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Abstract

The oil and gas industry (OGI) has always been associated with challenges and com-
plexities. It involves many processes and stakeholders, each generating a huge amount of
data. Due to the global and distributed nature of the business, processing and managing this
information is an arduous task. Many issues such as orchestrating different data sources,
owners and formats; verifying, validating and securing data streams as they move along
the complex business process pipeline; and getting insights from data for improving busi-
ness efficiency, scheduling maintenance and preventing theft and fraud are to be addressed.
Artificial intelligence (AI), and machine learning (ML) in particular, have gained huge ac-
ceptance in many areas recently, including the OGI, to help humans tackle such complex
tasks. Furthermore, multi-agent systems (MAS) as a sub-field of distributed AI meet the
requirement of distributed systems and have been utilised successfully in a vast variety of
disciplines. Several studies have explored the use of ML and MAS to increase operational ef-
ficiency, manage supply chain and solve various production- and maintenance-related tasks
in the OGI. However, ML has only been applied to isolated tasks, and while MAS have
yielded good performance in simulated environments, they have not gained the expected
popularity among oil and gas companies yet. Further research in the fields is necessary to
realise the potential of ML and MAS and encourage their wider acceptance in the OGI. In
particular, embedding ML into MAS can bring many benefits for the future development of
the industry. This paper aims to summarise the efforts to date of applying ML and MAS
to OGI tasks, identify possible reasons for their low and slow uptake and suggest ways to
ensure a greater adoption of these technologies in the OGI.
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1. Introduction

Oil is the world’s leading fuel accounting for approximately one-third of the total global
energy consumption [56]. It is one of the most valuable traded assets in the world, directly
or indirectly impacting our daily lives, from necessities such as transportation, heating and
electricity, to many other petrochemical products ranging from the things we use to the
things we wear [20]. The increase in demand for fossil fuels is on a continuous rise, making
it crucial for the oil and gas industry (OGI) to come up with new approaches for improving
operations.

The OGI is among the largest, complex and crucial industries in the world, with series
of upstream, midstream and downstream activities taking place, including exploration, pro-
duction, refining, transportation and consumption. The industry is further characterised
by working and contractual relationships with governments, joint ventures and other stake-
holders. It is highly dynamic in nature, making it difficult for the traditional centralised
approach to work, especially with the rise in global demand [20]. Attempts to identify
innovative approaches to process and manage information for the purposes of enhancing op-
erational potency, reducing operating costs and boosting profits necessitate advancements
in technologies within the industry. For example, real-time data streams continuously gen-
erated by sensors are utilised to ensure better control and optimisation of crude production
[25]. Robotics is used in offshore fields for drilling, inspection and damage control to en-
hance efficiency and personal safety [49]. Wireless sensor networks are used to monitor and
enhance production, as well as detect and prevent issues with regards to health and safety
[46]. The radio-frequency identification (RFID) technology is used for asset management,
oil rig site management, pipeline inspection, safety and security [15].

As the number of technologies for data processing and management increases, their con-
trol requires decentralisation with such features as autonomy, intelligence and logic to ensure
their smooth and coordinated functioning across multiple tasks, including scheduling, manu-
facturing, control, diagnosis and logistics. To achieve such intelligent and decentralised con-
trol, many researchers are inclined towards machine learning (ML) and multi-agent systems
(MAS). A typical MAS is made of several interacting agents, where an agent is a computer
system proficient in autonomous activities to achieve certain tasks in an environment [58].
The ability of agents to interact with each other through negotiation, collaboration and
coordination, while adapting to changes and disruptions, makes them suited for distributed
control. Due to its conformity with the complex and distributed nature of the OGI, the MAS
approach has gained attention of researchers as a means to solve a number of tasks in the
OGI. To facilitate the development of resilient agents, especially in unpredictable, diversified
environments, ML algorithms are essential when it comes to providing reputable strategies.
While there are not many examples of combining ML with MAS in OGI applications to
date, this is what may be required in the future for the industry to maintain its efficiency
at the time of rapid technological development and a wider adoption of alternative energy.

This paper provides an overview of the existing ML and MAS solutions for the OGI,
identifies the challenges preventing their real-life deployment and summarises their benefits
to encourage a wider adoption. The survey is arranged as follows. Section 2 presents an
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overview of the OGI, the tasks involved and technology adopted in the industry. Sections 3
and 4 introduce ML and MAS and review their applications to the OGI tasks, respectively.
Section 5 compares ML and MAS approaches to OGI tasks and discusses possible ways and
advantages of combining the two approaches for their greater adoption in the OGI. Section
6 highlights challenges and future directions in this respect, while Section 7 concludes the
survey.

2. The Oil and Gas Industry

2.1. Overview

The OGI is an extremely large industry involving upstream, midstream and downstream
sectors. It is a complex but essential industry worldwide. It directly or indirectly impacts
our daily lives enabling services such as transportation, heating and electricity, as well as
many petrochemical products from things we use to those we wear [20]. No wonder that
petroleum is often called ”black gold” by virtue of its worth and value in human life and
global economy [27].

Presently, OGI organisations are considering new ways of cutting operations cost, en-
hancing efficiency and increasing out-turn. Challenges and risks associated with activities
and operations throughout the supply chain require to be addressed profoundly, which com-
pels the advancement of technology within the OGI, especially for data processing and
management. Some examples of such technologies include digitisation of oil fields, real-time
optimisation of drilling operations, the use of nanotechnology, wireless sensor networks to aid
gauging, reservoir modelling and diagnostics [16]. Research in the industry predicts ample
resources left to sustain current oil production levels for at least 50 more years [56]. Thus,
the main challenges facing the OGI are ensuring an increase in productivity and convey-
ing the products to end users at the least possible cost [10]. Considering its global nature
and complications of engaging in contract relationships with governments, joint ventures
and other stakeholders, the OGI also requires technical resolutions for a more effective data
management.

2.2. Tasks

Supply chain in the OGI is subdivided into three closely related phases, each involving
a series of operations. These phases include the upstream, midstream and downstream.
The upstream mainly involves exploration and production of crude. The midstream extends
both upstream and downstream and involves storage and transportation; however, it is often
ignored when listing out the OGI supply chain phases. The downstream is responsible for oil
and gas refining, as well as distributing the end products. Each level of the supply chain is
associated with complexities that require strategic, tactical and operational decision making
[54].

Following the exploration, production is the first step in the OGI supply chain; it in-
volves drilling, extraction and recovery of oil from beneath the earth. During production,
crude oil is produced both on land (onshore) and in shallow waters (offshore). To accom-
plish successful production of crude oil and natural gas, different equipment is utilised and
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various production operators are involved being responsible for organising and supervising
all operations in searching for and extracting oil [10].

Crude oil production platforms, whether offshore or onshore, are full of huge risks. As
such, effective control and maintenance are required to ensure efficient and reliable pro-
duction processes, higher productivity, longer equipment life, safety of people and the en-
vironment, and staying within budget. Control involves applying planning and sustenance
abilities to ensure improved performance and reduce the risk of failure at every stage of
the oil and gas supply chain. Maintenance includes regular inspection and examination of
operating conditions for taking preventive, predictive and corrective measures, as well as
making strategic, tactical and operational decisions [38].

Supply chain management (SCM) ensures making plans, coordinating activities and ex-
ploring improvements. In the OGI, SCM faces several challenges, mostly in terms of logistics
and attitude in respect to teamwork and information sharing within the supply chain part-
ners. The improved supply chain in the OGI requires new principles for collaboration [19].

Another important but underdeveloped area of study among the multiple accomplish-
ments in the OGI is the monitoring, processing and management of information. This
encompasses data collected from the fields, amount of oil and gas produced and exported.
Traditional methods such as centralised databases often fail since storing, analysing and
sharing collected data require decentralisation and continuous verification for consistences
across various stages of the supply chain. Some traditional methods may be adequate for
reporting the state of the environment around the field or the quantity of produced and
distributed oil; however, they cannot provide the required real-time and future support such
as preventing data being wrongly reported or tampered at different stages of its processing.

2.3. Technology

The use of computer-aided techniques to assist businesses is becoming standard in in-
dustries, including the OGI. To maintain a sustainable and profitable business, the OGI
has to explore new technologies that can drive its efficiency. It is thus crucial to find out
what advantages a technology can offer over others for a certain task [51]. The demand for
safety in the OGI, along with a keen interest in intelligent fields, smart wells and real-time
analysis, brought about a hype in the exploration of different kinds of technology that are
powerful, intelligent and robust in nature [33].

Autonomy becomes very significant in environments, where risks are high or humans are
not capable of certain actions, or when trying to be cost-effective. With the increase of the
industry size, things like collecting data, assessing it and making decisions in fractions of
seconds are impossible to human operators. Setting overall goals and delegating decision-
making to autonomous systems is the best humans can do in such situations.

Among many recent technologies, the Internet of things (IoT) has a big impact on the
OGI development. For example, [43] outlined some of the IoT applications in the OGI, which
included the use of wearable watches, smart helmets and smart glasses by oil field engineers
in offshore fields for real-time assistance, safety and communication with the control room
for navigation and enhanced collaboration. Drones are used for inspection of leakages in
pipelines and flare emissions, while smart pipelines are employed for detecting damages and
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sending real-time data to the control room. Robots are used in offshore fields for drilling,
inspection and damage control to enhance efficiency and personal safety [49]. Micro- and
nanotechnologies have contributed significantly to several areas of the OGI to give detailed
and more accurate information [25]. The OGI is considered as one of the pioneering sensor-
based industries. For example, wireless sensor networks are used to wirelessly control and
oversee oil assets, including pipeline leakage, rust, equipment and reservoir status in real-time
[46]. The radio frequency identification (RFID) technology is used for asset management,
oil rig site management, pipeline inspection, safety and security [15]. The data generated
from various sensors can potentially provide insights to assist the OGI to improve operations
ans safety, prevent problems and reduce operational costs. This data is usually massive and
difficult to make sense of, especially by human operators. Intelligent systems are the only
currently available solution capable of bringing real-time analysis and decision-making [33].

3. Machine Learning in Oil and Gas Industry Applications

Just as humans learn by doing tasks repeatedly and making mistakes, machines too are
able to learn and improve their performance with the aid of ML [41]. The main goals of
ML are making predictions, performing clustering, extracting association rules and making
decisions from a given information or data [34]. ML has a great potential in OGI applica-
tions, especially when it comes to analysing and interpreting data. It offers better ways of
developing drilling plans, diagnosing, monitoring, predicting and performing real-time opti-
misation at a minimal cost. ML algorithms that have been effectively applied to OGI tasks
include Support Vector Machine (SVM), Artificial Neural Networks (ANN), Deep Learning
(DL) and Genetic Algorithms (GA). Applications using these algorithms are reviewed below
in turn.

3.1. Production

ML can help to improve the oil and gas production rate and minimise the cost of lifting.
It has been effectively used for enhancing reservoir modelling and preventive maintenance.
In particular, ML models have been proposed for determining optimal times for outlined
maintenance so as to avoid failures and optimise the regular maintenance operation schedule.
Below, we review the studies applying ML to various problems associated with oil and gas
production.

Qiao et al. [44] introduced an oil and gas production forecasting model, which combined
the Particle Swarm Optimisation (PSO) and Least Squares Support Vector Machine (LS-
SVM) methods. Using historical data of an oil and gas company and simulations run in
MATLAB, the authors were able to analyse the factors impacting the production and build
an accurate prediction model that was trained at a high speed.

Panja et al. [40] developed and compared an LS-SVM model, an Artificial Neural Net-
works (ANN) model and a Response Surface model (RSM) to predict the oil production
and gas-to-oil ratio considering reservoirs that are subjected to time and rate related con-
straints. Some fundamental factors were considered as input parameters. The same datasets
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were used to train the three models for predicting the production under different scenar-
ios. According to the test results, the LS-SVM model demonstrated the highest accuracy
with respect to the gas-to-oil ratio prediction. It was concluded by the authors that the
application of LS-SVM to various production and reservoir engineering tasks is promising.

Chaki et al. [9] applied the Modular ANN (MANN) approach to determine the fraction of
sand in a reservoir. Three seismic properties, namely, the seismic impedance, instantaneous
amplitude and frequency, were used. The reservoir and seismic data for this study were
gathered from a hydrocarbon field in the western onshore of India. Three networks were
designed for three separate zones. The sand fraction and three seismic attributes from seven
wells were used to train and test the ANNs. The sequence correlating to the remaining well
was used for blind prediction. The proposed framework gave good predictions with a short
program completion time and enhanced visualisation through post-processing of the forecast
sand fraction.

Most recently, DL has demonstrated the potential to reform the stakes of oil and gas
companies facing profit-making pressure [8]. DL algorithms can reveal patterns and in-
formation not easily seen by humans; they can automatically detect risks in oil pipelines,
thus minimising infrastructure risks. They can spot anomalies, which traditional rule-based
electronic condition monitoring systems miss, and alert rig operation command centres in
a timely manner. To improve subsurface characterisation, two DL models were developed
to predict the nuclear magnetic resonance for T2 time distribution from conventional well
logs [29]. The authors implemented a Variational Auto-Encoder (VAE) in combination with
a Convolutional Neural Network (CNN) to effectively extract features from the T2 distri-
bution, and a Long Short-Term Memory (LSTM) network to extract short- and long-term
dependencies from the T2 distribution. The data were collected from the Bakken Shale For-
mation, and the models were trained using the same training and testing datasets. Results
demonstrated that the prediction accuracy for the two models was good overall and both
models were robust to noise.

Finally, GA has been successfully applied to the development of oil fields, scheduling
production, characterisation of reservoirs and seismic inversion [55].

3.2. Anomaly detection

Another significant application of ML to the OGI is anomaly detection; ML can help to
identify patterns and predict failures based on relationships between valid readings.

Jin et al. [22] used LS-SVM to detect leak levels on a gas pipeline based on the acoustic
wave method. The authors experimented on a test bed comprising a gas pipeline, some
compressors, valves for regulation, acoustic data retrieval and leakage simulation systems to
simulate different leakage levels. Acoustic signals were gathered under each of the normal,
small, medium and large leakage conditions. Results from the experiment demonstrated
that the LS-SVM model can identify distinct leakage levels based on the collected signals
within a short time and with a high accuracy.
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3.3. Price prediction

In countries where economy strongly depends on oil production and export, predicting
oil prices is impractical using traditional forecasting models. Kristjanpoller and Minutolo
[26] proposed the ANN–Generalised Autoregressive Conditional Heteroscedasticity (ANN-
GARCH) method to predict the volatility of fuel prices. In this method, the ANN model
takes an input from estimates of the GARCH forecast and financial time-series data, and
uses it to determine the instability of oil prices. The authors made use of the exchange
rate and stock market index differences to enhance the prediction of crude oil prices. Three
different forecasting scopes were applied to analyse and amplify the forecasting capacity
of the model. In addition, a loss function evaluation criterion was used to determine the
progress of the volatility prediction. The datasets analysed in this study came from the Oil
Spot Price and Oil Futures Price by Bloomberg for the period from July 2002 to May 2014.
The results indicated that the proposed method improved the GARCH model predictions
of the oil spot and futures price volatility using the 21-days window.

4. Multi-Agent Systems in Oil and Gas Industry Applications

Multi-agent systems (MAS) have been defined using several terms by various authors due
to their extended features. Going by one of the most common definitions, MAS is made up of
various interacting agents, where an agent is a computer system with the ability to perform
autonomous actions in order to accomplish certain goals in some environments [58]. An
intelligent agent achieves its goals by perceiving its environment and utilising observations
to decide on which action(s) to perform.

MAS offers a chance to amplify production systems that are decentralised, emergent
and concurrent. It is an inspiring and promising way of managing and using distributed
computing and information systems [57]. MAS are especially suited for organisations with
different or conflicting goals, which can be broken down into several independent tasks and
assigned to agents. They can also benefit systems whose capacity and specifications are
likely to change over time. MAS are successfully applied to a vast range of disciplines such
as electronic commerce and information management in graphics and transportation [6];
logistics, controlling processes (e.g air traffic control), manufacturing, tele-communication,
smart grids and robotics [31]; electric power systems [30]; patient monitoring and rescue
team management [57], [28]. MAS have also been utilised in the OGI to improve operational
efficiency and solve impending issues. Some of such applications are reviewed below, grouped
into three categories based on the core OGI tasks reviewed in Section 2.2: production,
maintenance and SCM.

4.1. Production

To maximise the amount of oil produced and limit the volume of water and sand used
in oil production, Engmo and Hallen [13] proposed a MAS for the control and optimisation
of oil production. The authors made use of the Prometheus design tool [53] to build their
agent system with several agents overseeing the production based on some tasks allocated
to them. Particularly, the agents monitored and analysed sensor values for the wells and the
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processing plant. An agent was assigned to represent the operator of the control room, and
another to represent all agents in the field. The authors developed an application to test
their agent system, where they simulated a simple oil field comprising of a few wells and a
processing plant. The JACK intelligent agents environment [7] was used in this study to
build, run and integrate the MAS, while the Eclipse software development kit was employed
for the system implementation. For the test run, the authors generated values of three
relatively random variables affecting the production, which included the permeability, water
and sand ratios. They operated the simulator with a control system to compare a human
operator and the agent system. They also did the same without the control system to enable
standard comparison. While both the human operator and agent system reduced the amount
of time used in critical circumstances and increased the quantity of oil produced, the agent
system achieved a higher production level compared to that of the human operator system.
The authors concluded that their agent system can be relied upon to manage some tasks in
the industry and can perform better than human operators.

To resolve conflicting control concerns and comply with the dynamic nature of oil fields,
Mikkelsen et al. [32] developed an extensible multi-objective control model for offshore oil
and gas production. They implemented a stratified MAS, in which control objectives were
assigned and managed by various agents through a uniform negotiation context at three
layers, namely, the strategic, tactical and operational decision layers. Each agent accessed
historical production data from the DONG Energy EP-operated Siri oil and gas field in
the North Sea and online data feeds to achieve a goal. A negotiation process was used to
coordinate the agents’ actions, while a self-reflecting implementation approach was employed
to prevent agents from becoming dominant. Two experiments were conducted, from which
the authors observed that their approach improved the system performance compared to
a manually operated system. They concluded that their proposed system can meet the
dynamic operating conditions of oil and gas fields to conform to the present and future
requirements with a reduced environmental impact and greater economic pay-offs.

Dobrescu et al. [12] presented a MAS framework for shared control of petroleum services
for onshore oilfields. The authors proposed a distributed control strategy for a basic pro-
duction system based on the IEC 61499 standard. They used an existing design architecture
for distributed control and assigned requirements for the MAS to carry out control tasks as
a service. The traditional production units were transformed to production unit agents to
ensure system dynamics and a better load distribution. The authors adapted the remote
execution process for the MAS so as to identify a possible need for modification at the su-
pervisory level. In the future, they plan to implement the approach for a real situation and
evaluate its performance in the presence of operational unpredictability.

4.2. Safety and Maintenance

A growing demand for proactive measures to protect oil pipelines from vandals and
leakages, which are popular mostly during crude oil conveyance, has attracted attention of
several researchers. Ahmed et al. [1] proposed a multi-agent-based approach for preventing
and controlling oil pipeline vandalism. The authors used MAS engineering to design a system
comprising reactive and proactive agents working together to monitor and avert dangers in
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a pipeline. According to this MAS architecture, the Intelligent Agent detects abnormal
pressure and alerts another agent, called the Mobile Agent, with the details and location
of the found abnormality. At the same time, the Sensor Agent detects metallic objects
in the pipeline and alerts the Master Agent, which represents the control centre, through
the Mobile Agent. The Protective Agent provides the first-hand protection to the pipeline
whenever the presence of any metallic object is discovered before the arrival of security
guards. The proposed approach has not been implemented, but the authors believe that the
collaboration expressed by the agents is a good sign that the proposed framework is suited
for supporting the case of pipeline vandalism.

Ramirez et al. [45] proposed an intelligent supervisory MAS-based system with multiple
feedback controls for industrial processes. The authors combined some fuzzy logic rules,
an internal model control architecture and a MAS to accomplish two petroleum industrial
operations: gas-oil separation and oil heating. Standard local interconnected supervising
schemes were joined to form an overall supervisor so as to meet local goals in each of the
processes. The design of the local supervising agent consisted of two levels: the regulatory
level with an internal model control architecture and supervisory level. The latter includes
an event detector developed using fuzzy logic [36] and a decision system that uses informa-
tion received from the event detector to make appropriate decisions. The global supervising
agent was designed based on a predefined mechanism to guarantee the accomplishment of
the global objective of the entire process. Computational simulations for the emulation of
the local and global supervising agents were carried out, and the results demonstrated a
possibility of reaching the entire process global objective owing to the cooperation between
local supervising agents. The authors highlight that the security of all processes is more
efficient when applying the proposed distributed supervision compared to that of a cen-
tralised system. For future development, the authors suggest to include another process for
identifying an agent able to manage conflicts to improve the collaboration between the local
supervising agents.

Oliveira et al. [11] proposed the SGCP (a Portuguese acronym referring to a MAS for oil
field management). The SGCP was used to simulate an oil field, situated in Bahia, Brazil.
The oil field components were monitored by agents through interaction with a database
containing real data from the field. The gathered data included sensor readings for every
field and proficient knowledge about costs. The agents applied the information to estimate
the present state of every single oil field component and the entire field. They all acted
according to their assigned functions, e.g. operation, supply and intervention. The agents
also interacted with each other to achieve an improved global profit. Problems were identified
through a statistical calculus approach, which included analysing the level of oil production.
The authors integrated the SSCP into a tool that had prior understanding of the oil field
conditions and aided decision making in an intelligent way to make inferences based on
rules and fuzzy logic. The agents were implemented using the Java Agent Development
Environment (JADE) framework [5], while SGCP ontology was developed using the Protege
4.2 software and the Java class Ontology.java supported by the JADE framework. The
methodology for storing and integrating expert knowledge (MAICE) [37] was used to define
the action rules for the agents. During each simulation, environment information was stored
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in a MySQL 5.0 database connected to SGCP. Information was channelled from one agent
to another using FIPA’s agent communication language. The outcome indicated that using
MAS in the oil field operation encouraged the agents to act together in analysing problems,
thus cutting down the unnecessary expense of digging into raw data in various systems in
search of solutions.

A MAS for network management (NM-MAS) comprising agents with different capacities
for resolving network fail-over was presented by Ioniţă and Ioniţă [21]. For the experiment,
a gas-oil separation plant (GOSP) was mapped to some implemented industrial wireless
network components. The GOSP operator made use of high-level attainment information
of network elements to identify faults that may occur. NM-MAS and GOSP communicate
in phases with the help of agents, whose assigned activities include; symptom detection,
failure recognition, diagnosis and repair planning. Two evaluation metrics, namely, the
success rate of plan repair and fault-tolerance network indicator, are used to measure the
NM-MAS performance.The authors plan to implement the agents as part of a future work.
They also highlight the drawbacks of using wireless network, the outcome of which can affect
the accuracy of data, thus making real-time control difficult or impossible.

Based on an established research towards a feasibility study of an intelligent asset man-
agement system for the offshore OGI in Atlantic Canada, Sayda and Taylor [47] proposed
a MAS called ICAM to control and manage assets in the petroleum industry. Having pre-
viously defined a conceptual model, architecture and implementation plan for the proposed
system in an existing work, the authors came up with a general structure of the ICAM sys-
tem with an intelligent supervising agent and discussed the knowledge representation and
processing requirements. They defined the agent structure, communication protocols and AI
requirements for the component agents. The authors conducted a real-time simulation ex-
periment on the ICAM system model to assess and validate its performance, which indicated
positive improvements in the design and development of the MAS. These authors further
presented three different papers fully addressing the ICAM system design and development
[48]. To analyse the behaviour of reactive agents, plant data was gathered and examined
for every reactive agent during simulations. The outcome from the simulation showed that
the ICAM system prototype behaviour conferred to its design conditions. To analyse the
ICAM performance, the authors conducted a real-time simulation experiment based on the
system’s logical behaviour and its reaction to the dynamics of the outside environment. An
impressive logical behaviour was observed; the system reacted to simple faulty sensors and
actuators. The overall ICAM performance analysis outcome was good. Finally, the authors
further tested the system in two different simulation scenarios to investigate the MAS be-
haviour during unforeseen plant disruptions and conditions, which resulted in discovering
some limitations in the ICAM system prototype design. Suggestions on how to overcome
these limitations and enhance the ICAM system performance were outlined in the paper.

4.3. Supply Chain Management

The increase in global demand along with the inflexible and dynamic nature of the OGI
has made its SCM more complex and challenging compared to that of many other industries
[19]. Unfortunately, research work on the MAS approach to the complete supply chain in
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the OGI is scarce. The majority of the existing studies focus only on one of the supply chain
aspects such as logistics planning or process optimisation.

Sinha et al. [50] proposed a combination of MAS and co-evolutionary PSO based on the
Cauchy distribution to manage a petroleum supply chain. In the system, supply agents are
guided by supporting agents who coordinate themselves to optimise the cost of a specified
subsystem, thereby reducing the entire cost of the supply chain. A mathematical formula
was used to optimise the resource allocation to each agent. The simulation outcome showed
that applying the MAS favoured the maintenance of optimal crude oil quantities in the
inventories of the considered refineries. The authors observed that the Cauchy distribution
approach had a fair impact on the MAS resource requirement optimisation.

Julka et al. [23] proposed a petroleum refinery integrated supply chain modeller and
simulator (PRISMS) to assist in tendering decision support during crude oil procurement
operations. The authors used a unified agent-based modelling framework in an object ori-
ented way to build the PRISMS for the entire supply chain network. According to this
framework, information and resources are modelled as objects, supply chain entities – as
agents, and the internal departments of the entities – as sub-agents. Information flow is
represented by the transfer of objects among the agents. Based on the framework, the pro-
posed decision support system can work in two different modes, namely, the simulation and
analysis modes, with one complementing the other. Using the agent-based approach, the
PRISMS simulates certain refinery departments such as procurement, logistic, storage and
sale operations. During a set up, a certain operation in the refinery is simulated for a given
number of days. The entire data, which includes messages, events and results, are stored as
features of a particular agent during the simulation. To illustrate the effectiveness and prac-
ticality of the PRISMS for SCM, the authors considered policy changes, external changes
and modification of plant configuration as case studies. In the future, the authors plan to
embed detailed solution approaches used by respective departments and study their capa-
bility in the entire refinery; experiment on more case studies such as those covering oil sales
and long-term contract checks; extend the approach, by making it capable of monitoring
and handling exceptions in the supply chain.

5. Analysis and Discussion

5.1. Comparison of Machine Learning and Multi-Agent System Approaches to Oil and Gas
Industry Tasks

Both ML and MAS approaches can be applied interchangeably to some OGI tasks. For
example, while LS-SVM was used to detect leak levels on a gas pipeline based on the acoustic
wave method [22], a MAS-based approach was used to monitor and avert dangers, which
included leakages in pipelines [1]. Another example is where GA [55] and MAS [53] were
applied to control and optimise the oil production. At a closer look, it can be gathered that
while both ML and MAS approaches facilitate decision-making, they do this in different
ways and at different scales. In particular, ML is often applied to make predictions such
as predicting production volumes and oil prices, detecting anomalies, as well as optimising
and scheduling production. On the other hand, MAS are typically used to automate and
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coordinate complex and distributed tasks across the entire supply chain. They make good
supervisory systems, while the agent communication and collaboration is well-suited for
oil-field, network and asset management. From the acceptance point of view of the two
approaches, it is clear that ML is a more extensively studied area and is gaining acceptance
in the OGI due to its popularity in many other fields. On the other hand, as promising
as MAS is, it still has not attained the deserved attention in the OGI; it is yet to be fully
explored and experimented in reality.

5.2. Combining Machine Learning and Multi-Agent System Approaches

Considering the potential of both ML and MAS, level of maturity and acceptability of
ML and suitability of MAS for solving complex, unpredictable problems, merging the two
approaches can produce a desirable solution for OGI applications. In particular, when mod-
elling agent systems, it is impossible to forecast the entire circumstances an agent may expe-
rience, especially in dynamic environments. It is thus impractical to define an agent’s ideal
behaviour beforehand. Therefore, in a multi-agent setting, agents would benefit from hav-
ing the ability to learn from and adjust to their environment [4]. Furthermore, complexities
can arise in the interaction between agents as their number and behavioural sophistication
increase. ML can assist agents to automatically adjust their co-behaviour as the complexity
of a MAS environment becomes challenging [39]. Out of the three main ML approaches,
namely, supervised, unsupervised and reinforcement learning, the latter is the most utilised
in agent learning because it matches the agent paradigm explicitly [24]. However, only a
few OGI applications employ reinforcement learning. Instead, the majority of the existing
MAS-based applications in the OGI use supervised or unsupervised ML algorithms for pre-
dictive or descriptive analytics to inform artificial and human agents about a certain aspect
of the complex system (e.g. predict production or pipe leakage). In other words, ML models
are embedded in MAS as stand-alone entities that parse incoming data rather than facilitate
agent learning.

As an example of a MAS based on reinforcement learning, Aissani et al. [2] proposed
a multi-agent model for dynamic planning of maintenance tasks for a petroleum industry
production set up. As a case study, the authors used the Arzew RA1Z refinery in Algeria.
Considering the dynamic nature of the petroleum refinery, the uncertainty and unforeseen
nature of the environment, the modular Markov decision process (MDP) architecture was
employed in the system. The authors modelled multiple agents organised in a hierarchy
capable of learning from experience using the state–action–reward–state–action (SARSA)
algorithm [52] to ensure efficient maintenance planning and continued development of the
solution standard. The SARSA algorithm allows evaluation during learning by considering
changes in the feedstream as a performance indicator. The Contract Net Protocol was used
for the agent interaction. The system was developed using the multi-agent development
kit (MaDKit) platform [18] and implemented in Borland JBuilder. Experimental results
proved that the method can provide online scheduling solutions for predictive and corrective
maintenance tasks and improve their nature by minimising out flow alterations from the
tanks. At the same time, scheduling maintenance tasks was not always achieved for the
off-peak pump times, especially in the case of unexpected failures, because the authors
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did not consider some precautionary maintenance tasks that ought to be implemented on
time. As a future work, the authors proposed widening the time horizon of experimentation
while considering more complex maintenance tasks and applying the prototype to other oil
production units. They also highlighted that using distributed systems with a powerful
calculation approach could be beneficial.

As an example of incorporating supervised ML models into MAS, Eze et al. [14] proposed
an integrated oil and gas pipeline monitoring and incident mitigation system (IOPMIMS),
which uses the distributed systems and case-based reasoning approach to offer proactive
protection to pipelines. The authors proposed a wireless sensor network node architecture
that has the capacity to gather signals from all sensors. A MAS embedded into Antronix
Fiber Nodes (AFN) fuses the data based on the signals at the allotted sub-station and base
station to confirm if certain events pose threat to a pipeline. At the base station, the MAS
collates data from different wireless devices, which facilitates decision making by the system.
Upon a risk or leak detection in the pipeline, alerts are being forwarded to the security
personnel or pipeline operators. Data from the Concawe group’s website was collected and
simulated to investigate the performance of the proposed system. Three machine learning
algorithms (ANN, SVM and Decision Tree) were used for data fusion and decision support.
Out of the three algorithms, SVM achieved the best performance. While demonstrating
the potential of the proposed system, the paper highlighted some challenges that should be
addressed in the future such as low battery life and low bandwidth.

6. Current Challenges and Future Directions

While the research community regains interest in MAS due to the recent advancements
in AI and deep reinforcement learning [17], there are not many examples of MAS-based
applications deployed in industries including the OGI. Müller and Fischer [35] attribute the
poor uptake of MAS beyond simulation environments to lack of funding as funding bodies are
focused on other approaches such as service-oriented, grid, autonomic and cloud computing.
Leitao [28] suggest that the major limiting factors are inevitable early investments, the need
to embrace a distributed reasoning, missing standardisation, various real-time constraints
and lack of maturity in the technology. Alhosani and Zabri [3] mention that the OGI lacks
the structure to bring together, promote, reuse and manage knowledge due to the scattered
nature of information. Other reasons for the weak industrial adoption of MAS as outlined
by Pěchouček and Mař́ık [42] include the following:

• lack of awareness of the accomplished MAS in industries, wrong impressions about
their technical capacity and high expectations by pioneer researchers, which often lead
to frustration and loss of interest;

• lack of adequate knowledge on the potential of the agent technology in the industry;

• shortage of development tools fit for efficient industrial implementation;

• risks associated with the acceptance of new technologies not confirmed as working or
beneficial in big industries.
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On the other hand, problems such as depletion of oil and gas reserves, price increase,
theft and vandalism, lack of transparency and accountability, force the OGI decision makers
to look into the advantages that AI can offer in handling the ever increasing amount of data
for prediction, prevention and optimisation. To spread the investments and minimise the
risks, a staged approach can be adopted. In particular, separate predictive and descriptive
ML models for specific tasks developed at different times can be assigned to individual
agents, eventually resulting in a scalable MAS overseeing the entire OGI operation through
agent co-operation.

7. Summary

This paper reviewed the existing studies employing machine learning (ML) and multi-
agent systems (MAS) to solve various tasks in the oil and gas industry (OGI). The OGI
is very complex consisting of upstream, midstream and downstream sectors and involves
many stakeholders ranging from government and regulatory bodies, to joint ventures and
consumers. In addition, the industry generates and relies on a huge amount of data. ML
can be an important tool for mining patterns and information from the data and generating
predictions to assist decision-making, while MAS have the potential to help manage the
dynamic, distributed and uncertain relationships in the industry. Several studies have pro-
posed ML- and MAS-based solutions for the OGI. However, the majority of them are focused
on a specific task such as production, control or maintenance rather than automating the
entire supply chain and information governance. Furthermore, virtually all of the proposed
MAS-based solutions are limited to simulated environments only, without being deployed or
used in real life. Things like high investments and risks associated with implementation and
deployment, as well as lack of standards and appropriate developmental tools, prevent the
uptake of the technologies in the industry. As a way forward, the OGI leaders and manage-
ment can consider adopting a staged approach for embedding ML and MAS into the existing
business processes to spread the costs and risks. In particular, separate ML predictive and
descriptive models developed over time for various OGI data processing and management
tasks can eventually be combined within a MAS that would orchestrate the different models.
After that, the intelligent ability of the agents constituting the MAS and their co-operation
can be improved by incorporating state-of-the-art deep reinforcement learning techniques.
Finally, opening up data and sharing practices can speed-up the development and adoption
of ML- and MAS-based solutions for the OGI, which ultimately would bring benefits for
everyone involved in the industry.
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