0.059 0.236 

8 0.036 0.092 0.194 

9 0.221 0.142 0.144 

10 0.195 0.175 0.444 

11 0.115 0.035 0.331 

12 0.165 0.074 0.310 

13 0.411 0.113 0.155 
14 0.251 0.097 0.157 

15 0.211 0.073 0.306 

16 0.430 0.227 0.163 

17 0.237 0.012 0.305 

18 0.260 0.168 0.105 

19 0.408 0.132 0.433 

20 0.003 0.052 0.021 

21 0.020 0.022 0.871 

22 0.135 0.024 0.108 

Mean 0.174 0.076 0.249 

Standard Deviation 0.130 0.060 0.192 
Max 0.430 0.227 0.871 

Min 0.003 0.006 0.021 

 

 


