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Abstract 

Titin provides a molecular blueprint for muscle sarcomere assembly and sarcomere length can vary 

according to titin isoform expression.  If variations in sarcomere length influence muscle fascicle 

length, this may provide an advantage for running performance. Thus the aim of this study was to 

investigate if the titin (TTN) rs10497520 polymorphism was associated with muscle fascicle length in 

recreationally active men (RA; n = 137) and marathon personal best time in male marathon runners 

(MR; n = 141).  Fascicle length of the vastus lateralis was assessed in vivo using B-mode 

ultrasonography at 50% of muscle length in RA.  All participants provided either a whole blood, 

saliva or buccal cell sample, from which DNA was isolated and genotyped using real-time polymerase 

chain reaction.  Vastus lateralis fascicle length was 10.4% longer in CC homozygotes, those carrying 

two copies of the C-allele, than CT heterozygotes (p = 0.003) in RA.  In the absence of any TT 

homozygotes, reflective of the low T-allele frequency within Caucasian populations, it is unclear if 

fascicle length for this group would have been smaller still.  No differences in genotype frequency 

between the RA and MR groups were observed (p = 0.500), although within the MR group the T-

allele carriers demonstrated marathon personal best times 2 min 25 s faster than CC homozygotes (p = 

0.020).  These results suggest that the T-allele at rs10497520 in the TTN gene is associated with 

shorter skeletal muscle fascicle length and conveys an advantage for marathon running performance 

in habitually trained men. 
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Introduction 

The titin gene (TTN) encodes the largest described protein to date, which is the third most abundant 

protein within the myofilament of human striated muscle (Vikhlyantsev & Podlubnaya 2012).  Titin 

provides a molecular blueprint for the assembly and organisation of the thin and thick filaments 

during myofibrillogenesis (Chauveau et al. 2014).  Seven splice isoform variants of titin exist within 

human striated muscle, which each differ in size and elasticity (Chauveau et al. 2014; Vikhlyantsev & 

Podlubnaya 2012).   

 

A missense C>T transition (rs10497520), where the more common C-allele is replaced by the T-

allele, has been identified within human TTN and reportedly contributes to the variability in the 

training response of maximal oxygen consumption (VO2max) in previously untrained individuals 

(Timmons et al. 2010).  Within cardiac muscle, titin is suggested to be a key regulator of the Frank-

Starling mechanism (Fukuda et al. 2001), and considering the substantial differences in the elasticity 

of cardiac titin isoforms (Wang et al. 1991), this C>T transition may contribute to the variability 

within titin isoform expression.  Accordingly, differences in the titin isoforms expressed may explain 

the TTN-related increases in stroke volume (Rankinen et al. 2003) and consequently VO2max following 

endurance exercise training (Timmons et al. 2010).  Furthermore, if this TTN polymorphism 

influences titin isoform expression in cardiac muscle as speculated, there exists a distinct possibility 

that a similar influence is occurring within skeletal muscle tissue.   

 

In skeletal muscle, the predominant titin isoform is N2A, of which a smaller (T1) and larger (T2) 

isovariant exist within humans (Fry et al. 1997).   A recent study, which identified a TTN mutation 

that alters isoform splicing in rats, demonstrated an association between isoform size and sarcomere 

length; with significantly longer resting sarcomere lengths corresponding to the larger mutant titin 

isoforms (Greaser & Pleitner 2014; Greaser et al. 2008).  Assuming a linear relationship between 

fascicle length and in series sarcomere number (Herzog et al. 1990), it follows that fascicles 
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expressing larger titin isoforms could be longer than those expressing smaller titin isoforms.  It is 

important to note, however, that there was no association between titin isoform size and resting 

sarcomere length in wild-type rats, those without the larger mutant titin isoform in the aforementioned 

study (Greaser & Pleitner 2014).  Furthermore, evidence exists demonstrating the non-uniform 

distribution of sarcomere length within fascicles of the same muscle and different muscles (Greaser et 

al. 2005; Wickiewicz et al. 1983), thus understanding the potential influence of titin on skeletal 

muscle architecture in humans appears complex.   

 

If TTN-dependent differences in skeletal muscle fascicle length are apparent, variability in muscle 

functional phenotypes might also be expected.  For instance, muscle maximal shortening velocity 

(Vmax) is positively correlated with fascicle length (Bodine et al. 1982; Sacks & Roy 1982).  Although 

no direct associations between TTN and fascicle length have been reported, the aforementioned C>T 

transition within the TTN gene has been identified as contributing significantly to a genetic 

predisposition for maximal isokinetic strength at 180°∙s-1 but not 60°∙s-1 (Thomaes et al. 2013), which 

could indirectly demonstrate that variability in Vmax is influenced by genotype-dependent differences 

in fascicle length.  Furthermore, enhanced efficiency of stretch-shortening contractions can be 

expected in individuals possessing shorter muscle fascicles due to the lower metabolic cost of 

producing a given force.  More specifically, shorter fascicles produce the same force per unit cross-

sectional area as longer fascicles, but when producing a given force, a smaller volume of muscle is 

activated in individuals possessing shorter fascicles (Pontzer et al. 2009; Roberts et al. 1998).  

Accordingly, vastus lateralis and gastrocnemius muscle fascicle length is shorter in elite distance 

runners than elite sprinters and untrained controls, and longer in elite sprinters than untrained controls 

(Abe et al. 2000).  Shorter fascicles in elite distance runners are likely to contribute to improved 

mechanical efficiency, whereas the longer fascicles observed in elite sprinters is likely to contribute to 

enhanced Vmax.  To date, however, it remains unclear whether these differences in the muscle 

architecture of elite runners are the result of adaptations to training or genetic variation. 
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Consequently, the present study aimed to investigate if the TTN rs10497520 polymorphism was 

associated with muscle fascicle length in recreationally active men, and to investigate if TTN genotype 

distribution differed between recreationally active men and trained male marathon runners.  It was 

hypothesized that the TTN polymorphism would be associated with muscle fascicle length in 

recreationally active men, and the genotype associated with shorter fascicle length in this population 

would be overrepresented in trained marathon runners. 

 

Materials and methods 

The sample comprised 278 healthy, unrelated Caucasian men who were categorised as either 

recreationally active [RA; n = 137, age 20.6 (2.3) yr, height 1.79 (0.06) m, mass 75.1 (10.1) kg; mean 

(standard deviation; SD)] or habitually trained marathon runners [MR; n = 141, age 34.9 (7.8) yr; 

height 1.79 (0.07) m, mass 66.5 (6.7) kg].  RA participants were primarily recruited through mail-

outs, posters and word-of-mouth.  RA participants were excluded from participation if they had a 

body mass index (BMI) below 18.5 kg∙m-2 or above 30 kg∙m-2, self-reported as having a known 

musculoskeletal or neurological disorder and/or had undertaken any structured training in the 

preceding 12 months.  MR participants comprised Olympic, international and national level marathon 

runners and were included if they had achieved marathon personal best times under 2 hr 36 mins 

(range ~2 hr 7 mins to ~2 hr 35 mins).  MR participants were primarily recruited from London 

Marathon competitors at the London Marathon Expos during 2013-2015 and regional athletics clubs 

and organisations via mail-outs, posters and word-of-mouth.  All participants gave written informed 

consent to participate in this study, which received approval from the Ethics Committee of 

Manchester Metropolitan University and complied with the Declaration of Helsinki. 

 

Muscle fascicle length of the vastus lateralis (VL) was measured in vivo using B-mode 

ultrasonography (AU5, Esaote, Italy) for each RA participant.  VL muscle length of the right limb was 

measured at rest following identification of the VL origin and insertion, whilst participants were 

standing upright with knees extended and relaxed (Abe et al. 2000).  Whilst in this position, 

ultrasound scans were taken at 50% of VL muscle length, in the mid-sagittal plane, using a 40 mm 
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wide, 7.5 MHz linear-array probe positioned perpendicular to the skin.  Although the knee joint angle 

during standing does not correspond to that of optimal force production during running (Novacheck 

1998; Tsuji et al. 2015), measurement of fascicle length in this position is highly reproducible.  Each 

ultrasound scan was recorded using a 25 Hz sampling frequency in audio video interleave (AVI) 

format and frame-capture software (Adobe Premiere Elements version 10, Adobe Systems) was used 

to capture single images for subsequent analysis.  The distance between fascicular origin in the lower 

aponeurosis and insertion in the upper aponeurosis was measured as fascicle length using digitizing 

software (NIH ImageJ, version 1.44o, National Institute of Health, Bethesda, Maryland).  

Measurement of fascicle length in all instances required extrapolation of the superficial and deep 

aponeuroses to allow for estimation of fascicle length, due to fascicles extending beyond the 

ultrasound field of view (Reeves & Narici 2003).  For each participant a minimum of three fascicles 

were measured and a mean of these was taken as fascicle length.  Due to the field-based nature of data 

collection within MR, it was not possible to obtain measurements of fascicle length in this population.   

 

All participants provided either a blood, saliva or buccal cell sample using the following protocols.  

For blood sampling, a 5 mL sample was taken from a superficial forearm vein into EDTA tubes (BD 

Vacutainer Systems, Plymouth, UK) and stored at -20°C.  Saliva samples were collected following a 

minimum 30-minute abstinence from food and drink into Oragene DNA OG-500 collection tubes 

(DNA Genotek Inc., Ontario, Canada) in accordance with the manufacturer’s guidelines and stored at 

room temperature.  Buccal cell samples were collected in duplicate (Whatman Sterile, OmniSwab, GE 

Healthcare, USA) following a minimum 1-hour abstinence from food and drink.  Participants were 

instructed to brush one OmniSwab collection tip firmly against the inside of the cheek for 

approximately 30 s and repeat with a second swab on the opposite cheek.  Each collection tip was 

ejected into a 2 mL microcentrifuge tube and stored at -20°C.   

 

The Qiagen QIAcube spin protocol (Qiagen, Crawley, UK), used for the extraction of genomic DNA 

from whole blood, saliva and buccal cell samples, was completed in accordance with the 

manufacturer’s guidelines and used the buffers contained in the Qiagen DNA Blood Mini Kit.  Each 
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participant was genotyped for the TTN rs10497520 polymorphism, using real-time PCR on 96-well 

plates.  The 10 μL reaction volume, for genotyping using DNA obtained from whole blood or saliva 

samples, contained 0.2 μL of participant DNA [9.9 (1.1) ng, amounts determined using ~20% of 

participant DNA samples], 5 μL of TaqMan genotyping master mix (Applied Biosystems, Paisley, 

UK), 4.3 μL of nuclease-free H2O (Qiagen) and 0.5 μL of TaqMan SNP genotyping assay (Applied 

Biosystems).  For DNA samples obtained from buccal cells, the 10 μL reaction volume contained 1 

μL of participant DNA [18.6 (4.6) ng], 5 μL of TaqMan genotyping master mix, 3.5 μL of nuclease-

free H2O and 0.5 μL of TaqMan SNP genotyping assay.  In the control wells, the DNA sample was 

replaced by nuclease-free H2O. 

 

DNA amplification (StepOnePlus Real-Time PCR System, Applied Biosystems) was completed using 

the following protocol: an initial 10 min at 95°C followed by 40 cycles of denaturation for 15 s at 

92°C, primer annealing and extension for 1 min at 60°C and plate read.  TTN genotype was 

subsequently determined using StepOnePlus analysis software version 2.3 (Applied Biosystems).  

Genotypes were called based on reporter dye intensity and visualized using cluster plots. The TaqMan 

assays included VIC and FAM dyes that for rs1049752 indicated C and T alleles on the forward DNA 

strand, respectively. Thus, VIC/FAM were interpreted as: 5′- TCCAACTT[C/T]AGGTTCTT -3′. All 

samples were analysed in duplicate and 100% agreement between all duplicate samples was achieved. 

Genotype frequency of the TTN rs10497520 polymorphism was assessed for compliance with Hardy-

Weinberg equilibrium using a X2 test.  Due to the low number of TT homozygotes in the whole 

sample (RA, n = 0; MR, n = 1), CC homozygotes were compared to T-allele carriers within each sub-

group (RA, CC vs. CT; MR, CC vs. CT+TT).  Independent samples t-tests were conducted to 

determine any significant differences in physical characteristics (height, mass, BMI and age) between 

RA and MR, and according to genotype.  Additionally, independent samples t-tests were conducted to 

identify any genotype differences in fascicle length in RA and marathon personal best time in MR.  

Pearson’s X2 tests were used to compare genotype frequencies between MR and RA.  All statistical 

analyses were performed using SPSS version 21 and alpha was set at 0.05.  Data are presented as 

mean (SD) unless otherwise stated. 
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Results 

Genotype frequency of the TTN rs10497520 polymorphism was in Hardy-Weinberg equilibrium for 

the whole sample and both the RA and MR sub-groups (Table 1).  MR were older and had lower mass 

(~9 kg) and BMI than RA (all differences p ≤ 1.0 x 10-13), but there was no difference in height (p = 

0.660).  Genotype was not associated with mass, BMI or height either within the RA or MR 

subgroups, nor in the combined sample of 278 participants (p ≥ 0.376; Table 1). 

 

In the RA sub-group, VL fascicle length was 10.4% longer in CC homozygotes than in CT 

heterozygotes (p = 0.003; Figure 1).  Furthermore, when VL fascicle length was normalised to VL 

muscle length, VL fascicle length remained significantly longer in CC homozygotes than in CT 

heterozygotes (11.7%, p = 0.035).  There were no differences in genotype frequency between the RA 

and MR groups (X2 = 1.385, p = 0.500).  However, marathon personal best time was significantly 

lower in T-allele carriers compared to CC homozygotes in the MR group [2:26:28 (0:06:23) vs. 

2:28:53 (0:05:50); p = 0.020; Figure 2]. 

 

Discussion 

The aims of the present study were to investigate whether VL muscle fascicle length was associated 

with TTN rs10497520 genotype in recreationally active Caucasian men, and to identify whether 

differences in genotype frequency were evident between recreationally active individuals and trained 

marathon runners.  This study is the first to show a genetic influence on muscle architecture; 

specifically, the results demonstrate that VL muscle fascicle length was significantly longer in TTN 

CC homozygotes compared to CT heterozygotes in RA.  This is also the first time marathon 

performance in trained runners was associated with TTN genotype, with T-allele carriers performing 

significantly better than CC homozygotes.  

 

Titin acts as a template for myofibrillar protein assembly during sarcomere formation and provides an 

attachment site for a plethora of myofibrillar proteins to maintain the structural integrity of the 

sarcomere (Chauveau et al. 2014).  This protein is therefore likely to play a key role in the 
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architecture of skeletal muscle, possibly affecting the serial arrangement of sarcomeres and, therefore, 

the length of muscle fascicles (Greaser & Pleitner 2014; Greaser et al. 2008).  Mean VL fascicle 

length in the RA group [7.1 (1.5) cm] was comparable to some previous reports of VL fascicle length 

(~7 cm) (Abe et al. 2000; Fukunaga et al. 1997), but less than others (~8 cm and ~9 cm) (Erskine et 

al. 2009; Reeves et al. 2004).  Differences in participant positioning and muscle activation during the 

measurement of muscle fascicle length are likely to explain the reported differences between the 

present study and reports elsewhere (Fukunaga et al. 1997).  Indeed, VL fascicle length was measured 

during standing with the knees extended and relaxed in the present study, which was similar to those 

studies reporting comparable fascicle lengths (Abe et al. 2000; Fukunaga et al. 1997).  Those studies 

observing longer muscle fascicle lengths positioned the knee at 60-90 flexion and obtained 

measurements during maximal voluntary contraction (Erskine et al. 2009; Reeves et al. 2004). 

 

The TTN genotype and allele frequencies observed in the present study were similar to previous 

reports in Caucasian populations (www.hapmap.org) (Gibbs et al. 2003).  In the present study, 

individuals homozygous for the major C-allele had longer VL fascicles than heterozygotes, but as no 

individuals homozygous for the minor T-allele were present in the RA group, reflective of the low 

frequency of the T-allele within a Caucasian population, it is unclear if the VL fascicles of TT 

homozygotes would have been smaller still.  Future research should attempt to replicate the observed 

association between TTN and fascicle length on larger cohorts that include a sufficient number of TT 

homozygotes.  Based on the T-allele frequency we observed, future studies would require 2000 

participants to recruit 20 TT homozygotes.  A “stress the genotype” approach (Montgomery et al. 

2002) could help prioritise recruitment of TT homozygotes prior to conducting time-consuming 

phenotype assessments.  Furthermore, as fascicle length is known to vary between muscles (Erskine et 

al. 2009; Kawakami et al. 1998; Morse et al. 2008), future research should also include measurements 

of fascicle length from multiple muscles (i.e. gastrocnemius and soleus) to establish if the observed 

association with TTN genotype is consistent across different muscle groups, or specific to the vastus 

lateralis. 

 

http://www.hapmap.org/
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Nonetheless, it is possible that the presence of the T-allele affects TTN splicing thus increasing 

expression of a smaller titin isoform within the muscle fascicles of heterozygotes.  To date, seven 

different titin splice isoforms have been identified within human striated muscle that each differ in 

size (Vikhlyantsev & Podlubnaya 2012).  Within human skeletal muscle, the predominant titin 

isoform is N2A, of which two isovariants (T1 and T2) are known to exist (Fry et al. 1997).  Thus, it is 

possible that altered TTN splicing, due to the presence of the T-allele, may influence the expression of 

these N2A isovariants and might explain the current observations.  Earlier studies in rat cardiac 

muscle support these possibilities by demonstrating a link between a TTN mutation and alternative 

isoform splicing (Greaser et al. 2005) and, more recently, TTN was associated with both cardiac and 

skeletal muscle sarcomere length in rats (Greaser & Pleitner 2014; Greaser et al. 2008).  Individuals 

with longer fascicles (CC homozygotes) would in theory experience a rightward shift in their length-

tension relationship and, potentially, larger optimal joint angles for maximal torque production.  Such 

a shift in the length-tension relationship has been linked to a reduction in injury occurrence, as a 

longer optimum muscle length would ensure that less of the muscle’s functional range would be along 

the more unstable descending limb of the length-tension curve (Brughelli & Cronin 2007).  Thus, in 

populations at increased risk of injury, such as athletes, it may be necessary to tailor training 

interventions specific to TTN genotype. 

 

Considering the observed association between TTN genotype and VL fascicle length, it was 

hypothesized that T-allele carriers would be overrepresented in habitually trained marathon runners 

because shorter fascicles require less energy to produce a given force, which is likely to contribute to 

improved mechanical efficiency in this population (Pontzer et al. 2009).  No difference, however, in 

TTN genotype distribution was observed between the RA and MR groups.  Nonetheless, the MR T-

allele carriers (those expected to possess shorter fascicles according to our RA data) had marathon 

personal best times 2 min 25 s faster than MR CC homozygotes.  This observation is consistent with 

previous reports of elite distance runners possessing shorter fascicles than both untrained individuals 

and elite sprinters (Abe et al. 2000).  Thus, possession of the T-allele, whilst not essential for 

successful marathon running performance, might convey an advantage for marathon running when 
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combined with appropriate training and nutritional regimens as could be expected of the habitually 

trained runners included in the present study.   

 

Despite observing associations between TTN genotype and VL fascicle length in RA and marathon 

personal best time in MR, it remains unclear whether marathon personal best time was enhanced in 

the MR T-allele carriers as a consequence of possessing a shorter fascicle length, as this was not 

directly measured in the MR group.  As titin is suggested to be a key regulator of the Frank-Starling 

mechanism, the influence of TTN within cardiac muscle could provide an alternative explanation for 

the observed association between TTN genotype and MR personal best time.  TTN-related increases in 

stroke volume following endurance training have been observed previously (Rankinen et al. 2003) 

and the rs10497520 polymorphism appears to contribute to the training response of VO2max in 

previously untrained individuals (Timmons et al. 2010).  Interestingly, however, Timmons et al. 

(2010) observed greater gains in VO2max in CC homozygotes (those expected to have longer VL 

fascicles) than T-allele carriers (those expected to have shorter VL fascicles), with gains experienced 

by heterozygotes similar to those of TT homozygotes following training.  For untrained participants, 

such as those in Timmons et al., training-induced increases in VO2max are primarily due to increases in 

cardiac output via increases in stroke volume (Ekblom et al. 1968; Iwasaki et al. 2003) and might be 

accentuated in individuals possessing the CC genotype.  However, in highly trained athletes with 

comparable rates of maximal oxygen uptake, as could be expected of the trained MR group, other 

factors such as lactate threshold and running economy are probably more important in determining 

performance (Conley & Krahenbuhl 1980).  Moreover, improved running economy in individuals 

possessing lower ratios of titin isoforms (T1/T2) has recently been reported (Pellegrino et al. 2016), 

although more research is required to investigate whether the rs10497520 T-allele corresponds to 

lower T1/T2 ratios.  Thus, despite a potential pleiotropic influence of TTN on both cardiac and 

skeletal muscle, possession of the T-allele (and consequently shorter VL fascicles) appears more 

important for marathon performance in trained individuals. 
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Finally, as RA CC homozygotes possessed longer VL fascicles, an association of this genotype with 

successful sprint running performance is possible.  Longer muscle fascicles are known to contribute to 

enhanced Vmax (Bodine et al. 1982; Sacks & Roy 1982), which is an important determinant of sprint 

performance (Kumagai et al. 2000).  Thus, trained sprinters with the CC genotype might possess 

longer muscle fascicles and enhanced sprint ability compared to trained sprinters carrying the T-allele.  

Future research should investigate the impact of TTN genotype on sprint performance in addition to 

running economy, mechanical efficiency and Vmax, to enhance our understanding of these associations. 

  

Conclusion and Perspective 

Here we report, for the first time, a genetic influence on human skeletal muscle architecture.  The T-

allele at the rs10497520 polymorphism in TTN, the gene encoding the giant structural protein titin, is 

associated with shorter VL muscle fascicles in recreationally active men, and faster marathon 

performance (nearly 2.5 minutes faster) in habitually trained male runners with personal best times of 

approximately 2.5 hours.  Considering shorter muscle fascicles require less energy to produce a given 

force, the genotype-dependent differences in marathon personal best times may be due to differences 

in mechanical efficiency between T-allele carriers and CC homozygotes.   

 

Acknowledgements 

The research was funded by Manchester Metropolitan University. 

 

References 

Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance 
runners. Med Sci Sports Exerc. 2000: 32: 1125-1129. 
Bodine SC, Roy R, Meadows D, Zernicke R, Sacks R, Fournier M, Edgerton V. Architectural, 
histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. 
J Clin Neurophysiol. 1982: 48: 192-201. 
Brughelli M, Cronin J. Altering the length-tension relationship with eccentric exercise. Sports 
Medicine. 2007: 37: 807-826. 
Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat. 2014: 
35: 1046-1059. 
Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained 
athletes. Med Sci Sports Exerc. 1980: 12: 357-360. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Ekblom B, Astrand P-O, Saltin B, Stenberg J, Wallström B. Effect of training on circulatory response to 
exercise. J Appl Physiol. 1968: 24: 518-528. 
Erskine RM, Jones DA, Maganaris CN, Degens H. In vivo specific tension of the human quadriceps 
femoris muscle. Eur J Appl Physiol. 2009: 106: 827-838. 
Fry AC, Staron RS, James CB, Hikida RS, Hagerman FC. Differential titin isoform expression in human 
skeletal muscle. Acta Physiol Scand. 1997: 161: 473-479. 
Fukuda N, Sasaki D, Ishiwata Si, Kurihara S. Length dependence of tension generation in rat skinned 
cardiac muscle role of titin in the Frank-Starling mechanism of the heart. Circulation. 2001: 104: 
1639-1645. 
Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S. Determination of fascicle length and 
pennation in a contracting human muscle in vivo. J Appl Physiol. 1997: 82: 354-358. 
Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Yang H, Ch'ang L-Y, Huang W, Liu B, Shen Y. The 
international HapMap project. Nature. 2003: 426: 789-796. 
Greaser ML, Krzesinski PR, Warren CM, Kirkpatrick B, Campbell KS, Moss RL. Developmental changes 
in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of 
isoform transition. J Muscle Res Cell Motil. 2005: 26: 325-332. 
Greaser ML, Pleitner JM. Titin isoform size is not correlated with thin filament length in rat skeletal 
muscle. Front Physiol. 2014: 5: 1-9. 
Greaser ML, Warren CM, Esbona K, Guo W, Duan Y, Parrish AM, Krzesinski PR, Norman HS, Dunning 
S, Fitzsimons DP. Mutation that dramatically alters rat titin isoform expression and cardiomyocyte 
passive tension. J Mol Cell Cardiol. 2008: 44: 983-991. 
Herzog W, Abrahamse SK, ter Keurs HEDJ. Theoretical determination of force-length relations of 
intact human skeletal muscles using the cross-bridge model. Pflügers Archiv. 1990: 416: 113-119. 
Iwasaki K-i, Zhang R, Zuckerman JH, Levine BD. Dose-response relationship of the cardiovascular 
adaptation to endurance training in healthy adults: how much training for what benefit? J Appl 
Physiol. 2003: 95: 1575-1583. 
Kawakami Y, Ichinose Y, Fukunaga T. Architectural and functional features of human triceps surae 
muscles during contraction. J Appl Physiol. 1998: 85: 398-404. 
Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to 
muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000: 88: 811-816. 
Montgomery H, Brull D, Humphries SE. Analysis of gene-environment interactions by "stressing-the-
genotype" studies: the angiotensin converting enzyme and exercise-induced left ventricular 
hypertrophy as an example. Ital Heart J. 2002: 3: 10-14. 
Morse CI, Tolfrey K, Thom JM, Vassilopoulos V, Maganaris CN, Narici MV. Gastrocnemius muscle 
specific force in boys and men. J Appl Physiol. 2008: 104: 469-474. 
Novacheck TF. The biomechanics of running. Gait Posture. 1998: 7: 77-95. 
Pellegrino J, Ruby BC, Dumke CL. Effect of Plyometrics on the Energy Cost of Running and MHC and 
Titin Isoforms. Med Sci Sports Exerc. 2016: 48: 49-56. 
Pontzer H, Raichlen DA, Sockol MD. The metabolic cost of walking in humans, chimpanzees, and 
early hominins. J Hum Evol. 2009: 56: 43-54. 
Rankinen T, Rice T, Boudreau A, Leon AS, Skinner JS, Wilmore JH, Rao D, Bouchard C. Titin is a 
candidate gene for stroke volume response to endurance training: the HERITAGE Family Study. 
Physiol Genomics. 2003: 15: 27-33. 
Reeves ND, Narici MV. Behavior of human muscle fascicles during shortening and lengthening 
contractions in vivo. J Appl Physiol. 2003: 95: 1090-1096. 
Reeves ND, Narici MV, Maganaris CN. Effect of resistance training on skeletal muscle-specific force in 
elderly humans. J Appl Physiol. 2004: 96: 885-892. 
Roberts TJ, Chen MS, Taylor CR. Energetics of bipedal running. II. Limb design and running 
mechanics. J Exp Biol. 1998: 201: 2753-2762. 
Sacks RD, Roy RR. Architecture of the hind limb muscles of cats: functional significance. J Morphol 
1982: 173: 185-195. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Thomaes T, Thomis M, Onkelinx S, Goetschalckx K, Fagard R, Lambrechts D, Vanhees L. Genetic 
predisposition scores associate with muscular strength, size, and trainability. Med Sci Sports Exerc. 
2013: 45: 1451-1459. 
Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, 
Nielsen S. Using molecular classification to predict gains in maximal aerobic capacity following 
endurance exercise training in humans. J Appl Physiol. 2010: 108: 1487-1496. 
Tsuji K, Ishida H, Oba K, Ueki T, Fujihashi Y. Activity of lower limb muscles during treadmill running at 
different velocities. J Phys Ther Sci. 2015: 27: 353. 
Vikhlyantsev I, Podlubnaya Z. New titin (connectin) isoforms and their functional role in striated 
muscles of mammals: Facts and suppositions. Biochemistry Moscow+. 2012: 77: 1515-1535. 
Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R. Regulation of skeletal muscle stiffness 
and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl 
Acad Sci U S A. 1991: 88: 7101-7105. 
Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin 
Orthop Relat Res. 1983: 179: 275-283. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Table 1. TTN rs10497520 genotype frequency and physical characteristics for RA and MR 

participants.  Frequency data presented as count (%), all other data presented as mean (SD). 

  All CC  CT TT p X
2
 

 Frequency (%) 137 (100) 110 (80.3) 27 (19.7) 0 (0.0) 0.441 1.637 

R
A

 

Height (m) 1.79 (0.06) 1.79 (0.06) 1.80 (0.07) - 0.437  

Mass (kg) 75.3 (10.1)* 75.0 (9.9) 76.3 (11.1) - 0.376  

BMI (kg∙m
-2

) 23.5 (2.7)* 23.5 (2.7) 23.6 (3.0) - 0.806  

Age (yr) 20.7 (2.7)* 20.8 (2.6) 20.6 (3.1) - 0.768  

 VL fascicle length (cm) 7.1 (1.5) 7.3 (1.6) 6.4 (0.9) - 0.003  

 VL fascicle length/VL 

muscle length  

0.17 (0.05) 0.18 (0.05) 0.16 (0.03) - 0.035  

        

 Frequency (%) 141 (100) 108 (76.6) 32 (22.7) 1 (0.7) 0.756 0.561 

M
R

 

Height (m) 1.79 (0.07) 1.78 (0.07) 1.79 (0.06) 1.82 0.675  

Mass (kg) 66.6 (6.7) 66.7 (6.8) 66.0 (6.6) 66.0 0.551  

BMI (kg∙m
-2

) 20.9 (1.9) 21.0 (2.0) 20.6 (1.6) 19.9 0.285  

 Age (yr) 34.9 (7.8) 34.3 (6.7) 37.0 (10.6) 31.0 0.196  

 Marathon PB Time 

(hr:min:s) 

2:28:31 

(0:06:17) 

2:28:53 

(0:05:50) 

2:26:25 

(0:06:12) 

2:27:08 0.020  

        

T
O

T
A

L
 

Frequency (%) 278 (100) 218 (78.4) 59 (21.2) 1 (0.4) 0.385 1.908 

Height (m) 1.79 (0.07) 1.79 (0.07) 1.79 (0.06) 1.82 0.415  

Mass (kg) 70.8 (9.6) 70.9 (9.4) 70.7 (10.4) 66.0 0.834  
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BMI (kg∙m
-2

) 22.2 (2.7) 22.2 (2.7) 21.9 (2.7) 19.9 0.452  

 Age (yr) 27.9 (9.2) 27.5 (8.5) 29.5 (11.5) 31.0  0.196  

RA, untrained; MR, habitually trained marathoners; BMI, body mass index; PB, personal best; p 

relates to two-group analyses (CC vs. CT in RA and CC vs. CT+TT in MR) except for frequency 

analyses when this includes all genotype groups; * denotes significant difference between RA and 

MR (p ≤ 1.0 x 10
-13

). 
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Figure 1. Comparison of VL fascicle length by TTN CC (n = 110) and CT (n = 27) genotype in RA 

(*p = 0.003).  No TT homozygotes were identified. Columns and error bars are mean and SD. 

 

Figure 2. Comparison of marathon personal best time between TTN CC genotype (n = 108) and T-

allele carriers (n = 33) in MR (*p = 0.020). Columns and error bars are mean and SD. 
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