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Abstract 

Field of systems engineering is developing rapidly and becoming more complex, where 

multiple issues arise like overcomplexity, lack of communication or understanding of the design 

process. Model-based systems engineering (MBSE) has been introduced to overcome these 

issues and reduce systems complexity. Nonetheless, the system model remains static and the 

interactions among submodels are modelled in the form of hard-coded rules. Therefore, systems 

interaction in MBSE is not dynamic enough to satisfy the evolving nature of system models 

with growing complexity. 

In this paper, a novel approach for modelling logic is proposed to address the above challenge. 

The aim of the research is to improve existing methodologies and interaction modelling as well 

as deal with inconsistencies. The approach is based on graph theory, where pre-defined rules 

and relationships are substituted and reorganised dynamically with graphical constructs while 

metagraphs being the most applicable for systems modelling. Framework for reducing 

complexity is presented. 

Keywords: model-based systems engineering, graph-based modelling, object-oriented 
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1 Introduction 

In the modern era, a lot of different definitions of engineering has been derived. Engineering 

itself is “the creative exploitation of energy, materials and information in organized systems of 

people, machine, and environment systems which are useful in terms of contemporary human 

values” (Wymore, 1993). At the same time, systems engineering (SE) arouses an advanced way 

of engineering by providing an inter-disciplinary approach and means to enable the realisation 

of successful systems from different points of view.  SE is “an inter-disciplinary approach and 

means to enable the realisation of successful systems” (Haskins, 2006). It has been evolving 

rapidly in the past decades and the rate of this evolvement has risen dramatically recently. This 

leads to the growing complexity of the systems being designed with the use of SE methods as 

more sophisticated and larger systems are being developed nowadays. Numerous issues have 

become problematic for successful system development process, which are overcomplexity, 

lack of communication and lack of understanding of the design process at different stages of a 

lifecycle (Holt and Perry, 2008). 

Model-based systems engineering (MBSE) is an emerging approach in the SE field that 

distinguishes itself as an advanced way to reduce and maintain systems complexity through 

storing all development knowledge in an organised model structure. As a fundamental principle 

of good system design, the essence of MBSE relies on the application of appropriate formal 
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models to a given domain (Bahill and Botta, 2008). MBSE itself is “a formalised application of 

modelling to support system requirements, design, analysis, verification and validation 

activities beginning in the conceptual design phase and continuing throughout development and 

later lifecycle phases” (“Systems Engineering Vision 2020,” 2007). Despite the rapid 

development of the MBSE field significant issues exist in the way of its further development. 

These issues involve overcomplexity, lack of understanding and proper interaction among 

different models as they are parts of the main system model. 

Main system model in MBSE is decomposed into multiple submodels corresponding to separate 

subsystems (Yassine and Braha, 2003). These submodels represent various aspects of the 

development process - design engineering, computational analysis, cost model, manufacturing 

analysis, requirements model, etc. All the components and systems are in constant interaction 

among each other but this interaction is not modelled in a way to automatically and dynamically 

update the system on time as well as check the consistency of the development process on its 

every stage (Shekar et al., 2011). The interactions within systems need to be understood and 

identified before they can be modelled using MBSE methodologies. One of the ways to analyse 

systems is using the decomposition principle, which is one of the key aspects of engineering 

helping to organise complex problem in the initial stages of the systems development. 

Once the model interactions are understood and the communication such as messages, 

decisions, and responses among models are set to be analysed. In this research, such 

communication among systems, subsystems and components is defined as logic. In current 

systems this logic is maintained manually through hard-coded rules, pre-defined relationships, 

constraints and fixed mathematical formulas (Estefan, 2008). This increases the time required 

for the actual development and further leads to designing the system from scratch whenever 

serious and contradicting problems are discovered at the later stages of the lifecycle. Moreover, 

often there are logical contradictions – inconsistencies in rules and dependencies among the 

rules that are not captured (Herzig et al., 2014). This could lead to incorrect system design, 

increased time spent on testing, redesign, and ultimately systems failures. 

Holt and Perry discuss the broader issue facing SE and call them “three evils of systems 

engineering” (Holt and Perry, 2008). These issues have been distinguished as follows: 

• Complexity: large systems have lots of interacting components and relationships between 

its entities. As shown in Figure 1, adding more rules and relationships make the system 

more complex than before. 

• Lack of understanding: the concept of “lack of understanding” can arise at any stage of a 

lifecycle beginning with requirements formulation. It might lead to issues during the 
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development stage, and then even during the operation of a product. Understanding of a 

system model is a major factor in any development (Friedenthal et al., 2014). Models have 

to be dynamic as the systems are usually observed only from particular aspects of a certain 

design. Similarly, it is legit for overcomplicated models with lots of communication, rules 

and relationships. 

• Communication problems: This problem can arise on any level, between several people or 

groups of people, companies, systems or different departments involved in process of 

development, where there is not enough data exchange among various submodels. 

 

Figure 1 - Complexity description through relationships 

Thus, at present the mechanism of modelling interaction among different models is not dynamic 

enough to be able to support MBSE to the full extent and there is a need to improve the way of 

modelling logic for future development in the MBSE domain. Therefore, the study tries to 

answer the following research questions: 

• Can the interaction among the subsystems in the form of models be analysed in MBSE for 

solving complexity problems such as lack of communication and lack of understanding? 

• Can the new dynamic ways of interaction among the subsystems improve existing static 

ways – hard-coded rules, pre-defined rules, relationships, and mathematical expressions? 
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In this paper, we propose a novel approach for answering these questions by creating a central 

model to govern all interactions and data exchange among different models as well as 

substituting pre-defined rules and relationships with a more sophisticated dynamic approach by 

utilising the principles of graph theory - specifically the graphical constructs known as 

metagraphs. 

2 Enabling techniques 

2.1 Graph theory 

It is recognised that any type of system with various interacting components can be modelled 

by some kind of a graph (Basu and Blanning, 1994). Graph itself is a “representation of a set of 

objects where some pairs of objects are connected by links. The interconnected objects are 

represented by mathematical abstractions called vertices also called nodes or points, the links 

that connect some pairs of vertices are called edges also called arcs or lines” (Diestel, 2017). 

The main reason behind the use of the graphs is the fact that they provide effective means to 

represent, visualise and maintain very complex systems that might not be possible with standard 

text-based or formal description methods useful only to those who can understand the 

corresponding formal language or familiar with the organisation of corresponding text-based 

document. Additionally, use of graphical structures present applicable ways to analyse structure 

and behaviour of complex systems. 

Meanwhile, graphs are recognised as one of the best ways of model representation and 

utilisation. Graph visual representation is illustrated in Figure 2. For finding inconsistencies in 

MBSE, it is proposed that the exact matching problem of graph patterns could determine 

whether or not an ambiguous definition of property exists, which further extends the use of 

graph theory for systems modelling purposes  (Herzig et al., 2014). 

 

Figure 2 - Graphs as a way of model representation (Herzig et al., 2014) 

There are a lot of different graphical constructs applicable to various areas. Therefore, there is 

a need to distinguish among them the best methodology for our purposes. To solve this problem 
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a comparative analysis of different graphical constructs was performed with the help of 

literature. For this comparison following list of criteria were identified: 

• Visualisation – shows model representation capabilities. 

• Directionality – implies that the current graphical construct has means for showing 

directions of each input-output dependencies. 

• Model composition – displays whether we have enough information to determine a set of 

variables involved in each relationship. 

• Multiple inputs/outputs – represents the capabilities of each graphical construct to deal with 

multiple inputs/outputs in relationships. 

• Simple algebraic form – shows that graphical construct has algebraic form representation 

that can be utilised to some extent in programming and this graphical construct application. 

• Multiple components – implies that graphical construct has developed a theory for dealing 

with multiple interacting components. 

Based on the example set of interacting variables it is possible to perform comparative analysis 

of different graphical constructs that can be utilised for modelling interaction among these 

variables (Basu and Blanning, 1995). This example is shown in Figure 3. 

 

Figure 3 - Graphical representation of a set of interacting variables with (a) simple graph, (b) 

directed graph, (c) hypergraph and (d) AND/OR graph 
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Simple graph provides a good visualisation that can be utilised to show that a link between 

some variables exists but fails in providing information about the direction of existing 

relationships. Directed graph, in addition to showing the relationships among entities, includes 

the direction of the input-output dependencies. Thus, we know that some variables determine 

other variables but we still do not have enough information about the composition of models to 

determine particular variables. 

The more sophisticated concept such a hypergraph is seen to be even more advanced way that 

can be utilised in systems engineering. Hypergraph handles any generalised object that 

represents physical or abstract properties: particles, states, points in space, etc. Analytical 

representation in the matrix form can be comfortably used by the computer and easily modified 

according to the needs of a particular system. The analysis of modern graph approaches shows 

that hypergraph has to be considered as one of the most adaptable tools for modelling systems 

as it provides additional capabilities to determine the set of variables relevant to each 

relationship as a single hypergraph edge covers all the variables involved in particular 

interaction (Gazdík, 2006). However, the hypergraph does not provide enough information to 

determine outputs and inputs in each relationship. A possible solution to this is to label all the 

variables/nodes of a hypergraph but it can be rather difficult for variables involved in different 

models simultaneously. 

Directed hypergraphs can be used to overcome identified problems although the theory of 

directed hypergraphs has been developed mostly for modelling relationships among individual 

elements and we aim to model the interaction among a large quantity of components. AND/OR 

graphs combines advantages of both previous graph constructs but in some situations, where 

the model has multiple outputs, it requires multiple edges and becomes too difficult. Harel 

explains that in higraphs variables are grouped into special objects called “blobs”, which can 

be additionally grouped into higher-level blobs and so on (Harel, 1988). Thus, these blobs can 

form sets of variables or sets of sets of variables while edges connect one blob to the other. 

Higraph is a useful and flexible graphical structure but requires very difficult mathematical 

concepts to represent it. 

Thus, all these constructs can be useful to some extent in numerous scientific areas but each of 

them fails to cover all aspects of models interaction. This includes direction representation, 

input/output identification and overcoming inconsistencies problems that can exist if we work 

with multiple models with large number of interacting variables involved in numerous models 

simultaneously. To solve this problem, it is possible to utilise a more sophisticated graphical 

construct known as metagraph. 

Summary of this comparison is shown in Table 1. 
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Table 1 - Comparative analysis of graphical constructs 

Criteria 
Simple 

graph 

Directed 

Graph 
Hypergraph 

AND/O

R Graph 

Metagrap

h 

Directed 

hypergrap

h 

Higraph 

Visualisation + + + + + + + 

Directionality – + – + + + + 

Model 

composition 
– – + + + + + 

Multiple 

inputs/ouputs 
+ + – – + + + 

Simple 

algebraic form 
+ + – – + + – 

Multiple 

components 
+ + + + + – + 

Plus sign in the table implies that the graphical construct has capabilities to meet the developed 

criteria whereas minus sign implies the opposite. 

2.2 Metagraph 

2.2.1 Definition 

Metagraphs, an extension of directed graphs and hypergraphs, differ from conventional 

graphical constructs as each edge is an ordered pair of sets of elements, not an ordered pair of 

elements as in directed graphs or an unordered set of one or more elements as in hypergraph 

(Basu and Blanning, 2007). Metagraphs are considered to be a powerful method for decision 

support systems as they can be utilised for interaction between components analysis no matter 

what these components are, models, relationships or rules (Basu and Blanning, 1999). 

Nodes or elements of a metagraph represent the variables and the edges represent the calculation 

procedure of models. Example metagraph is shown in Figure 4. This example represents the 

same model, which was used for comparative analysis of different graph structures. 

 

Figure 4 – Example metagraph 
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2.2.2 Model as a metagraph 

In the metagraph view of models each model is represented as an edge with inputs as invertex 

and the outputs as outvertex (Basu and Blanning, 2007). Yet, the main issue is connectivity, 

which implies that there might be a lack of existence of one of more metapaths connecting a 

source set of elements to a target set of elements. Metapath is considerably different from a 

conventional path as edges do not have to be put in sequence, which allows the designer to 

model parallel calculation procedures. Also, the source and target of a metapath are sets of 

elements so there is no need for considering the coinput for metapaths as all the necessary 

information for calculation is contained inside a metapath. 

This means that the corresponding models must exist if the source elements can be utilised to 

calculate the target elements. To overcome this issue, we need to distinguish whether there are 

any bridges, which are the intersection of all metapaths, and if there is more than one metapath 

between invertex and outvertex. 

A simple example model base is illustrated in Figure 5 (Basu and Blanning, 2007). There are 

four variables: INFL stands for the inflation rate, REV are the revenues, EXP are the expenses 

and NI is the net income. Also, there are three models, which are represented by three edges: 

sls is a sales model that calculates REV out of INFL, cost model cost that calculates EXP from 

INFL and financial model fin, which determines NI from REV and EXP. 

 

Figure 5 – Metagraph with a metapath 

 

 

 

Table 2 shows the adjacency matrix A for this simple metagraph. From this matrix we can 

distinguish in a simple manner that sls and cost models do not have coinputs or cooutputs but 

NI column of the matrix defines that financial model fin takes both EXP and REV as inputs and 

produces NI as output, which means that EXP is a coinput of 𝑎REV,NI and REV is a coinput of 

𝑎EXP,NI. 
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Table 2 - Adjacency matrix A for Figure 5 

 INFL REV EXP NI 

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} ∅ 

REV ∅ ∅ ∅ 
{<EXP, ∅, 

<fin>>} 

EXP ∅ ∅ ∅ 
{<REV, ∅, 

<fin>>} 

NI ∅ ∅ ∅ ∅ 

The closure of the adjacency matrix A* is shown inм Table 3. 

It completes adjacency in a way that it shows the smallest relations among the elements. From 

this closure, we can determine that there are only two simple paths of length more than 1 - <sls, 

fin> and <cost, fin> and there is no sequence of models connecting INFL to NI that is free of 

coinputs. For that purpose, there is a metapath {sls, cost, fin} connecting INFL and NI, which 

shows the advantage of representing model bases as metagraphs and defining metapaths that 

can define connectivity where simple paths fail to do so. 

Table 3 - Closure A* of the adjacency matrix for Figure 5 

 INFL REV EXP NI 

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} 
{<{EXP}, {REV}, <sls, fin>>, 

<{REV}, {EXP}, <cost, fin>>} 

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>} 

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>} 

NI ∅ ∅ ∅ ∅ 

The main advantage of a metagraph is a general, non-procedural formalism that defines all 

properties such as reachability, connectivity and transitive closure. This formalism can be 

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide a 

convenient mathematical way of defining metapaths with the use of an adjacency matrix as 

discussed earlier. 

This further shows the applicability of metagraphs for model organisation and logic 

management. Thus, this research currently identifies metagraphs as a basis upon which the 

desired framework can be most reasonably developed. Graphs extensions, such as hypergraphs 

and metagraphs, provide all sorts of potential to be applied for modelling systems interaction. 

2.3 Design structure matrix 
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According to the “decomposition” principle of concurrent engineering, complex systems often 

can be divided into a number of more simple subsystems that are utilised to correspond to one 

or several tasks (Yassine and Braha, 2003). Then subsystems can be decomposed into 

completely independent components for further simplification of the main system model. All 

the subsystems and components are maintained independently, therefore modelling of 

individual submodels is done simultaneously. Yassine implies that proper decomposition of a 

complex system into simple manageable parts allows to boost product development efficiency 

by making engineering concurrent and easier maintainable on all phases of a life cycle. 

From the decomposition principle another concept applicable to managing complexity in SE - 

Design Structure Matrix (DSM), which became a popular representation and dependency 

analysis tool. Browning identified the growing popularity of this technique (Browning, 2001). 

DSM represents the interactions between different components of a system in a matrix form, 

advantageous for logic analysis in SE. DSM itself is a square matrix, as shown in Figure 6. 

Rows, columns and diagonal elements are identical and stand for different system components. 

Each non-diagonal mark represents that dependency exists between two components in one 

way or another. Going across a row reveals what other elements this component affects (output 

sinks) while going down a column shows what other elements this component depends on (input 

sources). 

 A B C D E F G H I 

Element 

A 

         

Element 

B 

●  ● ●  ●  ● ● 

Element 

C 

● ●   ● ●  ● ● 

Element 

D 

● ●   ●  ● ● ● 

Element 

E 

●  ● ●   ● ● ● 

Element 

F 

 ● ●       

Element 

G 

   ● ●     

Element 

H 

 ● ● ● ●     

Element I ●  ●  ●     

Figure 6 - Example DSM 

It is widely considered that the DSM approach helps to manage complexity in projects (Yassine 

and Braha, 2003). DSM itself is a useful matrix representation of directed graphs that can be 

integrated into the development process and for better system structure transparency and 

understanding the DSM matrix can be partitioned, which includes identification of tasks series 

that can be executed sequentially. 

Although partitioning is an effective way for organising DSM matrix and therefore managing 

complexity, it is useful mostly when the elements are direct tasks. When these elements are 

people controlling the tasks or subsystems of a larger complex system, the process called 

clustering is utilised. Clusters are special combinations of elements, where all the interaction is 
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done inside of a cluster, minimising links to other clusters. An example of clustering is shown 

in Figure 7. 

 A B C D E F G   A F E D B C G   A F E D B C G 

A A ●   ● ●   A A ● ●      A A ● ●     
B  B  ●   ●  F ● F ●      F ● F ●     

C  ● C ●   ●  E  ● E ●     E  ● E ●    

D  ● ● D ●  ●  D   ● D ● ● ●  D   ● D ● ● ● 
E    ● E ●   B    ● B  ●  B    ● B  ● 

F ●    ● F   C    ● ● C ●  C    ● ● C ● 

G  ● ● ●   G  G    ● ● ● G  G    ● ● ● G 

(a) (b)       (c) 
Figure 7 - Example DSM: 

(a) Base DSM; (b) Clustered DSM; (c) Alternative Clustered DSM 

Overall, DSM method helps to control complexity and makes a better formal representation of 

the interactions among different subsystems. Clustering and partitioning allow to minimise the 

needed quantity of iterations, which as well leads to reducing complexity. Also, DSM approach 

is able to help knowledge-based engineering by utilising DSM-based change propagation 

analysis (Tang et al., 2010). This analysis can distinguish all possible indirect dependencies or 

interactions among system submodels with the help of the DSM matrix. With all possible 

change options identified the knowledge about corresponding changes can be brought in 

advance, which is useful for design automation and prevents mistakes and inconsistencies in 

the design process. Although DSM approach is helpful for the redesign process, only structured 

design knowledge can be addressed in the matrix, while unstructured knowledge must be 

organised at first. 

It is worth noting that there is a strong connection between DSM and a graph, which is shown 

in Figure 8. Therefore, utilising DSM in combination with metagraphs will provide further 

benefits for systems modelling. 

 

Figure 8 - Example DSM (Yassine and Braha, 2003): 

Directed graph; (b) Base DSM; (c) Partitioned DSM 
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3 Related research 

Estefan provides a survey through various existing MBSE methodologies (Estefan, 2008). Even 

though all methodologies are successfully utilised and provide ways of organising development 

process by creating models of every aspect involved, they still lack in the ways of modelling 

interaction among submodels and use hard-coded rules, pre-defined relationships, strict 

constraints, and fixed mathematical expressions. Tang identifies that in a complex product, 

where everything is highly dependent on something, changes in one component affects other 

systems and this can go further in the chain (Tang et al., 2010). Scarcity of dependency tracking 

methods is identified, while change propagation analysis is seen as a vital part of the whole 

development process. Author implies that company competitiveness depends on the efficiency 

of the change propagation analysis. 

The other major issue in MBSE is the inconsistencies in various stages of the development 

lifecycle. Friedenthal recognises that design inconsistencies can arise especially when multiple 

people work on the same model (Friedenthal et al., 2014). To address this problem a well-

defined disciplined process is proposed, which leaves space for human mistakes especially with 

the growing complexity of systems being developed and leads to even more inconsistencies. 

Complexity in spacecraft design is identified through the discussion of graph-based design 

languages and the requirement of new ways for solving complex problems is distinguished 

(Gross and Rudolph, 2016a). In addition to that, designing modern complex systems includes 

solving a huge amount of problems among different interacting engineering domains (Gross 

and Rudolph, 2016b). Thus, it is significant to construct a proper data exchange mechanism 

between different engineering models to allow an easy and convenient way of propagating 

changes in one model to all other models and track these changes beginning in early stages with 

conceptual modelling. Data exchange process general view is shown in Figure 9. 

  

Figure 9 - Data exchange process (Gross and Rudolph, 2016b) 

One way of solving this problem is the use of a central model to govern all interactions and data 

exchange among different models, which is shown in Figure 10. 
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Figure 10 - Central data model (Gross and Rudolph, 2016b) 

Design graph approach is introduced in application to open FireSat example and provides 

design graph generation for FireSat example, where nodes are instances specifications (UML 

Classes) and edges are links between those instances (Gross and Rudolph, 2016c). Required 

equations for the conceptional design of a satellite are provided by Wertz, where in graph-based 

design languages they are defined by edges of the design graph (Larson and Wertz, 1992).  

Design graph itself represents an analytical model and it is possible to analyse it in several 

ways, one of them being graphical representation of the solution sequence for the whole 

equation system. This representation provides all design graph calculated values based on input 

variables. FireSat example design graph is shown in Figure 11. 

 

Figure 11 - FireSat example design graph (Gross and Rudolph, 2016c) 

Overall graph-based design language has been demonstrated as a useful way of representing 

the entire design by a complex equation system revealing all the design dependencies along the 

design process. Keeping a large and complex system manageable by assembling all its parts by 

rules and dependencies is an important process. Graph view of variables involved in the 

development process and interactions among them provides a comfortable way of analysing 

systems in their current state. 

Although even one missing constraint or rule can lead to the entire equation system being 

unsolvable with no way of searching for the error, where one minor change in one subsystem 

can lead to an uncontrollable chain of changes. The same is applicable to inconsistencies in the 
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design process, which often exists in different stages of a lifecycle. Therefore, in our study we 

aim to utilise such graph-based approaches that can not only represent the design in every 

moment but also be reliable and help design engineers to keep track of all the changes on every 

stage of a lifecycle automatically. 

A number of features are needed in representing interactions among multiple models such as 

directionality representation, visualisation capabilities, understanding sets of variables involved 

in each relationship and formalised algebraic representation (Basu and Blanning, 2007). Thus, 

metagraphs provide all these features and thereby prove to be appropriate for the intended study. 

It was also identified from the literature that metagraphs can be applied to data and rule 

management, where rule bases can be represented as metagraphs and integrated into models. 

Moreover, workflows and processes can be modelled with the use of metagraphs. Metagraphs 

are considered to be a powerful method for decision support systems as they can be utilised for 

interaction between components analysis no matter what these components are, models, 

relationships or rules (Basu and Blanning, 1999). 

4 Methodology design 

4.1 Requirements 

The requirements for the methodology being developed are subdivided into two categories as 

functional and design. Functional requirements are responsible for the correct practical 

implementation of the developed methodology. These requirements are as follows: 

• Effectiveness – this requirement states that the developed method will allow effective 

modelling of systems interaction in MBSE environment. Effectiveness is defined and 

measured against a certain set of metrics during the verification and validation stage. 

• Automatic control over interactions – this is important so that modelling logic in the form 

of subsystems interaction is dynamic and eliminates inconsistencies of multiple definitions 

of the same relationships according to certain rules or automatic hints and helps to diminish 

the time needed for the development of products. 

• Systems interaction representation – requirement related to correct and simple 

representation of needed relationships from different points of view.  

Design requirements provides the methodology from the developer’s point of view and its other 

users. These requirements are as follows:  
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• Special knowledge – there is a need for a special systems interaction engineer who will have 

knowledge of the composition of the interaction module and will be able to control this 

module in case there is a need for it. 

• Relationships models – it is necessary to provide systems interaction engineer full 

capabilities and a range of building blocks/models to be able to control automatically built 

interaction module. 

• Applicability for multiple users – this requirement states that different users should be able 

to utilise the developed methodology. These users involve engineers of different expertise 

involved in various stages of the development process. Not all of these engineers have 

adequate knowledge on how the actual system’s interaction is modelled inside the 

interaction module of the main system model but still, they have to be able to define 

relationships between their work and other engineers.  

• Friendly user experience – this requirement related to both users and the systems interaction 

engineer as they should be able to seamlessly utilise developed framework with the help of 

software with friendly and simple user interface. Also, the framework should provide simple 

ways of representing certain relationships from different points of view, which is set to be 

achieved with the help of special graphical representation software. 

All design requirements are related to certain functional requirements as the developed method 

is set to be fully capable of simultaneously modelling interactions among models and providing 

means and tools to control and utilise the interaction model by all its users. 

4.2 The interaction modelling framework 

A framework for developing interaction mechanism, as shown in Figure 12, consists of five 

phases, namely 

1. System definition 

2. System Modelling 

3. Interaction Modelling 

4. Validation and verification 

5. Visualisation.   

The framework provides a set of activities for MBSE experts to employ in order to implement 

graph-based systems interaction technique in the development process.  
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The most significant part of the framework is metagraph construction, which automatically 

governs the actual interactions among different components. 

The first phase is to define the system - this includes decomposing main system into subsystems 

and components while defining corresponding interaction interfaces and system functionalities. 

It is essential for correct system modelling to adequately distinguish key design concepts, rules, 

and parameters. 

The second phase is the system modelling itself, where all subsystems identified in the previous 

are modelled with the use of SysML diagrams resulting in the creation of a comprehensive 

SysML model. 

The third phase is where interaction modelling happens. Data is set to be transferred from 

SysML to object-oriented modelling software, where metagraph approach is utilised to 

successfully model the interaction mechanism in the system being developed. The data from 

SysML is exported into XML-file and parsed using the object-oriented approach. XML has 

been widely adopted as a universal way to format data. LINQ to XML parsing technique is 

utilised to analyse and parse XML data. This technique is a fast, forward-only, non-caching 

parser with a lot of useful built-in programming functions and guides. Therefore, it allows the 

user to quickly find and parse needed information from the XML file. Also, it provides a good 

way to construct and populate new XML trees. Object-oriented approach grants capabilities to 

enhance knowledge categorisation and to model relationships among systems in a simple 

object-oriented graph-based manner. Object-oriented modelling software such as Microsoft 

Visual Studio provides a good programming interface and includes ways to validate model 

consistency through reasoning. 

The fourth phase is the validation and verification phase, where the developed model is checked 

for consistency and correct representation of the initial model. If something changes in one of 

the subsystems of the initial model and its SysML representation the object-oriented metagraph 

interaction model checks the updates for consistencies and propagates changes to other 

subsystems ultimately transferring data back to SysML and updating corresponding diagrams. 

The final visualisation phase is to provide a method to represent the model at any moment from 

different points of view with the help of graph visualisation software. 

5 Use cases 

The methodology framework is designed to be tested in a series of use cases. The first use case 

is the Automobile Example from literature (Friedenthal et al., 2014). In this use case, the model-

based systems approach is applied to design an automobile system, where the final is set to 
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match the acceleration and fuel efficiency requirements. The full range of Automobile design 

systems is modelled in SysML and the full list of models is shown in Table 4. 

Table 4 - Full list of models in the Automobile Example 

Diagram name/System Diagram Type 
Model Organisation Package diagram 
Automobile System Requirements Requirement diagram 
Automobile Domain Block definition diagram 
Operate Vehicle Use case diagram 
Drive Vehicle Sequence diagram 
Turn On Vehicle Sequence diagram 
Control Power Activity diagram 
Drive Vehicle States State machine diagram 
Vehicle Context Internal block diagram 
Vehicle Hierarchy Block definition diagram 
Provide Power Activity diagram 
Power Subsystem Internal block diagram 
Analysis Context Block definition diagram 
Vehicle Acceleration Analysis Parametric diagram 
Vehicle Performance Timeline Timing diagram (not SysML) 
Engine Specification Block definition diagram 
Max Acceleration Requirement 

Traceability 
Requirement diagram 

Architect and Regulator Viewpoints Package diagram 
 

Relevant list of model components has been distinguished from the full list of models. This 

example was modelled with the use of Visual Paradigm free modelling software for SysML 

modelling. 

The metagraph model of this SysML example has been derived in theory and shown in Figure 

13. 
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Figure 13 - Metagraph for the Automobile Acceleration Example 

Then the SysML model is exported in the XML format to a file that is then parsed using object-

oriented approach. For that purpose, the LINQ to XML open library in C# is utilised. This code 

is also used to automatically generate the Metagraph model from the source XML file. 

Currently, the program doing this automatic metagraph generation has already been developed 

with the user interface for testing purposes. 

Several scenarios for testing the proposed framework have been identified. These scenarios 

include the following cases: changes of specific parameters (changing values), changing in one 

of the models (changing relationships between different components) and changing of one of 

the models (swapping equations with some other dependencies). Now the process of testing 

these scenarios is ongoing using the self-written C# code mentioned earlier. 

Graphviz has been identified as the visualisation technique as it has all the needed capabilities 

starting from automatic import from C# and automatic visualisation of the exported graph 

structure from the developed code. 

The second use case is supposed to be the FireSat example from literature. The FireSat mission 

describes a satellite flying in low earth orbit for earth observation in the infrared band. The 

payload of the satellite is supposed to observe forest fires in the US. The model of the satellite 

is supposed to enable the layout of most of the subsystems on a conceptual level. In the 

following sections, a selection of some class diagrams from the model are presented along with 

short descriptions of their purpose (Groß and Rudolph, 2012). 
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6 Discussion 

As stated in section 1, the aim of the research is to improve existing methodologies and 

interaction modelling as well as deal with inconsistencies of the design process. Methodology 

framework is the expected contribution to the knowledge of the method being developed. With 

systems and models becoming more and more complex in systems engineering domain, issues 

of overcomplexity, lack of understanding and communication problems in MBSE lead to many 

challenges in the design process. Developing a new way of modelling logic in MBSE and 

improving over existing ways tackle all kinds of these problems and push forward the state of 

systems engineering field. The presented framework for graph-based modelling of systems 

interaction in MBSE environment is set to help systems engineers to develop better quality less 

expensive products in less time. This work may be viewed as a step forward toward more 

consistent and automatic modelling of interactions among subsystems and components in 

MBSE. This also involves making a way of communication, which dynamic in nature by 

providing more automatic ways of interaction. 

In addition to the identified advantages for SE field, the research being undertaken thus far is 

seen to confidently identify potential research proposals for future work. The proposed 

framework is set to be tested against a chosen set of metrics within different use cases. The 

methodology provides a common and consistent basis for future interaction modelling among 

subsystems in various aspects of MBSE field. 

These principles have potential utilisation for design automation purposes in model-based 

systems engineering field. Automation techniques always have multiple applications in systems 

engineering field and specifically MBSE as engineers always aim to produce higher quality and 

less expensive products in less time achieving this by integrating knowledge on every stage of 

a lifecycle. Potential implementation of developed dynamic logic modelling methods to MBSE 

through is set to provide improvements for engineering methodologies. 

7 Conclusion 

A range of MBSE methodologies are considered useful in developing various complex products 

and helping system engineers maintain systems complexity on a different stage of the 

development lifecycle. It is supported by the comparative analysis of MBSE methodologies 

done by Estefan (Estefan, 2008). Even though all of them are successfully utilised in MBSE 

field to some extent, the systems interaction is still mostly done manually with hard-coded rules, 

pre-defined relationships and constraints (Tang et al., 2010). 

In addressing the above issues, this paper has proposed a novel framework that aims to improve 

the interaction mechanism in model-based systems engineering by developing new dynamic 
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ways of modelling logic. To model the interactions the authors propose to use graph-based 

approach with metagraphs and object-oriented modelling being in its core. Metagraph theory is 

a powerful tool already being utilised in decision support systems (Basu and Blanning, 1999). 

We believe that the framework is set to be applicable to various systems being developed and 

may be considered as a step forward in the development of systems engineering field. This 

approach will provide improvements for design automation and MBSE field as one of the most 

advanced approaches nowadays. The initial methodology framework idea has been presented 

during the SECESA 2016 and published in the conference proceedings (Filimonov et al., 2016). 

Future work involves evaluating the framework through use cases. These use cases are various 

real-life development processes such as the development of a car or its systems and can be 

obtained from the open literature sources. Based on the initial modelling results, it has already 

been identified that the proposed methodology framework complies with the distinguished 

requirements from Section 4.1. The required adjustments will be made, and the framework will 

be evaluated in the more complicated use cases as the next step of this research. 
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