
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

An Experimental Scrutiny of Visual Design Modelling:
VCL up against UML+OCL

Nuno Amálio · Lionel Briand · Pierre Kelsen

the date of receipt and acceptance should be inserted later

Abstract The graphical nature of prominent modelling notations, such as the
standards UML and SysML, enables them to tap into the cognitive benefits of
diagrams. However, these notations hardly exploit the cognitive potential of dia-
grams and are only partially graphical with invariants and operations being ex-
pressed textually. The Visual Contract Language (VCL) aims at improving visual
modelling; it tries to (a) maximise diagrammatic cognitive effectiveness, (b) in-
crease visual expressivity, and (c) level of rigour and formality. It is an alternative
to UML that does largely pictorially what is traditionally done textually. The
paper presents the results of a controlled experiment carried out four times in
different academic settings and involving 43 participants, which compares VCL
against UML and OCL and whose goal is to provide insight on benefits and limi-
tations of visual modelling. The paper’s hypotheses are evaluated using a crossover
design with the following tasks: (i) modelling of state space, invariants and op-
erations, (ii) comprehension of modelled problem, (iii) detection of model defects
and (iv) comprehension of a given model. Although visual approaches have been
used and advocated for decades, this is the first empirical investigation looking
into the effects of graphical expression of invariants and operations on modelling
and model usage tasks. Results suggest VCL benefits in defect detection, model
comprehension, and modelling of operations, providing some empirical evidence
on the benefits of graphical software design.

Keywords Design · modelling · UML · OCL · VCL · Diagrams · Experiment

Nuno Amálio
Faculty of Computing, Engineering and the Built Environment
Birmingham City University, Millennium Point, Curzon Street
Birmingham, B4 7XG, UK, E-mail: nuno.amalio@bcu.ac.uk

Lionel Briand
EECS department, University of Ottawa, Canada
and SnT Center, University of Luxembourg, 29, Avenue J. F. Kennedy
L-1855 Luxembourg, E-mail: lbriand@uottawa.ca, lionel.briand@uni.lu

Pierre Kelsen
Faculty of Science, Technology and Communication, University of Luxembourg
Maison du Nombre, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
E-mail: pierre.kelsen@uni.lu

2 Nuno Amálio et al.

1 Introduction

There is a crying need for modelling in software and systems engineering. Modelling
no longer needs to be advocated as good engineering practice; instead, its necessity
emerges from the practice of software and systems engineering. Modelling and
design are simply the natural response to a need for abstraction and better means
for tackling complexity.

Visual modelling has always been part of software engineering [31,96,97] with
graphical design being advocated as a way forward for nearly three decades [58,
59]. Popular notations of software and systems engineering, such as the standards
UML and SysML [84], are graphical, which enables them to tap into the cognitive
benefits that diagrams are known to provide [70]; their graphical nature is seen
as a major factor behind their popularity1. However, they fail to fully exploit the
visual spectrum; they are criticised for having low cognitive effectiveness [79,77].

Mainstream visual notations are criticised for their semantics problems [110,42,
105,61,60,49,74,99,76]. Their semantics is seen as being flimsy and ill-defined, re-
sulting in imprecision due to the many ways in which phrases of a language may be
interpreted and misinterpreted. Models expressed in these notations may have in-
consistencies in them [69,45], are prone to ambiguities and misunderstandings, and
are often not mechanisable because they lack means of semantic inference. This, in
turn, hampers exhaustive verifiability using theorem proving or model-checking as
this requires a formally-defined semantics. Nevertheless, rigorous-minded research
communities have learnt to overcome this issue; standards UML and SysML, seen
by many as a family of modelling languages [35,32], are often seen as bloated lan-
guage definitions that hinder rigorous usage. However, by defining well-founded
profiles — a specialisation or a subset of the standard notation, or a family mem-
ber —, it is possible to tackle the semantics problem; it is in this way that many
formalisations of UML [109,106,19,17,18,4], OCL [95,94] and SysML [16] have
been achieved.

The graphics of mainstream languages can be disappointing. They cannot ex-
press all the required properties diagrammatically; UML provides the textual OCL
notation to express constraints of operations and invariants. UML’s graphical de-
scription of behaviour has been criticised [60,49,74,40]; collaboration and sequence
diagrams are but partial behavioural descriptions as they describe scenarios; state
and activity diagrams provide total descriptions, but their emphasis on explicitly
defined states and state transitions may result in descriptions that are cumber-
some, especially with systems other than those traditionally classified as reactive.

The Visual Contract Language (VCL) [9,12,15,10] expresses software designs
formally and graphically. It embodies a critique of the UML; it aims to improve the
following: (a) diagrammatic expressivity by describing pictorially what is described
textually in the UML realm; (b) visual effectiveness by designing VCL according
to theories and guidelines for the design of visual notations; and (c) the semantics
issue by designing VCL with a formal semantics. To achieve this, VCL comes with
two novel visual notations: assertion and contract diagrams, key ingredients in
ensuring that VCL does visually what is done textually with UML.

VCL’s foundational premise is that graphical software design is a good idea.
The paper investigates this premise to gauge the effectiveness of visual software

1 The sequel uses the terms visual, pictorial, graphical and diagrammatic interchangeably.

An Experimental Scrutiny of Visual Design Modelling 3

design and VCL’s novel diagram types. The empirical investigation involves a
controlled experiment, carried out four times in university settings with 43 partic-
ipants, which compares VCL against the UML and OCL standards (our baseline)
to provide insight into benefits and limitations of visual modelling. The paper
examines the following: (i) modelling of state space, invariants and operations,
(ii) comprehension of modelled problem, (iii) detection of model defects and (iv)
end-user comprehension of a given model, (v) usefulness, (vi) ease of use, (vii) us-
ability and (viii) overall appraisal of examined notations. Results suggest benefits
of VCL’s graphical approach in defect detection and model comprehension, and
more general benefits of visual design.

1.1 Contributions

The paper’s contributions are as follows:

– This is the first empirical study that compares a design language that expresses
predicates graphically against the UML and its OCL satellite notation.

– This is the first empirical demonstration suggesting benefits of a diagrammatic
approach to the modelling of operations using design-by-contract [75].

– This is the first empirical demonstration that suggests that a diagrammatic
modelling approach benefits tasks associated with the usage of models. The
paper shows how VCL was significantly better when compared to UML+OCL
in tasks related to end-user model comprehension and defect detection.

1.2 Outline

The remainder of this paper starts with some background (section 2) focussed on
VCL and diagrammatic description. This is followed by the experiment’s scope
(section 3), design (section 4) and materials (section 5). The paper then talks
about the pursued statistical analysis (section 6), the experiment’s participants
(section 7) and the results of the controlled experiment (section 8). Finally, it
discusses threats to the validity of the paper’s results (section 9), presents related
work (section 10) and draws its conclusions (section 11).

2 Background

The sequel provides background on the cognitive benefits of diagrams and VCL,
discusses the principles of graphical notations applied in VCL’s design, and presents
VCL’s trajectory and founding ideas explaining why VCL is a suitable represen-
tative of graphical modelling.

2.1 Diagrams and their Cognitive Effectiveness

When solving problems, humans use both internal representations, stored in their
brains, and external representations, recorded on paper or some other medium [70].
For cognitive scientists, the form of external representations matters to the agents’

4 Nuno Amálio et al.

performance in various cognitive tasks, such as problem-solving or decision-mak-
ing [70,117]; form determines what information can be perceived, what cognitive
processes can be activated and what can be discovered. According to Zhang [117],
“external representations are not simply inputs and stimuli to the internal mind;
rather, they are so intrinsic to many cognitive tasks that they guide, constrain and
even determine cognitive behaviour”.

Humans favour pictorial representations [88,70,52,53,58,30]. Larkin and Si-
mon’s study [70] show that text and diagrams containing the same information
are not necessarily equivalent with respect to the processing required to extract in-
formation, highlighting that diagrams facilitate perceptual inferences — some are
called free rides because they are easily perceptible [101]. Subsequent studies [52,
53] have replicated the findings of [70], highlighting a picture advantage. However,
the superiority of pictures should not be taken for granted [70,86].

The practical relevance of diagrams is endorsed by their ubiquity in engineer-
ing [46,47]. Visual thinking is seen as intrinsic to engineering; thinking, designing
and communicating with pictures are recognised as essential engineering activi-
ties. Like in traditional engineering, diagrams became an integral part of software
engineering [79]. Diagrams in all forms and shapes, from formal representations
to informal and ephemeral sketches, constitute a prominent means of software en-
gineering expression. Unlike traditional engineering, however, software diagrams
are not tied to the physical shape of any designed artefact, which entailed greater
freedom regarding diagrammatic shapes and forms [25].

Unsurprisingly, software engineering visual languages have been advocated for
decades as means to facilitate human communication and problem solving [58].
Visual languages, such as Harel’s statecharts [57], UML and SysML, are widely
taught. The UML development is seen as a pivotal in software engineering, provid-
ing a common unifying language that the field had never had before. Although dia-
grams favour perceptual inferences, this does not entail cognitive effectiveness [70,
86] as diagrams need to be designed to exploit the benefits of visual representa-
tions [70,79]. This is where mainstream visual languages lag behind; the UML, for
instance, is criticised for breaching many rules of visual language design [79,77].

2.2 A Primer on VCL

VCL follows the approach to modelling of UML and many of UML’s predeces-
sors [98,26,110] based on an object oriented (OO) style of description, which sees
a software system as a collection of data with associated behaviour inter-operatable
from the environment. Another VCL pillar is discrete mathematics and set theory,
the foundation of languages such as Z [103,114,64] and B[1].

VCL is introduced here with an example of a secure bank whose complete
VCL model is given in [5]. A banking system manages customers, accounts and
transactions, and needs to be made secure. Figures 1 and 2 present a few model
excerpts that illustrate VCL.

VCL organises models around inter-dependent packages using ideas from as-
pect orientation [15]. Figures 1 and 2 present diagrams of two different packages.
Package diagrams (PDs) define packages (represented as clouds) and their depen-
dencies to other packages. PD of Fig. 1a says that package Bank imports sets from
CommonTypes. Package CommonTypes provides definitions common across the

An Experimental Scrutiny of Visual Design Modelling 5

model; Bank focuses on those concerns specific to banking; other packages in [5]
address security concerns and the modular weaving of security and banking.

Structural diagrams (SDs), VCL’s UML class diagram equivalent, express do-
mains of discourse in state space (data or conceptual) models by representing
entities of interest as sets (round contours). SD of Bank (Fig. 1b) has class sets
for banking entities, namely, customers, accounts and transactions, and uses value
sets from SD of CommonTypes (Fig. 1c) — e.g. CT::Name. Objects and values are
depicted as rectangles. Sets for dates and times of Fig. 1c use VCL’s predicate
language to define the novel derived sets. Set Month, for instance, is defined as the
natural numbers (set Nat) from 1 to 12 in a graphical depiction of a set compre-

hension — Month = {n : Nat | n ≥ 1 ∧ n ≤ 12}. The arrows emanating from Nat

(predicate edges) refer to the source and are combined through conjunction.
State spaces are subject to constraints (or invariants) that must be respected in

all states of the system. Unlike UML, VCL identifies invariants in the data model
— a SD defines a state space made up of state structures and their constraints
— as assertions (named elongated hexagons) defined in assertion diagrams (ADs).
In Fig. 1b, assertions HasCurrentBefSavings, SavingsArePositive and Corporate-

HaveNoSavings, defined in ADs of Figs. 1d, 1e and 1f, embody relevant invariants:
customers must hold a current account prior to opening a savings account (Has-

CurrentBefSavings), savings accounts must be positive (SavingsArePositive) and
corporate customers must not hold savings accounts (CorporateHaveNoSavings).

Whilst SDs focus on static aspects, behaviour diagrams (BDs) concentrate on
dynamics (or behaviour). BDs provide a map over the constituent units of a pack-
age’s behaviour defined in separate diagrams. BD units of Bank (Fig. 2a) include
the operations available to the environment, namely, create customer, open ac-
count, deposit, withdraw, delete account, view an account’s balance, get accounts
in debt, and get accounts of a customer.

In BDs, operations that modify state are represented as contracts (double-lined
elongated hexagons); those that observe (or enquire) state as assertions (single-
lined hexagons). Global operations (visible to the environment) stand alone; local
operations (invisible to the environment) are placed inside the contours of their
class sets. Local modifier operations can either create new class objects (con-
structors, symbol N), update existing objects (symbol U) or delete class objects
(symbol D). For instance, the global OpenAccount does all that is involved in
opening actual bank accounts and the New operation inside Account, a sort of
sub-operation, creates new account objects only. Modifier operations are defined
in contract diagrams (CDs); operations CreateCustomer, Customer.New, AccWith-

draw and Account.Withdraw of Fig. 2a are defined in CDs of Figs. 2b, 2c, 2d and 2e,
respectively. Observe operations are defined in ADs; ADs of Figs. 2h and 2g de-
fine the local Account.GetBalance and the global AccGetBalance of Fig. 2a; AD of
Fig. 2f defines GetAccountGivenAccNo imported in Figs. 2e and 2g.

ADs and CDs comprise a box with an identifier to the top, followed by com-
partments for declarations (top) and predicate (bottom) which may be further
split in two. ADs have one predicate compartment as only one set of states is
being referred to; CDs have two predicate compartments corresponding to the
states of pre- and post-condition (to the left and right, respectively). Declaration
compartments include relevant variables (either internal or of inputs and outputs),
and imported assertions and contracts. Predicate compartments are made-up of
graphical formulas read from top to bottom and combined using conjunction. Two

6 Nuno Amálio et al.

kinds of formulas are supported: logic- and set-based. Logic formulas, read from
left to right, resemble their textual counter-parts. Set formulas start from some
inner graphical expression and grow outwards.

AD SavingsArePositive (Fig. 1e) expresses a local invariant of Account. It has no
declarations; the predicate contains a pictorial propositional logic formula made-
up of individual atomic statements involving predicate edges that are combined
with an implication to say that if the account’s type is savings then its balance
must not be negative — aType = savings ⇒ balance ≥ 0.

Predicate of AD CorporateHaveNoSavings (Fig. 1f) expresses a set formula.
Relation Holds defined in SD of Fig. 1b, which denotes a set of pairs, is restricted to
those pairs with corporate customers and savings accounts (a sort of filtering); the
restricted relation is then required to be empty — hence, corporate customers must
not hold savings accounts. In Fig. 1f the restrictions are performed using domain
restriction (symbol C) and range restriction (B) using edge modifiers (represented
as double arrows and denoting functions) and the outer shading indicates that the
restricted set or relation must be empty. The resulting formula is: {o : Customer |
o.cType = corporate}C Holds B {o : Account | o.aType = savings} = ∅.

AD HasCurrentBefSavings (Fig. 1d) says that the set of customers with current
accounts is a subset of customers with savings accounts — hence, a customer
must hold a current account prior to holding a savings account. This involves
two internal set variables (included in the declarations compartment) to represent
customers with current accounts (custsCurr) and customers with savings accounts
(custsSav), which are defined in the predicate in a similar way: relation Holds

is range-restricted using edge modifiers (symbol B) to accounts that are either
current or savings, and the actual sets are obtained from these restricted relations
using the domain relational operator (symbol←); finally, the bottom-most formula
says, using enclosure (or insideness), that custsSav must be a subset of custsCurr.
This results in the following formulas:

custsCurr = dom(Holds B {o : Account | o.aType = current})
custsSav = dom(Holds B {o : Account | o.aType = savings})
custsSav ⊆ custsCurr

AD GetAccountGivenAccNo (Fig. 2f) fetches the Account object correspond-
ing to aNo? into output a! — a! ∈ {o : Account | o.accNo = aNo?}. AD Ac-

count.GetBalance (Fig. 2h), which stores the account’s balance in the output bal!,
is imported in global AccGetBalance (Fig. 2g), which fetches the account object
corresponding to the aNo? input (via imported GetAccountGivenAccNo) and calls
Account.GetBalance on this object.

CD Customer.New (Fig. 2c), a constructor, says how a new Customer object (c!)
should be initialised in the post-condition; using predicate edges, the after-state
(represented in bold) of custNo is set non-deterministically, and those of name, addr
and cType are set to the corresponding inputs. CD Account.Withdraw (Fig. 2e)
declares an amount natural number input and says in the post-condition that
the new account’s balance (bold line around rectangle) is the old balance minus
the requested amount. These two local operations are brought into the global
context (of a system or package) through CreateCustomer (CD in Fig. 2b) and
AccWithdraw (CD in Fig. 2d). CD of CreateCustomer declares inputs required from
the environment and imports Customer.New; CD of AccWithdraw declares aNo?

An Experimental Scrutiny of Visual Design Modelling 7

(a) PD of package
Bank

(b) SD of package Bank

(c) SD of package of Common (d) AD invariant HasCurrentBefSavings

(e) AD invariant Ac-
count.SavingsArePositive

(f) AD invariant CorporateHaveNoSavings

Fig. 1: Diagrams of the state space VCL model of secure simple bank (from [5]).

8 Nuno Amálio et al.

(a) Behaviour diagram

(b) Operation CreateCustomer (c) Operation Customer.New

(d) Operation AccWithdraw (e) Operation Account.Withdraw

(f) Operation GetAccountGivenAccNo (g) Operation AccGetBalance (h) Operation
Account.GetBalance

Fig. 2: Diagrams of dynamic VCL model of package Bank in secure simple bank
(from [5]).

An Experimental Scrutiny of Visual Design Modelling 9

input for account from which money is to be withdrawn, and imported assertion
GetAccountGivenAccNo of (Fig. 2f).

VCL’s ADs and CDs, illustrated in the VCL model excerpts of Figs. 1 and 2,
are major novelties of VCL, giving VCL a strongly graphical character.

2.3 VCL and its Visual Effectiveness

VCL’s design follows theories of visual notation design, namely, physics of no-
tations (PoN) [79] and cognitive dimensions of notations (CDN) [?,54,24]. The
following exemplifies how these theories are applied in VCL using Figs. 1 and 2:

– VCL tries to be well-matched to meaning, following CDN’s closeness of mapping

and PoN’s semantic transparency, by conveying the underlying mathematics. For
example: VCL’s round contour set construct (eg. Customer, Account, CustId

and CustType in Fig. 1b, and Holds, Account and Customer in Fig. 1f) taps
to similar shapes of mathematics (Venn or Euler circles); the shading of Venn
diagrams is used in Fig. 1f to indicate that the set must be empty; the single
and double lines of assertions and contracts (see Fig. 2a), respectively, refer to
the fact that assertions involve a single set of states, whereas contracts involve
the state-sets of pre- and post-conditions.

– VCL’s graphical primitives follow PoN’s principle of semiotic clarity. In the
different diagrams of Figs. 1 and 2, sets are consistently rendered as rounded
shapes, and values and objects (members of a set) as rectangles2, constraints
upon single states are hexagons (independently of whether they denote invari-
ants or observe operations). Furthermore, VCL’s primitives have a core mean-
ing that varies slightly with the context, enabling users to infer the meaning
of graphical expressions in different contexts, following CDN’s consistency and
PoN’s graphical economy. The round contours of Fig. 1b do not mean exactly
the same as the several round shapes of ADs and CDs of Figs. 1 and 2, but
they all have set-like meanings.

– PoN’s principles of perceptual discriminability and visual expressiveness can be
observed in the panoply of shapes and colours used across the different VCL
diagram elements illustrated in Fig. 1 — packages are green clouds, sets are
rounded blue contours, assertions are red hexagons and contracts are brown
hexagons, objects are yellow rectangles, shading distinguishes empty from non-
empty sets, and size and brightness differentiate types of sets and edges.

– PoN’s cognitive integration (integration of different pieces of information), and
CDN’s role-expressiveness (how pieces contribute to the whole) is intrinsic to
VCL. In SDs, as illustrated in Fig. 1b, the assertions of Bank’s SD, defined sep-
arately in ADs, explicitly say that the AD-defined invariants constrain the SD’s
defined state space. BDs, on the other hand, identify all the different pieces of
behaviour defined separately in ADs and CDs, as illustrated in Fig. 2a. Import-
ing mechanism in ADs and CDs (illustrated in Figs. 2b, 2d and 2g) integrate
pieces defined elsewhere to make compound definitions. Furthermore, the ‘+’
attached to package (clouds) assertions and contracts (elongated hexagons) of
SDs, BDs and PDs, provide navigation clues that a separate diagram is opened
upon double-clicking. CDN’s role-expressiveness is also manifested in SDs when

2 UML represents both classes and objects as rectangles.

10 Nuno Amálio et al.

line size and brightness are used to distinguish class from values sets (class con-
tours are thicker) to give relevance to classes which are the major abstractions
of a domain and act as beacons.

– PoN’s dual coding (text complements graphics to strengthen communication)
and CDN’s secondary notation is applied in SDs of Figs. 1b and 1c to distin-
guish the different kinds of sets and to reinforce the multiplicity constraints of
relations; sets include a word to indicate set-kind, class sets are bold-lined and
remaining sets have lines with normal thickness; relation multiplicity is con-
veyed both visually and textually. Figure 1f reinforces the empty set meaning
through both shading and symbol ∅ .

– PoN’s complexity management (representing information without overloading
the human mind) and CDN’s abstraction gradient, are intrinsic to VCL. Stat-
ics and dynamics are clearly separated through VCL structural and behaviour
diagrams; UML represents data and operations in class diagrams that tend to
become severely cluttered even for medium to small models. VCL’s package
construct (represented as clouds, Fig. 1a) defines large modules to keep the
contents of each package manageable; reference sets (symbol ↑) enable refer-
ences to sets from other packages. VCL operations are constructed modularly;
operation and assertions may be composed of other modules (operations or as-
sertions); for example, in Fig. 2d, operation AccWithdraw is made-up of observe
operations GetAccountGivenAccNo and local contract Account.Withdraw.

– VCL addresses CDN’s hard mental operations dimension as part of its raison
d’être as it tries to improve the usability of formal software design, with its
inherently hard underlying mathematics, through visualisation. However, this
per-se does not totally solve this problem and two principles discussed above,
CDN’s abstraction gradient and PoN’s complexity management, are key in
giving VCL an abstract and modular ethos, which helps in dealing with hard
mental operations. The notion of separation, inherent to modularity, is mani-
fested in the different compartments of ADs and CDs (Figs. 1 and 2), which
ease the hardness of the task through order and focus as each compartment ex-
presses something specific that is relevant to the whole (also an application of
the cognitive integration principle). Furthermore, modellers are encouraged to
come up with abstractions and express designs that are modular as VCL pro-
vides the means to break down potentially overwhelmingly complex problems
into manageable and meaningful chunks. BDs, for instance, encourage abstrac-
tion and modularity by letting the modeller focus on the different pieces that
make up an overall behaviour. Despite this, there are so many ways in which
VCL could be improved to ease hard mental operations.

2.4 VCL’s Trajectory, Founding Ideas and Suitability as Visual Notation

VCL embodies ideas of both graphical and formal modelling. A major influence
is Amálio’s PhD thesis [4] which proposes UML+Z [18,19], a modelling approach
combining UML with the formal language Z. VCL’s Z semantics [4,17,?] was
borrowed from this work. Another inspiration is the work lead by Kelsen on dia-
grammatic expression of behaviour in the language EP [66,67,11].

VCL emphasises rigour, formality and modularity. Early works developed the
concept with diagrams built using drawing tools [12,15,13,14]. A major influence

An Experimental Scrutiny of Visual Design Modelling 11

was the development of VCL’s aspect-oriented modelling approach [15]. Once VCL
had been developed as a concept, we embarked upon the construction of VCL’s
tool, the Visual Contract Builder (VCB)3, which made VCL more tangible and
firmly defined [10,9]. The tool paved the way to the use of VCL for coursework and
student projects [72,107], brought the language to life, and made the experiment
presented here possible. Empirical results on modelling tools, emerging from a
spin-off survey of the experiment presented here, highlighted that both VCL and
its tool were being positively received by users [9].

VCL is an experimental language embodying ideas on visual and formal mod-
elling. It was designed to not drastically deviate from UML; it keeps the same OO
foundation which has proved suitable for software design. We wanted to improve
the graphics, precision and connection to mathematical modelling. VCL SDs, for
instance, introduced just a few novelties with respect to class diagrams to exploit
the idea of having more self-contained and closely integrated diagrams focussed
on data modelling, but avoiding drastic divergences. The statecharts [57] notation
was inspirational; although developed independently from UML or any of its main
predecessors, it ended-up incorporated in the standard. Likewise, we hope that
VCL ideas can be incorporated into such standards if they prove to be useful.

VCL’s major novelty, its capacity to express predicates visually, makes it a
prominent representative of graphical design languages. There are other languages
with formal basis and capable of expressing predicates visually, such as augmented
constraint diagrams (ACDs) [48] and Visual OCL (VOCL) [27,41]; however, VCL’s
most salient difference lies in its superior tool support. In a comparative study fo-
cussed on practical application [107], VCL outperformed ACD and VOCL. VCL’s
VCB tool outperformed the UML tool Papyrus in the comparison of tools used in
the controlled experiment presented here that focussed on usability [10]. VCL is
the only visual design language expressing visual predicates that tackles modelling
in the large through its modelling primitives inspired by aspect-orientation [15].
In terms of usability, VCL appears to outperform both ACD and VOCL in what
respects the use of colour for visual expressivity. VCL was applied to case studies
proposed as challenges by research communities, such as the large car-crash cri-
sis management system [15] and its variant the Barbados car-crash management
system [6,80], and a cardiac pacemaker [73,72].

VCL is being used in student projects at undergraduate and masters level
with education being a modest success. It has been used by many students to
design systems and applications. Further developments of VCL could focus on: (a)
VCL and its tool, aiming towards code generation, (ii) empirical experimentation,
following from the results presented here, and (iii) VCL’s formal foundations.

3 The Experiment’s Scope

The study presented here examines VCL as a visual design notation. It seeks to
know whether VCL and its capacity to express predicates visually provide any ad-
vantage over existing standard notations, in particular UML and its OCL satellite
textual notation, from the perspective of modellers and end-users. The sequel dis-

3 http://vcl.gforge.uni.lu

http://vcl.gforge.uni.lu

12 Nuno Amálio et al.

tils the aims of the study into the experiment’s objective and research questions,
which are then translated into tasks and hypotheses.

3.1 Objective

The experiment’s objective is as follows:

Evaluate the effectiveness of VCL on user performance using a set of tasks
associated with constructing and using design models by comparing VCL
against UML and its satellite textual language OCL.

To accomplish this, two perspectives are considered: modellers and end-users.
As said above, the experiment gauges effectiveness, which is meant here to be
the degree to which something is successful or adequate in producing a result or
accomplishing a purpose4. This involves evaluating performance, which means how
effective are modellers or end users in accomplishing tasks.

To fulfil its objective the experiment investigates the following: (i) modelling,
which assesses performance in building design models and perceptions emerging
from doing so; (ii) problem comprehension, which evaluates the problem compre-
hension gained from modelling; (iii) model usage, which assesses the performance
of end-users in tasks related to the usage of models, namely defect detection and
model comprehension; (iv) usefulness, ease of use, usability and overall appraisal,
which assess perceptions emerging from experiment experiences.

3.2 Research Questions

The experiment seeks answers to the following research questions (RQs):

– RQ1: Is the performance of modellers in building software designs better with VCL

than UML+OCL?

– RQ2: Is the comprehension of the problem accrued from modelling better with VCL

than UML+OCL?

– RQ3: Is end-users’ performance in tasks related to usage of software designs, namely

defect detection and model comprehension, better with VCL than UML+OCL?

– RQ4: Is VCL perceived as being more useful and easy to use than UML+OCL?

– RQ5: Is VCL’s usability better than UML+OCL’s?

– RQ6: How is the overall perception of VCL in comparison to UML+OCL?

3.3 Dependent Variables

The dependent variables hold measures to assess the different RQs; they are sam-
pled according to independent variables the most determinant of which being the
notation (either VCL or UML). RQ1 to RQ3 are measured both objectively and
subjectively. RQ4 to RQ6 are measured subjectively. All RQs are analysed quan-
titatively; RQ6 is analysed qualitatively also.

4 From definitions of effectiveness in Oxford English dictionary and Dictionary.com.

An Experimental Scrutiny of Visual Design Modelling 13

Category/RQ Definition Description

Completeness
(Co), RQ1

score
maxScore

Aggregate proportion obtained
from measuring satisfaction of
each expected model piece on an
ordinal scale from 4 (fully sat-
isfied) to 0 (unsatisfied). Vari-
ables: CoS, CoI, CoO

Accuracy (Ac),
RQ1

score
maxScore

Aggregate proportion obtained
from evaluating test cases on an
ordinal scale from 4 (fully sat-
isfied) to 0 (unsatisfied). Vari-
ables: AcS, AcI, AcO

Perceived mod-
elling (PM), RQ1

{VCL,UML,NP} Notation perceived as providing
better modelling performance.
Variables: PMS, PMI, PMO

Problem com-
prehension (PC),
RQ2

correctAnswers
noQuestions

Proportion of correct answers
in PC questionnaire. Variables:
PC

Perceived PC
(PPC), RQ2

{VCL,UML,NP} Notation perceived as providing
better PC performance. Vari-
ables: PPC

Model comprehen-
sion (MC), RQ3

correctAnswers
noQuestions

Proportion of correct answers in
MC questionnaire. Variables:
MC

Defect detection
(DD), RQ3

foundDefects
totalDefects

Proportion of identified defects
in model with seeded defects
(DD). Variables: DD

Perceived usage,
RQ3

{VCL,UML,NP} Notation perceived as providing
better DD or MC performance.
Variables: PDD, PMC

Usefulness (U)
and ease of use
(EoU), RQ4

score
maxScore

Calculated from responses on a
Likert Scale from 1 (strongly
agree) to 5 (strongly disagree).
Variables: U, EoU

Usability (Us),
RQ5

{VCL,UML,NP} Notation perceived as better
for different usability criteria.
Variables: UsR, UsN, UsMOs
UsLEC, UsLF, UsC, UsL, UsCS

Appraisal (Appr),
RQ6

{Positive,Negative,Neutral} →
Integer

Subject’s appraisal of VCL in
comments to open questions to
obtain number of positive, neg-
ative and neutral comments.
Variables: Appr

Preferred notation
(PN), RQ6

{VCL,UML,NP} Preferred notation at state space
(S), invariants (I), operations
(O), overall and to use in the fu-
ture.
Variables: PNS, PNI, PNO,
PN, FN

Table 1: Dependent variables. (S = state space; I = invariants; O = operations; DD
= defect detection; PDD = perceived DD; PMC = perceived MC; Us = usabiliy; R
= reading; N = navigation; MOs = maps and overviews; LEC = live error checking;
LF = look and feel; C = cohesion; L = learnability; CS = comfort/satisfaction;
PN = preferred notation; FN = future notation; NP = no preference.)

14 Nuno Amálio et al.

Table 1 summarises the dependent variables; it comprises columns for variable’s
category and RQ, variable definition and description. Variables’ names follow a
convention: abbreviation of category (e.g. Co = completeness; Ac = accuracy)
followed by abbreviation of measured modelling aspect — either state space (S),
invariants (I) or operations (O). For example, CoS is completeness of state space.
We use two types of variables: (i) proportion (obtained quantity is divided by max-
imum quantity, yielding a continuous number between 0 and 1); and (ii) nominal

or categorical (possible values drawn from a bounded discrete set).
The sequel gives further details on how the different RQs are assessed.

3.3.1 RQ1, Modelling

RQ1’s tasks involve building a design from a given case study narrative. The design
is partitioned into: state space, constraints over the state space (invariants) and
behaviour as operations made-up of pre- and post-conditions (contracts).

We compare the following: (a) VCL structural diagrams against UML class
diagrams, (b) VCL assertion diagrams of invariants against OCL constraints of
invariants, and (c) VCL assertion and contract diagrams of operations against
OCL constraints of operations. The comparison is based on the following criteria:

– Completeness (Co) measures how much is modelled. This is based on a break-
down of requirements and corresponding modelling pieces whose satisfaction is
marked manually on an ordinal scale from 4 (fully satisfied) to 0 (unsatisfied).

– Accuracy(Ac) measures the quality of what is modelled based on a partitioning
of requirements into aspects of interest exercised by test cases, which are eval-
uated manually on an ordinal scale from 4 (fully satisfied) to 0 (unsatisfied).

This measurement apparatus , detailed in [8], aims to make the grading objec-
tive, repeatable and unbiased. Completeness and accuracy variables of table 1 hold
objective measures of modelling performance in state space (CoS and AcS), invari-
ants (CoI and AcI) and operations (CoO and AcO) in the form of aggregate pro-
portions (obtained score divided by maximum score). Categorical variables PMS,
PMI and PMO of table 1 hold subjective measures of modelling performance in
state space (S), invariants (I) and operations (O).

3.3.2 RQ2, Problem Comprehension

From a set of multiple choice questions framed in a modeller perspective, RQ2
is evaluated objectively and subjectively in variables PC (a proportion of correct
answers) and PPC of table 1, respectively.

3.3.3 RQ3, Model Usage

This is evaluated with the following tasks:

– Defect detection (DD), related to model inspection, consists of identifying de-
fects in a model with seeded errors.

– Model Comprehension (MC), or how well end-users understand given models,
is assessed through multiple choice questions about a given design.

An Experimental Scrutiny of Visual Design Modelling 15

Variable DD of table 1 provides an objective measure as a proportion of encoun-
tered defects. Variable MC , focussed on the end-user perspective, measures the
proportion of correct questions in the MC questionnaire.

3.3.4 RQ4, Usefulness and Ease of Use

The examined notations are assessed at the light of perceived usefulness (PU) and
perceived ease of use (PEoU) [39] in the debriefing survey. PU is the degree to which
someone believes that a particular system would enhance their performance. PEoU
is the degree to which someone believes that a particular system would be free of
effort. Both PU and PEoU are seen as important determinants for user acceptance
of a technology [39]. The corresponding variables, U and EoU (table 1), hold an
aggregate proportion calculated from Likert scaled statements.

3.3.5 RQ5, Usability

The debriefing survey assesses RQ5 based on relevant criteria, namely: readability,
navigation, maps and overviews, live error checking, look and feel, learnability and
comfort/satisfaction. Usability measures are held in the Us variables of table 1.

3.3.6 RQ6, Overall Perception

The debriefing survey enquires about overall perceptions of the examined lan-
guages based on experiment experiences. The relevant RQ6 dependent variables
of table 1 are: Appr (an appraisal of positive, negative and neutral aspects of VCL
based on the open-ended questions of the debriefing survey) and the variables that
gauge the preferred notation with respect to state space (PNS), invariants (PNI),
operations (PNO), overall (PN) and future usage (FN).

3.4 Hypotheses

There is one major independent variable for used notation — it has two treat-
ments: VCL and UML. The hypotheses are formulated from independent and
dependent variables (table 1). Each dependent variable has corresponding null,
H 0
i (no difference between the notations), and alternative, H a

i (there is a differ-
ence between the notations), hypotheses. For example, completeness of state space
gives H 0

1 : CoS(VCL) = CoS(UML) and H a
1 : CoS(VCL) 6= CoS(UML); 11 out

of 31 hypotheses follow this template. Subjective dependent variables are three-
valued, either VCL, UML or NP (no preference); the underlying hypotheses cater
to this; for example, perceived modelling of state space gives H 0

7 : PMS(VCL) =
PMS(UML) = PMS(NP) and H a

7 : PMS(VCL) 6= PMS(UML) 6= PMS(NP); 19 out
of 31 hypotheses follow this pattern. Hypothesis H31 is formulated based on the
values positive, negative and neutral; the first two are co-related to VCL and UML

respectively; this gives: H 0
31 : Appr(Positive) = Appr(Negative) = Appr(Neutral)

and H a
31 : Appr(Positive) 6= Appr(Negative) 6= Appr(Neutral).

16 Nuno Amálio et al.

Task 1 Task 2 Task 3 Task 4 Task 5

Modelling of state
space and invariants,
30 minutes

Modelling of op-
erations, 35 min-
utes

Problem com-
prehension, 15
minutes

Defect De-
tection, 25
minutes

Model Com-
prehension,
15 minutes

Table 2: Sequence of five tasks of an experiment session.

3.5 Recruitment

Participants were recruited from the following institutions: (a) Faculty of Sciences
of the University of Lisbon, Portugal (FCUL); (b) Faculty of Science and Tech-
nology of the New University of Lisbon, Portugal (FCT/UNL); (c) University of
Luxembourg (UL); and (d) University of York, UK (UY). Computer science stu-
dents were rewarded with AC50 vouchers for taking part in the experiment and
were required to have completed or be in the process of completing a course on
UML-based software design.

4 Experiment Design

The following explains the major elements of the experiment’s design.

4.1 Case Studies

The experiment’s case studies, detailed in [8], are as follows:

– University Library (UL). A university library system enables members to borrow
and return books, renew borrowings and recall books unavailable for loan.

– Flight Booking (FB). A system to manage flight bookings of different airlines.

4.2 Experimental Tasks and Time Allocation

The experiment’s tasks feed the dependent variables of table 1. Each session re-
quired participants to work as both modellers and end-users, using either VCL or
UML+OCL in either one of the two case studies. A session lasted two hours and
comprised the following sequence of tasks (summarised in table 2):

1. Modelling of state space and invariants (variables CoS , CoI , AcS and AcI , ta-
ble 1) required completing a data model of either case study within 30 minutes,
using either UML class diagrams (CDs) and OCL, or VCL structural and as-
sertion diagrams.

2. Modelling of operations (variables CoO and AcO , table 1) involved modelling
two operations in a given data model within 35 minutes, using either OCL and
UML CDs, or VCL behaviour, contract and assertion diagrams.

3. Problem comprehension (variable PC , table 1) involved completing a question-
naire focussed on the modelled problem within 15 minutes.

An Experimental Scrutiny of Visual Design Modelling 17

Day 1 Day 2 Day 3 Day 4

Group A VCL, UL UML+OCL, UL UML+OCL, FB VCL, FB
Group B UML+OCL, UL VCL, UL VCL, FB UML+OCL, FB

Table 3: Experiment’s scheduling, highlighting case study and language used by
each group on each round. (UL = University Library; FB = Flight Booking.)

4. Defect Detection (variable DD , table 1), about finding seeded defects in com-
plete models (comprising both static and dynamic parts) within 25 minutes,
required browsing through either UML CDs and OCL, or VCL structural, as-
sertion, behaviour and contract diagrams.

5. Model Comprehension (variable MC , table 1), about completing a questionnaire
on a given complete model within 15 minutes, involved browsing through UML
CDs and OCL, and a VCL complete model.

Participants worked on each of the two systems, using VCL or UML+OCL.
They were prevented from collaborating; the work was monitored as tasks were
performed in a classroom. Although aware of the experiment’s overall goal, par-
ticipants were unaware of experimental hypotheses or dependent variables.

4.3 Design Type and Scheduling

The experiment follows a crossover or within-subjects design — all participants are
subject to the different treatments. It involves one main factor (or treatment), the
design notation (either VCL or UML+OCL), and a secondary case study factor
(either UL or FB), yielding four treatment combinations of a 22 factorial design.
The rationale is: (a) maximise number of data points to increase statistical power,
(b) remove or mitigate bias emerging from differences in case-study complexity or
individual ability, (c) at the cost of possible carry-over effects [55].

Participants were split into two groups. The group-assignment was mainly
based on availability due to the experiment’s voluntary nature. However, an effort
was made to scatter the high ability individuals evenly among groups based on
the results of an ability questionnaire; this is elaborated further in section 7.

Table 3 outlines the experiment’s four rounds. In each round, each group is
given a different treatment. All participants were subject to the four treatment
combinations.

4.4 Modelling Tools

The experiment relied on modelling tools. This enhances language usability, con-
tributes to the quality of resulting models and ensures a connection with modern-
day reality, which relies heavily on software tools. The experiment uses two Eclipse-
based tools: Visual Contract Builder (VCB) [9,10]5 and Papyrus6. VCB is the only
VCL tool. Papyrus was chosen because it is Eclipse-based, which ensures a certain
degree of similarity.

5 http://vcl.gforge.uni.lu/
6 http://www.eclipse.org/papyrus/

http://vcl.gforge.uni.lu/
http://www.eclipse.org/papyrus/

18 Nuno Amálio et al.

Session 1 Session 2 Session 3

FCUL VCL (2 hours) UML+OCL (2
hours)

–

FCT/UNL VCL (2 hours) UML+OCL (2
hours)

1 hour VCL followed by 1 hour
UML+OCL (optional)

U. Luxem-
bourg

VCL (2 hours) UML+OCL (2
hours)

1 hour VCL followed by 1 hour
UML+OCL (optional)

U. York UML+OCL (3 hours) VCL (3 hours) –

Table 4: Administered training in the different experiment replications.

4.5 Training

The training covered the examined notations, focussed on the more challenging
tasks of modelling of state space, invariants and operations, and relied on the
participant’s university training on UML-based design. It consisted of a live and
assisted modelling of a system from a requirements description using the notations
under study and their supporting tools mimicking the experiment’s modelling
tasks. No training was given on the experiment’s model usage tasks (problem
comprehension, defect detection and model comprehension) due to time reasons
— if participants were able to model, then they would be able to undertake the
easier model usage tasks.

The training lasted 4 to 6 hours with two mandatory hours per notation.
Table 4 summarises the training provided at the different experiment replications.
Each participant had at least 4 hours of training (2 VCL + 2 UML) with variations
across the replications. At FCUL no extra training was given. Some FCT/UNL and
Luxembourg participants were given one hour extra of training. York participants
received six hours of training (3 VCL + 3 UML).

5 Instrumentation

The experiment’s artefacts comprise: (a) case study narratives; (b) sample case
study models for tasks of modelling, defect detection and model comprehension;
(c) problem and model comprehension questionnaires; (d) ability questionnaire;
and (e) debriefing survey. All materials are given in full in [8].

Each seeded defect and comprehension question was selected according to a
number of criteria: it had to cover different aspects or parts of the system to the
largest extent possible; it should neither be trivial nor overly difficult to answer
or find. The questions had to be relevant and genuine, ideally questions that a
software engineer could ask about the system. Standard techniques for phrasing
subjective questions and designing surveys were followed [85].

5.1 Case Study Narratives and Sample Models

All tasks of an experiment session use either one of the two case studies, UL or
FB (section 4.1), exemplars of systems used in the teaching of software design.

An Experimental Scrutiny of Visual Design Modelling 19

(a) VCL structural diagram of initial model

(b) VCL structural diagram of model with defects

(c) UML class diagram of model with defects

Fig. 3: Structural diagrams of sample models of university library.

20 Nuno Amálio et al.

University Library Flight Booking
VCL UML+OCL VCL UML+OCL

State space 8 7 13 13
Invariants 7 5 7 6
Operations 21 24 19 20

Total 36 36 39 39
Goodness of fit p-value .51 .9

Table 5: Frequency distribution of seeded errors in models with defects. This con-
siders both case studies; distributions are given with respect to modelling aspects
(state space, invariants and operations).

At the start of a session, participants were given a requirements narrative
(given in [8]). For the task on modelling state space and invariants, participants
had to complete a given incomplete model (called initial model) — fig. 3a gives
UL’s initial VCL model. For the modelling of operations, participants had to model
two operations on another given model (intermediate model with a complete state
space and incomplete dynamics).

The given models aimed to get the most out of the short modelling tasks. They
acted as ice-breakers, countering against the blank page effect, and contributing
to the task’s fluidity and engagement to provide meaningful experiment data.

For defect detection (DD), participants were given models with seeded defects,
which they had to identify by completing an online form. Figure 3b gives the
SD of UL’s DD VCL model and Fig. 3c gives the UML counterpart; all faulty
models are given in full in [8]. Defects were seeded in the solution models of both
case studies; for example, one error in Fig. 3b is that authors do not have names,
whereas in Fig. 3c class Author is missing altogether. Table 5 gives the frequency
distribution of seeded defects across the different modelling aspects being analysed
(state space, invariants and operations). A χ2 goodness of fit test confirmed that
the distributions of notations and case study are evenly distributed (see p-values
of goodness of fit in table 5) to avoid bias — no significant differences were found.

For model comprehension, subjects were given a complete case study model.
Two operations of these models for the UL case study are given in Fig. 4.

5.2 Comprehension Questionnaires

After modelling, participants had to complete a questionnaire with 12 multiple-
choice questions having one correct answer, to assess comprehension of modelled
problem. A sample question is given in Fig. 5.

Model comprehension questionnaires were accompanied by a complete model
of the system. They contained 12 multiple-choice questions having a unique cor-
rect answer. A sample question of a model comprehension questionnaire for the
university library case study is given in Fig. 6. Whilst the problem comprehen-
sion questionnaire evaluates someone’s understanding of the requirements of the
modelled problem, the model comprehension questionnaire was focussed on the
understanding of what is modelled and what a model actually says. Note how

An Experimental Scrutiny of Visual Design Modelling 21

(a) A VCL contract diagram for the local operation Copy.Recall

context Copy : : r e c a l l (m : Member , now : Unl imitedNatural)
pre : s t a t u s = CopyStatus : : onLoan
post : s t a t u s = CopyStatus : : r e c a l l e d

and calcDueDate (now) < dueDate@pre implies dueDate = calcDueDate (now)

(b) OCL pre- and post-conditions for the local operation Copy.Recall

Fig. 4: Local operation Copy.recall of university library expressed in the notations
under study.

Fig. 5: A sample question of a problem comprehension questionnaire for the flight
booking case study.

diagrams of Fig. 4 give the answer to question of Fig. 6: when a Copy is recalled,
its status changes from onloan to recalled.

5.3 Ability Questionnaire

The ability questionnaire assesses the capabilities of participants prior to the ex-
periment. It questioned participants on whether they had completed or were in
the process of completing a higher education degree in computer science, and what
was their exposure to computer programming, discrete mathematics, visual mod-
elling (using either object-oriented or structured methods), and formal modelling.
Figure 7 gives two sample questions of this questionnaire.

22 Nuno Amálio et al.

Fig. 6: A sample question of a model comprehension questionnaire for the univer-
sity library case study.

Fig. 7: Two questions of the ability questionnaire.

5.4 Debriefing Survey

The debriefing survey gauges perceptions resulting from individual experiment
experiences. This includes perceived performance in tasks of modelling, problem
comprehension, defect detection and model comprehension, as well as perceived
usefulness, ease of use, usability, preferred notation, and positives and negatives
of the two notations under study. In addition, the debriefing survey provides sup-
plementary information meant to support and explain the quantitative results by
providing qualitative insight. A sample question is given in Fig. 8.

6 Statistical Analysis

The quantitative analysis relies on null-hypothesis significance testing (NHST),
effect sizes (ESs) and confidence intervals (CIs). ESs are quantitative estimates of
the magnitude of some effect of interest, often the size of a difference. CIs give
the precision of point estimates or measurements, providing a range of plausible
values within which we can have a degree of confidence that the estimate is not
due to chance. The analysis was conducted using the R statistical software [91].

6.1 Means, Proportions and their CIs

The analysis emphasises measures of central tendency. For continuous variables,
we calculate means (point estimates) whose precision is assessed through 95% CIs

An Experimental Scrutiny of Visual Design Modelling 23

Fig. 8: A sample question from the debriefing questionnaire.

calculated using the following formula [36]:

95%CI = M ± t.95(N − 1)× SE , SE =
SD√

N

Above: M is the sample’s mean, SE the standard error, SD the standard deviation,
and N the size of the sample; t.95(N −1) is critical value of the t distribution with
N − 1 degrees of freedom and corresponding to the 95% range7.

Categorical variables are studied with proportions, derived from frequency dis-
tributions, which, like means, are estimates whose precision can be assessed with
CIs. For proportion CIs, we use the more robust approach of Newcombe et al [81,
82], as recommended by Cumming [36] as it provides good approximations even

7 The classical formula uses the value 1.96, the Z score of the 95% range in the normal
distribution. However, the t approach is more robust as it handles small sample sizes (less
than 30), the case of many CIs calculated here.

24 Nuno Amálio et al.

when N is small and P is close or equal to 0 or 1; this gives the formula8:

A = 2× x + 1.962, B = 1.96×
√

1.962 + 4× x × (1− P), C = 2× (N + 1.962)
95%CI = [(A− B)/C , (A + B)/C]

Where P is the estimated proportion, x is the observed frequency for the property
of interest, and N is the total number of observations — P = x/N .

6.2 Hypothesis Testing

For a dependent variable V (table 1), null and alternative hypotheses are formu-
lated using either continuous or categorical templates:

H 0
i : V (VCL) = V (UML) H a

i : V (VCL) 6= V (UML)
H 0

i : V (VCL) = V (UML) = V (NP) H a
i : V (VCL) 6= V (UML) 6= V (NP)

Hypotheses are tested by estimating probabilities called p-values. Given data D ,
and some null hypothesis H0, a p-value is a conditional probability estimate,
P(D | H0) [34] — the likelihood of the given observations assuming that the null
hypothesis is true. Rejecting H0 means that it is unlikely because our observations
deem P(D | H0) to be unlikely — hence, we accept the alternative hypothesis. Null
hypotheses are rejected based on three levels of statistical significance, depending
on whether the p-value is below α = .05 (*), α = .01 (**) or α = .001 (***).

Continuous hypotheses are tested using the non-parametric Wilcoxon test
(hereafter referred to as W), a robust test as it does not assume that the sample
population is normally distributed. Categorical variables are tested using the χ2

test. Calculated p-values are two-tailed.

To counter against the problems of multiple testing and to increase the relia-
bility of NHST, the analysis uses the false discovery rate [22] and the method of
Benjamini and Yekutieli (BY) [23], a more relaxed alternative to the family-wise
error rate and the conservative procedure of Bonferroni [62], to calculate adjusted
p-values. Null hypotheses are rejected based on adjusted p-values only.

6.3 Effect Sizes (ESs)

We use as ES measurement the raw (or unstandardised) mean difference. We
consider two cases: paired and unpaired data.

Given the experiment’s within-subjects design, most of our mean difference
calculations fall under the paired case. The formulas are as follows [56,87,50,36]:

PD = VVCL −VUML, SEPD =
SDPD√

N
, 95%CI = MPD ± t.95(N − 1)× SEPD

Above: MPD = MVCL −MUML; SDPD = standard deviation of paired differences.

8 The traditional formula to calculate SEs for proportion CIs is: SE =

√
P × (1− P)

N

An Experimental Scrutiny of Visual Design Modelling 25

The formula for the unpaired case is as follows [36]:

SEUD =

√
(NA − 1)SD2

A + (NB − 1)SD2
B

NA + NB − 2
95%CI = MUD ± t.95(NA + NB − 2)× SEUD

Above, we assume groups A and B , and MUD = MB −MA.
Raw mean differences provide an intuitive measurement of an effect, but they

lack uniformity, making it difficult to compare effects when the scales differ. To
cater for uniformity, we use the ES Cohen’s d [33], which is appropriate for contin-
uous variables and means. To estimate this, we use the standard deviation average
(or pooled standard deviation) as the standardiser (denominator) [36]:

d =
MVCL −MUML

SDav
SDav =

√
SD2

VCL + SD2
UML

2

There are slightly different ways of calculating the Cohen’s d, which vary depend-
ing on the formula used for the denominator. The formula above, based on the
standard deviation average, fits the paired design being followed [36]. CIs for this
ES are calculated using approaches based on non-central t distributions [38,65].

For categorical data, we use the ES measurement Cohen’s h [33], based on the
arcsine transformation, which is appropriate for differences between proportions.
The formula for h and the SE to calculate CIs (from [33]) is:

h = 2× arcsin
√

PVCL − 2× arcsin
√

PUML, SE =
1√
N

6.4 Statistical Graphs

The paper depicts its results using the following graph types:

– Histograms (example in Fig. 9c), typically used to depict frequency distribu-
tions, use the area of the bars to represent proportions.

– Plots of point estimates and confidence intervals (example in Fig. 9e) depict point
estimates (e.g. means) as dots and 95% confidence intervals (CIs) as error bars
to convey the uncertainty of the sampled point estimates. They display the
different samples in the abscissa and the units of the analysed data in the
ordinate (Fig. 9e uses subject’s proficiency scores).

– Forest plots (example in Fig. 12a) display point estimates and their correspond-
ing 95% CIs. Point estimates are represented as circles and CIs as error bars;
the abscissa conveys the scale of the pictured result.

6.5 Symbols

The sequel adopts the following symbols to convey statistical significance and ES:

– For statistical significance, given a p-value p we have: ns = not significant
(p ≥ .05); * = p < .05; ** = p < .01, *** = p < .001.

– For ESs, we use symbols to denote the attained magnitude level. Given a value
es we have: ø = null (| es |≤ .05); • = small (.05 <| es |≤ .2); •+= small to
medium (.2 <| es |< .4); ••= medium (.4 ≤| es |≤ .6); ••+= medium to large
(.6 <| es |< .8); •••= large (| es |≥ .8)

26 Nuno Amálio et al.

M S U N C S
FCUL .44[.36, .52] .16 3 9 4 0
FCT/UNL .69[.61, .77] .12 0 1 7 3
UL .58[0, 1] .25 1 1 0 1
U. York .61[.56, .67] .06 0 1 6 0

Total .56[.5, .62] .17 4 12 17 4

(a) Proficiency of the experiment’s participants across ex-
periment venues

Group N M S

A 22 .52[.44, .59] .17
B 15 .62[.53, .71] .17

p .06ns
B −A .1[−.24, .44]
d .62[−.05, .99]••+

(b) Experimental groups, aggre-
gated proficiencies and differences

UG PG

Program of Studies

Nu
m

be
r o

f p
eo

pl
e

0

5

10

15

20

(c) Subject’s de-
gree levels

U N C S

Subjects' Ability

Nu
m

be
r o

f p
eo

pl
e

0

5

10

15

(d) Subject’s profi-
ciency levels

●

●

●

●

M
ea

n
±

 C
I

FCUL U. York
FCT/UNL Total

.3

.4

.5

.6

.7

.8

(e) Means and CIs of profi-
ciencies across venues

●

●

M
ea

n
±

 C
I

A B

.4

.5

.6

.7

.8

(f) Means and CIs of
proficiencies across ex-
perimental groups.

Fig. 9: A characterisation of the experiment’s participants based on responses to
the ability questionnaire. (UL = University of Luxembourg; U = unfit; N = Novice;
C = Competent; S = Skilled; UG = Undergraduate; PG = Postgraduate.)

7 Participants

Figure 9 characterises the experiment’s participants using data gathered from the
ability questionnaire. Participants had diverse levels of education and training,
ranging from bachelor students taking a course on object-oriented design for the
first time to students undertaking their PhD studies in topics related to soft-
ware engineering. The proficiency scores cater to the subjects’: higher education
in computer science, ability in computer programming, and exposure to discrete
mathematics, OO modelling and formal modelling. Each criterion was evaluated
on a scale from 0 (no competence or exposure) to 4 (high degree of competence or
exposure to a subject); the final score being a proportion (obtained score divided
by maximum score). From this score, participants were classified as unfit (between
0 and .4), novice (between .4 and .6), competent (between .6 and .8) and skilled

(between .8 and 1). Table 9a provides the mean proficiency scores and 95%CIs of
each venue and in total, and the frequency distributions across proficiency cate-
gories, both are pictured in Figs. 9d and 9e, respectively. In general, participants
had the required level of training and education. All participants were, or in the
course of being, university-trained in UML-based software design; 23 under- and
19 post-graduate students took part in the experiment (Fig. 9c).

Table 9b and the plot of Fig. 9f characterise the proficiencies of the two ex-
perimental groups. We can see that the proficiency of group B is non-significantly
higher than A’s — W p-value = .06 (ns), MB−A = .1[−.24, .44], medium to large
effect (d = .62[−.05, .99], ••+)

An Experimental Scrutiny of Visual Design Modelling 27

8 Results

We start with an overview of the experiment’s results (section 8.1), followed by
an account of the results for: modelling (section 8.2), comprehension and model
usage (section 8.3), usefulness and ease of use (section 8.4), usability (section 8.5)
and overall perception (section 8.6). Since the experiment uses a crossover design
we look into learning effects (section 8.7).

8.1 Results: a Bird’s Eye View

Table 6 summarises the outcomes of hypotheses testing. First column (Hyp) gives
the dichotomous outcome: either null (no difference) or alternative (a significant
difference in favour of either approach) hypothesis — highlighted using shading
(green in colour version). Columns VCLM/P and UMLM/P give either a mean
(M) or a proportion (P) of VCL and UML, respectively. Column VCL − UML

gives difference between either means or proportions. Column p/q gives NHST
probabilities (p-values) with appraisals of significance (as per section 6.5); raw
p-values (first value), denoted as p, are calculated using either Wilcoxon (W) or
χ2 tests; if p is significant, we obtain the adjusted p-value, denoted as q, using
the false discovery rate [22] and the method of Benjamini and Yekutieli (BY) [23]
to counter against multiple testing issues. Finally, column es (effect size) provides
measures of magnitude, using either Cohen’s d or h and levels of magnitude (as
per section 6.5). Null hypotheses are rejected based on the adjusted p-value q.

The experiment’s results are given in full in [8] with an accompanying detailed
analysis. The next sections present an abridged analysis with relevant results.

8.2 Modelling

Modelling is evaluated objectively based on completeness (how much is modelled)
and accuracy (quality of what is modelled), supplemented with subjective mea-
sures. We present the data using plots of means and CIs, focusing on the results
for overall, each case study, and each experiment venue.

8.2.1 Completeness

The completeness results, corresponding to hypotheses H1..3 of table 6, are por-
trayed in Fig. 10. They are as follows:

– In state space (Fig. 10a), VCL (M = .64, 95% CI [.6, .69], sd = .22) is very
close to UML+OCL (M = .67, CI [.63, .71], sd=.19) — the mean of differences
(MD) is −.03 (CI [−.07, .02]). Cohen’s d ES of −.13 (CI [−.35, .08], •) indicates
a small effect.

– In invariants (Fig. 10c), VCL (M = .1, CI[.07, .13], sd = .14) is close to
UML+OCL (M=.13, CI[.09, .18], sd = .22) — MD = −.03 (CI[−.08, .01]), small
effect (d = −.18, CI[−.38, .05], •).

– In Operations (Fig. 10e), VCL’s advantage (M = .16, CI [.13, .19], sd = .14) to
UML+OCL (M = .11, CI [.09, .13], sd = .1) is significant — MD = .05[.03, .08],
W p = 3× 10−6(***), BY q = 7× 10−5 (***), d = .45[.26, .71] (••).

28 Nuno Amálio et al.

Hyp VCLM/P UMLM/P VCL - UML p/q es(d/h)

Modelling (objective, RQ1)
H 0

1 :CoS .64M [.6, .69] .67M [.63, .71] −.03[−.07, .02] .23ns −.13•d [−.35, .08]
H 0

2 :CoI .1M [.07, .13] .13M [.09, .18] −.03[−.08, .01] .32ns −.18•d [−.38, .05]
H a

3 :CoO .16M [.13, .19] .11M [.09, .13] .05[.03, .08] 3×10−6
∗∗∗/9×10−5

∗∗∗ .45••d [.26, .71]
H 0

4 :AcS .38M [.33, .43] .38M [.34, .43] −.001[−.05, .05] .83ns −.01ø
d
[−.22, .21]

H 0
5 :AcI .2M [.16, .24] .2M [.15, .24] .01[−.04, .05] .74ns .03ø

d
[−.19, .24]

H 0
6 :AcO .11M [.08, .14] .09M [.06, .11] .02[−.004, .04] .07ns .17•d [−.03, .4]

Perceived modelling (subjective, RQ1)

H 0
7 :PMS .51P [.37, .65] .35P [.22, .5] .16[−.11, .41] .011∗/.088ns .33•+

h
[.03, .63]

H 0
8 :PMI .53P [.39, .67] .26P [.15, .4] .28[.02, .5] .018∗/.13ns .58••h [.28, .88]

H a
9 :PMO .6P [.46, .74] .28P [.17, .43] .33[.05, .55] .00034∗∗∗/.0061∗∗ .67••+

h
[.37, .97]

Comprehension and model usage (objective, RQ2 and RQ3)
H 0

10 :PC .65M [.61, .69] .64M [.6, .68] .01[−.04, .05] .66ns .03ø
d
[−.18, .24]

H a
11 :DD .27M [.24, .3] .19M [.17, .21] .08[.05, .1] 5×10−7

∗∗∗/3×10−5
∗∗∗ .67••+

d
[.41, .87]

H a
12 :MC .67M [.64, .71] .61M [.58, .65] .06[.02, .1] .0025∗∗/.03∗ .37•+

d
[.09, .52]

Perceived comprehension and model usage (subjective, RQ2 and RQ3)
H 0

13 :PPC .47P [.33, .61] .12P [.05, .24] .35[.13, .53] .0098∗∗/.081ns .81•••h [.51, 1.1]

H 0
14 :PDD .56P [.41, .7] .23P [.13, .38] .33[.06, .54] .0074∗∗/.066ns .68••+

h
[.38, .98]

H 0
15 :PMC .44P [.3, .59] .14P [.07, .27] .3[.08, .49] .026∗/.17ns .69••+

h
[.39, .99]

Usefulness and ease of use (subjective, RQ4)
H 0

16 :U .68M [.64, .73] .66M [.61, .7] .03[−.04, .09] .19ns .18•d [−.18, .42]

H a
17 :EoU .58M [.55, .62] .49M [.45, .54] .09[.04, .15] .0026∗∗/.03∗ .7••+

d
[.21, .85]

Usability (subjective, RQ5)
H 0

18 :UsR .53P [.39, .67] .33P [.2, .47] .21[−.07, .45] .0064∗∗/.066ns .43••h [.13, .73]
H a

19 :UsN .69P [.54, .81] .14P [.07, .28] .55[.29, .72] 6×10−6
∗∗∗/.00014∗∗∗ 1.19•••h [.88, 1.49]

H 0
20 :UsMOs .56P [.41, .7] .21P [.11, .35] .35[.09, .56] .0074∗∗/.066ns .74••+

h
[.44, 1.04]

H a
21 :UsLEC .51P [.37, .65] .09P [.04, .22] .42[.2, .59] .0024∗∗/.03∗ .97•••h [.68, 1.27]
H a

22 :UsLF .7P [.55, .81] .16P [.08, .3] .53[.27, .72] 3×10−6
∗∗∗/9×10−5

∗∗∗ 1.15•••h [.85, 1.45]

H 0
23 :UsC .37P [.24, .52] .27P [.16, .42] .1[−.14, .32] .68ns .21•+

h
[−.1, .52]

H 0
24 :UsL .46P [.3, .64] .32P [.18, .51] .14[−.18, .43] .27ns .29•+

h
[−.08, .66]

H 0
25 :UsCS .54P [.36, .7] .25P [.13, .43] .29[−.04, .55] .074ns .6••h [.22, .97]

Overall Perception (subjective, RQ6)
H 0

26 :PNS .42P [.28, .57] .44P [.3, .59] −.02[−.29, .24] .026∗/.17ns −.05ø
h
[−.35, .25]

H a
27 :PNI .65P [.5, .78] .19P [.1, .33] .47[.2, .66] 6×10−5

∗∗∗/.0012∗∗ .99•••h [.69, 1.28]

H a
28 :PNO .58P [.43, .72] .21P [.11, .35] .37[.11, .58] .0026∗∗/.03∗ .78••+

h
[.49, 1.08]

H 0
29 :PN .49P [.35, .63] .28P [.17, .43] .21[−.05, .44] .091ns .43••h [.14, .73]

H 0
30 :FN .33P [.2, .47] .33P [.2, .47] 0[−.23, .23] .98ns 0ø

h
[−.3, .3]

H a
31 :Appr .56P [.51, .61] .31P [.27, .36] .24[.15, .33] 4×10−24

∗∗∗ /4×10−22
∗∗∗ .5••h [.4, .6]

Table 6: Results of hypotheses testing. Confirmed alternative hypotheses are high-
lighted (in shaded or green in colour version).

8.2.2 Accuracy

The accuracy results, corresponding to hypotheses H4..6 of table 6, are portrayed
in Fig. 10. They are as follows:

– In state space (Fig. 10b), VCL (M = .38[.33, .43], sd = .23) is quasi-equal to
UML (M = .38[.34, .43], sd = .22) — MD = 0[−.05, .05], d = −.01[−.22, .21]
(ø). Likewise for invariants (Fig. 10d) — VCL (M = .2[.16, .24], sd = .18),
UML (M = .2[.15, .24], sd = .21), MD = .01[−.04, .05], d = .03[−.19, .24] (ø).

An Experimental Scrutiny of Visual Design Modelling 29

●
●

●

●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

.4

.5

.6

.7

.8

.9

● VCL
UML+OCL

(a) Completeness of state space (CoS).

●

●

●
●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

.1

.2

.3

.4

.5

.6

.7

● VCL
UML+OCL

(b) Accuracy of state space (AcS)

● ● ●

●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

0

.1

.2

.3

.4

● VCL
UML+OCL

(c) Completeness of invariants (CoI)

●
●

●

●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

0

.1

.2

.3

.4

.5

● VCL
UML+OCL

(d) Accuracy of invariants (AcI)

●

●

●
●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

0

.1

.2

.3

● VCL
UML+OCL

(e) Completeness of operations (CoO)

●
●

●
●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

0

.1

.2

.3

● VCL
UML+OCL

(f) Accuracy of operations (AcO)

Fig. 10: Model completeness and accuracy for state space, invariants and opera-
tions. (CS UL = University Library case study (CS); FB = Flight Booking; FCUL,
FCT/UNL, UL and UY are the different institutions.)

– Operations (Fig. 10f) highlight a non-significant VCL advantage (M = .11
[.08, .14], sd = .13) to UML+OCL (M = .09[.06, .11], sd = .11) — MD =
.02[0, .04], W p = .07 (ns), d = .17[−.03, .4] (•).

8.2.3 Perceived Performance

The debriefing questionnaire [8] asked about any perceived notation advantages
in modelling. The results, corresponding to hypotheses H7..9 of table 6, are given
in Fig. 11, which contains a table of frequencies (Fig. 11a), a histogram (Fig. 11b)
and a plot of proportions and their CIs (Fig. 11c). The results are as follows:

30 Nuno Amálio et al.

SS Is Os
ns ns **
•+ •• ••+

VCL 22 23 26
UML 15 11 12
NP 6 9 5

Total 43 43 43

(a) Frequencies, significances
and effects SS Is Os

Nu
m

be
r o

f p
eo

pl
e

0

5

10

15

20

25

VCL
UML
NP

(b) Frequency distribution

●
●

●

Pr
op

or
tio

n
±

 C
I

SS Is Os

.1

.2

.3

.4

.5

.6

.7

.8

● VCL
UML+OCL

(c) Proportions and CIs

Fig. 11: Notation perceived as providing best modelling performance (SS = State
Space; Is = Invariants; Os = Operations; NP = No preference.)

CoS
CoI
CoO
AcS
AcI
AcO

−0.5 −0.25 0 0.25 0.5 0.75
Effect Size (d)

(a) Objective performance (effect size d)

PMS

PMI

PMO

0 0.25 0.5 0.75 1
Effect Size (h)

(b) Perceived performance (effect size h)

Fig. 12: Forest Plots of effect sizes and their CIs for modelling.

– In state-space (PMS), a higher, but non-significant proportion of subjects
perceived a better performance with VCL (22 out 43 = .51[.39, .67]) than
UML+OCL (15/43 = .35[.15, .4]) and no preference (6) — proportion difference
(PD) = .16[−.11, .41], χ2 p = .011 (*), BY q = .088 (ns), h = .33[.03, .63] (•+).

– In invariants (PMI), a higher, but non-significant proportion of subjects per-
ceived a better performance with VCL (23/43 = .53[.39, .67]) than UML+OCL

(11/43 = .26[.15, .4]) and no preference (9) — PD = .28[.02, .5], χ2 p = .018 (*),
BY q = .13 (ns), h = .58[.28, .88] (••).

– In operations (PMO), VCL (26/43 = .6[.46, .74]) significantly outperformed
UML+OCL (12/43 = .28[.17, .43]) and no preference (5) — PD = .33[.05, .55],
χ2 p = .00034 (***), BY q = .0061 (**), h = .67[.37, .97] (••+).

8.2.4 Overall

Figure 12 presents forest plots of ESs for objective (Fig. 12a) and subjective
(Fig. 12a) measures of modelling.

An Experimental Scrutiny of Visual Design Modelling 31

●

●

●
●

●

● ●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

.4

.5

.6

.7

.8

.9

● VCL
UML+OCL

(a) Problem comprehension

●

●

●

●

●

● ●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

.1

.2

.3

.4

● VCL
UML+OCL

(b) Defect detection

●

●

●
●

●

●

●

M
ea

n
±

 C
I

Total CS FB FCT/UNL UY
CS UL FCUL UL

.4

.5

.6

.7

.8

● VCL
UML+OCL

(c) Model comprehension

Fig. 13: Plots of means and CIs for model usage and comprehension (CS UL = Uni-
versity Library case study (CS); CS FB = Flight Booking CS; FCUL, FCT/UNL,
UL and UY are the different experiment venues.)

8.3 Comprehension and Model Usage

The tasks of problem comprehension, defect detection and model comprehension
resulted in objective and subjective performance measures.

8.3.1 Objective Performance

The results, corresponding to hypotheses H10..12 of table 6 and portrayed in Fig. 13,
are as follows:

– In problem comprehension (PC, Fig. 13a), VCL (M = .65[.61, .69], sd= .19) is
quasi-equal to UML+OCL (M = .64[.6, .68], sd= .2) — MD = .01[−.04, .05]).

– In defect detection (DD, Fig. 13b), VCL’s (M = .27[.24, .3], sd= .13) difference
to UML (M = .19[.17, .21], sd = .1) is highly significant — MD = .08[.05, .1]),
W p = 5× 10−7 (***), BY q = 2× 10−5 (***), d = .67[.41, .87] (••+).

– In model comprehension (MC, Fig. 13c), VCL (M=.67[.64, .71], sd = .16) sig-
nificantly outperforms UML+OCL (M = .61[.58, .64], sd = .16) — MD =
.06[.02, .1]), W p = .0025 (**), BY q = .022 (*), d = .37[.09, .52] (•+).

32 Nuno Amálio et al.

PC DD MC
ns ns ns
••• ••+ ••+

VCL 20 24 19
UML 5 10 6
Equal 18 9 18

Total 43 43 43

(a) Frequencies, significances
and effects PC DD MC

N
um

be
r

of
 p

eo
pl

e

0
5

10
15

20
25 VCL

UML+OCL
Equal

(b) Histogram

●

●

●

Pr
op

or
tio

n
±

 C
I

PC DD MC

0

.1

.2

.3

.4

.5

.6

.7

● VCL
UML+OCL

(c) Proportions and CIs.

Fig. 14: Notation perceived as providing the best performance in problem compre-
hension (PC), defect detection (DD) and model comprehension (MC).

PC
DD
MC

−0.25 0 0.25 0.5 0.75 1
Effect Size (d)

(a) Actual performance (effect size d)

PPC
PDD
PMC

0 0.25 0.5 0.75 1 1.25
Effect Size (h)

(b) Perceived performance (effect size h)

Fig. 15: Forest Plots of effect sizes of objective and perceived performance in
problem and model comprehension (PC and MC) and defect detection (DD).

8.3.2 Perceived Performance

The results, corresponding to hypotheses H13..15 of table 6, are described in Fig. 14
with a table of frequencies (Fig. 14a), a histogram (Fig. 14b), and a plot of pro-
portions and CIs (Fig. 14c). The results are as follows:

– In PC, VCL (P = .47[.33, .61]) outperformed UML+OCL (P = .12[.05, .24])
non-significantly — PD = .35[.13, .53], χ2 p = .0098 (**), BY q = .081 (ns),
h = .81[.51, 1.1] (•••).

– In DD, VCL (P = .56[.41, .7]) outperformed UML+OCL (P = .23[.13, .38])
non-significantly — PD = .33[.06, .54], χ2 p = .0074 (**), BY q = .066 (ns),
h = .68[.38, .98] (••+).

– In MC, VCL (P = .44[.3, .59]) outperformed UML+OCL (P = .14[.07, .27])
non-significantly — PD = .3[.08, .49]), χ2 p = .026 (*), BY q = .17 (ns),
h = .69[.39, .99] (••+).

An Experimental Scrutiny of Visual Design Modelling 33

●

●

●
●

●

M
ea

n
±

 C
I

Total FCT/UNL U. York
FCUL U. Luxembourg

.5

.6

.7

.8

.9

● VCL
UML+OCL

(a) Means and CIs (U)

●
●

● ● ●

M
ea

n
±

 C
I

Total FCT/UNL U. York
FCUL U. Luxembourg

.3

.4

.5

.6

.7

● VCL
UML+OCL

(b) Means and CIs (EoU)

U

EoU

−0.25 0 0.25 0.5 0.75 1
Effect Size (d)

(c) Forest plot of effect sizes (d)

Fig. 16: Usefulness (U) and ease of use (EoU).

8.3.3 Overall

Figure 15 presents forest plots of objective and perceived performance in model
usage and comprehension. Figure 15a portrays the Cohen’s d ESs (Cohen’s d) with
CIs; Fig. 15b does the same with subjective measures and Cohen’s h.

8.4 Usefulness and Ease of Use

Variables U and EoU aggregate perception scores (proportion) emerging from
statements evaluated on Likert scale from 1 (strongly agree) to 5 (strongly dis-
agree)9. The results, corresponding to hypotheses H16,17 of table 6 and portrayed
in the plots of Fig. 16, are as follows:

– In U (Fig. 16a), VCL (M = .68[.64, .73], sd = .15) outperforms UML+OCL
(M = .66[.61, .7], sd = .14), but not significantly — MD = .03[−.04, .09]
(sd=.14), W p = .19 (ns), d = .18[−.18, .42] (•).

– In EoU (Fig. 16b), VCL (M = .58[.55, .62], sd=.12) significantly outperforms
UML+OCL (M = .49[.45, .54], sd=.14,) — MD = .09[.04, .15] (sd=.14), W
p = .0026 (**), BY q = .022 (*), d = .7[.21, .85], (••+).

8.5 Usability

The usability results, corresponding to hypothesis H18..25 of table 6, are portrayed
in Fig 17, which contains a table of frequencies (Fig. 17a), a histogram (Fig. 17b),
a plot of proportions and CIs (Fig. 17c), and a forest plot of ESs (Fig. 17d). They
are as follows:

– In reading (R), VCL’s proportion of .53 (CI [.39, .67]) against UML+OCL’s .33
(CI [.19, .47]) yields a non-significant proportion difference (PD) of .21[−.07, .45]
— χ2 p = .0064 (**), BY q = .066 (ns), h = .43[.13, .73] (••).

9 For each response, the score is obtained by the formula 5 − x if the statement is positive
and x − 1 if the statement is negative yielding a score on a scale 0..4 for each response.

34 Nuno Amálio et al.

R N MOs LEC LaF C L CS
ns *** ns * *** ns ns ns
•• ••• ••+ ••• ••• •+ •+ ••

VCL 23 29 24 22 30 15 13 15
UML 14 6 9 4 7 11 9 7
NP 6 7 10 17 6 15 6 6

Total 43 42 43 43 43 41 28 28

(a) Frequencies, significances and effects

R N MOs LEC LaF C L CS

Usability Criteria

N
um

be
r

of
 p

eo
pl

e

0

5

10

15

20

25

30
VCL
UML+OCL
No preference

(b) Frequency distributions

●

●

●
●

●

●

●

●

Usability Criteria

Pr
op

or
tio

n
±

 C
I

R N MOs LEC LaF C L C/S

0
.1
.2
.3
.4
.5
.6
.7
.8
.9

● VCL
UML+OCL

(c) Proportions and CIs

R
N
MOs
LEC
LaF
C
L
CS

−0.25 0 0.25 0.5 0.75 1 1.25 1.5
Effect Size (h)

(d) Forest plot of effect sizes (h)

Fig. 17: Usability results derived from debriefing survey. (NP= No preference; R =
Reading; N = Navigation; MOs = Maps and overviews; LEC = live error checking;
LaF = Look and feel; C=Cohesion; L=Learnability; CS=Comfort Satisfaction.)

– In navigation (N), VCL’s (P = .69[.54, .81]) difference to UML+OCL (P =
.14[.07, .28]) is significant — PD = .55[.29, .72]), χ2 p = 6 × 10−6 (***), BY
q = .00014 (***), h = 1.19[.88, 1.49] (•••).

– In maps and overviews (MOs), VCL’s (P = .56[.41, .7]) difference to UML+OCL
(P = .21[.11, .35]) is not significant — PD = .35[.09, .56]), χ2 p = .0074 (**),
BY q = .066 (ns), h = .74[.31, 1.16] (••+).

– In live error checking (LEC), VCL (P = .51[.37, .65]) significantly outperformed
UML (P = .09[.04, .22]) — PD = .42[.2, .59], χ2 p = .0024 (**), BY q = .03
(*), h = .97[.68, 1.27] (•••).

– In look and feel (LaF), VCL (P = .7[.55, .81]) is significantly higher than
UML+OCL (P = .16[.08, .3]) — PD = .53[.27, .72], χ2 p = 3 × 10−6 (***),
BY q = 9× 10−5 (***), h = 1.15[.85, 1.45] (•••).

– In cohesion (C), VCL (P = .37[.24, .52]) non-significantly outperforms UML
(P = .27[.16, .42]) — PD = .1[−.14, .32], χ2 p = .68 (ns), h = .21[−.1, .52] (•+).

– In learnability (L), VCL (P = .46[.3, .64]) non-significantly outperforms UML+OCL
(P = .32[.18, .51]) — PD = .14[−.18, .43], χ2 p = .27, h = .29[−.08, .66] (•+).

– In comfort/satisfaction (CS), VCL’s (P = .54[.36, .7]) advantage to UML (P =
.25[.13, .43]) is not significant — PD = .29[−.04, .55], χ2 p = .074 (ns), h =
.6[.22, .97] (••).

The usability analysis above together with Fig. 17d are consistent with the EoU
results of the previous section. The spin-off study that compared the experiment’s
tools [9] highlighted that VCL underperformed UML+OCL in the writing crite-
ria, albeit non-significantly; this suggests that, in certain circumstances, graphical
editors are less convenient than their textual counter-parts [9].

An Experimental Scrutiny of Visual Design Modelling 35

PNS PNI PNO PN NF
ns ** * ns ns
ø ••• ••+ •• ø

VCL 18 28 25 21 14
UML 19 8 9 12 14
NP 6 7 9 10 15

Total 43 43 43 43 43

(a) Frequencies, significances and effects

PNS PNI PNO PN FN

Notation

N
um

be
r

of
 p

eo
pl

e

0

5

10

15

20

25

30
VCL
UML
NP

(b) Frequency distributions

●

●

●

●

●

Notation

Pr
op

or
tio

n
+

/−
 C

I

PNS PNI PNO PN FN

.1

.2

.3

.4

.5

.6

.7

.8

● VCL
UML+OCL

(c) Proportions and CIs

PNS
PNI
PNO
PN
FN

−0.5−0.25 0 0.25 0.5 0.75 1 1.25 1.5
Effect Size (h)

(d) Forest plot of effect sizes (h)

Fig. 18: Perceived preferred notation. (NP = no preference; PNS = preferred state
space notation; PNI = preferred invariants notation; PNO = preferred notation
for operations; PN = preferred notation overall; FN = notation to use in Future.)

8.6 Overall Perception

Participants’ overall perception was appraised with respect to preferred notation,
and positive and negative aspects.

8.6.1 Preferred Notation

The results, corresponding to hypotheses H26..30 of table 6, are depicted in Fig. 18
with a table of frequencies with levels of significance and ES (Fig. 18a), a histogram
(Fig. 18b), a plot of means and CIs (Fig. 18c) and a forest plot of ESs (Fig. 18d).
They are as follows:

– In the state space (PNS), VCL (P = .42[.28, .57]) under-performs UML+OCL
(P = .44[.3, .59]), but non-significantly — PD = −.02[−.29, .24], χ2 p = .026
(*), BY q = .17 (ns), h = −.05[−.35, .25] (ø).

– In invariants (PNI), VCL (P = .65[.5, .78]) significantly outperforms UML+OCL
(P = .19[.1, .33]) — PD = .47[.2, .66], χ2 p = 6 × 10−5 (***), BY q = .0012
(**), h = .99[.69, 1.28] (•••).

36 Nuno Amálio et al.

– In operations (PNO), VCL (P = .58[.43, .72]) significantly outperforms UML
(P = .21[.11, .35]) — PD = .37[.11, .58]), χ2 p = .0026 (**), BY q = .03 (*),
h = .78[.49, 1.08] (••+).

– Overall, VCL’s (P = .49[.35, .63]) advantage to UML (P = .28[.17, .43]) is not
significant— PD = .21[−.05, .44], χ2 p = .091 (ns), h = .43, CI [.14, .73] (••).

– There is a tie in the notation to be used in the future (NF) — PVCL = PUML =
.33[.2, .47], PD = 0[−.23, .23], h = 0[−.3, .3] (ø).

These results endorse VCL’s positive perceptions with its approach to invari-
ants and operations being appraised favourably (Fig. 18d).

8.6.2 Positive and negative aspects

Individual comments to the several open questions of the debriefing survey were
classified as positive, negative or neutral to VCL in comparison to UML+OCL.
Figure 19 gives the results; it contains a table of frequencies (table 19a), a his-
togram (fig. 19b), a plot of proportions and CIs (Fig. 19c), and two histograms
detailing positive and negative comments (Figs. 19d and 19e). The results of hy-
pothesis H31 (table 6) are as follows:

– From a total of 385 comments, 215 were positive (P = .56[.51, .61]), 121 nega-
tive (P = .31[.27, .36]) and 49 were neutral — table 19a and Fig. 19b.

– As signalled by Fig. 19c, positives significantly surpass the negatives — PD =
.24[.15, .33], χ2 p = 4× 10−24 (***), BY q = 4× 10−22 (***),h = .5[.4, .6] (••).

– By dissecting the positive comments (Fig. 19d), we can see that understanding
(U, 21), ease of use (oU, 20) and ease of finding errors (EFE, 19) were the most
remarked. Participants also appraised positively VCL’s modelling of behaviour
(MB, 18) and invariants (MI, 14), and VCL’s visualisations (V, 14), usability
with respect to ease of access to information (EAI, 13) and navigability (N, 12),
while appreciating VCL as an overall language (OL, 10). UML’s Papyrus tool
was perceived by many as difficult (TD, 10). Some participants appreciated
VCL’s overall modelling (M, 8), organisation (Or, 8), user interface (UI, 6),
appealling (A, 5), and its sate modelling approach (MS, 5), while remarking
UML+OCL’s bad usability (BU, 6). A few participants found it comfortable
to work with VCL (Ct, 4), appreciated VCL’s cohesion (Cn, 4) and capacity
to provide overviews (Ov, 4) while remarking that OCL is difficult (D, 4).

– In terms of VCL’s negatives (Fig. 19e), the most remarked aspects were UML’s
familiarisation (F, 16), the fact that UML is more know (MK, 9) and VCL’s
bad usability (BU, 9). Some participants remarked UML’s ease of use (EU, 8),
modelling of state (MS, 8) and behaviour (MB, 7), and cohesion (Cn, 7), while
remarking VCL’s cumbersome modelling of behaviour (CB, 8) and cumbersome
editing (Ed, 7). Some participants appraised positively UML’s Papyrus tool
(T, 6) and UML’s understanding (U, 5), while recognising that VCL’s tool is
difficult (TD, 6). A few praised UML as an overall language (OL, 4), its capacity
to provide overviews (Ov, 3) and its expressivity (Ex, 3), and that UML is okay
and does the job (Ok, 3), while emphasising that they felt comfortable using
UML (Ct, 3) and that it is easy to find errors in UML models (EFE, 3).

An Experimental Scrutiny of Visual Design Modelling 37

Positive 215
Negative 121
Neutral 49

Total 385

(a) Frequencies

N
um

b
er

 o
f

co
m

m
en

ts
0

50

100

150

200 Positive
Negative
Neutral

(b) Histogram

●

Appraisal

Pr
op

or
ti

on
 +

/−
 C

I

.2

.3

.4

.5

.6

.7

● Positive
Negative

(c) Proportion and CIs

D BU TD A Cn Ct EAI EU EFE M MB MI MS N OL Or Ov T UI U V

Nu
m

be
r o

f c
om

m
en

ts

0

5

10

15

20 OCL
UML
VCL

(d) Positive comments

Cn Ct EFE EU Ex F MB MK MS OK OL Ov T U BU CB CI Ed TD

Nu
m

be
r o

f c
om

m
en

ts

0

5

10

15

20
UML
VCL

(e) Negative comments

Fig. 19: Perceived positives and negatives of VCL in comparison to UML+OCL.
(A = appealing; BU = bad usability; CB = cumbersome modelling of behaviour;
CI = cumbersome modelling of invariants; Cn = cohesion; Ct = comfort; D =
difficult; EAI = easy to access information; Ed = editing; EU = ease of use; EFE
= easy to find errors; Ex = expressivity; F = familiarity; M = modelling; MB =
modelling behaviour; MI = modelling of invariants; MK = more known; MS =
modelling of state; N = navigability; Ok = it’s okay; OL = overall language; Or =
organisation; Ov = overviews; T = tool; TD = tool difficult; UI = user interface;
U = understanding; V = visualisation.)

8.7 Learning effects

Fig. 20 depicts an analysis of learning effects typical of crossover designs [55].
Figure 20a contrasts first and second attempts at the different experiment tasks
for the orders V-U (VCL followed by UML) and U-V (UML followed by VCL). For
four (out of nine) measures, namely, completeness of state space (CoS), accuracy of
state space (AcS), accuracy of invariants (AcI) and program comprehension (PC),
there is a performance improvement on the second attempt (a learning effect)

38 Nuno Amálio et al.

●
●

●

● ●

●

● ●

●
●

●
●

●

●

●

●

●
●

M
ea

n
±

 C
I

V−U CoS V−U CoI V−U CoO V−U AcS V−U AcI V−U AcO V−U PC V−U DD V−U MC
U−V CoS U−V CoI U−V CoO U−V AcS U−V AcI U−V AcO U−V PC U−V DD U−V MC

0
.1
.2
.3
.4
.5
.6
.7
.8

● 1st attempt
2nd attempt

(a) The two attempts at the experiment tasks in relation to the orderings V-U and U-V

●

●

●

●

●

●
●

●

●

Mean Difference, MD = VCL−UML

M
ea

n
M

D
 ±

 C
I

CoS CoI CoO AcS AcI AcO PC DD MC

−.2

−.1

0

.1

.2

● V−U
U−V

(b) Mean differences between orderings V-U and U-
V for each task

p d

CoS 3× 10−7
∗∗∗ 1.18[.58, 1.31]•••

CoI .84ns −.02[−.32, .28]ø
CoO .12ns .38[−.04, .57]•+

AcS 2.8× 10−5
∗∗∗ 1.06[.46, 1.15]•••

AcI .0032∗∗ .63[.15, .78]••+

AcO .53ns .23[−.15, .45]•
PC .084ns .21[−.1, .5]•
DD .052ns .34[−.02, .59]•+

MC .1ns .4[−.02, .59]••

(c) Analysis of paired differences of orders
V-U and U-V

Fig. 20: Learning effects (Legend: V-U = VCL followed by UML; U-V = UML
followed by VCL).

independent of the used notation. For completeness of invariants (CoI), there are
improvements only when UML is used in the second attempt. For four measures,
completeness of operations (CoO), accuracy of operations (AcO), defect detection
(DD) and model comprehension (MC), there are improvements only when VCL is
used in the second attempt.

Figure 20b pictures the means and CIs of the paired differences of both V-U and
U-V for each task measure — PD = VVCL−VUML. Table 20c gives the calculated
p-values and ESs of PD(V-U) and PD(U-V). We observe a significant effect for
completeness of state space (CoS), accuracy of state space (AcS) and accuracy
of invariants (AcI). The remaining differences are not significant; ESs tend to
be small, being medium only for model comprehension (MC). Overall, there is
a general tendency for the paired difference to be higher when VCL is used on
the second attempt. This suggests that due to VCL’s novelty, participants’ VCL
proficiency grows as subjects learn by doing the experiment’s tasks.

An Experimental Scrutiny of Visual Design Modelling 39

9 Threats to Validity

This section discusses threats to the validity of the experiment reported here,
including conclusion, construct, internal and external validity.

9.1 Conclusion Validity

Conclusion validity is concerned with the relation between treatment and out-
come, and the statistical results. Following from the debate on null-hypothesis
significance testing (NHST) [34,37,83] and recommendations of high-ranked so-
cial science journals, the analysis supplemented NHST with levels of uncertainty,
plausibility and magnitude; measures of central tendency (means and proportions)
were accompanied by confidence intervals (CIS) and effect sizes (ESs). As high-
lighted in section 6.2, null hypotheses are rejected based on adjusted p-values
only, calculated using the false discovery rate [22] and the method of Benjamini
and Yekutieli [23].

The statistical analysis strived for robustness. We used non-parametric tests
and avoided breaching tests’ assumptions. Continuous variables were analysed us-
ing the non-parametric Wilcoxon test as it is not dependent on normality assump-
tions; Wilcoxon calculated p-values are consistent with parametric t-tests and the
robust trimmed means test [115] suggested by Wilcox and Keselman [111]. The χ2

test, used to assess categorical variables, is robust with respect to the distribution
of the data, but all categorical variables were found to be normal by Pearson’s
test. All statistical testing results are given in [8]; here we provide Wilcoxon, χ2

and BY p-values only.
For ESs, we complemented the classical Cohen d with the more robust alter-

natives of Algina et al [2] and Wilcox and Tian [112]. All calculated ESs, given in
full in [8], were found to be consistent; here we focussed on Cohen’s d and h.

9.2 Construct Validity

Construct validity concerns how measurements are affected by factors related to
experimental settings. It relates to training, case studies, measurement instru-
ments, including the defects seeded, and the different questionnaires. Table 7
presents statements drawn from the debriefing survey, accompanied by levels of
significance and effect, that supports the analysis that follows. Likewise for Fig-
ure 21, which depicts performance hindering factors.

The training concentrated on the challenging modelling tasks and relied on
participants’ prior exposure to software modelling (section 4.5). It tried to: refresh
or enhance design skills and familiarise participants with the modelling tools within
the time available. Many participants felt that (table 7, training): the training was
insufficient (T1, table 7), more training would have improved performance (T5),
training was a major performance-hindering factor (Fig. 21, LTr), they lacked
knowledge and experience (Fig. 21, LKE), they felt prepared with UML (T2), but
not with VCL or OCL (T3 and T4, respectively). This suggests the following: (a)
the experiment’s tasks were challenging because many participants were unhappy
with their performance; (b) participants’ prior exposure to UML (confirmed by

40 Nuno Amálio et al.

Id Question N Mean SD

Training
T1 The training allowed me to carry out the

tasks of the experiment competently
43 3.21[2.91, 3.51]∗∗∗,•+ .99

T2 I had enough training in UML 43 2.56[2.24, 2.88]∗,•• 1.08
T3 I had enough training in OCL 43 3.67[3.38, 3.96]∗∗∗,••• .97
T4 I had enough training in VCL 43 3.35[3.09, 3.61]∗,•• .87
T5 I would have performed better if I were given

more hours of training
43 1.63[1.39, 1.86]∗∗∗,••• .79

Case Studies
CS1 I had enough time to read through the re-

quirements descriptions of the given case
studies

43 2.02 [1.74, 2.31]∗∗∗,••• .96

CS2 I fully understood the systems described in
the requirements documents

43 2.21[1.97, 2.45]∗∗∗,••• .8

CS3 In general, I had no problems carrying out
the experiment’s tasks

43 2.79[2.52, 3.06]NS,•+ .91

CS4 The instructions were clear and easy to follow 43 1.77[1.56, 1.97]∗∗∗,••• .68
CS5 The university library system was fairly easy

to understand
43 2.02[1.79, 2.25]∗∗∗,••• .77

CS6 The flight booking system was fairly easy to
understand

43 2.14[1.87, 2.41]∗∗∗,••• .89

CS7 The university library case study was realis-
tic; a good example of a real-world case study

7 1.57[.99, 2.15]∗,••• .79

CS8 The flight booking case study was realistic; a
good example of a real-world case study

7 1.86[1.19, 2.52]NS,••• .9

Defect Detection
DD1 I fully understood the task 43 1.81[1.61, 2.02]∗∗∗,••• .7
DD2 I was not sure what type of errors I was look-

ing for
43 3.02[2.65, 3.4]NS,ø .03

Modelling Tools
MT1 The modelling tools were fairly stable 43 2.23[1.96, 2.51]∗∗∗,••• .92

Table 7: Debriefing survey statements related to training, case studies, defect de-
tection and modelling tools, rated on a Likert scale from 1 (strongly agree) to 5
(strongly disagree). Columns: mean of response with 95% CIs, standard deviation
(SD). Statement are compared against neutrality to derive significance and effect.

the results of T2 in comparison to T3 and T4) could have biased the results in
favour of UML, but the results are positive to VCL, hence: (i) although seen as
insufficient, the training seems to have worked, and (ii) VCL accommodates UML-
trained practitioners; (c) training was insufficient for the modelling of invariants
and operations as most participants lacked prior training.

The experiment’s case studies (CSs), exemplars of real-world software systems
similar to CSs used in the teaching of software design, do not favour one notation
over the other, and are from familiar application domains (a university library
and a flight booking system). They laid the foundation for tasks that are both
feasible and challenging, but not overwhelmingly complex. Participants recognised
many of these characteristics in the CSs, as evidenced by table 7 (case studies);
most subjects felt that: (a) they had enough time to read the use case narratives
(CS1), which (b) they understood (CS2), (c) the case studies were fairly easy
to understand (CS4 and CS5). Many subjects felt that: the tasks were carried
with difficulties (CS3 in table 7 and DTCS in Fig. 21). A few subjects lacked a

An Experimental Scrutiny of Visual Design Modelling 41

DTCS 12
F 4
LCE 3
LKE 21
LTi 25
LTr 41
LUT 5

(a) Frequencies

DTCS F LCE LKE LTi LTr LUT
Nu

m
be

r o
f p

eo
pl

e

0

10

20

30

40

(b) Histogram

Fig. 21: Perceived performance hindering factors derived from the debriefing sur-
vey. (DTCS = Difficult tasks and case studies; F = Fatigue; LCE = Lack of
concentration and engagement; LKE = Lack of knowledge and experience; LTi =
lack of time; LTr = lack of training; LUT = Lack of understanding of tasks.)

clear understanding of the tasks (Fig. 21, LUT). York participants (N = 7) found
the CSs to be realistic (CS7, CS8). Overall, this suggests that: (i) the tasks were
challenging, (ii) many participants lacked prior knowledge for such a challenging
experiment, (iii) although the training worked somehow, it was not able to fill the
knowledge gaps of most subjects.

Lack of time (Fig. 21, LTi, 24 out of 43) was a performance obstacle. Limited
time and CS’s reasonable complexity were countered with starting models to be
completed within the allotted times. Despite this, the tasks on modelling of oper-
ations and invariants, and problem comprehension, were not entirely satisfactory.
Modelling of invariants had to be done together with the state space within 30
minutes, which proved short; modelling of operations was too difficult for a 35-
minute task. Task’s short duration, lack of training and inherent difficulty, explain
the low results obtained in these tasks.

One of the authors marked the models constructed by the participants. To
minimise bias and maximise objectivity, a systematic, repeatable and divide-and-
conquer scoring approach, detailed in [8], was pursued. Both completeness and ac-
curacy relied on a requirements-based marking breakdown made up of individual
items that are fairly objective and with little room for subjectivity. The complete-
ness scoring scheme focused on the modelling required by each requirement; the
accuracy scoring scheme consisted of test-cases, expressed as snapshots or object
diagrams based on an approach outlined in [19,4]. Marking both completeness and
accuracy involved going through each item of the marking scheme.

The seeded defects, chosen to avoid both favouring any of the notations and
being obvious, were scattered evenly across state space, invariants and operations
(see section 5.1). Defect detection (DD) was designed to be intuitive and chal-
lenging, which was acknowledged by the participants (DD results in table 7); an
overwhelming majority of them understood the task (DD1, in table 7) and many
found it challenging because the errors were not obvious (DD2), which is endorsed
by DD’s modest final scores: .27 for VCL and .19 for UML+OCL.

The model comprehension questions were selected to be of a certain level of
complexity and to ensure a reasonable level of coverage. They were articulated to
avoid bias in favour of one treatment over the other; the multiple-choice questions
eased marking. The debriefing survey was designed to capture the perceptions of

42 Nuno Amálio et al.

subjects with respect to the experiment experience. It contained questions that
targeted experiment hypothesis related to subjective assessments. To avoid bias,
and to increase the reliability of the collected data, we followed guidelines of ques-
tionnaire design [85].

The modelling tools could bias or confound the results. We used tools built
atop the same platform, Eclipse, to ensure a certain degree of similarity. Papyrus
is a major UML Eclipse-based tool with a significantly larger user-base than VCL’s
tool, VCB. Despite some criticisms, both tools were seen as being stable (table 7,
modelling tools). A spin-off survey, tied to the experiment presented here [9], com-
pared these two tools with a focus on usability; the results, favourable to VCB,
concluded that participants could not always discern between tool and language.
Nevertheless, VCB is the implementation of VCL’s language and its underlying
ideas. The fact that VCB was competitive with Papyrus, a major UML tool, testi-
fies to the quality of both VCL and VCB. Certain VCB features may be superior
to Papyrus, but that per-se does not account for VCL’s positive results presented
here and in [9]. Both tools, built on top of Eclipse’s modelling infrastructure, have
considerable room for improvement.

9.3 Internal Validity

Internal validity threats are related to external factors that affect the outcomes
of the experiment, but are not a consequence of the studied treatment. Table 8
presents statements drawn from the debriefing survey, accompanied by levels of
significance and effect, that aids the analysis presented here.

The experiment’s volunteer basis is a possible internal threat. Usually, experi-
ments resort to blocking to counter against variability in the capability of subjects.
In our setting, this was, by and large, infeasible; assignment to a group was mainly
decided on the basis of a subject’s availability. Section 7 highlights a slight and
non-significant imbalance in the proficiency scores of both experimental groups.

Information exchange did not affect the experiment: (i) all participants were
working in parallel on the same case study, (ii) group sessions would run separately,
but on the same day (morning or afternoon) and (iii) participants were busy. There
was hardly any opportunity or motivation for exchanging information.

The experiment’s crossover design suffers from known carry-over effects [55].
Here, the most relevant carry-over effect is the learning accrued from carrying out
tasks on the same system using the two languages; modelling using one language
may give rise to a learning effect leading to an improved performance when mod-
elling with the next language. To balance the experiment and counter against such
learning effects, the order of the two notations with respect to the two case studies
was permuted for each group — a group starting with VCL on university library
(UL) would start with UML+OCL on flight booking (FB), and vice-versa. We fol-
lowed a 22 factorial design (case study is a factor) with the case study tasks being
undertaken in parallel to: (a) avoid case study difficulty as a confounding effect
10, (b) counter against exchanges of information, and (c) have more experiment

10 The different levels of difficulty was acknowledged by the participants in the debriefing
survey; 27 out of 43 participants said that FB was more complex (p = .63[.48, .76]), 11 found
that UL was more complex (p = .26[.15, .4]) and 5 found the two case studies to be similar

An Experimental Scrutiny of Visual Design Modelling 43

Id Question N Mean SD

E1 I liked the experiment 35 1.89[1.61, 2.16]∗∗∗,••• .83
E2 The experiment was interesting 43 1.93[1.66, 2.2]∗∗∗,••• .91
E3 During the experiment I was motivated, com-

mitted and I felt challenged
43 2.23[1.94, 2.52]∗∗∗,••• .97

E4 I felt it was a good learning experience 43 1.95[1.7, 2.21]∗∗∗,••• .84

Table 8: Debriefing survey statements related to the overall experiment rated on
a Likert scale from 1 (strongly agree) to 5 (strongly disagree). Columns: mean
of response with 95% CIs, standard deviation (SD). Each statement is evaluated
against neutrality to derive significance and effect size.

practice (a total of 4 rounds) because software design is challenging, the train-
ing was somehow insufficient (see discussion on training in section 9.2 above) and
any practice improvements would only lead to more interesting results and better
founded opinions for the debriefing survey. To counter against further carry-over
effects, participants were not given feedback on their performance. The analysis
of order of notation (section 8.7) detected a few significant learning effects with
large or medium effect sizes, however, this does not affect the paper’s main results:
modelling of operations, defect detection and model comprehension.

Lack of engagement was refuted by the debriefing survey (table 7): participants
liked the experiment (E1), finding it interesting (E2), somehow challenging (E3)
and positive from a learning perspective (E4). One of the options to the question
“please indicate the reasons for your lack of motivation if you felt somehow demo-
tivated” was “I do not really see the need for software design modelling in software
engineering”, which was selected by only one participant (out of 43).

9.4 External Validity

External validity, concerned with the generalisability of the results, is a recurrent
issue in software engineering research [51]. Given that we want to extrapolate our
results to software engineering practice, a question that emerges refers to the ex-
periment’s degree of realism [102]. In software engineering controlled experiments
there is often an issue of scalability. Due to time constraints, size of case studies
and tasks are reduced, and this may break the connection to industrial realities
which usually deal with larger problems. We alleviated this issue with case studies
that are neither too small nor trivial, and are realistic. This was acknowledged by
many participants (see section 9.2, above). To ensure the feasibility of the mod-
elling tasks within allotted times, participants were given partial models that they
were required to complete.

Another problem is the degree of representativeness with respect to software
engineering practitioners [43]. The participant cohort was culturally diverse; we
ran the experiment in universities of three European countries, involving partici-
pants from across the globe. Participants were students who may be perceived as

of complexity (p = .12[.05, .24]) with the difference between FB and UL being significant —
PD = .37[.09, .59], χ2 p-value = .00012 (***), ES h = .77[.47, 1.07] (••+).

44 Nuno Amálio et al.

unrepresentative of industrial professionals; however, many postgraduate partic-
ipants had previous industrial experiences, and many were about to embark on
new professional careers in industry. The experiment results attest to the cohort’s
degree of representativeness; a few individuals performed remarkably high, others
noticeably low. Collectively, the average results on state space modelling and other
model usage and comprehension tasks show that participants were able to under-
take these required tasks, even though they were challenging. The low results on
the modelling of invariants and operations are more due to the experiment’s time
constraints, the inherent difficulty of these tasks and the limited time available for
training, rather than the cohort’s overall ability. We see our cohort as a reason-
ably competent workforce, which is reflective of industrial settings applying design
modelling. Empirical studies failed to find significant differences in performance
between students and professionals [63,21,100]; a recent study found out that pro-
fessionals appear to perform better in tasks they are accustomed to, but there is
no difference when it comes to using new approaches or technologies [100].

A criticism of software engineering controlled experiments concerns pen-and-
paper tasks which are not seen as reflecting modern-day realities. The experiment
presented here used Eclipse tools, a popular platform for modern-day software
development that we see as reflective of current practice.

We see the results presented here as generalisable to general graphical mod-
elling, even though only two languages are examined. This is because VCL is a
suitable representative of a largely visual software design language (section 2.4)
and UML+OCL is a suitable baseline.

10 Related Work

This is the first empirical study that investigates the benefits of a modelling lan-
guage capable of expressing predicates graphically, a pre-requisite to the diagram-
matic expression of: (i) system invariants, (ii) and operations as contracts made up
of pre- and post-conditions. Other languages with this capability, Visual OCL [27,
41] and Augmented Constraint Diagrams [48], lack empirical scrutiny.

Table 9 summarises related empirical studies. This paper covers several aspects
of previous work:

– It covers comprehension, a focus of many studies [89,90,108,104,92,93] to in-
vestigate whether either notation or modelling per se are fulfilling their aims.
This paper insists on end-user comprehension (either through model compre-
hension or defect detection tasks), but going beyond to explore the problem
comprehension gained from modelling.

– It goes beyond data modelling, sharing with [68] the emphasis on the modeller
perspective, with Otero and Dolado [?] the focus on dynamic modelling and
with Briand et al [29,28] the focus on constraints and design by contract,
but exploring novel graphical notations to the modelling of invariants and
operations not covered by any other study.

Certain interesting aspects of related work are unexplored here:

– The impact of UML design on maintenance involving either code or design
changes [?,20], which also delves into model comprehension as understanding
is often a precondition to accomplishing the changes that are required.

An Experimental Scrutiny of Visual Design Modelling 45

Study Goal Perspective Tasks Participants

Kim and
March [68]

Investigate effectiveness of
data (or state space) mod-
elling notations on compre-
hension and modelling.

end-user,
modeller

(i) modelling from textual
requirements, (ii) ques-
tionnaire on model com-
prehension, (iii) detecting
model defects against tex-
tual requirements.

28 postgrad-
uate students
(users) and 26
professionals
(modellers).

Moody [78] Investigate comprehension
of large data modelling
mechanisms

end-user (i) questionnaire on model
comprehension, (ii) defect
detection

60 students

Purchase
et al [89,
90]

Investigate comprehension
of variants of UML class
and collaboration diagrams.

end-user (i) identifying correct and
incorrect diagrams against
textual requirements

34 students and
5 researchers
in [90], 35
students in [89]

Otero and
Dolado [?]

Investigate comprehension
of UML dynamic nota-
tions (statecharts, and se-
quence and communication
diagrams)

end-user (i) model comprehension
questionnaires

18 final year un-
dergraduates

Tilley
and
Huang [?]

Investigate effectiveness of
UML in facilitating pro-
gram understanding.

end-user,
program-
mer

(i) a questionnaire on im-
pact of changes to a sys-
tem from code and UML-
based documentation.

15 expert aca-
demics

Tor-
chiano [108]

Study comprehension of
UML class models accom-
panied by object diagrams.

end-user (i) model comprehen-
sion questionnaires, (ii)
debriefing survey

17 masters stu-
dents

Briand et
al [29]

Study comprehension of
UML-based with OCL

end-user (i) questionnaires on
model comprehension and
(ii) maintenance (impact
of changes to a model),
(iii) defect detection and
(iv) debriefing survey.

38 final-year un-
dergraduates

Arisholm
et al [20]

Investigate effectiveness of
UML models with respect
to maintenance.

end-user,
program-
mer

(i) code and (ii) design
modifications on given de-
sign and code, (iii) post-
task survey

96 undergradu-
ate students.

Staron et
al [104]

Investigate comprehension
of stereotyped UML class
models

end-user (i) model comprehen-
sion questionnaires, (ii)
debriefing survey

44 students and
4 industry pro-
fessionals

Ricca et
al [92,93]

Investigate comprehension
of stereotyped UML class
models

end-user (i) model comprehen-
sion questionnaires, (ii)
debriefing survey

51 subjects
among under-
and post-
graduates, and
researchers.

Briand et
al [28]

Study system sequence di-
agrams and natural lan-
guage contracts on quality
of UML-based models.

end-user,
modeller

(i) modelling 223 final year
undergraduates

Table 9: Empirical studies related to the work presented here.

– Coarse-grained modelling [78,44,3], which is related to VCL’s coarse grained
modularity approach inspired by aspect-oriented modelling [15].

No other work in the literature has looked into the graphical expression of
invariants and operations. This paper explores this problematic through a com-
parison of VCL against OCL, which expresses invariants and operations textually.
It examines VCL’s novel graphical approach with respect to end-user and modeller
understanding, modelling effectiveness and usability.

46 Nuno Amálio et al.

11 Conclusions

Visual modelling has always been part of software engineering [31,96,97]. Graphi-
cal design approaches have been advocated for nearly three decades [58,59]. Nev-
ertheless, our knowledge of visual modelling is sketchy. We know that issues of
syntax are vital to the usability of diagrammatic notations, seen as de-facto lan-
guages of software engineering practice [79]. However, the alleged benefits of visual
modelling constitute a patchy region made up of many gray areas lacking empirical
scrutiny. Is visual modelling a good idea?

This article shed some light on this general question. If data modelling is well
studied and reasonably convincing, the same is not true for other more intricate
aspects of software design. This paper pursues an answer to the following question:
can we model effectively more complicated aspects of a software design, such as
constraints and operations, graphically? If the research on the visual expression
of predicates and system dynamics has shown that a largely visual approach is
possible, we are still largely unsure on whether graphics are any better than text.

This papers delves into this question through a controlled experiment carried
out four times, which by studying VCL’s effectiveness as a visual language tries to
draw more general conclusions about graphical modelling. VCL is largely graphi-
cal; different modelling aspects are expressed largely diagrammatically, including
invariants and operations. It is a suitable representative of largely diagrammatic
languages. The experiment compares VCL against the standard UML and its OCL
satellite notation, which, together, champion an approach to design modelling that
is partially graphical with invariants and operations expressed textually in OCL.
The experiment involved 43 students from four universities in three countries who
received training in UML, OCL and VCL. The comparison focussed on: (i) mod-
elling of state space, invariants and operations (RQ1); (ii) problem comprehension
(RQ2); (iii) model defect detection (RQ3); (iv) end-user model comprehension
(RQ3); (v) usefulness and ease of use (RQ4); (vi) usability (RQ5); and (vii) over-
all appraisal (RQ6). Aspects (i) and (ii) take the perspective of the modeller or
designer, (iii) and (iv) of a design end-user, and (v)–(vii) of a general software engi-
neer or computer scientist. Careful attention was paid to ensure that the observed
trends were due to the notations and not other extraneous factors.

A relevant result of this paper is that VCL modelling of operations got bet-
ter results than OCL. Individuals performed significantly better using VCL with
respect to completeness, but not accuracy. A significant proportion of subjects per-
ceived a better VCL performance, VCL was the preferred notation for modelling
operations with a significant difference and behavioural modelling was perceived
as a major positive aspect of VCL (Fig. 19d). Therefore, results suggest benefits
of diagrammatic modelling of operations in a VCL style.

Results are unclear for the remaining modelling aspects. In state-space mod-
elling, VCL’s graphical improvements were appreciated by an interesting minority,
but most remained agnostic to them, possibly due to the familiarity of widespread
UML class diagrams (Fig. 19e). In the objective measures, VCL failed to provide
an improvement. Nevertheless, VCL’s conservative approach with respect to UML
modelling paid off: with some training participants transposed their prior UML
knowledge into VCL. Hence, on the one hand, the familiarity of UML class dia-
grams is hard to beat, but, on the other hand, participants transposed knowledge
across languages becoming accustomed to the differences in syntax.

An Experimental Scrutiny of Visual Design Modelling 47

RQ Findings

RQ1 On modelling of state space, invariants and operations:
• VCL’s structural diagrams (SDs) were quasi-equal to UML class diagrams (vari-
ables CoS, AcS and PMS).
• On invariants, no significant VCL benefits were encountered.
• On operations, significant VCL benefits were encountered in completeness (CoO),
but not accuracy (AcO). A significant proportion of subjects perceived a better VCL
performance (PMO).

RQ2 On the modeller’s comprehension of modelled problem, no significant differences
were encountered in both objective (PC) and subjective measurements (PPC).

RQ3 On model usage, significant VCL benefits were encountered in objective measure-
ments of defect detection (DD) and model comprehension (MC).

RQ4 In usefulness (U), no significant VCL benefits were encountered. In ease of use
(EoU), VCL was perceived as being significantly better than UML+OCL.

RQ5 Usability was analysed from different angles. Significant VCL benefits were found
for navigation (UsN), live error checking (LEC) and look and feel (LF).

RQ6 On the overall perception:
• A largely significant proportion of participants preferred VCL as a notation to
express invariants (PNI) and operations (PNO).
• In the appraisal of positive and negative aspects (Appr), VCL was appraised

favourably as positives significantly surpassed negatives.

Table 10: Summary of the experiment’s findings per research question (RQ).

In the modelling of invariants, VCL failed to provide significant improvements.
However, a non-significant proportion of participants perceived a VCL improve-
ment, a significant proportion of participants chose VCL as the preferred notation
for invariants, and VCL modelling of invariants was perceived as a major posi-
tive aspect (Fig. 19d). These positive results, together with the low scores in the
modelling of invariants and operations, suggests the need for a better experimen-
tal apparatus, with improved training and more time devoted to carry out these
more complex tasks — as remarked by the participants’ appraisal of the training
(section 9.2).

In model usage, the results signal a VCL improvement. In defect detection
(DD), VCL’s objective performance was significantly better, which is consistent
with the way participants perceived their performance; ease of finding errors in
VCL models was a frequently occurring positive aspect of VCL (see Fig. 19d). In
model comprehension (MC), VCL was significantly better, which is consistent with
the way participants perceived their performance; comments concerning under-
standing, ease of use, easy to access information were among the most frequently
occurring VCL positive aspects (see Fig. 19d).

In three usability criteria, navigation, live error checking and look and feel, VCL
outperformed UML+OCL significantly. It is interesting to relate these criteria to
the theories of notation design considered here: physics of notations (PoN) [79]
and cognitive dimensions of notations (CDN) [?,54,24]. Navigation is related to
PoN’s principle of cognitive integration (also maps and overviews, rated well but
without significance); live error checking is related to the CDN’s error proneness
and hard mental operations, as VCL’s tool warns users when they write something
meaningless which aids reasoning and avoids mistakes; and look and feel is related

48 Nuno Amálio et al.

to PoN’s principles of semiotic clarity, perceptual discriminability and complexity
management — a result of VCL’s syntactic clarity, visual expressivity and overall
tidiness. This suggests that, with respect to these theories of visual notation design,
VCL and its tool appear to be better than UML+OCL and Papyrus.

Both notations were perceived as equally useful, but VCL was largely per-
ceived as more easy to use. VCL was also the preferred notation for invariants and
operations by a significant proportion. Finally, VCL was also highly appraised as
positive in comparison to UML. This appears to endorse VCL’s better model usage
results and VCL’s overall graphical approach.

The findings presented here are summarised in table 10 for each research ques-
tion (section 3.2). Overall, results suggest usability benefits of graphical software
design, which was clear in model usage and more modest in modelling. Participants
responded well to VCL’s novel graphical notations, providing empirical evidence
to motivate further research on diagrammatic modelling.

The results presented here should not be regarded as a claim of absolute scien-
tific truth, but rather as a contribution to a research question. The stronger results
need to be confirmed through replication, and the weaker results together with the
new questions spurred by the paper’s analysis require further experimentation.

Acknowledgements A large part of the research presented in this paper was done during
Amálio’s post-doctoral research work funded by the University of Luxembourg. Lionel Briand’s
research was undertaken, in part, thanks to funding from the Canada Research Chairs program.
We thank the reviewers for their suggestions and the way they challenged the paper; this led
to many improvements that resulted in a better article. We thank Christian Glodt for his help
with the VCL tool, and all participants of the controlled experiment presented here at the
Faculty of Sciences of the University of Lisbon (FCUL), Faculty of Sciences and Technology
of the New University of Lisbon (FCT/UNL), University of Luxembourg and University of
York (UY). Several people at the host institutions made the controlled experiment possible,
namely, Isabel Nunes (FCUL), João Araúujo (FCT/UNL), Fiona Polack (UY), Antónia Lopes
(FCUL) and Ana Moreira (FCT/UNL).

References

1. Abrial, J.R.: The B book: assigning meaning to programs. Cambridge University Press
(1996)

2. Algina, J., Keselman, H.J., Penfield, R.D.: An alternative to cohen’s standardized mean
difference effect size: a robust parameter and confidence interval in the two independent
groups case. Psychological Methods 10(3), 317–328 (2005)

3. Ali, S., Yue, T., Briand, L.: Does aspect-oriented modeling help improve the readability
of uml state machines? Sofwtare and Systems Modeling 13(3), 1189–1221 (2014)

4. Amálio, N.: Generative frameworks for rigorous model-driven development. Ph.D. thesis,
Dept. Computer Science, Univ. of York (2007)

5. Amálio, N.: VCL model of the secure simple bank case study. Tech. Rep. TR-LASSY-
11-05, Univ. of Luxembourg (2011). http://bit.ly/q1LrPj

6. Amálio, N.: The VCL model of the Barbados crisis management system. Tech. Rep.
TR-LASSY-12-09, Univ. of Luxembourg (2012). http://bit.ly/W5C8ZY

7. Amálio, N.: Relaxing behavioural inheritance. In: Refine 2013, EPTCS, vol. 115, pp.
68–83 (2013)

8. Amálio, N., Briand, L., Kelsen, P.: An empirical evaluation of visualisation in software
design modelling: the VCL vs UML+OCL experiment. Tech. Rep. TR-LASSY-13-05,
LASSY, Univ. of Luxembourg (2013). URL http://bit.ly/2uVXGkz

9. Amálio, N., Glodt, C.: A tool for visual and formal modelling of software designs. Science
of Computer Programming 98, Part 1, 52 – 79 (2015). DOI 10.1016/j.scico.2014.05.002

http://bit.ly/q1LrPj
http://bit.ly/W5C8ZY
http://bit.ly/2uVXGkz

An Experimental Scrutiny of Visual Design Modelling 49

10. Amálio, N., Glodt, C., Kelsen, P.: Building VCL models and automatically generating Z
specifications from them. In: FM 2011. Springer (2011)

11. Amálio, N., Glodt, C., Pinto, F., Kelsen, P.: Platform-variant applications from platform-
independent models via templates. ENTCS 279(3), 3–25 (2011)

12. Amálio, N., Kelsen, P.: Modular design by contract visually and formally using VCL. In:
VL/HCC 2010 (2010)

13. Amálio, N., Kelsen, P.: VCL, a visual language for abstract specification of software
systems formally and modularly (short paper). In: Diagrams 2010, LNAI, vol. 6170.
Springer (2010)

14. Amálio, N., Kelsen, P., Ma, Q.: Specifying structural properties and their constraints
formally, visually and modularly using VCL. In: EMMSAD 2010, LNBIP, vol. 50, pp.
261–273. Springer (2010)

15. Amálio, N., Kelsen, P., Ma, Q., Glodt, C.: Using VCL as an aspect-oriented approach to
requirements modelling. TAOSD VII, 151–199 (2010)

16. Amálio, N., Payne, R., Cavalcanti, A., Woodcock, J.: Checking SysML models for co-
simulation. In: ICFEM 2016, LNCS, vol. 10009. Springer (2016)

17. Amálio, N., Polack, F., Stepney, S.: An object-oriented structuring for Z based on views.
In: ZB 2005, LNCS, vol. 3455, pp. 262–278 (2005)

18. Amálio, N., Polack, F., Stepney, S.: UML+Z: Augmenting UML with Z. In: H. Abrias,
M. Frappier (eds.) Software Specification Methods, pp. 81–102. ISTE (2006)

19. Amálio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: Proc. ICFEM
2004, LNCS, vol. 3308, pp. 418–433. Springer (2004)

20. Arisholm, E., Briand, L.C., Hove, S.E., Labiche, Y.: The impact of UML documentation
on software maintenance: an experimental evaluation. IEEE TSE 32(6), 365–381 (2006)

21. Arisholm, E., Sjøberg, D.I.: Evaluating the effect of a delegated versus centralized control
style on the maintainability of object-oriented software. IEEE Transactions on Software
Engineering 30(8), 521 – 534 (2004)

22. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and power-
ful approach to multiple testing. Journal of the Royal Statistical Society. Series B 57(1),
289–300 (1995)

23. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing
under dependency. The Annals of Statistics 29(4), 1165–1188 (2001)

24. Blackwell, A., Britton, C., Cox, A., Green, T., Gurr, C., Kadoda, G., Kutar, M., Loomes,
M., Nehaniv, C., Petre, M., Roast, C., Roes, C., Wong, A., Young, R.: Cognitive di-
mensions of notations: Design tools for cognitive technology. Cognitive Technology pp.
325–341 (2001)

25. Blackwell, A.F., Whitley, K.N., Good, J., Petre, M.: Cognitive factors in programming
with diagrams. Artificial Intelligence review 15, 95–114 (2001)

26. Booch, G.: Object-Oriented Analysis and Design with applications. Addison-Wesley
(1994)

27. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualisation of OCL using
collaborations. In: UML 2001, LNCS, vol. 2185, pp. 257–271. Springer (2001)

28. Briand, L., Labiche, Y., Madrazo-Rivera, R.: An experimental evaluation of the impact of
system sequence diagrams and system operation contracts on the quality of the domain
model. In: Empirical Software Engineering and Measurement. IEEE (2011)

29. Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bondoc, H.: An experimental investigation
of formality in UML-based development. IEEE TSE 31(10), 833–849 (2005)

30. Chen, P.C.H.: Why diagrams are (sometimes) six times easier than words: Benefits be-
yond locational indexing. In: Diagrams 2004 (2004)

31. Chen, P.P.S.: The entity-relationship model—toward a unified view of data. ACM Trans-
actions on Database Systems 1(1), 9–36 (1976)

32. Clark, T., Evans, A., Kent, S., Brodsky, S., Cook, S.: A feasibility study in rearchitecting
uml as a family of languages using a precise oo meta-modeling approach. Tech. rep.
(2000)

33. Cohen, J.: Statistical power analysis for the behavioural sciences. Lawrence Erlbaum
Associates (1988)

34. Cohen, J.: The earth is round (p < .05). American Psychologist 49(2), 997–1003 (1994)
35. Cook, S., Kleppe, A., Warmer, J., Mitchell, R., Rumpe, B., Wills, A.C.: Defining UML

family members using prefaces. In: TOOLS ’99 (1999)
36. Cumming, G.: Understanding the new statistics: Effect sizes, confidence intervals and

meta-analysis. Routledge (2012)

50 Nuno Amálio et al.

37. Cumming, G.: The new statistics: Why and how. Psychological Science (2013)
38. Cumming, G., Finch, S.: A primer on the understanding, use, and calculation of confi-

dence intervals that are based on central and noncentral distributions. Educational and
Psychological Measurement 61(4), 532–574 (2001)

39. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. MIS Quarterly 13(3), 319–340 (1989)

40. Dobing, B., Parsons, J.: How UML is used. Comunications of the ACM 49(5), 109–113
(2006)

41. Ehrig, K., Winkelmann, J.: Model transformation from visual OCL to OCL using graph
transformation. ENTCS 152, 23–37 (2006)

42. Evans, A., France, R., Lano, K., Rumpe, B.: The UML as a formal modeling notation.
In: UML’98, LNCS, vol. 1618, pp. 336–348. Springer (1998)

43. Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo, M.:
Empirical software engineering experts on the use of students and professionals in exper-
iments. Empirical Software Engineering (2017)

44. Farias, K., Garcia, A., Lucena, C.: Evaluating the impact of aspects on inconsistency
detection effort: a controlled experiment. In: Models 2012, LNCS, vol. 7590, pp. 219–234
(2012)

45. Farias, K., Garcia, A., Whittle, J.: Assessing the impact of aspects on model composition
effort. In: ACM (ed.) AOSD 2010, pp. 73–84 (2012)

46. Ferguson, E.S.: The mind’s eye: nonverbal thought in technology. Science 197(4306)
(1977)

47. Ferguson, E.S.: Engineering and the Mind’s eye. MIT Press (1992)
48. Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint diagrams. Journal

of Visual Languages and Computing 16, 541–573 (2005)
49. France, R., Ghosh, S., Dinh-Trong, T.: Model-driven development using UML 2.0:

Promises and pitfalls. IEEE Computer 39(2), 59–66 (2006)
50. Franz, V.H., Loftus, G.R.: standard errors and confidence intervals in within-subjects

designs: Generalizing loftus and masson (1994) and avoiding the biases of alternative
accounts. Psychonomic Bulletin & Review 19(3), 395–404 (2012)

51. Glass, R.L.: The software-research crisis. IEEE Software 11(6), 42–47 (1994)
52. Golkasian, P.: Picture-word differences in a sentence verification task. Memory & cogni-

tion 24(2), 584–594 (1996)
53. Goolkasian, P.: Pictures, words, and sounds: from which format are we best able to

reason? Journal of General Psychology 127(4), 439–459 (2000)
54. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A

‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7, 131—
174 (1996)

55. Greenwald, A.G.: Within-subjects designs: To use or not to use? Psychological Bulletin
83(2), 314–320 (1976)

56. Grissom, R.J., Kim, J.J.: Effect sizes for Research: A broad practical approach. Lawrence
Erlbaum Associates (2005)

57. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer
Programming 8, 231–274 (1987)

58. Harel, D.: On visual formalisms. Commun. of the ACM 31(5), 514–530 (1988)
59. Harel, D.: Biting the silver bullet. IEEE Software 25(1), 8 – 20 (1992)
60. Henderson-Sellers, B.: UML – the good, the bad or the ugly? perpectives from a panel

of experts. Software and Systems Modeling 3(1), 4–13 (2005)
61. Henderson-Sellers, B., Barbier, F.: Black and white diamonds. In: UML’99, LNCS, vol.

1723, pp. 550–565. Springer (1999)
62. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal

of Statistics 6(2), 65–70 (1979)
63. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects – a comparative study of

students and professionals in lead-time impact assessment. Empirical Software Engineer-
ing 5(3), 201–214 (2000)

64. ISO: Information technology—Z formal specification notation—syntax, type system and
semantics (2002). ISO/IEC 13568:2002, Int. Standard

65. Kelley, K.: Confidence intervals for standardized effect sizes: Theory, application, and
implementation. Journal of Statistical Software 20(8), 1–24 (2007)

66. Kelsen, P.: A declarative executable model for object-based systems based on functional
decomposition. In: ICSOFT 2006, pp. 63–71 (2006)

An Experimental Scrutiny of Visual Design Modelling 51

67. Kelsen, P., Ma, Q.: A lightweight approach for defining the formal semantics of a modeling
language. In: Models 2008, LNCS, vol. 5301, pp. 690–704 (2008)

68. Kim, Y.G., March, S.T.: Comparing data formalisms. CACM 38(6), 103–115 (1995)
69. Lange, C.F., Chaudron, M.R.: Effects of defects in UML models – an experimental in-

vestigation. In: ICSE 2006, pp. 401–410. IEEE (2006)
70. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words.

Cognitive Science 11, 65–99 (1987)
71. Larman, C.: Applying UML and patterns. Addison-Wesley (2004)
72. Leemans, J., Amálio, N.: Modelling a cardiac pacemaker visually and formally. In:

VL/HCC 2012, pp. 257–258. IEEE (2012)
73. Leemans, J., Amálio, N.: A VCL model of a cardiac pacemaker. Tech. Rep. TR-LASSY-

12-04, Univ. of Luxembourg (2012). http://bit.ly/xiob5d

74. Manfred Broy, M.V.C.: UML formal semantics: lessons learned. Software and Systems
Modeling 10(4), 441–446 (2011)

75. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)
76. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a survey.

Software and Systems Modeling 10(4), 489–514 (2011)
77. Moody, D., van Hillegersberg, J.: Evaluating the visual syntax of UML: An analysis of

the cognitive effectiveness of the UML family of diagrams. In: SLE, LNCS, vol. 5452.
Springer (2009)

78. Moody, D.L.: Complexity effects on end user understanding of data models: an experi-
mental comparison of large data model representation methods. In: ECIS 2002 (2002)

79. Moody, D.L.: The “physics” of notations: Toward a scientific basis for constructing visual
notations in software engineering. IEEE TSE 6(35), 756–779 (2009)

80. Mussbacher, G., Alam, O., Alhaj, M., Ali, S., Amálio, N., Barn, B., Bræk, R., Clark,
T., Combemale, B., Cysneiros, L.M., Fatima, U., France, R., Georg, G., Horkoff, J.,
Kienzle, J., Leite, J.C., Lethbridge, T.C., Luckey, M., Moreira, A., Mutz, F., Oliveira,
A.P.A., Petriu, D.C., Schöttle, M., Troup, L., Werneck, V.M.B.: Assessing composition
in modeling approaches. In: CMA ’12. ACM (2012)

81. Newcombe, R.G.: Two-sided confidence intervals for the single proportion: comparison
of seven methods. Statistics in Medecine 17(8), 857–72 (1998)

82. Newcombe, R.G., Altman, D.G.: Proportions and their differences. In: Statistics with
Confidence: Confidence Intervals and Statistical Guidelines. Wiley (2000)

83. Nuzzo, R.: Scientific method: Statistical errors. Nature 506, 150–152 (2014)
84. OMG: OMG systems modeling language, version 1.3. Tech. rep., OMG (2012)
85. Oppenheim, A.N.: Questionnaire Design, Interviewing and Attitude Measurement. Con-

tinuum (1996)
86. Petre, M.: Why looking isn’t always seeing. Communications of the ACM 6(38) (1995)
87. Pfister, R., Janczyk, M.: Confidence intervals for two sample means: Calculation, inter-

pretation, and a few simple rules. Advances in cognitive Psychology (2013)
88. Pinker, S.: A theory of graph comprehension. In: R. Freedle (ed.) Artificial Inteligence

and the future of testing, pp. 73–126 (1990)
89. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML collaboration diagram

syntax: an empirical study of comprehension. In: VISSOFT 2002, pp. 13–22. IEEE
(2002)

90. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: UML class diagram
syntax: an empirical study of comprehension. In: APVis’01 (2001)

91. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria (2015). URL https://www.R-project.org/

92. Ricca, F., Penta, M.D., Torchiano, M., Tonella, P., Ceccato, M.: The role of experience
and ability in comprehension tasks supported by uml stereotypes. In: ICSE 2007. IEEE
(2007)

93. Ricca, F., Penta, M.D., Torchiano, M., Tonella, P., Ceccato, M.: How developers’ ex-
perience and ability influence web application comprehension tasks supported by uml
stereotypes: A series of four experiments. IEEE Transactions on Software Engineering
36(1), 96–118 (2010)

94. Richters, M.: A precise approach to validating UML models and OCL constraints. Ph.D.
thesis, Universität Bremen (2001)

95. Richters, M., Gogolla, M.: On formalizing the UML object constraint language OCL. In:
ER ’98, LNCS, vol. 1507, pp. 449–464. Springer (1998)

http://bit.ly/xiob5d
https://www.R-project.org/

52 Nuno Amálio et al.

96. Ross, D.T.: Structured analysis (SA): A language for communicating ideas. IEEE Trans-
actions on Software Engineering 3(1), 16–34 (1977)

97. Ross, D.T., Schoman, K.E.: Structured analysis for requirements definition. IEEE Trans-
actions on Software Engineering 3(1), 6–15 (1977)

98. Rumbaugh, J., Blaha, M., Permerlani, W., Eddy, F., Lorensen, W.: Object Oriented
Modelling and Design. Prentice-Hall (1991)

99. Rumpe, B., France, R.: Variability in UML language and semantics. Software and Systems
Modeling 10(4), 439–440 (2011)

100. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives of professionals in
software engineering experiments? ICSE’15 pp. 666–676 (2015)

101. Shimojima, A.: Operational constraints in diagrammatic reasoning. In: G. Allwein,
J. Barwise (eds.) Logical Reasoning with Diagrams (1996)

102. Sjøberg, D.I.K., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic, A.,
Koren, E., Vokac, M.: Conducting realistic experiments in software engineering. In:
International Symposium on Empirical Software Engineering (ISESE ’02) (2002)

103. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall (1992)
104. Staron, M., Kuzniarz, L., Wohlin, C.: Empirical assessment of using stereotypes to im-

prove comprehension of uml models: A set of experiments. Journal of Systems and
Software 79(5), 727–742 (2006)

105. Stevens, P.: On the interpretation of binary associations in the unified modelling language.
Software and Systems Modeling 1(1), 68–79 (2002)

106. Störrle, H.: Semantics of interactions in UML 2.0. In: Human Centric Computing Lan-
guages and Environments (HCC 2003), pp. 129–136. IEEE (2003)

107. Tobias, E., Ras, E., Amálio, N.: Suitability of visual modelling languages for modelling
tangible user interface applications. In: VL/HCC 2012, pp. 269–270. IEEE (2012)

108. Torchiano, M.: Empirical assessment of UML static object diagrams. In: Program Com-
prehension, 2004. IEEE (2004)

109. Varró, D.: A formal semantics of UML statecharts by model transition systems. In: ICGT
2002, LNCS, pp. 378–392. Springer (2002)

110. Wieringa, R.: A survey of structured and object-oriented software specification methods
and techniques. ACM Computing Surveys 30(4), 459–527 (1998)

111. Wilcox, R.R., Keselman, H.J.: Modern robust data analysis methods: measures of central
tendency. Psychological Methods 8(3), 254–74 (2003)

112. Wilcox, R.R., Tian, T.S.: Measuring effect size: a robust heteroscedastic approach for
two or more groups. Journal of Applied Statistics 38(7), 1359–1368 (2011)

113. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering. Springer (2012)

114. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall
(1996)

115. Yuen, K.K.: The two-sample trimmed t for unequal population variances. Biometrika
61(1), 65–170 (1974)

116. Yusuf, S., Kagdi, H., Maletic, J.I.: Assessing the comprehension of UML class diagrams
via eye tracking. In: Program Comprehension, 2007. IEEE (2007)

117. Zhang, J.: The nature of external representations in problem solving. Cognitive Science
21(2), 179–217 (1997)

	Introduction
	Background
	The Experiment's Scope
	Experiment Design
	Instrumentation
	Statistical Analysis
	Participants
	Results
	Threats to Validity
	Related Work
	Conclusions

