
1

A novel graph-based modelling approach for reducing complexity

in model-based systems engineering environment

Maxim Filimonov*, Prof Ilias Oraifige, Dr Venkatesh Vijay

Birmingham City University, Faculty of Computing, Engineering and the Built Environment, Millennium Point,

Curzon Street, Birmingham, United Kingdom, B4 7XG

Email: maxim.filimonov@mail.bcu.ac.uk

Email: ilias.oraifige@bcu.ac.uk

Email: venkatesh.vijay@bcu.ac.uk

*Corresponding author

Abstract

Field of systems engineering is developing rapidly and becoming more complex, where

multiple issues arise like overcomplexity, lack of communication or understanding of the design

process. Model-based systems engineering (MBSE) has been introduced to overcome these

issues and reduce systems complexity. Nonetheless, the system model remains static and the

interactions among submodels are modelled in the form of hard-coded rules. Therefore, systems

interaction in MBSE is not dynamic enough to satisfy the evolving nature of system models

with growing complexity.

In this paper, a novel approach for modelling logic is proposed to address the above challenge.

The aim of the research is to improve existing methodologies and interaction modelling as well

as deal with inconsistencies. The approach is based on graph theory, where pre-defined rules

and relationships are substituted and reorganised dynamically with graphical constructs while

metagraphs being the most applicable for systems modelling. Framework for reducing

complexity is presented.

Keywords: model-based systems engineering, graph-based modelling, object-oriented

approach, metagraph, systems engineering, design structure matrix, systems modelling

language, design engineering

Biographical notes: Maxim Filimonov is a postgraduate research student doing a PhD degree

in Engineering at Birmingham City University in the UK. He got his Master of Science degree

in 2013 at Moscow Institute of Physics and Technology in Aerospace Research while being

involved in the process of aerodynamics calculations of the new spacecraft. Maxim Filimonov

has experience in working in Aerospace Industry where he worked for 3.5 years as a Senior

Design Engineer at the main Russian enterprise for developing airships. His current area of

interest lies within the fields of Model-Based Systems Engineering and Knowledge Based

Engineering. More specific, he is interested in automation and making the development of

complex systems with multiple interacting components easier for systems engineers.

2

Professor Ilias A. Oraifige is a highly qualified chartered engineer and a fellow member of the

Institution of Mechanical Engineers (IMechE). He has extensive research track record and

successful industrial experience, possesses good communication skills, energy and thorough

knowledge of new technology. Currently he is working as Professor and Head of Centre of

Engineering at Faculty of Computing, Engineering and the Built Environment at Birmingham

City University. The role requires management of 27+ fulltime staff, associate lecturers and

technical staff plus over 650 students. He is solely responsible for the budget and its allocation

including sessional lecturers, resources, etc.

Dr Venkatesh Chennam Vijay received his PhD in Engineering for extending Knowledge-

Based Engineering (KBE) principles into engineering distance learning from Birmingham City

University (BCU). Currently he is working as a Lecturer in the Electronic Engineering at

Birmingham City University. At present Dr Vijay is the module leader and has been delivering

mathematic lecture and workshop for Foundation students and further has being developing and

module-coordinating Knowledge Based Engineering (KBE) module for

Automotive/Mechanical Masters students. Dr Vijay has developed various engineering

educational demos including human robot collaboration, creative design space and an

Augmented Reality (AR) based teaching and learning environment.

1 Introduction

In the modern era, a lot of different definitions of engineering has been derived. Engineering

itself is “the creative exploitation of energy, materials and information in organized systems of

people, machine, and environment systems which are useful in terms of contemporary human

values” (Wymore, 1993). At the same time, systems engineering (SE) arouses an advanced way

of engineering by providing an inter-disciplinary approach and means to enable the realisation

of successful systems from different points of view. SE is “an inter-disciplinary approach and

means to enable the realisation of successful systems” (Haskins, 2006). It has been evolving

rapidly in the past decades and the rate of this evolvement has risen dramatically recently. This

leads to the growing complexity of the systems being designed with the use of SE methods as

more sophisticated and larger systems are being developed nowadays. Numerous issues have

become problematic for successful system development process, which are overcomplexity,

lack of communication and lack of understanding of the design process at different stages of a

lifecycle (Holt and Perry, 2008).

Model-based systems engineering (MBSE) is an emerging approach in the SE field that

distinguishes itself as an advanced way to reduce and maintain systems complexity through

storing all development knowledge in an organised model structure. As a fundamental principle

of good system design, the essence of MBSE relies on the application of appropriate formal

3

models to a given domain (Bahill and Botta, 2008). MBSE itself is “a formalised application of

modelling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout development and

later lifecycle phases” (“Systems Engineering Vision 2020,” 2007). Despite the rapid

development of the MBSE field significant issues exist in the way of its further development.

These issues involve overcomplexity, lack of understanding and proper interaction among

different models as they are parts of the main system model.

Main system model in MBSE is decomposed into multiple submodels corresponding to separate

subsystems (Yassine and Braha, 2003). These submodels represent various aspects of the

development process - design engineering, computational analysis, cost model, manufacturing

analysis, requirements model, etc. All the components and systems are in constant interaction

among each other but this interaction is not modelled in a way to automatically and dynamically

update the system on time as well as check the consistency of the development process on its

every stage (Shekar et al., 2011). The interactions within systems need to be understood and

identified before they can be modelled using MBSE methodologies. One of the ways to analyse

systems is using the decomposition principle, which is one of the key aspects of engineering

helping to organise complex problem in the initial stages of the systems development.

Once the model interactions are understood and the communication such as messages,

decisions, and responses among models are set to be analysed. In this research, such

communication among systems, subsystems and components is defined as logic. In current

systems this logic is maintained manually through hard-coded rules, pre-defined relationships,

constraints and fixed mathematical formulas (Estefan, 2008). This increases the time required

for the actual development and further leads to designing the system from scratch whenever

serious and contradicting problems are discovered at the later stages of the lifecycle. Moreover,

often there are logical contradictions – inconsistencies in rules and dependencies among the

rules that are not captured (Herzig et al., 2014). This could lead to incorrect system design,

increased time spent on testing, redesign, and ultimately systems failures.

Holt and Perry discuss the broader issue facing SE and call them “three evils of systems

engineering” (Holt and Perry, 2008). These issues have been distinguished as follows:

• Complexity: large systems have lots of interacting components and relationships between

its entities. As shown in Figure 1, adding more rules and relationships make the system

more complex than before.

• Lack of understanding: the concept of “lack of understanding” can arise at any stage of a

lifecycle beginning with requirements formulation. It might lead to issues during the

4

development stage, and then even during the operation of a product. Understanding of a

system model is a major factor in any development (Friedenthal et al., 2014). Models have

to be dynamic as the systems are usually observed only from particular aspects of a certain

design. Similarly, it is legit for overcomplicated models with lots of communication, rules

and relationships.

• Communication problems: This problem can arise on any level, between several people or

groups of people, companies, systems or different departments involved in process of

development, where there is not enough data exchange among various submodels.

Figure 1 - Complexity description through relationships

Thus, at present the mechanism of modelling interaction among different models is not dynamic

enough to be able to support MBSE to the full extent and there is a need to improve the way of

modelling logic for future development in the MBSE domain. Therefore, the study tries to

answer the following research questions:

• Can the interaction among the subsystems in the form of models be analysed in MBSE for

solving complexity problems such as lack of communication and lack of understanding?

• Can the new dynamic ways of interaction among the subsystems improve existing static

ways – hard-coded rules, pre-defined rules, relationships, and mathematical expressions?

Development Model

Submodel 1

Submodel 3

Submodel 2

Submodel 4

Submodel 5

Development Model

Submodel 1

Submodel 3

Submodel 2

Submodel 4

Submodel 5

Development Model

Submodel 1

Submodel 3

Submodel 2

Submodel 4

Submodel 5

5

In this paper, we propose a novel approach for answering these questions by creating a central

model to govern all interactions and data exchange among different models as well as

substituting pre-defined rules and relationships with a more sophisticated dynamic approach by

utilising the principles of graph theory - specifically the graphical constructs known as

metagraphs.

2 Enabling techniques

2.1 Graph theory

It is recognised that any type of system with various interacting components can be modelled

by some kind of a graph (Basu and Blanning, 1994). Graph itself is a “representation of a set of

objects where some pairs of objects are connected by links. The interconnected objects are

represented by mathematical abstractions called vertices also called nodes or points, the links

that connect some pairs of vertices are called edges also called arcs or lines” (Diestel, 2017).

The main reason behind the use of the graphs is the fact that they provide effective means to

represent, visualise and maintain very complex systems that might not be possible with standard

text-based or formal description methods useful only to those who can understand the

corresponding formal language or familiar with the organisation of corresponding text-based

document. Additionally, use of graphical structures present applicable ways to analyse structure

and behaviour of complex systems.

Meanwhile, graphs are recognised as one of the best ways of model representation and

utilisation. Graph visual representation is illustrated in Figure 2. For finding inconsistencies in

MBSE, it is proposed that the exact matching problem of graph patterns could determine

whether or not an ambiguous definition of property exists, which further extends the use of

graph theory for systems modelling purposes (Herzig et al., 2014).

Figure 2 - Graphs as a way of model representation (Herzig et al., 2014)

There are a lot of different graphical constructs applicable to various areas. Therefore, there is

a need to distinguish among them the best methodology for our purposes. To solve this problem

6

a comparative analysis of different graphical constructs was performed with the help of

literature. For this comparison following list of criteria were identified:

• Visualisation – shows model representation capabilities.

• Directionality – implies that the current graphical construct has means for showing

directions of each input-output dependencies.

• Model composition – displays whether we have enough information to determine a set of

variables involved in each relationship.

• Multiple inputs/outputs – represents the capabilities of each graphical construct to deal with

multiple inputs/outputs in relationships.

• Simple algebraic form – shows that graphical construct has algebraic form representation

that can be utilised to some extent in programming and this graphical construct application.

• Multiple components – implies that graphical construct has developed a theory for dealing

with multiple interacting components.

Based on the example set of interacting variables it is possible to perform comparative analysis

of different graphical constructs that can be utilised for modelling interaction among these

variables (Basu and Blanning, 1995). This example is shown in Figure 3.

Figure 3 - Graphical representation of a set of interacting variables with (a) simple graph, (b)

directed graph, (c) hypergraph and (d) AND/OR graph

X1 X2

X3
X4

X5 X6

X7

X1 X2

X3
X4

X5 X6

X7

X1

X2

X3

X5

X6
X7

X4

X7

X1 X2

X3
X4

X5

X6

(a) Graph (b) Directed

(c) Hypergraph

(d) AND/OR

7

Simple graph provides a good visualisation that can be utilised to show that a link between

some variables exists but fails in providing information about the direction of existing

relationships. Directed graph, in addition to showing the relationships among entities, includes

the direction of the input-output dependencies. Thus, we know that some variables determine

other variables but we still do not have enough information about the composition of models to

determine particular variables.

The more sophisticated concept such a hypergraph is seen to be even more advanced way that

can be utilised in systems engineering. Hypergraph handles any generalised object that

represents physical or abstract properties: particles, states, points in space, etc. Analytical

representation in the matrix form can be comfortably used by the computer and easily modified

according to the needs of a particular system. The analysis of modern graph approaches shows

that hypergraph has to be considered as one of the most adaptable tools for modelling systems

as it provides additional capabilities to determine the set of variables relevant to each

relationship as a single hypergraph edge covers all the variables involved in particular

interaction (Gazdík, 2006). However, the hypergraph does not provide enough information to

determine outputs and inputs in each relationship. A possible solution to this is to label all the

variables/nodes of a hypergraph but it can be rather difficult for variables involved in different

models simultaneously.

Directed hypergraphs can be used to overcome identified problems although the theory of

directed hypergraphs has been developed mostly for modelling relationships among individual

elements and we aim to model the interaction among a large quantity of components. AND/OR

graphs combines advantages of both previous graph constructs but in some situations, where

the model has multiple outputs, it requires multiple edges and becomes too difficult. Harel

explains that in higraphs variables are grouped into special objects called “blobs”, which can

be additionally grouped into higher-level blobs and so on (Harel, 1988). Thus, these blobs can

form sets of variables or sets of sets of variables while edges connect one blob to the other.

Higraph is a useful and flexible graphical structure but requires very difficult mathematical

concepts to represent it.

Thus, all these constructs can be useful to some extent in numerous scientific areas but each of

them fails to cover all aspects of models interaction. This includes direction representation,

input/output identification and overcoming inconsistencies problems that can exist if we work

with multiple models with large number of interacting variables involved in numerous models

simultaneously. To solve this problem, it is possible to utilise a more sophisticated graphical

construct known as metagraph.

Summary of this comparison is shown in Table 1.

8

Table 1 - Comparative analysis of graphical constructs

Criteria
Simple

graph

Directed

Graph
Hypergraph

AND/O

R Graph

Metagrap

h

Directed

hypergrap

h

Higraph

Visualisation + + + + + + +

Directionality – + – + + + +

Model

composition
– – + + + + +

Multiple

inputs/ouputs
+ + – – + + +

Simple

algebraic form
+ + – – + + –

Multiple

components
+ + + + + – +

Plus sign in the table implies that the graphical construct has capabilities to meet the developed

criteria whereas minus sign implies the opposite.

2.2 Metagraph

2.2.1 Definition

Metagraphs, an extension of directed graphs and hypergraphs, differ from conventional

graphical constructs as each edge is an ordered pair of sets of elements, not an ordered pair of

elements as in directed graphs or an unordered set of one or more elements as in hypergraph

(Basu and Blanning, 2007). Metagraphs are considered to be a powerful method for decision

support systems as they can be utilised for interaction between components analysis no matter

what these components are, models, relationships or rules (Basu and Blanning, 1999).

Nodes or elements of a metagraph represent the variables and the edges represent the calculation

procedure of models. Example metagraph is shown in Figure 4. This example represents the

same model, which was used for comparative analysis of different graph structures.

Figure 4 – Example metagraph

X6

X1

X2

X3

X4

X5

X7

e3 e1

e2

e5

e4

9

2.2.2 Model as a metagraph

In the metagraph view of models each model is represented as an edge with inputs as invertex

and the outputs as outvertex (Basu and Blanning, 2007). Yet, the main issue is connectivity,

which implies that there might be a lack of existence of one of more metapaths connecting a

source set of elements to a target set of elements. Metapath is considerably different from a

conventional path as edges do not have to be put in sequence, which allows the designer to

model parallel calculation procedures. Also, the source and target of a metapath are sets of

elements so there is no need for considering the coinput for metapaths as all the necessary

information for calculation is contained inside a metapath.

This means that the corresponding models must exist if the source elements can be utilised to

calculate the target elements. To overcome this issue, we need to distinguish whether there are

any bridges, which are the intersection of all metapaths, and if there is more than one metapath

between invertex and outvertex.

A simple example model base is illustrated in Figure 5 (Basu and Blanning, 2007). There are

four variables: INFL stands for the inflation rate, REV are the revenues, EXP are the expenses

and NI is the net income. Also, there are three models, which are represented by three edges:

sls is a sales model that calculates REV out of INFL, cost model cost that calculates EXP from

INFL and financial model fin, which determines NI from REV and EXP.

Figure 5 – Metagraph with a metapath

Table 2 shows the adjacency matrix A for this simple metagraph. From this matrix we can

distinguish in a simple manner that sls and cost models do not have coinputs or cooutputs but

NI column of the matrix defines that financial model fin takes both EXP and REV as inputs and

produces NI as output, which means that EXP is a coinput of 𝑎REV,NI and REV is a coinput of

𝑎EXP,NI.

10

Table 2 - Adjacency matrix A for Figure 5

 INFL REV EXP NI

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} ∅

REV ∅ ∅ ∅
{<EXP, ∅,

<fin>>}

EXP ∅ ∅ ∅
{<REV, ∅,

<fin>>}

NI ∅ ∅ ∅ ∅

The closure of the adjacency matrix A* is shown inм Table 3.

It completes adjacency in a way that it shows the smallest relations among the elements. From

this closure, we can determine that there are only two simple paths of length more than 1 - <sls,

fin> and <cost, fin> and there is no sequence of models connecting INFL to NI that is free of

coinputs. For that purpose, there is a metapath {sls, cost, fin} connecting INFL and NI, which

shows the advantage of representing model bases as metagraphs and defining metapaths that

can define connectivity where simple paths fail to do so.

Table 3 - Closure A* of the adjacency matrix for Figure 5

 INFL REV EXP NI

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>}
{<{EXP}, {REV}, <sls, fin>>,

<{REV}, {EXP}, <cost, fin>>}

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>}

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>}

NI ∅ ∅ ∅ ∅

The main advantage of a metagraph is a general, non-procedural formalism that defines all

properties such as reachability, connectivity and transitive closure. This formalism can be

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide a

convenient mathematical way of defining metapaths with the use of an adjacency matrix as

discussed earlier.

This further shows the applicability of metagraphs for model organisation and logic

management. Thus, this research currently identifies metagraphs as a basis upon which the

desired framework can be most reasonably developed. Graphs extensions, such as hypergraphs

and metagraphs, provide all sorts of potential to be applied for modelling systems interaction.

2.3 Design structure matrix

11

According to the “decomposition” principle of concurrent engineering, complex systems often

can be divided into a number of more simple subsystems that are utilised to correspond to one

or several tasks (Yassine and Braha, 2003). Then subsystems can be decomposed into

completely independent components for further simplification of the main system model. All

the subsystems and components are maintained independently, therefore modelling of

individual submodels is done simultaneously. Yassine implies that proper decomposition of a

complex system into simple manageable parts allows to boost product development efficiency

by making engineering concurrent and easier maintainable on all phases of a life cycle.

From the decomposition principle another concept applicable to managing complexity in SE -

Design Structure Matrix (DSM), which became a popular representation and dependency

analysis tool. Browning identified the growing popularity of this technique (Browning, 2001).

DSM represents the interactions between different components of a system in a matrix form,

advantageous for logic analysis in SE. DSM itself is a square matrix, as shown in Figure 6.

Rows, columns and diagonal elements are identical and stand for different system components.

Each non-diagonal mark represents that dependency exists between two components in one

way or another. Going across a row reveals what other elements this component affects (output

sinks) while going down a column shows what other elements this component depends on (input

sources).

 A B C D E F G H I

Element

A

Element

B

● ● ● ● ● ●

Element

C

● ● ● ● ● ●

Element

D

● ● ● ● ● ●

Element

E

● ● ● ● ● ●

Element

F

 ● ●

Element

G

 ● ●

Element

H

 ● ● ● ●

Element I ● ● ●

Figure 6 - Example DSM

It is widely considered that the DSM approach helps to manage complexity in projects (Yassine

and Braha, 2003). DSM itself is a useful matrix representation of directed graphs that can be

integrated into the development process and for better system structure transparency and

understanding the DSM matrix can be partitioned, which includes identification of tasks series

that can be executed sequentially.

Although partitioning is an effective way for organising DSM matrix and therefore managing

complexity, it is useful mostly when the elements are direct tasks. When these elements are

people controlling the tasks or subsystems of a larger complex system, the process called

clustering is utilised. Clusters are special combinations of elements, where all the interaction is

12

done inside of a cluster, minimising links to other clusters. An example of clustering is shown

in Figure 7.

 A B C D E F G A F E D B C G A F E D B C G

A A ● ● ● A A ● ● A A ● ●
B B ● ● F ● F ● F ● F ●

C ● C ● ● E ● E ● E ● E ●

D ● ● D ● ● D ● D ● ● ● D ● D ● ● ●
E ● E ● B ● B ● B ● B ●

F ● ● F C ● ● C ● C ● ● C ●

G ● ● ● G G ● ● ● G G ● ● ● G

(a) (b) (c)
Figure 7 - Example DSM:

(a) Base DSM; (b) Clustered DSM; (c) Alternative Clustered DSM

Overall, DSM method helps to control complexity and makes a better formal representation of

the interactions among different subsystems. Clustering and partitioning allow to minimise the

needed quantity of iterations, which as well leads to reducing complexity. Also, DSM approach

is able to help knowledge-based engineering by utilising DSM-based change propagation

analysis (Tang et al., 2010). This analysis can distinguish all possible indirect dependencies or

interactions among system submodels with the help of the DSM matrix. With all possible

change options identified the knowledge about corresponding changes can be brought in

advance, which is useful for design automation and prevents mistakes and inconsistencies in

the design process. Although DSM approach is helpful for the redesign process, only structured

design knowledge can be addressed in the matrix, while unstructured knowledge must be

organised at first.

It is worth noting that there is a strong connection between DSM and a graph, which is shown

in Figure 8. Therefore, utilising DSM in combination with metagraphs will provide further

benefits for systems modelling.

Figure 8 - Example DSM (Yassine and Braha, 2003):

Directed graph; (b) Base DSM; (c) Partitioned DSM

13

3 Related research

Estefan provides a survey through various existing MBSE methodologies (Estefan, 2008). Even

though all methodologies are successfully utilised and provide ways of organising development

process by creating models of every aspect involved, they still lack in the ways of modelling

interaction among submodels and use hard-coded rules, pre-defined relationships, strict

constraints, and fixed mathematical expressions. Tang identifies that in a complex product,

where everything is highly dependent on something, changes in one component affects other

systems and this can go further in the chain (Tang et al., 2010). Scarcity of dependency tracking

methods is identified, while change propagation analysis is seen as a vital part of the whole

development process. Author implies that company competitiveness depends on the efficiency

of the change propagation analysis.

The other major issue in MBSE is the inconsistencies in various stages of the development

lifecycle. Friedenthal recognises that design inconsistencies can arise especially when multiple

people work on the same model (Friedenthal et al., 2014). To address this problem a well-

defined disciplined process is proposed, which leaves space for human mistakes especially with

the growing complexity of systems being developed and leads to even more inconsistencies.

Complexity in spacecraft design is identified through the discussion of graph-based design

languages and the requirement of new ways for solving complex problems is distinguished

(Gross and Rudolph, 2016a). In addition to that, designing modern complex systems includes

solving a huge amount of problems among different interacting engineering domains (Gross

and Rudolph, 2016b). Thus, it is significant to construct a proper data exchange mechanism

between different engineering models to allow an easy and convenient way of propagating

changes in one model to all other models and track these changes beginning in early stages with

conceptual modelling. Data exchange process general view is shown in Figure 9.

Figure 9 - Data exchange process (Gross and Rudolph, 2016b)

One way of solving this problem is the use of a central model to govern all interactions and data

exchange among different models, which is shown in Figure 10.

14

Figure 10 - Central data model (Gross and Rudolph, 2016b)

Design graph approach is introduced in application to open FireSat example and provides

design graph generation for FireSat example, where nodes are instances specifications (UML

Classes) and edges are links between those instances (Gross and Rudolph, 2016c). Required

equations for the conceptional design of a satellite are provided by Wertz, where in graph-based

design languages they are defined by edges of the design graph (Larson and Wertz, 1992).

Design graph itself represents an analytical model and it is possible to analyse it in several

ways, one of them being graphical representation of the solution sequence for the whole

equation system. This representation provides all design graph calculated values based on input

variables. FireSat example design graph is shown in Figure 11.

Figure 11 - FireSat example design graph (Gross and Rudolph, 2016c)

Overall graph-based design language has been demonstrated as a useful way of representing

the entire design by a complex equation system revealing all the design dependencies along the

design process. Keeping a large and complex system manageable by assembling all its parts by

rules and dependencies is an important process. Graph view of variables involved in the

development process and interactions among them provides a comfortable way of analysing

systems in their current state.

Although even one missing constraint or rule can lead to the entire equation system being

unsolvable with no way of searching for the error, where one minor change in one subsystem

can lead to an uncontrollable chain of changes. The same is applicable to inconsistencies in the

15

design process, which often exists in different stages of a lifecycle. Therefore, in our study we

aim to utilise such graph-based approaches that can not only represent the design in every

moment but also be reliable and help design engineers to keep track of all the changes on every

stage of a lifecycle automatically.

A number of features are needed in representing interactions among multiple models such as

directionality representation, visualisation capabilities, understanding sets of variables involved

in each relationship and formalised algebraic representation (Basu and Blanning, 2007). Thus,

metagraphs provide all these features and thereby prove to be appropriate for the intended study.

It was also identified from the literature that metagraphs can be applied to data and rule

management, where rule bases can be represented as metagraphs and integrated into models.

Moreover, workflows and processes can be modelled with the use of metagraphs. Metagraphs

are considered to be a powerful method for decision support systems as they can be utilised for

interaction between components analysis no matter what these components are, models,

relationships or rules (Basu and Blanning, 1999).

4 Methodology design

4.1 Requirements

The requirements for the methodology being developed are subdivided into two categories as

functional and design. Functional requirements are responsible for the correct practical

implementation of the developed methodology. These requirements are as follows:

• Effectiveness – this requirement states that the developed method will allow effective

modelling of systems interaction in MBSE environment. Effectiveness is defined and

measured against a certain set of metrics during the verification and validation stage.

• Automatic control over interactions – this is important so that modelling logic in the form

of subsystems interaction is dynamic and eliminates inconsistencies of multiple definitions

of the same relationships according to certain rules or automatic hints and helps to diminish

the time needed for the development of products.

• Systems interaction representation – requirement related to correct and simple

representation of needed relationships from different points of view.

Design requirements provides the methodology from the developer’s point of view and its other

users. These requirements are as follows:

16

• Special knowledge – there is a need for a special systems interaction engineer who will have

knowledge of the composition of the interaction module and will be able to control this

module in case there is a need for it.

• Relationships models – it is necessary to provide systems interaction engineer full

capabilities and a range of building blocks/models to be able to control automatically built

interaction module.

• Applicability for multiple users – this requirement states that different users should be able

to utilise the developed methodology. These users involve engineers of different expertise

involved in various stages of the development process. Not all of these engineers have

adequate knowledge on how the actual system’s interaction is modelled inside the

interaction module of the main system model but still, they have to be able to define

relationships between their work and other engineers.

• Friendly user experience – this requirement related to both users and the systems interaction

engineer as they should be able to seamlessly utilise developed framework with the help of

software with friendly and simple user interface. Also, the framework should provide simple

ways of representing certain relationships from different points of view, which is set to be

achieved with the help of special graphical representation software.

All design requirements are related to certain functional requirements as the developed method

is set to be fully capable of simultaneously modelling interactions among models and providing

means and tools to control and utilise the interaction model by all its users.

4.2 The interaction modelling framework

A framework for developing interaction mechanism, as shown in Figure 12, consists of five

phases, namely

1. System definition

2. System Modelling

3. Interaction Modelling

4. Validation and verification

5. Visualisation.

The framework provides a set of activities for MBSE experts to employ in order to implement

graph-based systems interaction technique in the development process.

17

S
T
A
G
E

I

System Definition

S
T
A
G
E

II

System Modelling

S
T
A
G
E

III

Interaction Modelling

S
T
A
G
E

IV

Validation and Verification

S
T
A
G
E

V

Visualisation

Figure 12 - The framework for interaction modelling

Key system design concepts,

design rules and parameters

Define use case scenarios

and system functionalities

Identify system and

form its description
Decompose main system into

subsystems and components

Distinguish interaction

interfaces of subsystems and

components

Organise interactions among

subsystems and external

influence using DSM

Identify types of SysML

diagrams for every subsystem Construct main

system model and

its submodels with

SysML

Comprehensive

SysML model

Transfer data

from SysML to

object-oriented

modelling

software

Metagraph

approach

Develop object-oriented

metagraph model of logic -

interactions among subsystems

Formalised object-oriented

logic model of MBSE system

Identify list of classes in

the model

Identify list of properties

in the model

Identify relationships

among submodels

SWRL for

interactions

Check for

inconsistencies using

object approach

Validate interactions

with queries using

SPARQL/SQWRL

 Test logic model

efficiency against

chosen set of metrics

Use case

scenarios

Propagate

changes to all

subsystems

Transfer resulting

data from object-

oriented model

back to MBSE

SysML model

Update

SysML

model with

new data

Finalised system

and interaction

model at current

moment of time

Identify point

of view

Distinguish data and

variables needed

Visualise parts of the

systems using

visualisation software

Graphical

interaction

model

visualisation
Graph visualisation

techniques

18

The most significant part of the framework is metagraph construction, which automatically

governs the actual interactions among different components.

The first phase is to define the system - this includes decomposing main system into subsystems

and components while defining corresponding interaction interfaces and system functionalities.

It is essential for correct system modelling to adequately distinguish key design concepts, rules,

and parameters.

The second phase is the system modelling itself, where all subsystems identified in the previous

are modelled with the use of SysML diagrams resulting in the creation of a comprehensive

SysML model.

The third phase is where interaction modelling happens. Data is set to be transferred from

SysML to object-oriented modelling software, where metagraph approach is utilised to

successfully model the interaction mechanism in the system being developed. The data from

SysML is exported into XML-file and parsed using the object-oriented approach. XML has

been widely adopted as a universal way to format data. LINQ to XML parsing technique is

utilised to analyse and parse XML data. This technique is a fast, forward-only, non-caching

parser with a lot of useful built-in programming functions and guides. Therefore, it allows the

user to quickly find and parse needed information from the XML file. Also, it provides a good

way to construct and populate new XML trees. Object-oriented approach grants capabilities to

enhance knowledge categorisation and to model relationships among systems in a simple

object-oriented graph-based manner. Object-oriented modelling software such as Microsoft

Visual Studio provides a good programming interface and includes ways to validate model

consistency through reasoning.

The fourth phase is the validation and verification phase, where the developed model is checked

for consistency and correct representation of the initial model. If something changes in one of

the subsystems of the initial model and its SysML representation the object-oriented metagraph

interaction model checks the updates for consistencies and propagates changes to other

subsystems ultimately transferring data back to SysML and updating corresponding diagrams.

The final visualisation phase is to provide a method to represent the model at any moment from

different points of view with the help of graph visualisation software.

5 Use cases

The methodology framework is designed to be tested in a series of use cases. The first use case

is the Automobile Example from literature (Friedenthal et al., 2014). In this use case, the model-

based systems approach is applied to design an automobile system, where the final is set to

19

match the acceleration and fuel efficiency requirements. The full range of Automobile design

systems is modelled in SysML and the full list of models is shown in Table 4.

Table 4 - Full list of models in the Automobile Example

Diagram name/System Diagram Type
Model Organisation Package diagram
Automobile System Requirements Requirement diagram
Automobile Domain Block definition diagram
Operate Vehicle Use case diagram
Drive Vehicle Sequence diagram
Turn On Vehicle Sequence diagram
Control Power Activity diagram
Drive Vehicle States State machine diagram
Vehicle Context Internal block diagram
Vehicle Hierarchy Block definition diagram
Provide Power Activity diagram
Power Subsystem Internal block diagram
Analysis Context Block definition diagram
Vehicle Acceleration Analysis Parametric diagram
Vehicle Performance Timeline Timing diagram (not SysML)
Engine Specification Block definition diagram
Max Acceleration Requirement

Traceability
Requirement diagram

Architect and Regulator Viewpoints Package diagram

Relevant list of model components has been distinguished from the full list of models. This

example was modelled with the use of Visual Paradigm free modelling software for SysML

modelling.

The metagraph model of this SysML example has been derived in theory and shown in Figure

13.

20

Figure 13 - Metagraph for the Automobile Acceleration Example

Then the SysML model is exported in the XML format to a file that is then parsed using object-

oriented approach. For that purpose, the LINQ to XML open library in C# is utilised. This code

is also used to automatically generate the Metagraph model from the source XML file.

Currently, the program doing this automatic metagraph generation has already been developed

with the user interface for testing purposes.

Several scenarios for testing the proposed framework have been identified. These scenarios

include the following cases: changes of specific parameters (changing values), changing in one

of the models (changing relationships between different components) and changing of one of

the models (swapping equations with some other dependencies). Now the process of testing

these scenarios is ongoing using the self-written C# code mentioned earlier.

Graphviz has been identified as the visualisation technique as it has all the needed capabilities

starting from automatic import from C# and automatic visualisation of the exported graph

structure from the developed code.

The second use case is supposed to be the FireSat example from literature. The FireSat mission

describes a satellite flying in low earth orbit for earth observation in the infrared band. The

payload of the satellite is supposed to observe forest fires in the US. The model of the satellite

is supposed to enable the layout of most of the subsystems on a conceptual level. In the

following sections, a selection of some class diagrams from the model are presented along with

short descriptions of their purpose (Groß and Rudolph, 2012).

Acceleration, 𝑎

Eng torque, 𝑇𝑒𝑛𝑔

Trans torque, 𝑇𝑟𝑎𝑛𝑠

Diff torque, 𝑇𝑑𝑖𝑓𝑓

Wheel torque, 𝑇𝑤

Drag coef, 𝑐𝑑

Air density, 𝜌

Grav force, 𝑓𝑔

Power train force, 𝑓𝑝

Drag force, 𝑓𝑑

Incline, 𝜃 Weight, 𝑤

Total force, 𝑓

𝑒3(𝑓𝑔 =
𝑤

𝑔
∙ sin(𝜃ሻሻ

𝑒2(𝑓𝑑 =
1

2
𝜌𝑣2𝑐𝑑ሻ

𝑒1(𝑓𝑝 = 𝑓𝑝(𝑇𝑒𝑛𝑔, 𝑇𝑟𝑎𝑛𝑠, 𝑇𝑑𝑖𝑓𝑓 , 𝑇𝑤ሻ

𝑒4(𝑓 = 𝑓𝑔 + 𝑓𝑑 + 𝑓𝑝ሻ

𝑒5(𝑎 =
𝑔𝑓

𝑤
ሻ

21

6 Discussion

As stated in section 1, the aim of the research is to improve existing methodologies and

interaction modelling as well as deal with inconsistencies of the design process. Methodology

framework is the expected contribution to the knowledge of the method being developed. With

systems and models becoming more and more complex in systems engineering domain, issues

of overcomplexity, lack of understanding and communication problems in MBSE lead to many

challenges in the design process. Developing a new way of modelling logic in MBSE and

improving over existing ways tackle all kinds of these problems and push forward the state of

systems engineering field. The presented framework for graph-based modelling of systems

interaction in MBSE environment is set to help systems engineers to develop better quality less

expensive products in less time. This work may be viewed as a step forward toward more

consistent and automatic modelling of interactions among subsystems and components in

MBSE. This also involves making a way of communication, which dynamic in nature by

providing more automatic ways of interaction.

In addition to the identified advantages for SE field, the research being undertaken thus far is

seen to confidently identify potential research proposals for future work. The proposed

framework is set to be tested against a chosen set of metrics within different use cases. The

methodology provides a common and consistent basis for future interaction modelling among

subsystems in various aspects of MBSE field.

These principles have potential utilisation for design automation purposes in model-based

systems engineering field. Automation techniques always have multiple applications in systems

engineering field and specifically MBSE as engineers always aim to produce higher quality and

less expensive products in less time achieving this by integrating knowledge on every stage of

a lifecycle. Potential implementation of developed dynamic logic modelling methods to MBSE

through is set to provide improvements for engineering methodologies.

7 Conclusion

A range of MBSE methodologies are considered useful in developing various complex products

and helping system engineers maintain systems complexity on a different stage of the

development lifecycle. It is supported by the comparative analysis of MBSE methodologies

done by Estefan (Estefan, 2008). Even though all of them are successfully utilised in MBSE

field to some extent, the systems interaction is still mostly done manually with hard-coded rules,

pre-defined relationships and constraints (Tang et al., 2010).

In addressing the above issues, this paper has proposed a novel framework that aims to improve

the interaction mechanism in model-based systems engineering by developing new dynamic

22

ways of modelling logic. To model the interactions the authors propose to use graph-based

approach with metagraphs and object-oriented modelling being in its core. Metagraph theory is

a powerful tool already being utilised in decision support systems (Basu and Blanning, 1999).

We believe that the framework is set to be applicable to various systems being developed and

may be considered as a step forward in the development of systems engineering field. This

approach will provide improvements for design automation and MBSE field as one of the most

advanced approaches nowadays. The initial methodology framework idea has been presented

during the SECESA 2016 and published in the conference proceedings (Filimonov et al., 2016).

Future work involves evaluating the framework through use cases. These use cases are various

real-life development processes such as the development of a car or its systems and can be

obtained from the open literature sources. Based on the initial modelling results, it has already

been identified that the proposed methodology framework complies with the distinguished

requirements from Section 4.1. The required adjustments will be made, and the framework will

be evaluated in the more complicated use cases as the next step of this research.

References

Bahill, T., Botta, R., 2008. Fundamental Principles of Good System Design. Eng. Manag. J. 20,

9–17.

Basu, A., Blanning, R.W., 1994. Metagraphs: A tool for modeling decision support systems.

Manage. Sci. 40, 1579–1600.

Basu, A., Blanning, R.W., 1995. Metagraphs. Omega 23, 13–25.

Basu, A., Blanning, R.W., 1999. Metagraphs in workflow support systems. Decis. Support Syst.

25, 199–208.

Basu, A., Blanning, R.W., 2007. Metagraphs and their applications. Springer Science &

Business Media.

Browning, T.R., 2001. Applying the design structure matrix to system decomposition and

integration problems: a review and new directions. Eng. Manag. IEEE Trans. 48, 292–

306.

Diestel, R., 2017. Graph theory. Springer Publishing Company, Incorporated.

Estefan, J.A., 2008. Survey of Model-Based Systems Engineering (MBSE) Methodologies.

Filimonov, M., Raju, P., Chapman, C.B., 2016. Graph-based modelling of systems interaction

in model-based systems engineering environment. In: 7th International Systems &

Concurrent Engineering for Space Applications Conference Proceedings. Madrid.

23

Friedenthal, S., Moore, A., Steiner, R., 2014. A practical guide to SysML: the systems modeling

language. Morgan Kaufmann.

Gazdík, I., 2006. Modelling systems by hypergraphs. Kybernetes 35, 1369–1381.

Gross, J., Rudolph, S., 2016a. Modeling graph-based satellite design languages. Aerosp. Sci.

Technol. 49, 63–72.

Gross, J., Rudolph, S., 2016b. Geometry and simulation modeling in design languages. Aerosp.

Sci. Technol. 54, 183–191.

Gross, J., Rudolph, S., 2016c. Rule-based spacecraft design space exploration and sensitivity

analysis. Aerosp. Sci. Technol. 59, 162–171.

Groß, J., Rudolph, S., 2012. Generating simulation models from UML-A FireSat example. In:

Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS

Integrative M&S Symposium. p. 25.

Harel, D., 1988. On visual formalisms. Commun. ACM 31, 514–530.

Haskins, C., 2006. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, v. 3. John Wiley & Sons.

Herzig, S.J.I., Qamar, A., Paredis, C.J.J., 2014. An approach to identifying inconsistencies in

model-based systems engineering. Procedia Comput. Sci. 28, 354–362.

Holt, J., Perry, S., 2008. SysML for systems engineering. IET.

Larson, W.J., Wertz, J.R., 1992. Space mission analysis and design.

Shekar, B., Venkataram, R., Satish, B.M., 2011. Managing complexity in aircraft design using

design structure matrix. Concurr. Eng. 19, 283–294.

Systems Engineering Vision 2020, 2007. . INCOSE-TP-2004-004-02, Version 2.03.

Tang, D., Zhu, R., Tang, J., Xu, R., He, R., 2010. Product design knowledge management based

on design structure matrix. Adv. Eng. Informatics 24, 159–166.

Wymore, A.W., 1993. Model-based systems engineering. CRC Press.

Yassine, A., Braha, D., 2003. Complex concurrent engineering and the design structure matrix

method. Concurr. Eng. 11, 165–176.

