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Abstract

The topic of insider threat detection is getting an increased concern from academia,

industry, and governments due to the growing number of malicious insider inci-

dents. A malicious insider threat is devised of a set of anomalous behaviours at-

tributed to an insider who exploit their privileges with the intention to compromise

the confidentiality, integrity, or availability of the system or data.

The existing approaches for detecting insider threats still have a common short-

coming, which is the high number of false alarms (false positives), which deceives

the system administrator(s) about suspicious behaviour of many users. To address

the shortcoming of false alarms, in this thesis, we formulate an opportunistic approach

to detect insider threats with the aim of any-behaviour-all-threat detection. As a

preliminary step, we apply feature engineering on the data logs of users’ behaviour.

This work is conducted on synthetic CMU-CERT data sets which implement a vari-

ety of malicious insider threat scenarios.

The maturity of data in an organisation is defined into three cases based on the

availability of labelled data. We address the different cases of data maturity by

proposing, developing, and evaluating machine learning approaches that incorpo-

rate techniques to reduce false alarms. The first presents a class imbalance approach,

namely CD-AMOTRE, which combines the concept of Class Decomposition (CD)

and a novel Artificial Minority Oversampling and Trapper REmoval (AMOTRE)

technique. The second builds an adaptive one-class ensemble-based anomaly de-

tection framework which introduces a progressive update method with an outlier-

aware artificial oversampling procedure. The third proposes a real-time anomaly

detection approach, namely Ensemble of Random subspace Anomaly detectors In

Data Streams (E-RAIDS). The proposed approaches detect most/all of the malicious

insider threats, and achieve the minimum FP over the data sets compared to the

existing machine learning approaches.
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Chapter 1

Introduction

1.1 Background

The insider threat problem has historically been one of the most important prob-

lems in security; as the ancient Roman satirist Juvenal wrote, “Who will guard

the guards themselves?” The situation is no different in the Digital Age [1].

Insider threat detection is a growing challenge for companies and governments

trying to protect their assets from malicious insider threats. An insider is a current

or former employee, contractor, or business partner of an organisation who has au-

thorised access to the network, system, or data [2] (e.g. strategic or business plans,

engineering or scientific information, source code, etc.). We can distinguish between

two types of insider threats: (1) malicious, and (2) unintentional. A malicious insider

threat refers to a malicious insider who exploit their privileges with the intention to

compromise the confidentiality, integrity, or availability of the system or data [3].

An unintentional insider threat refers to an insider who, through action or inaction,

causes harm to the confidentiality, integrity, or availability of the system or data [4].

Our research work is primarily concerned with malicious insider threats, where the

motivating factors for insiders would be revenge, financial gain, or to the advantage

of a competitor company with the promise of a higher-paying job [3]. The Com-

munity Emergency Response Team in Carnegie Mellon University (CMU-CERT) [2]

identifies three types of malicious insider threats as follows:

• Fraud: unauthorised modification, addition, or deletion of data in an organi-

sation, or identity theft (e.g. credit card fraud);
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• IT sabotage: use of Information Technology (IT) to disrupt or halt a business

operation in an organisation; and

• Theft of intellectual property (IP): stealing proprietary information from the

organisation. This includes industrial espionage involving insiders.

The growing number of insider incidents is generating increased concern from

academia, industry, and governments in recent years. The 2018 Insider Threat Re-

port [5], released by the Crowd Research Partners, found that 90% of the organisa-

tions feel vulnerable to insider attacks, where 53% of the survey respondents con-

firmed typically less than five insider attacks against their organization in the past

year. Furthermore, the 2018 Insider Threat Report states that 64% of the organisa-

tions are focusing on the detection of the insider threats followed by the prevention

and post breach forensics.

According to the Software Engineering Institute (SEI) Cyber Minute [6], a recent

survey stated that 27% of cyber crime incidents were suspected to be caused by

insiders, and 30% of the respondents thought that the damage caused by insider

attacks was more severe than the damage from outsider attacks.

The 2015 U.S. State of Cybercrime Survey [7], conducted by CSO Magazine, the

U.S. Secret Service, the CERT Division of the Software Engineering Institute, and

Price Waterhouse Cooper, stated that 23% (compared to 28% in 2014 [8]) of cyber

crime incidents were attributed to insiders. Furthermore, 45% (compared to 46% in

2014 [8]) of the respondents asserted that insider attacks are more costly and dam-

aging to their organisations compared to outsider attacks.

According to the 2011 Cybersecurity Watch Survey [9], 21% of attacks were at-

tributed to insiders in 2011, however, 33% of the respondents viewed the insider

attacks to be more costly, compared to 51% of the respondents in 2010.

The public may not be aware of the number of insider events or the level of

damage because 70% of insider incidents are handled internally without legal

action, which is consistent with the 2010 study [9].

The risk of the malicious activities carried out by insiders is worth greater atten-

tion than to outsiders, due to the extent of disturbance caused to an organisation.
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TABLE 1.1: A number of malicious insider incidents known world-
wide.

Year Country Organisation Insider Job title Threat type

2017 USA NSA Harold Martin former contractor Theft of IP
2015 UK TalkTalk Anonymous - Indian third party contractor Theft of IP
2013 USA NSA Edward Snowden [10] former contractor Theft of IP
2012 USA EnerVest Ricky Joe Mitchell former network engineer IT sabotage
2009 USA United States Army Bradley Manning army soldier Theft of IP
2008 France Societe Generale Jerome Kerviel trader Fraud
2007 USA FIS William Sullivan database administrator Fraud
2004 UK Royal Bank of Scotland Donald Mackenzie royal manager Fraud
2000 USA OMEGA Tim Lloyd former network administrator IT sabotage

Most of the security mechanisms implemented in an organisation usually tackle the

outsider attacks (e.g. anti-viruses, firewalls, intrusion prevention and detection sys-

tems). However, the privileges given to insiders make the detection of the malicious

insider threats more challenging. The users within an organisation are aware of the

system and have authorised access to sensitive information, which, if disclosed, will

result in costly consequences.

In Table 1.1, we go through several examples of malicious insider incidents known

worldwide, some of which are reported in the academic literature and others over

the media.

Harold Martin was recently convicted for stealing around 500 million pages of

national defence information from the National Security Agency (NSA) over the

course of 20 years [11]. In 2015, an Indian contractor at the TalkTalk company

breached customer data on the mobile sales site [12]. Earlier, Edward Snowden,

the famous whistle blower, disclosed 1.7 million classified documents from NSA to

newspapers and mass media [13].

Snowden proceeded to hand over countless classified documents, resulting in the

biggest leak in the history of the United States [10].

In 2012, Ricky Joe Mitchell reset the servers at EnerVest to their original factory set-

tings, which disrupted the business operations for a month [14]. Earlier, Bradley

Manning released to WikiLeaks nearly 750,000 sensitive military and diplomatic

documents from the US Army [15]. In 2008, Jerome Kerviel was convicted in the

Societe Generale trading loss for forgery and unauthorized use of bank’s computers,

resulting in loss valued at e4.9 billion [16]. Earlier, it was discovered that William
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Sullivan had stolen 2.3 million consumer records from the Fidelity National Infor-

mation Services (FIS) [17].

The Sullivan case highlighted the threat posed to corporate data and systems by

rogue insiders [18].

Donald Mackenzie carried out £21 million fraud loans in the Royal Bank of Scot-

land over the course of five years up to March 2004 [19]. Early in 2000, Tim Lloyd

unleashed a time bomb within the OMEGA software systems, resulting with the loss

of $10 million in revenue and $2 million in repairing the systems and the lay-off of 80

employees [20]. More incidents are reported with anonymous insiders, and others

are handled internally without legal action.

1.2 Problem Statement

There exists a significant body of research that has addressed the insider threat prob-

lem, and has proposed a significant number of approaches to detect malicious in-

sider threats. Chapter 2 provides an up-to-date comprehensive survey of the ap-

proaches.

Yet still the insider threat problem persists [3].

The approaches proposed for detecting insider threats still have a common short-

coming, which is the great number of false alarms (False Positives – FPs) flagged

[21], [22], deceiving the administrator(s) about suspicious behaviour of many users.

A false alarm is a result of a normal behaviour detected as anomalous by the system.

This maps to normal instances that have a high similarity with anomalous instances,

thus appear as suspicious events. The problem of false alarms consumes a valuable

time from the administrator’s schedule, while investigating the suspected users. On

the other hand, it impacts the level of trust between the suspected users and their

senior executives in an organisation.

A recent real-time anomaly detection system, named RADISH, based on k-Nearest

Neighbours (k-NN) is proposed in [21]. The experimental results show that 92% of

the alarms flagged for malicious behaviours are actually benign. We attribute such a

high number of FPs to the fact that previously proposed machine learning methods
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attempt to find all suspicious behaviours (instances) associated with any possible

insider threat (i.e. the aim of all-behaviour-all-threat as later described in Section

3.2). However, the focus should be on detecting one or more instance(s) of malicious

behaviour(s) per threat (i.e. the aim of any-behaviour-all-threat as later discussed in

Section 3.3). Designing machine learning methods with such a relaxing condition,

we argue, has the potential to reduce the frequent false alarming problem.

1.3 Aims and Objectives

To tackle the aforementioned shortcoming in the problem statement, we address the

insider threat problem in this thesis with the following aims:

• Aim 1: To detect all malicious insider threats, not necessarily all behaviours (in-

stances) that belong to a malicious insider threat (i.e. the aim of any-behaviour-

all-threat).

• Aim 2: To reduce the number of false alarms flagged (false positives).

To achieve the aforementioned aims, we set the objectives of our research work

that are substantially based on the maturity of the data. We define the maturity of

the data in an organisation into three categories: (1) high data maturity, which indi-

cates the presence of labelled data of the normal class and the anomalous class; (2)

medium data maturity, which indicates the presence of labelled data of the normal

class only; and (3) low data maturity, which indicates the absence of labelled data.

The normal class refers to normal behaviours carried out by users in an organisa-

tion, while the anomalous class refers to anomalous behaviours that do not conform

to the normal baseline of users behaviour. The presence of labelled data of the nor-

mal class reveals that an organisation possesses a historical database (data set(s)) of

the activities (i.e. actions, commands) executed by users. Furthermore, the presence

of labelled data of the anomalous class reveals that an organisation has encountered

malicious insider incidents attributed to malicious insider(s). The anomalous class

data are often labelled by domain expert(s) and analyst(s) who investigated the ma-

licious incidents.
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We incorporate the categories of data maturity to select the suitable approach

for insider threat detection. The rationale behind this is to ensure that the machine

learning approach is leveraged by all the data class labels available in an organisa-

tion. In summary, the objectives of the research are as follows. We propose, develop,

and evaluate machine learning approaches that address the different cases of data

maturity to meet the aims. The approaches are devised to incorporate procedure(s)

(technique(s)) that ensure reducing the false alarms.

• Objective 1: Formulate an opportunistic approach, that addresses the chal-

lenges in the existing machine learning approaches, for any-behaviour-all-threat

detection.

• Objective 2: Address the class imbalance data problem in the case of high data

maturity, where there exists minor anomalous instances among the major dis-

tribution of the normal class, in a supervised two-class classification approach

for detecting malicious insider threats.

• Objective 3: Build a one-class anomaly detection framework that learns a nor-

mal baseline model of users’ behaviour in the case of medium data maturity

to detect malicious insider threats.

• Objective 4: Handle the streaming nature of data in the case of low data ma-

turity in an online anomaly detection approach that ensures in/near real-time

detection of insider threats.

1.4 Research Contributions

To meet the aims and the objectives detailed in Section 1.3, we propose the following

four contributions which are reported in the following chapters and presented here

in summary. As a preliminary step for the machine learning approaches, we define

the feature space for the insider threat problem, and we categorise the feature set

into five groups. The feature set is extracted from the activity logs of users to con-

struct community behaviour profiles. A community behaviour profile represents the

behaviours carried out by a group of users (i.e. community) having the same role.
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• Chapter 3: We formulate an opportunistic approach to address the insider

threat problem with the aim to detect any-behaviour-all-threat. In the oppor-

tunistic approach, it is sufficient to detect any anomalous behaviour in all ma-

licious insider threats.

• Chapter 5: We present the first class imbalance approach for insider threat de-

tection, namely CD-AMOTRE, which combines the Class Decomposition (CD)

concept and a novel oversampling technique named Artificial Minority Over-

sampling and Trapper REmoval (AMOTRE). Class decomposition is presented

as an alternative to undersampling the normal (majority) class. It clusters the

instances of normal class into subclasses to weaken the effect of the normal

class without information loss.

AMOTRE first removes the minority (anomalous) instances (trapper instances)

that have a high resemblance with normal instances to reduce the number of

false alarms, then it synthetically oversamples the minority class by shield-

ing the border of the majority class. Findings reported in this Chapter are in

preparation for publication.

• Chapter 6: We build an anomaly detection framework with two components:

one-class modelling component and progressive update component. To allow

the detection of anomalous instances that have a high resemblance with nor-

mal instances, the one-class modelling component applies class decomposition

on normal class data to create k clusters, then trains an ensemble of k base

anomaly detection methods, having the data in each cluster used to construct

one of the k base models.

The progressive update component updates each of the k models with sequen-

tially acquired FP chunks; segments of a predetermined capacity of FPs. It

includes an oversampling method to generate artificial samples for FPs per

chunk, then retrains each model and adapts the decision boundary, with the

aim to reduce the number of future FPs. Findings reported in this Chapter

have been accepted for publication in [23].
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• Chapter 7: We propose a streaming anomaly detection approach, namely En-

semble of Random subspace Anomaly detectors In Data Streams (E-RAIDS),

for insider threat detection. E-RAIDS learns an ensemble of p established out-

lier detection techniques (Micro-cluster-based Continuous Outlier Detection –

MCOD– or Anytime Outlier detection –AnyOut–) that employ clustering over

continuous data streams. Each model of the p models learns from a random

feature subspace to detect local outliers, which might not be detected over the

whole feature space.

E-RAIDS introduces an aggregate component that combines the results from

the p feature subspaces, in order to confirm whether to generate an alarm at

each window iteration. The merit of E-RAIDS is that it defines a survival factor

and a vote factor to address the shortcoming of high number of FPs. Experi-

ments on E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out to test the ef-

fectiveness of voting feature subspaces, and the capability to detect [more than

one]-behaviour-all-threat in/near real-time. Findings reported in this Chapter

have been accepted for publication in [24] and published in [25].

1.5 Ethics Statement

In this thesis, we utilise a collection of synthetic data sets generated by the Com-

munity Emergency Response Team (CERT) in Carnegie Mellon University (CMU) –

CMU-CERT data sets [26] as discussed later in Chapter 4.1. The CMU-CERT repos-

itory is an online open-source repository that is publicly available for the researchers

tackling the insider threat problem. The CMU-CERT data sets log activities executed

by simulated anonymous users (i.e. not real users). Therefore, these data sets do not

hold any confidential user information or content. Hence, the utilisation and pre-

processing of these data sets in this work do not have any ethical implications that

should be considered.

Another aspect is the ethical implications of the Intellectual Property (IP) of this

research, including the code implemented for (1) the data preprocessing and feature

engineering (Chapter 4), and (2) the proposed and developed approaches(Chapter

5, Chapter 6, and Chapter 7). The code is publicly available on GitHub [27] to ensure
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the reproducibility of the results. This allows other researchers to run the code, and

make comparisons, if needed.

1.6 Structure of the Thesis

The rest of the Chapter is organised as follows. In Chapter 2, we give an up-to-

date comprehensive survey of the approaches (machine learning and non-machine

learning) to detect insider threats. In Chapter 3, we introduce the opportunistic ap-

proach with the aim of any-behaviour-all-threat detection. In Chapter 4, we describe

the utilised CMU-CERT data sets, including the malicious insider threat scenarios,

and we define, categorise, and extract the feature set in the insider threat problem. In

Chapter 5, we present and evaluate the supervised two-class classification approach,

namely CD-AMOTRE, to detect insider threats, and address the class imbalance data

problem (high data maturity). In Chapter 6, we present and evaluate the adaptive

one-class ensemble-base anomaly detection framework for insider threat detection

(medium data maturity). In Chapter 7, we present and evaluate the anomaly detec-

tion approach, namely E-RAIDS, for in/near real-time detection of insider threats

over online data streams (low data maturity). Finally, we conclude the thesis with a

summary and future work directions in Chapter 8.
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Chapter 2

Approaches for Insider Threat

Detection

2.1 Introduction

To our knowledge, the literature presents three survey papers [28]–[30] and a Ph.D.

thesis [31] that review the insider threat detection problem. In this work, we give an

up-to-date comprehensive survey of the approaches that address the problem.

The insider threat detection problem has been addressed through two differ-

ent approaches: a signature-based approach which identifies a malicious threat by

matching observed instance(s) to patterns (signatures) of anomalous behaviour; and

a machine learning approach which learns the baseline of user(s) behaviour so that

any deviation from this baseline is identified as anomalous.

We further categorise the machine learning approaches in this review into: a

sequence-based approach which detects a sequence of instances (behaviours) as anoma-

lous; a behaviour-based approach which detects an instance (behaviour) as anoma-

lous; and others.

The behaviour-based approaches are further categorised in this review into: a

classification approach, which learns from normal and anomalous data (i.e. data

maturity is high as defined in Chapter 1) and identifies the decision boundary that

separates normal from anomalous; an anomaly detection approach, which learns

from normal data only (i.e. data maturity is medium) and detects anomalous in-

stances that deviate from normal instances; and a streaming approach, which learns
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approaches

Signature-based

Machine learning

seQuence-based

Behaviour-based

Classification

Anomaly detection

stReaming

Others

FIGURE 2.1: Categorisation for the state-of-the-art approaches for in-
sider threat detection.

from continuous data streams (i.e. data maturity is low) in order to detect anoma-

lous behaviour. Fig. 2.1 shows the outline for the aforementioned categories of ap-

proaches.

2.2 Signature-based Approaches

In the insider threat problem, the principle of a signature-based approach is to detect

a malicious insider threat by matching observed instance(s) to patterns (signatures)

of anomalous behaviour. This requires a pre-defined database that stores known

patterns of insider threats. The known patterns usually refer to previously detected

insider threats. However, a signature-based scheme is not able to identify novel

(unknown) threats that have not been detected before. Hence, this scheme is sensi-

tive to False Negatives (FNs) (missed unknown insider threats predicted as normal

behaviour).

In the following, we give a brief review of the signature-based approaches [32]–

[35] proposed in the literature to detect malicious insider threats.

Rose et al. [32] proposed a distributed, automated detection system among end-

point host machines with a centralised repository. Independently, at each endpoint

host machine, the critical assets (i.e. data, resources, etc.) and the scenarios of inter-

est are identified. The endpoint system determines the elements that make up the

completion of an identified scenario. Based on this, the system tracks the actions of
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interest only (related to elements of scenario), and determines the likelihood that the

scenario elements are completed. The results from endpoints are then pushed into

a central repository to aggregate and correlate in the scenario full context, in order

to support near real-time alerts. The distributed approach pushes only the results

instead of all logs to the central repository, thus reducing the computational and

resource consumption. However, as aforementioned, the system is sensitive to FNs.

Agrafiotis et al. [34] address the tripwires, implemented in the Corporate In-

sider Threat Detection (CITD) system [33], which are responsible for the level ‘1’

alerts. The paper defines the formal language (grammar) for two types of tripwire:

policy violations tripwires, which include access to black-listed websites and use of

unauthorised USB; and attack pattern tripwires, which capture pre-defined patterns

(sequence of actions of interest). If the user’s behaviour matches the defined gram-

mar for either of the tripwires, the CITD system generates a level ‘1’ alert. A more

detailed description of the whole CITD system, including this signature-based level

[34], is given in Section 2.3.2.2.

Ambre and Shekokar [35] present a rule-based event correlation system to detect

insider threats. The system is initialised with a configuration of a variety of rules

(e.g. rules including a threshold attribute, a suppress condition, a time attribute).

The rules define regular expressions to process (match) events, and eliminate the

unwanted elements. The system defines an event correlation component that deter-

mines the correlation between different events (e.g. previous events). It then utilises

Bayesian theorem to calculate the True Positive (TP) rate (conditional probability).

2.3 Machine Learning Approaches

Machine learning, a branch of artificial intelligence, learns the baseline of user(s)

behaviour(s), so any deviation from this baseline is identified as anomalous. The

anomaly may be detected in two forms: as a single behaviour (instance), or as a se-

quence of behaviours (instances). Based on this, we categorise the machine learning

approaches into: sequence-based, behaviour-based, or others.
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2.3.1 Sequence-based Approaches

Some approaches define the feature space in the insider threat problem as an or-

dered sequence of instances; a sequence of behaviours executed in order of time. A

malicious insider threat is identified as a sequence of behaviours in a specific order

attributed to a malicious insider.

In the following, we provide a review of the proposed sequence-based approaches.

A recent framework based on a graph approach and isolation Forest (iForest)

was presented by Gamachchi et al. [36] to isolate suspicious malicious insiders from

the workforce. The graph approach extracts graph and subgraph properties based

on user activities, as well as time dependent features to generate input for iForest.

iForest then calculates the anomaly scores to separate anomalous behaviour of a

user from normal behaviour, without profiling normal behaviour. The framework

demonstrates the effectiveness of iForest in identifying malicious insiders, while

considering each feature at a time, compared to taking the whole set of features

into consideration. The results reveal that more than 79% of users are considered

benign (having normal behaviour), while the remaining 21% of users are identified

as exhibiting suspicious behaviour (having an anomaly score higher than 0.7).

Furthermore, Gamachchi and Boztas [37] propose a framework based on at-

tributed graph clustering and outlier ranking for insider threat detection. The first

step employs a statistical technique to extract the attributes (features) from hetero-

geneous input data and generate an attributed graph. The next step applies graph

clustering to identify the subgraphs (attribute subsapces). Then the vertices (users)

of the graph are ranked based on the identified subgraphs. The proposed frame-

work shares some characteristics with the author’s framework [36], however, an

outlier ranking technique named GOutRank is employed instead of iForest to detect

the malicious users. The results report an AUC=0.7648 confirming the effectiveness

of the framework.
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Moriano et al. [38] suggest a temporal bipartite graph of user-system interac-

tions to detect anomalous time intervals. It is worth noting that the reviewed graph-

based approaches detect anomalous structures (e.g. subgraphs), however, the pro-

posed bipartite approach detects anomalous sequence of actions (patterns). The bi-

partite graph approach compares the number of edges in the user graph to that in

the community partition in the aggregated data, so that a sequence can be detected

as anomalous or not. The results of the proposed approach outperform a random

algorithm, where it reports an F1 measure=85.7%.

Eberle and Holder [39] suggest a graph-based framework to detect malicious

insider threats using graph substructures. The framework employs three different

versions of the Graph-Based Anomaly Detection (GBAD) algorithm: information

theoretic GBAD, which examines instances of the substructures that are similar to

normal substructures (i.e. modifications); probabilistic GBAD, which examines all

extensions to normal substructure (i.e. insertions); and maximum partial substruc-

ture GBAD, which examines parent substructures that are missing various edges and

vertices (i.e. deletions). As mentioned in [37], the use of multiple algorithms, each

specific for a particular anomaly, complicates the anomaly detection framework.

Huang and Stamp [40] propose Profile Hidden Markov Model (PHMM) com-

pared to the standard Hidden Markov Model (HMM) to detect masqueraders. Mas-

queraders can be defined as insiders who infiltrate a system’s access control to over-

come access to a user’s account. In contrast to HMM, PHMM relies on positional

observations which include a session start and a session end features. This allows

it to model the order in which a user issued a sequence of commands based on

position-dependent probabilities. The conducted experiments compared PHMM to

standard HMM using FN rate with respect to FP rate, showing that HMM slightly

outperforms PHMM. However, PHMM shows better performance when no suffi-

cient training data is available. Hence, the proposed PHMM is well suited to be used

at the early stages, and HMM afterwards, when sufficient training data is acquired.

Tang et al. [41] suggest a hybrid approach of Dynamic Bayesian Network (DBN)

and HMM. DBN models data over session slots and assigns an abnormality score for

each user. The higher the score, the higher the malicious threat level. Since the DBN

model satisfies the Markov property, the approach transforms the DBN model into
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an HMM model constructed over an initial state and two session slots. The paper

claims that transforming DBN to HMM then applying an HMM inference algorithm

shows better performance than applying DBN on its own.

2.3.2 Behaviour-based Approaches

A behaviour-based approach identifies a behaviour (instance) as anomalous or nor-

mal. An instance is defined as a feature vector (a set of features) extracted from the

activity logs of a user or a group of users. Hence, an anomalous behaviour is a fea-

ture vector whose features’ values deviate from the normal baseline. In the feature

space, this may appear as instances that are located away from the normal instances

(majority instances).

As described in Fig. 2.1, a behaviour-based approach is categorised into: clas-

sification, anomaly detection, and streaming, based on the maturity of the data. In

this Section, we review the existing machine learning approaches in each of these

categories, to pave the way for our approaches in Chapters 5, 6, and 7.

2.3.2.1 Classification

In the case of the availability of both normal and anomalous data (i.e., data maturity

is high), the system is capable to learn on both classes. Hence, the insider threat de-

tection problem is addressed using a two-class classification approach. In what fol-

lows, a review of the two-class classification approaches proposed for insider threat

detection is provided.

Mayhew et al. [42] describe a Behaviour-Based Access Control (BBAC) approach

that analyses user behaviour at the network layer, the HTTP request layer, and the

document layer to detect behaviour changes. BBAC constructs multiple Support

Vector Machine (SVM) classifiers, each analyses a certain type of user behaviour in

real enterprise data such as, TCP connection behaviour, HTTP request behaviour,

and text behaviour, to classify data as normal or malicious insider threat. BBAC

combines k-means clustering and C4.5 decision tree in its approach to improve scal-

ability and reduce false positives. The paper reports a variety of results depending

on the data type of the malicious behaviour detected, where the TP rate=76− 99.6%

and FP rate=0.18− 1%.



16 Chapter 2. Approaches for Insider Threat Detection

Punithavathani et al. [43] present an Insider Attack Detection System (IADS)

based on the supervised k-Nearest Neighbours (k-NN) to counter insider threats

in critical networks. IADS consists of two engines: a network traffic engine that

monitors and captures incoming and outgoing packets in traffic, then extracts the

important features and stores in a database; and a log analyser engine that mines

user logs, extracts patterns of user behaviour, and applies k-NN to identify normal

and anomalous patterns based on the closest training patterns in history. In order

to verify the detection of malicious threats, IADS employs the computational intel-

ligence to cross check the anomalous patterns (detected by the log analyser engine)

with the network features (extracted by the network traffic engine).

Azaria et al. [44] present a Behavioural Analysis of Insider Threat (BAIT) frame-

work that contains bootstrapping algorithms built on top of SVM or Naives Bayes

classifiers. The BAIT algorithms include: an SVM classifier with an update proce-

dure using the top k malicious users; an SVM classifier with an update procedure

using the top k malicious users and the top l · k benign users; an SVM classifier with

an iterative update procedure using either a malicious or an honest user one at a time;

and a Naive Bayes classifier with an iterative update procedure using the recent prob-

abilities. The algorithm with SVM classifier and iterative update procedure reports

the best results with F-measure=0.4, and FP=14 (FP rate=7.36%), however, the base-

line SVM classifier reports F-measure=0.273, but much lower FP=9 (FP rate=4.73%).

Sen [45] suggests a semi-supervised approach, namely Instance Weighted Naive

Bayes (IWNB), with the aim to reduce the FP rate. In this context, IWNB trains the

model with labelled train instances, and then updates (retrains) the model with all

unlabelled test instances regardless of the label assigned (predicted) for these test

instances by Naive Bayes. The authors claim that the shortcoming of relying on the

decision of Naive Bayes is that the updated model will not consider the FPs. To

address this shortcoming, IWNB considers all unlabelled test instances and assigns

weights (probabilities) to them based on their similarity to labelled instances, so

that new instances are assigned lower weights than old instances. In this way, the

model adapts to the normal change in user’s behaviour, which will consequently

reduce the FP rate. Although this approach outperforms other existing approaches,

including traditional Naive Bayes, as the number of appended FNs increases, it is
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not convincing to append FNs to the updated user model. The comparison of IWNB

to other approach flags false alarms=4.5 for IWNB, compared to false alarms=1.3 in

another approach.

Axelrad et al. [46] presented a Bayesian Network (BN) approach to predict in-

sider threats based on psychological features of malicious insiders. The BN model

is constructed, such that the nodes represent the categories of the psychological fea-

tures, and the directed links between the nodes represent the pairwise correlation

ratio between the categories (i.e. an estimation of how much a pair of categories are

correlated or inversely correlated). The paper presents an experimental approach

with a revised BN, where error rate=64.81% and logarithmic loss=1.344 report lower

values than original BN (error rate=66.46% and logarithmic loss=1.427). Although

the authors claim a considerable improvement, the values of the error rate and the

logarithmic loss for the revised BN are still too high.

Barrios [47] develops a multi-level framework, called database Intrusion Detec-

tion System (dIDS), to detect malicious transactions. dIDS employs: at level ‘1’

Apriori Hybrid algorithm to check the match between the new transaction and the

prior user’s transactions logged in the dIDS database; at level ‘2’ Stochastic Gradi-

ent Boosting to find the probability of an anomaly; and at level ‘3’ BN to model the

data giving a conditional probability of anomaly to a new transaction based on prior

user’s transactions. A new transaction is assessed at each level in turn. If it is flagged

as anomalous, it is appended to the dIDS database and the assessment is terminated,

otherwise, it is assessed at the next level. The multi-level approach benefits from the

hybrid utilisation of different algorithms, as well as allows to reduce the consuming

time when a transaction is flagged anomalous at an earlier level. The probability of

detection reported by the framework is =38.38% which is too low.

Kandias et al. [48] compare the performance of text classification approaches

for YouTube user comments to detect malicious insiders (users) holding negative

attitude towards law enforcement and authorities. The comments are defined into

two categories: category (P), which hold negative attitude towards law enforcement

and authorities; and category (N), which hold neutral attitude. The text classifica-

tion aims to classify the comments into category (P) or (N) using: machine learning

approach such as SVM, Multinomial Naive Bayes, or Logistic Regression (LR); a
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dictionary-based approach with terms and phrases related to law enforcement; or

a flat-data approach based on Naive Bayes, such that the comments are augmented

with user data (public profile information). LR, followed by SVM, achieve a better

performance compared to Naive Bayes in terms of precision, recall, F-measure, and

accuracy. The dictionary-based approach reveals a significant deviation from LR

which indicates the strength of LR in learning the correlations from the training set.

However, the flat-data approach indicates the percentage of comments of category

(P) a 10% higher than that in LR.

Brdiczka et al. [49] present Graph Learning for Anomaly Detection using Psy-

chological Context (GLAD-PC) to detect threats. GLAD-PC consists of two threads:

structural anomaly detection thread which uses graph structure analysis (Random

Forest) on network data to separate the normal from the anomalous; and psycho-

logical profiling thread that constructs psychological profiles from behavioural data

in order to track sudden changes in the psychological features. GLAD-PC then em-

ploys a BN to fuse the anomalous data from each of the two threads. After that, a

statistical inference method ranks the anomalous instances to decide whether to flag

a threat alarm. The results show that the combination of the two threads outper-

forms applying each thread on its own.

2.3.2.2 Anomaly Detection

In the case of the availability of only normal data (i.e. data maturity is medium), the

system is only capable of learning on the majority class (normal class). Hence, the

insider threat detection problem is addressed using an anomaly detection approach.

In this case, an anomaly detection approach learns the baseline of user(s) normal

behaviour, and detects the instances which deviate from the baseline as anomalous

instances. There exists a recent research trend towards employing anomaly detection

approaches for insider threat detection. iForest [50] is a model-based anomaly detec-

tion algorithm that isolates anomalies from the normal instances instead of profiling

normal instances.

In the following, we give a brief review of the anomaly detection approaches.

A recent unsupervised ensemble-based anomaly detection system, namely PROac-

tive Detection of Insider threats with Graph Analysis and Learning (PRODIGAL),
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was presented by Goldeberg et al. [51]; a result of five years work on the insider

threat detection problem [52]–[54]. The authors define three diverse types of user-

day detectors that are employed in PRODIGAL including, indicator-based detec-

tors which apply outlier detection techniques to feature subsets related to particu-

lar activity(ies); anomaly detectors which identify potential anomalies in the whole

feature space related to different aspects of the data; and scenario-based detectors

which focus on subsets of features and subsets of target users relevant to a particu-

lar scenario in order to allow the comparison with peer groups. iForest is configured

as one of the anomaly detectors in PRODIGAL to detect unknown malicious insider

threats in user activities. Furthermore, PRODIGAL implements an ensemble ap-

proach which combines the scores from multiple detectors, such that the consensus

about the most anomalous instances with respect to individual detectors is main-

tained with respect to the ensemble. The ensemble in PRODIGAL achieves an aver-

age AUC=0.85, which approaches the average AUC achieved by the best individual

anomaly detector (0.88 to 0.89).

Legg et al. [33] present an automated system, called Corporate Insider Threat De-

tection (CITD), to detect insider threats in an organisation. The CITD defines a data

parser module, including an activity parser and a content parser, which retrieves and

parses the data logs for each session. The activity parser appends the activity logs to

tree-structure behaviour profiles and extracts an activity feature set for each session.

The content parser was discussed in a further paper [55], where it utlises k-means

clustering and Principal Component Analysis (PCA) to extract the psychological fea-

tures based on the contents of the browsed websites, and appends these features to

the activity feature set. The CITD then assesses the feature set, for each session,

based on three levels of alerts: level ‘1’ policy violations and threat patterns; level

‘2’ threshold-based anomalies, and level ‘3’ deviation-based anomalies. The level ‘1’

alerts correspond to the tripwires addressed in a further paper [34]. The tripwires

only fire if the user’s behaviour matches the implemented policy violations or threat

patterns, thus will not suffer from FPs. This refers to signature detection, however,

the level ‘2’ and level ‘3’ alerts are in charge of detecting new threats (i.e. anomaly

detection). The level ‘3’ alerts is in charge of finding the anomaly threshold, which

in turn is used for level ‘2’ alerts. The level ‘2’ alerts compare the anomaly score for



20 Chapter 2. Approaches for Insider Threat Detection

each session, and triggers an alert based on the predefined threshold. If the alert

is an FP, the system’s parameters are refined with the aim to reduce upcoming FPs.

The authors test the scalability and performance of CITD on a real data set in an ex-

perimental paper [56]. The results show that the alerts are generated for 25% of the

staff in a multinational organisation. The high FP is related to the significant change

in staff’s working hours in a multinational organisation. CITD is also evaluated on

synthetic CMU-CERT data set with a precision=42% and recall =100%. Besides, the

utilisation of a parallel coordinates plot shows 7 of 10 insider threat cases identified

clearly.

Zhang et al. [57] apply the Naive Bayes algorithm to file logs with the aim to

identify anomalous users based on their probability of interest in file topics com-

pared to that of the community. The approach first categorises the files into prede-

fined topics. It then constructs two types of probabilistic models: a user behaviour

model which defines the probability of a user’s interest in each predefined topic

(based on their file accesses); and a community behaviour profile which defines the

probability of a community’s interest in a particular topic given another topic (i.e.

conditional probability). A user is flagged as anomalous if the user-topic probability

is significantly different from a user-community probability, given the user belongs

to the community (i.e. users having the same role).

Gates et al. [58] use the structure of the file system hierarchy to measure the level

of access similarity of the files, and detect anomalous behaviour based on a prede-

fined threshold. The paper defines access similarity measure techniques including,

self score which compares a user’s access similarity to a user’s historical accesses;

and a relative score which compares a user’s average score to other users’ accesses.

These measure techniques are suggested to be used as a feature in the feature vector.

The results show that the use of the feature relative score, which compares to oth-

ers’ accesses, allows to attain a lower number of FPs. The results show the ability to

detect 80% of the threats with a percentage of FP=2.5%.

Chen et al. [59] introduced Meta-CADS, an extension of the proposed Commu-

nity Anomaly Detection System (CADS) [60] to detect insider threats in collabora-

tive environments. CADS consists of two components: a Patter Extraction com-

ponent (CADS-PE) which extracts user-subject relations (patterns) from access logs
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to infer communities; and an Anomaly Detection component (CADS-AD) which

employs the unsupervised k-NN to compare the user-subject relations to the in-

ferred community-subject relations, so that the user’s behaviour which deviates

significantly from its community is detected as anomalous. Meta-CADS extends

CADS where it incorporates the semantics of subjects (subject-category relations)

into CADS-PE to infer complex categories using Singular Value Decomposition (SVD);

a step before the community inference. The experiments suggest that Meta-CADS

performs better than CADS in terms of AUC when the rate of malicious users with

respect to benign users is low (0.5%).

2.3.2.3 Streaming Anomaly Detection

In the case of the absence of data (i.e. data maturity is low), this means that the

organisation have no previously logged behaviour for users (no historical data logs).

Hence, the insider threat detection problem is addressed using a streaming anomaly

detection approach.

Few approaches have proposed a streaming anomaly detection approach, with

no prior knowledge of user(s) normal or anomalous behaviour [21], [22], [61]–[63].

We now give a description for these approaches.

Bose et al. [21] propose a Real-time Anomaly Detection system in Streaming

Heterogeneity, namely RADISH, based on k-NN to detect patterns and anomalies in

data streams. RADISH is composed of two processes: a Learning process (RADISH-

L) which learns the patterns of normal behaviour in incoming data streams to de-

rive models; and an Alerting process (RADISH-A) which matches the incoming

data against the normal patterns in derived models to detect anomalous behaviour.

RADISH-A utilises the unsupervised k-NN to compute the anomaly score; the dis-

tance to the kth nearest neighbour from the learned data instances. An instance is

flagged as anomalous in real-time if its anomaly score is above a predefined thresh-

old. The experimental results show that RADISH detects 50% of malicious sessions,

however, 92% of the alarms flagged are actually benign (FPs).

Among the emerging interest in deep learning, Tuor et al. [61] present a pre-

liminary effort to utilise deep learning in an online unsupervised approach to detect

anomalous network activity in real-time. The authors presented two models: a Deep
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Neural Network (DNN) model which is trained on each acquired instance only once;

and a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) ar-

chitecture which learns an RNN per user such that the weights are shared among

all users, however, the hidden states are trained per user. Each model produces

ranked user-day anomaly scores to identify the malicious users per day. Note that

the anomaly scores produced firstly are quite large, when the model is still learning

the normal baseline, and it decreases over time. The results show that DNN and

RNN outperform iForest and SVM.

Zargar et al. [62] introduce a Zero-Knowledge Anomaly-Based Behavioural Anal-

ysis Method, namely XABA, that learns each user’s behaviour from raw logs and

network traffic in real-time. XABA is implemented on a big-stream platform without

predefined or preprocessed activity logs, to handle high rates of network sessions.

It checks for anomalous patterns in real-time and detects diverse types of insider

threat scenarios including traitor admin, third party backdoor, credential sniffer,

mail spoofing, and foothold hosting. The authors claim that XABA reports a low

number of FPs, when evaluated on a real traitor scenario.

One of the ensemble approaches is an ensemble of one class SVM (ocSVM),

namely Ensemble based Insider Threat (EIT), proposed by Parveen et al. [22]. The

advantage of ocSVM is that it addresses the minority class issue in insider threat

problem, by building a model of majority (normal) instances and classifying test in-

stances based on their geometric deviations from the model. However, ocSVM is

applicable to static and finite data. The authors suggested an ensemble approach,

based on static ocSVM learners, to model a continuous data stream of data chunks

(i.e. daily logs). A data chunk is defined as a set of data instances at a day session;

user’s logged behaviours per day. The EIT acquires data chunks continuously, such

that it learns a new model Ms for each received data chunk Cs at a day session s.

The EIT maintains an ensemble of a k predefined number of models M , where the

ensemble is continuously updated at each day session upon the learning of a new

modelMs. The EIT selects the best k−1 models from the k models, having the mini-

mum prediction error over the data chunk Cs, and appends the new model Ms. The

rationale behind the continuous update of the ensemble models at each day session

is to allow the EIT to learn the change in user’s behaviour, with the aim to reduce the
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number of False Positives (FPs) in the upcoming data chunks. It is worth noting that

each new unlabelled model Ms at a day session s will turn into a labelled model at a

day session s+ 1; labelled with the predicted labels at a day session s. The proposed

ensemble-ocSVM (with updating) is compared to the traditional ocSVM (without

updating). The results show that ensemble-ocSVM outperforms the latter, where

it reports a higher accuracy=0.76 and almost half the rate of FP=0.24 compared to

ocSVM (accuracy=0.58 and FP rate=0.42).

The authors extended their work in a subsequent paper [63], where the ensemble

approach is applied to unsupervised Graph-Based Anomaly Detection (GBAD). The

results show that ensemble-ocSVM (accuracy=0.71 and FP rate=0.31) outperforms

the ensemble-GBAD in terms of FP(accuracy=0.56 and FP rate=0.54).

2.3.3 Others

Other approaches have been proposed in the last decade to address the problem.

They are briefly considered here.

Ahmad et al. [64] present a risk assessment methodology, an extension to their

previous work [65], to be applied as a first line of defence against insiders. The

principle of the presented methodology is to compute the threat score for each user

based on the following metrics: F-attributes which defines the physical or electronic

privileges of a user’s access/modification of an organisation’s assets (e.g. resources,

information); F-behaviour which defines a user’s malicious intents (e.g. user com-

petence, user interactions with honey files, psychological data); and F-vulnerability

which defines the vulnerabilities in the user’s machine (e.g. firewall or anti-virus

is off, open ports on a machine). The results show a manager and a clerk, who are

simulated as malicious, to have a high threat score, while a data entry operator has

a medium threat score. The reason behind this is that the latter does not have many

privileges. The presented methodology does not replace the detection system, how-

ever, it complements it to focus on users with a high threat score.

Furthermore, Ahmad et al. [66] introduce a hashing and watermarking applica-

tion to secure the exchange of medical documents. First, a hash value is computed

when a document is accessed, so that the change in the hash value reveals a sus-

picious access, otherwise a normal access (if the hash value is the same). Second,
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a watermarking technique is induced to append the user’s details to a document

whenever it is accessed or created, so that an illegal access or a forged report is de-

tected. The results show the capability of the introduced approach to prevent/detect

the simulated malicious scenarios within 1sec, with a percentage of false alarms be-

tween 0− 2%.

An earlier framework proposed by Ahmad et al. [67] employs a Genetic Algo-

rithm (GA) as an optimisation procedure along with a fuzzy classifier to classify the

level of an insider threat with the aim to reduce false alarms. The proposed frame-

work consists of multiple components including: a risk assessment module, which

computes a threat score based on different metrics (F-attributes, F-behaviour, and

F-vulnerability) as discussed in [65]; a detection system module, which computes a

detection score based on data collected from different information sources (e.g. file

access logs, email logs, web logs); an offline analysis module, which analyses the

past profile of a user; and a fuzzy classifier, which takes as input the outputs of the

aforementioned modules to identify the level of threat. The results show the level

of threat of simulated scenarios in less than 1sec, with a percentage of false alarms

between 0− 8%.

2.4 Discussion

We summarise the state-of-the-art reviewed above in Table 2.1, which demonstrates

the papers in descending year order. Each recorded paper is associated with: the

proposed method(s); the category it belongs to, based on the categorization provided

in Fig. 2.1; and the data set(s) utilised to evaluate the proposed method(s).

This Section discusses the literature in terms of (1) the shortcoming of the high

number of false alarms (false positives), and (2) the challenges in the existing ma-

chine learning approaches. Later, in Section 4.1, we discuss the literature in terms of

the data sets utilised to evaluate the approaches.

2.4.1 Shortcoming of High Number of False Alarms

Few of the existing approaches report the performance in terms of false positives.

Table 2.2 lists the state-of-the-art approaches that report their results in terms of the
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TABLE 2.1: Summary of the state-of-the-art approaches for insider
threat detection. The categories of the approaches are:

S:Signature-based,
M-Q: Machine learning - seQuence-based,

M-B-C: Machine learning - Behaviour-based - Classification,
M-B-A: Machine learning - Behaviour-based - Anomaly detection,

M-B-R: Machine learning - Behaviour-based - stReaming, or
others.

Reference Year Authors Method(s) Category Data set

[34]* 2017 Agrafiotis et al. match of patterns S NA
[21] 2017 Bose et al. k-NN M-B-R DARPA ADAMS

CMU-CERT r2
[36] 2017 Gamachchi et al. iForest M-Q CMU-CERT r4.2
[37] 2017 Gamachchi and Boztas attributed graph clustering M-Q CMU-CERT r4.2
[51]** 2017 Goldberg et al. anomaly detection (iForest) M-B-A DaRPA ADAMS
[33]* 2017 Legg et al. PCA M-B-A CMU-CERT

anomaly detection
[38] 2017 Moriano et al. bipartite graph M-Q IBM ClearCase
[32] 2017 Rose et al. distributed detection S NA
[61] 2017 Tuor et al. DNN M-B-R CMU-CERT r6.2

RNN
[64]*** 2016 Ahmad et al. risk assessment Other simulated
[66]*** 2016 Ahmad et al. hashing Other simulated medical

watermarking
[56]* 2016 Agrafiotis et al. experimental paper Other multinational organisation
[62] 2016 Zargar et al. anomaly detection M-B-R simulated
[55]* 2015 Alahmadi et al. PCA M-B-A website

kmeans
[35] 2015 Ambre and Shekokar regular expression S NA

Bayesian theorem
[42] 2015 Mayhew et al. SVM M-B-C enterprise

kmeans
C4.5

[43] 2015 Punithavathani et al. k-NN M-B-C real-time packets
[65]*** 2014 Ahmad et al. risk assessment Other simulated
[67]*** 2014 Ahmad et al. GA Other simulated

fuzzy classifier
[44] 2014 Azaria et al. SVM M-B-C Amazon Mturk

Naïve Bayes
[58] 2014 Gates et al. anomaly detection M-B-A commercial
[45] 2014 Sen Naïve Bayes M-B-C SEA
[68] 2014 Walton et al. information theory M-B-R CMU-CERT r4.2

CMU-CERT r5.2
[52]** 2014 Young et al. anomaly detection M-B-A DaRPA ADAMS
[57] 2014 Zhang et al. Naïve Bayes M-B-A Sogou laboratory corpus
[46] 2013 Axelrad et al. BN M-B-C simulated
[47] 2013 Barrios BN M-B-C transactions
[48] 2013 Kandias et al. SVM M-B-C YouTube REST API

Naïve Bayes
LR

[69]* 2013 Legg at al. reasoning Other NA
[63]**** 2013 Parveen et al. ensemble-ocSVM M-B-R 1998 DARPA Intrusion

ensemble-GBAD
[54]** 2013 Senator et al. anomaly detection M-B-A DaRPA ADAMS
[53]** 2013 Young et al. anomaly detection M-B-A DaRPA ADAMS
[49] 2012 Brdiczka et al. graph, BN M-B-C online gaming
[59]† 2012 Chen et al. graph,k-NN M-B-A EHR Access Log

SVD
[60]† 2011 Chen and Malin graph,k-NN M-B-A EHR Access Log

SVD
[39] 2011 Eberle and Holder GBAD M-Q NA
[40] 2011 Huang and Stamp HMM M-Q Schonlau data set
[22]**** 2011 Parveen et al. ensemble-ocSVM M-B-R 1998 DARPA Intrusion
[41] 2009 Tang et al. DBN M-Q simulated

HMM

The asterisk symbols (*) or the dagger symbol (†) cluster authors’
teams who are productive in the area of machine learning approaches

for insider threat detection.
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minimum FP rate (%), or False Alarm rate (%).

TABLE 2.2: The results in terms minimum FP rate (%) or False Alarm
rate (%) of the state-of-the-art approaches.

Reference Year FP rate (%) or False Alarm rate (%)

[21] 2017 False Alarm rate=92%
[42] 2015 FP rate=0.18− 1%
[44] 2014 FP rate=4.73%
[58] 2014 FP rate=2.5%
[63] 2013 FP rate=54%
[22] 2011 FP rate=24%

We notice that a recent anomaly detection approach, called RADISH [21], reports

a False Alarm rate=92%, which is extremely high. Though, RADISH is evaluated

on insider threat CMU-CERT r2 data set [70]. This result sheds light on a persistent

shortcoming in the machine learning approaches addressing the insider threat detec-

tion problem. An earlier approach proposed by Parveen et al. [63] reports a signifi-

cant high FP rate=54% for ensemble-GBAD, followed by FP rate =31% for ensemble-

ocSVM. This work [63] was an extension of their paper [22], where ensemble-ocSVM

reports FP rate=24%. Both ensemble-ocsvm and ensemble-GBAD are evaluated on

the 1998 DARPA Intrusion Detection data set [71], which is not specifically designed

for the insider threat problem.

A significant low FP rate was attained in BBAC [42] and [58], which report FP

rate=0.18− 1% and FP rate=2.5% respectively. BBAC is evaluated on real enterprise

data, including network flow information, higher-level transport protocols, audit

records, and application-level content, in addition to injected synthetic insider threat

data labelled by domain experts. However, the approach in [58] is evaluated on real

access logs from a commercial source code repository; only source files. Thus, the

approach is specifically designed to mitigate the insider threat problem on the level

of files only, and therefore it does not generalise as a detection mechanism for the

whole network, system, and data in an organisation. The approach in [58] could be

utilised as a component in a detection framework.

Similarly, the BAIT approach in [44] reports FP=4.73%, which is quite low, how-

ever, BAIT is deployed on Amazon Mechanical Turk (Amazon MTurk) [72], and

evaluated on a designed one-person game data. The game data might not include
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different types of malicious insider threat scenarios, and therefore does not consti-

tute the challenges of variety and complexity in threat scenarios.

To sum up, the existing machine learning approaches still have a common short-

coming, which is the high number of false alarms (FPs).

2.5 Summary

In this Chapter, we gave an up-to-date comprehensive survey of the approaches that

addressed the insider threat detection problem, including (1) signature-based ap-

proaches, and (2) machine learning approaches, which in turn includes (2.1) sequence-

based approaches, (2.2) behaviour-based approaches, and (2.3) others. We discussed

the results of the existing machine learning approaches in terms of FPs to shed light

on the common shortcoming, which is the high number of false alarms (FPs).
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Chapter 3

An Opportunistic Approach for

Insider Threat Detection

3.1 Introduction

The review of the state-of-the-art presents machine learning approaches which have

shown merit in addressing the insider threat problem in terms of the detection of

malicious insider threats, nevertheless, the shortcoming of the high number of false

alarms still persists. This asserts the need to formulate a novel approach that miti-

gates the shortcoming of FPs, whilst detecting the malicious insider threats.

In this Chapter, we discuss the challenges in the existing machine learning ap-

proaches, and we then introduce the formulated opportunistic approach, namely

threat hunting, which will shape the contribution approaches in this thesis.

3.2 Challenges in Existing Machine Learning Approaches

In the following, we distinguish between the two existing categories of machine

learning approaches reviewed in Chapter 2: sequence-based; and behaviour-based.

A brief description and illustration is given for the each category of approaches to

further discuss their challenges.

3.2.1 Challenges in Sequence-based Approach

A sequence-based approach defines an insider threat as a set of behaviours (i.e. ac-

tions, commands) executed in a specific order of time by a malicious insider. The



3.2. Challenges in Existing Machine Learning Approaches 29

FIGURE 3.1: Sequence-based approach for insider threat detection.
Each circle denotes a behaviour Xt executed by a malicious insider at
a specific session slot t, such that Xt precedes Xt′ if t < t′. The green
circles and the blue circles represent the behaviours which belong to
the malicious threats T1 and T2 respectively. The red rhombus rep-
resents a true alarm of a malicious insider threat. A sequence-based
approach will flag a true alarm of a malicious threat Ti, if it detects all

Xt ∈ Ti in the given time order.

sequence-based approach models the normal baseline of a user as sequences. It

learns the base-line model from the sequences which are often executed, such that

a sequence is a set of behaviours executed in a specific order. After that, a set of

behaviours, which do not resemble the learned normal sequences, are identified as

anomalous, and therefore may refer to a potential insider threat [73].

Figure 3.1 illustrates the concept of a sequence-based approach to detect an in-

sider threat. Each circle denotes a behaviour Xt executed by a malicious insider at a

specific session slot (time) t, such that Xt precedes (occurs before) Xt′ if t < t′. For

instance, X1 precedes X2, indicates that X1 is executed at a session slot (time) be-

fore X2. Let the green circles represent the behaviours which belong to a malicious

threat T1, and let the blue circles represent the behaviours which belong to a mali-

cious threat T2. For instance, to detect an insider threat T1, it is required to detect the

green behaviours Xt,∀t in the given order of time. Let the red rhombus represent a

true alarm of a malicious insider threat. A sequence-based approach will flag a true

alarm of a malicious threat Ti, if it detects Xt ∈ Ti,∀t in the given order.

The drawback of a sequence-based approach when addressing the insider threat

problem is that it is essential to detect all behaviours which belong to a threat in

the given sequence. The challenge of the insider threat detection problem lies in

the variety and complexity of malicious insider threats in the data sets. A malicious



30 Chapter 3. An Opportunistic Approach for Insider Threat Detection

FIGURE 3.2: Behaviour-based approach for insider threat detection.
Each circle denotes a behaviour Xt executed by a malicious insider at
a specific session slot t. The green circles and the blue circles repre-
sent the behaviours which belong to the malicious threats T1 and T2
respectively. The red rhombus represents a true alarm of a malicious
insider threat. A behaviour-based approach will flag a true alarm of a
malicious threat Ti, if it detects all Xt ∈ Ti, but regardless of the time

order.

insider threat is devised of a complex pattern of anomalous behaviours carried out

by a malicious insider, which makes it difficult to detect all behaviours attributed to

all malicious insider threats in the given sequence.

3.2.2 Challenges in Behaviour-based Approach

Unlike sequence-based, a behaviour-based approach defines an insider threat as a

set of behaviours executed by a malicious insider, regardless of the time order. The

behaviour-based approach models the normal baseline of a user from the behaviours

which are often executed. The behaviours (instances) which deviate from the normal

baseline of a user are considered as anomalous.

Figure 3.2 illustrates the concept of a behaviour-based approach to detect an in-

sider threat. Each circle denotes a behaviour Xt executed by a malicious insider at a

specific session slot (time), such that the time order is not important. Let the green

circles and the blue circles represent the behaviours which belong to the malicious

threats T1 and T2 respectively. Unlike the sequence-based, to detect an insider threat

T1, it is required to detect the green behaviours Xt,∀t, regardless of the time or-

der. Hence, it is essential to detect all the behaviours which belong to all malicious

insider threats; the aim to detect all-behaviour-all-threat.

However, as mentioned in the sequence-based approach, the complexity of the
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malicious insider threat scenarios makes it difficult to detect all the anomalous be-

haviours associated with all threats. The anomalous instances (behaviours), which

exist in a dense area of normal instances, have a high similarity to the surround-

ing normal behaviours. These anomalous instances may be missed by the detection

system (False Negatives).

3.3 The Proposed Opportunistic Approach

We notice that the high number of FPs reported in Table 2.2 refers to machine learn-

ing approaches (particularly behaviour-based) [21], [22], [42], [44], [58], [63]. We

attribute the high number of FPs to the fact that the existing approaches attempt to

detect all anomalous behaviours in all malicious insider threats.

However, the focus should be to hunt the malicious insider who poses a threat

to the organisation, hence, to detect the malicious insider threat, but not necessarily

all behaviours associated to it.

Given the complexity of the malicious insider threat scenarios and the challenges

of the existing approaches, we formulate a novel approach with the aim to detect

any-behaviour-all-threat; it is sufficient to detect any anomalous behaviour in all

malicious insider threats. In other words, we can hunt a malicious insider threat

by at least detecting one anomalous behaviour among the anomalous behaviours

associated to this threat. Designing the machine learning approach with such a re-

laxing condition will contribute in reducing the false alarms. We call this approach

opportunistic, or sometimes we refer to it as threat hunting.

Figure 3.3 illustrates the concept of an opportunistic approach to detect an insider

threat. Similar to the behaviour-based approach, each circle denotes a behaviour Xt

executed by a malicious insider. Unlike the behaviour-based, to detect an insider

threat T1, it is required to detect any green behaviour Xt. Hence, it is essential to

detect any of the behaviours which belong to all malicious insider threats; the aim

to detect any-behaviour-all-threat. Note that the opportunistic approach may detect

more than one behaviour which belong to a malicious insider threat, however, the

ultimate aim is to detect a threat for at least one anomalous behaviour.
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FIGURE 3.3: Opportunistic-based approach for insider threat detec-
tion. Each circle denotes a behaviour Xt executed by a malicious in-
sider at a specific session slot t. The green circles and the blue circles
represent the behaviours which belong to the malicious threats T1 and
T2 respectively. The red rhombus represents a true alarm of a mali-
cious insider threat. An opportunistic-based approach will flag a true

alarm of a malicious threat Ti, if it detects any Xt ∈ Ti.

3.4 Summary

In this Chapter, we discussed the challenges in the existing categories of machine

learning approaches which contribute to the shortcoming of false alarms. To mit-

igate this shortcoming, we formulated an opportunistic approach to shape this re-

search work with the aim of any-behaviour-all-threat detection. In other words, a

machine learning approach can detect one or more anomalous behaviours carried

out by a malicious insider in order to identify a malicious insider threat. The design

of the contribution approaches given this relaxing condition endeavours to reduce

the number of false alarms, while detecting all malicious insider threats.
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Chapter 4

Feature Space for Insider Threat

Detection

4.1 Introduction

A significant impediment to researchers who work on the insider threat problem is

the lack of real world data. The real data logs the activities (actions) executed by the

insiders (users) in an organisation. These data log files contain: private user profile

information (e.g. name, email address, mobile number, home address, etc.); intellec-

tual property (e.g. strategic or business plans, engineering or scientific information,

source code, etc.); confidential content (e.g. email content, file content, etc.) [2].

Organisations commonly refuse to give researchers access to real data to protect its

users and assets. Under certain regulations, an organisation may agree to grant the

researchers limited access, however, after it anonymises the private and confidential

attributes in the data.

This issue creates a barrier to the researchers’ ability to proceed with their work.

Hence, it is preferable, in the insider threat detection problem, to generate/utilise

synthetic data for the design and evaluation of the detection system (framework).

Earlier, the research papers utilised a variety of data sets, not specifically de-

signed for the insider threat problem (refer to Table 2.1). For instance, Bose et al.

[21] and Goldberg et al. [51]–[54] used the DaRPA ADAMS data set [74]; Parveen

et al. [22], [63] used the 1998 DARPA intrusion detection data set [71]; and Huang

and Stamp [40] used the Schonlau data set [75]. However, the complexity of the

insider threat problem, specifically the complexity of the insider threat scenarios,
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makes these data sets less relevant. These data sets do not implement malicious

insider threat scenarios, and therefore do not well represent the insider threat prob-

lem. Hence, the utilisation of these data sets to evaluate the insider threat detection

systems is not pertinent.

In the current decade, there is a significant trend towards the utilisation of the

CMU-CERT data set(s) for the insider threat detection systems [21], [33], [36], [37],

[61], [68] (refer to Table 2.1). The CMU-CERT [26] is a collection of synthetic data

sets generated by the Community Emergency Response Team (CERT) in Carnegie

Mellon University (CMU). It implements 5 defined insider threat scenarios which

are described later in this Chapter.

In the following, we give a description of the utilised CMU-CERT data sets, in-

cluding the malicious insider threat scenarios addressed in this work. We then de-

fine the feature space in the insider threat problem and present the set of features

extracted to construct community behaviour profiles (defined later in the following

Section).

4.2 Description of the Data Sets

The CMU-CERT data sets are synthetic insider threat data sets generated by the

CERT Division at Carnegie Mellon University [26], [70]. The CMU-CERT data repos-

itory is the only available data repository that implements malicious insider threat

scenarios (5 scenarios) and has recently become the evaluation data repository for

researchers addressing the insider threat problem [21], [51], [61].

The CMU-CERT data repository has several data generator releases (including r1

to r6), such that most releases include multiple versions of data sets (e.g. r3.1, r3.2).

For this thesis, we used r5.2 data sets from the insider threat data sets generated

by CMU-CERT. This data set logs the behaviour of 2000 employees over 18 months.

The rationale behind the selection of the r5.2 data sets among the panoply of data

generator releases is explained below.

The first step to address the insider threat problem is to determine the model to

employ to analyse the behaviour of users in an organisation. We define two types of

models: (1) user behaviour model, and (2) community behaviour model.
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A user behaviour model defines the behaviour of a single user (employee) in an

organisation. It represents only the activities of this user in a structure to analyse the

user’s behaviour compared to their previous behaviour (only their self).

A community behaviour model broadens and enriches the analysis of a user’s

behaviour with respect to the community a user belongs to. We define a community

as a group of users (employees) in an organisation having the same role. In other

words, the users in a community tend to work in a team environment, and the activ-

ities required from them are quite similar. Therefore, their behaviours tend to align

with the users in the same community. A community behaviour model represents

the activities of all the users in the community in a structure to analyse each user’s

behaviour compared to their previous behaviour as well as to the community’s be-

haviour. In this thesis, we employ the community behaviour models to analyse the

behaviour of users and detect malicious insider threats. For instance, consider the

community of salesmen, where the activities required from each salesman are to sell

and promote commercial products. In the salesmen behaviour model, the activities

of the salesmen align, and any deviation of salesman’s behaviour from their previ-

ous behaviour or the behaviour of the whole community may indicate a malicious

insider threat. Hence, we hypothesise that adopting the community behaviour mod-

elling in our work will guide the proposed approaches towards effective detection

of malicious insider threats.

Following the definition of a community behaviour model, we justify the se-

lection of the r5.2 data sets. Unlike the other released CMU-CERT data sets, the

communities in the r5.2 data sets consist of a considerable variety of malicious in-

sider threats. In other words, the r5.2 data sets implement a considerable number

of malicious insiders in each community, such that the scenarios followed by the

malicious insider threats in a community are varied. As a result, the richness and

variety in the community behaviour models will allow testing of the effectiveness of

the proposed approaches and validation of different scenarios. Table 4.1 summarises

the released CMU-CERT data sets in terms of the number of implemented malicious

insider threats. It is evident that the r5.2 release consists of the highest number of

malicious insider threats, followed by the r4.2 release. Furthermore, the scenarios
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TABLE 4.1: Summary of CMU-CERT releases in terms of the number
of implemented malicious insider threats.

Release r1 r2 r3.1 r3.2 r4.1 r4.2 r5.1 r5.2 r6.1 r6.2
Number of threats / 1 2 2 3 70 4 99 5 5

The slash symbol (/) denotes that this release has no implemented
malicious insider threats.

implemented in each community of the r5.2 release are varied. This is further justi-

fied in Table 4.2, where the variety of scenarios implemented in each of the utilised

communities is shown.

Among the 2000 employees in the r5.2 data sets, we extracted the data logs for

the users (employees) belonging to the following three community data sets to be

later utilised to validate the proposed approaches:

• Production line worker (com-P): It consists of 300 users, including 17 malicious

insiders. It has the scenarios {s1, s2, s4} implemented;

• Salesman (com-S): It consists of 298 users, including 22 malicious insiders. It

has the scenarios {s1, s2, s4} implemented; and

• IT admin (com-I): It consists of 80 users, including 12 malicious insiders. It has

the scenarios {s2, s3} implemented.

A description of the scenarios {s1, s2, s3, s4} implemented in the aforementioned

community data sets is in Section 4.2.1.

4.2.1 Scenarios of Malicious Insider Threats

In the following, we give a brief description of the scenarios implemented in the

extracted communities:

Scenario s1 This scenario considers a user who starts logging in after hours, using

a removable drive, and uploading data to the WikiLeaks website. This behaviour

occurs for a period of time and the user leaves the organisation thereafter.

Scenario s2 This scenario considers a user who starts surfing job websites espe-

cially targeting competitor companies. The user’s activity of connecting a removable
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TABLE 4.2: Summary of the r5.2 community data sets in terms of the
number of users, the number of malicious insider threats PT , and the
number of malicious insider threats that map to each of the described

scenarios {s1, s2, s3, s4}.

Community Users PT s1 s2 s3 s4

com-P 300 17 6 5 / 6
com-S 298 22 7 9 / 6
com-I 80 12 / 2 10 /

The slash symbol (/) denotes that this scenario is not implemented in
the corresponding community data set.

drive to their PC increases incrementally, at a higher frequency than their previous

activity, in order to steal data before leaving the company. The activity of surfing job

websites occurs for a certain period of time, stops for a few session slots, and then

reoccurs in a similar manner.

Scenario s3 This scenario considers a disgruntled system administrator who down-

loads a keylogger into a removable drive and connects it to their supervisor’s PC to

steal their login identity. The next day, the administrator logs into the supervisor’s

PC using their login identity collected in keylogs and sends an alarming mass email

to employees in the organisation. Scenario s3 refers to a masquerade insider threat

where the malicious insider uses the legitimate user’s identity to gain access to their

PC.

Scenario s4 This scenario considers a user who logs into another user’s PC, ac-

cesses their files, and emails them to a personal email. It is carried out more and

more frequently over a three-month period. New activities (e.g. logon from a new

PC, emails to non-employees) occur in a persistent manner to establish a novel be-

haviour.

More information regarding CMU-CERT data sets and simulated scenarios can

be found in [26], [70]. Table 4.2 summarises the aforementioned r5.2 community

data sets in terms of the number of users (employees), the number of malicious in-

sider threats PT , and the number of malicious insider threats that map to each of the

described scenarios {s1, s2, s3, s4}.
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FIGURE 4.1: Sample of users’ information in CMU-CERT r5.2 release.

4.3 Data preprocessing for CMU-CERT Insider Threat Data

Sets

The CMU-CERT r5.2 release consists of r5.2 raw data and users’ information. The

r5.2 raw data comprise system and network logs for the activities carried out by

users (employees) in an organisation over 18 months. These activities include: lo-

gons, connecting removable drives, browsing urls (websites), copying files, and

sending emails. The latter users’ information comprises details related to each of the

2000 users (employees) in the organisation. Fig. 4.1 provides a sample of users’ in-

formation in CMU-CERT r5.2 release. It shows the attributes (record_id, user_name,

user_id, email, and role) for the records record_id =103 − 109. In this work, we are

interested in the attribute ‘role’ which represents a filter attribute to create commu-

nity data sets. Recall that a community data set consists of the activities carried out

by users having the same role (i.e. community).

In this Section, we describe the preprocessing steps we executed to transform

the r5.2 raw data into community behaviour data sets – ‘community matrices’. We

used MATLAB R2016b on Windows Server 2016 on Microsoft Azure (RAM 140GB,

OS 64 − bits, CPU Intel Xeon E5 − 2673v3) to implement the data preprocessing

procedure. Fig. 4.2 illustrates the preprocessing steps to construct the three commu-

nity behaviour data sets: Production line worker – com-P, Salesman – com-S, and IT

admin – com-I.

For instance, consider the community Production line worker com-P, such that

the preprocessing steps for this community are illustrated in blue on the left of Fig.

4.2. The first step selects only the com-P users (employees) from the users’ informa-

tion using the filter attribute ‘role’. Second, the r5.2 raw data and the selected com-P
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FIGURE 4.2: Data preprocessing of r5.2 raw data to construct com-
munity behaviour data sets. Each colour illustrates the preprocessing
steps of a specific community data set. The block illustrated for the
community data set com-P represents the preprocess of ‘feature ex-

traction’ which is later described in Fig. 4.4.

users are input to the preprocess of ‘community data preparation’ – preprocess (1).

In preprocess (1), the r5.2 raw data is filtered using the selected com-P users, and

prepared to comprise five documents of activity logs. In each of the documents, we

prepare the raw attributes that will be utilised in the preprocess of ‘feature extrac-

tion’ – preprocess (2). The prepared five documents actually refer to five types of

activity logs including, logon logs, device logs, http logs, file logs, and email logs. A

brief description of the five documents of activity logs is given below.

• Logon logs: is a sorted data document that organises the logon activities of

the users which belong to com-P. Fig. 4.3a provides a sample of logon logs. It

shows the attributes (record_id, datetime, user_id, pc, and activity ={ logon,

logoff }) for the records record_id =310− 316.

• Device logs: is a sorted data document that organises the removable drive ac-

tivities of com-P users. Fig. 4.3b provides a sample of device logs. It shows the

attributes (record_id, datetime, user_id, pc, and activity ={connect, disconnect})

for the records record_id =795− 801.
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• Http logs: is a sorted data document that organises the browsing url activi-

ties of com-P users. Fig. 4.3c provides a sample of device logs. It shows the

attributes (record_id, datetime, user_id, pc, and url) for the records record_id

=327655− 327661. The the attribute ‘url’ is cut to include only the root domain

(hostname).

• File logs: is a sorted data document that organises the file activities of com-

P users. Fig. 4.3d provides a sample of file logs. It shows the attributes

(record_id, datetime, user_id, pc, and file_extension) for the records record_id

=56599 − 56605. The attribute ‘file_extension’ is included instead of the com-

plete name of the file, because the names of the files are simulations of random

letters and don’t reveal any information. However, the extension of a file re-

veals the level of importance of a file. For example, executable code files with

extension ‘.exe’ have high level of importance. The activity of copying such

files to a removable drive would be associated to a malicious insider threat.

• Email logs: is a sorted data document that organises the email activities of

com-P users. Fig. 4.3e provides a sample of email logs. It shows the attributes

(record_id, datetime, user_id, pc, from, to, cc, bcc, size, attachments) for the

records record_id =992691− 992697. For instance, the attribute ‘bcc’ has a vital

role. If the user bcc’d does not belong to the same company (i.e. the domain

name of the email address is not ‘@dtaa.com’), this would be associated to

a malicious insider threat. In addition, the attribute ‘size’ and the attribute

‘attachments’ would reveal useful information related to the email size and

the number of documents attached to the email.

The prepared documents described above are each sorted with respect to the at-

tribute ‘datetime’ in ascending order. Note that the documents http logs, file logs,

and email logs exclude the attribute ‘content’ from the r5.2 raw data. The ‘content’

is beyond the scope of the thesis, and it requires a text mining add-on. The future

directions of this work would consider implementing a text mining add-on for ‘con-

tent’ parsing.

Table 4.3 summarises the five types of activity logs prepared from r5.2 CMU-

CERT data for each of the three communities. For the whole r5.2 data sets, it gives
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(A) Logon logs. (B) Device logs.

(C) Http logs. (D) File logs.

(E) Email logs.

FIGURE 4.3: Samples of the five types of activity logs prepared from
r5.2 CMU-CERT data for the community com-P.

TABLE 4.3: Summary of the five types of activity logs prepared from
r5.2 CMU-CERT data for each of the three communities.

Data set Logon logs Device logs File logs Http logs Email logs

r5.2 1810070 836984 887621 58960449 17361575

com-P 244458 118441 130656 1029684 464921
com-S 242252 147580 152270 16285182 4241595
com-I 222468 34320 43183 2955296 824248

the number of logs (i.e. records) in each of the activity logs. For each community, it

gives the number of logs in each of the activity logs. For instance, the community

com-P extracts 244458 logs from 1810070 logs to build the document of logon logs

for com-P. In other words, 244458 out of 1810070 logs in r5.2 data sets correspond

to the logon logs of users who belong to community com-P. In this way, the prepro-

cess (1) of ‘community data preparation’ prepares the five activity logs for the next

preprocess (2) of ‘feature extraction’.
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4.3.1 Feature Extraction for CMU-CERT Community Data Sets

As aforementioned, the five types of activity logs are prepared with the raw at-

tributes that describe the activities carried out by users who belong to a specific

community. The raw activity logs are not susceptible for direct analysis by a ma-

chine learning method, however, it is necessary to transform these raw attributes

into quantitative features. Fig. 4.2 shows that the activity logs are input to the

preprocess (2) of ‘feature extraction’ and output a ‘community behaviour profile’

– ‘community matrix’.

We define the feature space of the insider threat problem according to the liter-

ature [21], [33], [76]. The feature space comprises a set of features that assess the

behaviour of users, and allow to compare to previous behaviour of these users or

their community of users. We define each feature in the feature set based on the

evidence it would give about any undergoing anomalous behaviour. For example,

we define the feature logon_after_hours ={0, 1}. If the value of the feature is 1, then

it gives an evidence of an unusual logon activity of a user in the community after

the working hours. Therefore, this feature contributes to the overall decision of the

system whether an alarm of a malicious insider threat should be flagged or not.

We categorise the features defined in this work into five groups. We give below

a brief description of each category:

• Frequency-based ‘integer’: assess the frequency of an activity carried out by

the users in a specified community during a defined period of time;

• Time-based ‘integer’: assess an activity carried out within the non-working

hours;

• Boolean ‘flag={0, 1}’: assess the presence/absence of an activity-related infor-

mation;

• Attribute-based ‘integer’: are more specialised features which assess an activ-

ity with respect to a particular value of an attribute; and

• Others ‘integer’: assess the count of other activity-related information.



4.3. Data preprocessing for CMU-CERT Insider Threat Data Sets 43

TABLE 4.4: The defined features and their categories.

Feature Frequency-based Time-based Boolean Attribute-based Others

freq_logon x
logon_after_hours x
logon_new_pc x
freq_connect x
connect_after_hours x
freq_browse_urls x
freq_browse_job_urls x x
freq_browse_wikileaks_url x x
freq_copy_files x
file_access_ext_exe x
freq_send_emails x
nbr_to_recip x
nbr_cc_recip x
nbr_bcc_recip x
nbr_all_recip x
non_emp_recip x
avg_size_emails x
nbr_attach x

The cross symbol (x) denotes that this feature belongs to the corre-
sponding category.

Table 4.4 lists all the features defined in this work and the categories these fea-

tures belong to. It is worth noting that some features belong to more than one cat-

egory. For example, ‘freq_browse_job_url’ is (1) an attribute-based feature, which

assesses the activity of browsing particular urls (i.e. urls for job websites), and (2) a

frequency-based feature, where it assesses the frequency of executing this activity.

Fig. 4.4 shows the preprocess (2) of feature extraction for a specific commu-

nity. Let {f1, f2, . . . , fm} represent the set of features to construct the community

behaviour profile ‘community matrix’, such that fi; 1 ≤ i ≤ m represents a feature

from the defined features above. The raw attributes in the prepared activity logs are

utilised to extract the values of the features. We define a session_slot as a period of

time from start_time to end_time. A community behaviour profile represents a set

of feature vectors (i.e. a matrix) over sorted session slots. Each feature vector (i.e.

instance) is a set of the values of the features {f1, f2, . . . , fm} over a certain session

slot. Consider session_slot t, and assume that f1 is the feature ‘freq_connect’, then

the value of feature f1 is the frequency of the connect activity for the users who be-

long to the specified community during the start_time to end_time of session_slot

t.

The constructed community behaviour profile is then input to a machine learn-

ing approach to generate a community behaviour model. This model defines the
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FIGURE 4.4: Feature extraction for a specific community.
{f1, f2, ..., fm} represent the set of features to construct the commu-
nity behaviour profile ‘community matrix’, such that fi; 1 ≤ i ≤ m
represents a feature from the defined features. A session_slot is a
period of time from start_time to end_time. A community behaviour

profile represents a set of feature vectors over sorted session slots.

baseline behaviour for the users in the specified community. Any deviation from the

baseline is analysed by the detection system to identify whether it is a normal drift

of behaviour or it is associated with a malicious insider threat.

In this thesis, based on deep analysis of the data distribution, we define the

session_slot per four hours to find local anomalous behaviour within a day which

would not be detected per day. The rationale behind choosing the session slot per

four hours is that this period of time is long enough to extract an instance (i.e. vec-

tor of feature values) that provides an adequate evidence of anomalous behaviour.

Thus, it allows the system to capture the anomalous behaviours in the feature space.

If the session slot is chosen per minutes, for example, the extracted instances would

lack adequate evidence of the occurrence of anomalous behaviour. On the other

hand, if the session slot is chosen per days/weeks, for example, the period of time
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FIGURE 4.5: Sample of a community behaviour profile ‘Community
Matrix’.

will be too long to capture the anomalous behaviour blurred among the normal be-

haviour in the extracted vector of feature values. It is worth noting that early ex-

periments in this work were applied on session slot per minutes, however, the low

detection performance guided our work towards session slot per hours. The rea-

son behind this is that the session slot per minutes is too small to carry adequate

evidence of the occurrence of anomalous behaviours (as previously mentioned).

After constructing the community behaviour profile, we normalise each vector

of feature values (over a session slot) to the range [0, 1], and associate it with a

class_label {Normal, Anomalous} and a threat_label {Normal, scenRef_insiderID}.

scenRef_insiderID (e.g. s1_ALT1465) has two parts: scenRef (e.g. s1, s2, s3, or s4),

which is the reference number for the scenario followed in the malicious insider

threat, and insiderID (e.g. ALT1465, AYG1697), which is the user ID of the insider

attributed to the threat.

Fig. 4.5 provides a sample of a community behaviour profile ‘community ma-

trix’. It shows the attributes (session_id, session_slot), the features (freq_logon to

nbr_attach), and the labels (class_label, threat_label) for the session slots session_id

=2248− 2257.

4.3.2 The Data Imbalance of CMU-CERT Community Data Sets

An instance is a feature vector over a certain session slot in a community behaviour

profile. Hence an instance represents the behaviour of the users in the community

during the session slot. An instance is marked as ‘anomalous’, if it represents ma-

licious activities carried out by the user(s) during the session slot. Otherwise, the

instance is marked ‘normal’. As discussed in Section 3.3, a malicious insider threat

is a threat executed by a malicious insider and associated to a number of anomalous
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behaviours (instances). We define below the measures N, P and PT in order to later

summarise the data imbalance of the CMU-CERT community data sets:

• N: Negatives number of normal instances (normal behaviours);

• P: Positives number of anomalous instances (anomalous behaviours); and

• PT : Threats number of malicious insider threats associated to anomalous in-

stances. In other words, PT is the number of malicious insiders attributed to

the anomalous behaviours.

The above defined measures are introduced here only to facilitate the summary

of the data imbalance. A complete description of the utilised evaluation measures

is provided in the contribution Chapter 5. The defined measures in Section 5.4.3 are

further utilised in the other contribution Chapters, nevertheless, the different nature

of the problem in each Chapter has required an adjustment to some of the measures.

For instance, the streaming nature of the E-RAIDS approach in Chapter 7 required

to define an FPAlarm measure, instead of the default (known) FP measure, to eval-

uate the false positives over a window. A description of the evaluation measures

utilised in Chapter 6 and Chapter 7 can be found in Section 6.4.2 and Section 7.4.2

respectively.

Table 4.5 gives a summary of the data imbalance of the community behaviour

profiles constructed from CMU-CERT r5.2 data. It shows the number of features

utilised, the number of instances (i.e. feature vectors) extracted, the number of in-

stances marked normal ‘N’, the number of instances marked anomalous ‘P’, and the

imbalance ratio ‘IR’. IR is the number of instances in the majority (normal) class to

the number of instances in the minority (anomalous) class.

It is evident that we are dealing with a data imbalance problem. For example, IR

= 22.4545 for com-I, where the N = 2964 is much higher than P = 132. In Chapter 5,

we address the class imbalance data problem for insider threat detection.

It is worth recalling that the 17 malicious insider threats in com-P are associated

to 366 anomalous instances (behaviours) in the community behaviour profile; the

22 malicious insider threats in com-S are associated to 515 anomalous behaviours;
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TABLE 4.5: Summary of the data imbalance of the community be-
haviour profiles constructed from CMU-CERT r5.2 data in terms of
the number of features utilised, the number of instances extracted,
the number of instances marked normal ‘N’, the number of instances

marked anomalous ‘P’, and the imbalance ratio ‘IR’.

Community Features Instances N P IR

com-P 16 3096 2730 366 7.4590
com-S 16 3094 2579 515 5.0077
com-I 15 3096 2964 132 22.4545

and the 12 malicious insider threats in com-I are associated to 132 anomalous be-

haviours. Moreover, to evaluate the opportunistic approach discussed in Section 3.3,

the threat_label is included in the community behaviour profile to validate whether

all malicious insider threats are detected.

4.4 Summary

There is a significant research trend towards utilising the synthetic insider threat

data sets generated by CMU-CERT for insider threat detection. The CMU-CERT data

repository is the only available repository that simulates malicious insider threat

scenarios in the data sets. We selected the r5.2 release among the panoply of data

generated by CMU-CERT to evaluate the proposed approaches in this work. The

rationale behind selecting the r5.2 release is it richness with malicious insider threats

that implement a variety of scenarios within a community.

We select three community data sets to extract from the r5.2 raw data which

are: Production line worker – com-P, Salesman – com-S, and IT admin – com-I. The

r5.2 raw data undergoes several preprocessing steps: (1) the users of a specified

community are selected from the users’ information using the filter attribute ‘role’,

(2) the r5.2 raw data and the selected users are input to the preprocess of ‘community

data preparation’ to output five types of activity logs, and (3) the prepared activity

logs are input to the preprocess of ‘feature extraction’. We define the feature space

for the insider threat problem according to the literature [21], [33], [76]. The features

are categorised into five groups: frequency-based, time-based, Boolean, attribute-

based, and others. The values of the features are then extracted from the different

types of raw activity logs to construct community behaviour profiles (e.g. com-P,
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com-S, and com-I). These community behaviour profiles (data sets) are utilised to

evaluate the proposed approaches in this thesis.

The community data sets have a data imbalance ratio, where the number of

anomalous (minority) instances is much smaller than the number of normal (ma-

jority) instances.
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Chapter 5

Supervised Learning for

Imbalanced Insider Threat

Detection

5.1 Introduction

The class imbalance data problem refers to a data mining problem, where the minor-

ity class(es) are substantially under-represented compared to the majority class(es).

Several real-world applications pose the class imbalance data problem, in which

the data is predominantly composed of ‘normal’ instances (referring to the major-

ity class) and a small spread of ‘anomalous’ instances (referring to the minority

class) – two-class imbalance data problem. Examples of a real-world application in-

clude credit card fraud detection, network intrusion detection, and cancer detection.

The presence of a ‘normal’ class and an ‘anomalous’ class shapes the data mining

problem into a classification problem, but with class imbalance. The performance

of a machine learning classifier is inevitably biased towards the majority ‘normal’

class, however, the minority ‘anomalous’ instances are the interesting examples to

learn and eventually detect.

The insider threat detection is a challenging real-world data mining problem.

With the scarcity of instances for ‘anomalous’ behaviours (attributed to malicious

insider threats) and the abundance of instances for ‘normal’ behaviours, we present

the insider threat problem as a classification problem with class imbalance. Recall

that we are dealing with a data class imbalance problem in the insider threat data sets.
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For instance, the community IT admin (referred to as com-I) has an imbalance ratio

IR = 22.4545, where the number of normal instances N = 2964 is much higher than

the number of anomalous instances P = 132 (refer to Table 4.5).

The ‘behaviour-based’ classification approaches reviewed in Section 2.3.2.1 have

shown merit in addressing the insider threat detection problem, however, they do

suffer from high false alarms. Some classification approaches report a low FP rate,

such as: FP rate=0.18− 1% in BBAC [42]; FP rate=2.5% in [58]; and FP rate=4.73% in

BAIT [44] (refer to Table 2.2). However, these approaches are evaluated on data sets

not specifically designed for insider threats. Thus, their use does not constitute the

challenges of variety and complexity in threat scenarios.

To our knowledge, none of the existing approaches addressed the insider threat

problem from the perspective of class imbalance, which was discussed in [44]. In

this Chapter, we define the insider threat problem as a class imbalance data prob-

lem, where the majority class consists of the normal behaviour of a user or a com-

munity (i.e. a group of users having the same role), and the minority class consists

of the rare anomalous behaviours that map to different scenarios of threats (each

threat is typically a number of malicious behaviours/instances). When addressing

this problem, we exploited two observations: (1) it is sufficient to detect any anoma-

lous behaviour in any particular threat; and (2) anomalous behaviours resembling

normal behaviours contribute to the high false alarms reported in previous work. In

the following, we elaborate on each of the aforementioned observations.

As discussed in Section 3.3, we formulate this work with the aim to detect any-

behaviour-all-threat; it is sufficient to detect any anomalous behaviour in all malicious

insider threats (observation (1)).

The anomalous behaviours, in the feature space, often lie within the space of

normal behaviours. This appears as anomalous instances having a high resemblance

with the surrounding normal instances, which would trap the classifier to detect

these normal instances as anomalous (FPs), thus generating a high number of false

alarms (observation (2)).

Based on these observations, we propose a hybrid approach, namely CD-AMOTRE,

which combines the Class Decomposition (CD) concept and an oversampling tech-

nique named Artificial Minority Oversampling and Trapper REmoval (AMOTRE).
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Class decomposition is the process of using clustering over the instances of a

class or more in a data set to detect subclasses [77]. The process can be applied to

all classes or a subset of the classes present in the data. Previous work in addressing

class imbalance has considered weakening the effect of the majority class by under-

sampling its instances [78]–[80] – a process that leads to loss of information, and

the possibility of degradation of classification performance as a consequence. Other

previous work has considered the idea of clustering to guide the sampling process

(referred to as cluster-based sampling). The latter tackles the within-class imbalance

and further clusters the minority class before oversampling. However, this process

can be ineffective in the insider threat problem due to the scarcity and sparsity of the

anomalous behaviours. In this Chapter, class decomposition is used to weaken the

effect of the majority class without information loss or cluster-based sampling.

Synthetic Minority Oversampling Technique (SMOTE) [81] and its variations are

the most successful in this area. The process of generating new instances is solely

dependent on existing instances in the minority class, or defines the border instances

to oversample based on nearest neighbours using all dimensions collectively. In this

Chapter, and for the first time, we constrain the generation of new instances when

synthetically oversampling the minority class by shielding the borders of the ma-

jority class along each dimension (i.e. feature) separately in the data set, prevent-

ing the generation of instances that may be positioned in close proximity to the in-

stances of the majority class that in turn increases the false alarms. Based on the two

aforementioned observations, we devised a method to remove behaviours from the

insider threat data (minority class) that have high resemblance with the normal be-

haviour, and can be a trapper for the classifier to generate false alarms. The removal

of such instances can be mostly safe, as based on observation (1), the detection of all

anomalous behaviours by the insider is not required.

Specifically, our contributions in this Chapter are as follows:

• a new approach to address the class imbalance problem through class decom-

position of the majority and oversampled minority class variations;

• a novel oversampling with selective instance removal technique AMOTRE ad-

dressing shortcomings of state-of-the-art methods;



52 Chapter 5. Supervised Learning for Imbalanced Insider Threat Detection

• a detailed analysis of the selective instance removal (trapper removal) on the

AMOTRE technique; and

• a thorough performance evaluation of AMOTRE with and without the class

decomposition variations (decomposition of the majority class only or both

classes) compared to that of SMOTE, showing the superiority of the proposed

approaches.

The rest of the Chapter is organised as follows. In Section 5.2, we give a re-

view of the oversampling techniques with a brief description of SMOTE, and a brief

background on the utilised supervised learning methods. In Section 5.3, we present

the proposed hybrid approach CD-AMOTRE with a formalisation for class decom-

position and AMOTRE technique. In Section 5.4, we evaluate the performance of

AMOTRE with and without the class decomposition variations compared to that of

SMOTE. Finally, we conclude this Chapter with a summary in Section 5.5.

5.2 Background

In this Section, we give a brief review of related oversampling imbalanced data tech-

niques. After that, we give a brief background of the supervised learning methods

that are later utilised as base classification methods in the proposed CD-AMOTRE

approach.

5.2.1 Oversampling Imbalanced Data

Sampling aims to modify the distribution of a data set to handle the imbalanced data

problem. Sampling techniques are grouped into two categories: undersampling,

and oversampling. Undersampling (random or selective) is to remove samples (in-

stances) from the majority class. Oversampling is to generate new samples and as-

sign them to the minority class in a way that makes the minority class more dense,

thus preventing the bias of the classifier’s decision towards the majority class. In the

following, we give a review of state-of-the-art oversampling techniques for imbal-

anced data, because the aim of this work is to propose an oversampling technique to

generate artificial samples of the minority class. He et al. [82] proposed ADAptive
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SYNthetic sampling technique (ADASYN) which uses density distribution to deter-

mine the number of samples to be generated for each minority instance. A leading

and widely adopted sampling technique is a hybrid technique, called Synthetic Mi-

nority Oversampling Technique (SMOTE) [81]. A brief description of SMOTE is

given to introduce the importance of comparing its performance against the pro-

posed approach later in the Chapter.

SMOTE The SMOTE technique was first proposed as an oversampling technique,

which introduces artificial samples into the minority class, making it more dense.

Let I represent the original set of instances that belong to the minority class, and

perc.over be the percentage of oversampling. For each instance At ∈ I , SMOTE

finds its kSMOTE (parameter kSMOTE) nearest neighbours from the set of minority

class instances I . Then, based on the parameter perc.over, a perc.over/100 number

of artificial samples is generated for each At. An artificial sample St for At is intro-

duced along the segment line joining At and any of its kSMOTE nearest neighbours

(randomly selected). In this way, for each At, the artificial samples will be generated

along the segments joining any/all of its kSMOTE nearest neighbours. Consider, for

example, if perc.over = 200, then SMOTE generates perc.over/100=2 artificial sam-

ples for each At. Thus, it introduces (perc.over/100)× card(I)=2× card(I) samples

into the minority class.

Undersampling was then integrated into the SMOTE technique to remove ran-

dom samples from the majority class, so that the minority class becomes a specified

percentage of the majority class. Let perc.under represent the percentage of under-

sampling. For instance, if perc.under = 300 and the number of artificial samples

added to the minority class is 60, then only (perc.under/100) × 60=180 majority in-

stances are randomly selected to remain in the set of majority class instances. The

other majority instances are removed. In this way, the SMOTE technique reverses the

initial bias of the classifier towards the majority class in the favour of the minority

class.

In the following, we describe and argue the suitablilty of some of the techniques

proposed as an extension for SMOTE [83]–[86]. Borderline-SMOTE [83] seeks to

oversample only the borderline minority instances; those which are in the borderline
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areas (i.e. on or near the decision boundary), where the majority class and the minor-

ity class overlap. This technique generates synthetic samples in the neighbourhood

of the borderline(s), where the minority instances are most likely to be misclassified.

On the other hand, Safe-Level-SMOTE [84] seeks to oversample only the safe minor-

ity instances; those that are relatively homogeneous areas within the minority class.

This technique generates synthetic samples in the areas of safe minority instances in

order to strengthen the effect of the minority class. The argument of these techniques

is that it only focuses on specific locations (areas) of minority instances to generate

synthetic data and disregard the other locations that are also required to be correctly

classified.

We argue that Borderline-SMOTE is not suitable for the insider threat problem

due to the following. First, this technique assumes a well-defined border(s) of the

minority class along all the dimensions (i.e. features), which is not applicable in

the insider threat problem. The complexity of the malicious insider threat scenar-

ios manifests in the the high similarity of the anomalous behaviours to normal be-

haviours. The minority instances (i.e. anomalous behaviours) are typically simi-

lar to the majority instances (i.e. normal behaviours), however, at the level of some

features. In the proposed oversampling technique, we consider the over-sampling

at feature level, unlike Borderline-SMOTE. Second, the concept of the Borderline-

SMOTE disregards the oversampling of minority instances within the minority class,

and therefore the creation of clusters for the minority class is not applicable, making

the process of class decomposition less effective.

Hence, in this work, we consider the traditional SMOTE as a more suitable tech-

nique to be compared to the proposed AMOTRE oversampling technique, and ac-

cordingly, we use it as a benchmark for our experimental study, detailed later in this

Chapter.

5.2.2 Classification Methods

In this chapter, we utilise five base methods to address a classification task. These

methods include: (1) Random Forest (RF), (2) eXtreme Gradient Boosting (XGBoost),

Support Vector Machines (SVM) (3) with linear kernel; (4) with polynomial kernel;

and (5) with radial basis function kernel.
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The methods were selected based on the experimental studies in the literature on

the performance of machine learning classifiers on benchmark data sets, and further-

more, on class imbalance data sets specifically. Fernández-Delgado et al. [87] present

an exhaustive evaluation of 179 classifiers over 121 data sets from the UCI machine

learning repository [88], including the whole archive except for the large-scale prob-

lems to achieve non-data-dependent conclusion on the classifiers. The best results

were achieved by RF, followed by SVM with radial basis function kernel, and then

boosting ensembles. López et al. [89] present an extensive experimental study of three

classifiers including SVM with polynomial kernel over 66 imbalanced data sets from

the KEEL data set repository [90], [91] to tackle the class imbalance problem. SVMs

were concluded as the most robust classifiers over imbalanced data sets. A compre-

hensive suite of 1,232,000 experiments is given in [92] over 35 benchmark data sets

from a wide variety of application domains including 19 imbalanced data sets from

the UCI machine learning repository. RF and SVM with linear kernel were selected

for the experiments, and particularly SVM showed a high AUC of an average 0.898

in these experiments.

In the following, we give a description for the methods with the focus on the

classification task.

5.2.2.1 Random Forests

Random Forest (RF) [93] (termed Random Decision Forest [94], [95]) is an ensemble

of decision trees constructed for a classification or a regression task.

RF was first proposed as a random subspace method, where it combines multiple

trees (classifiers) constructed in randomly selected subsets of features (subspaces)

[94]. In 2001, Breiman [93] introduced the concept of bagging (also called bootstrap

aggregating) to extend RFs. Consider a training setX = {X1, X2, . . . , Xn} of n train-

ing instances. Let B represent a predefined parameter for the number of bootstrap

trees in RF. Let kRF (parameter kRF ) represent a fixed predefined parameter for the

number of features (variables) to select a subset (i.e. size of feature subspace). The

default value in many implementations is kRF =
√
m where m denotes the number

of features, but kRF = log2m is also used. Below we give a brief formalisation of RF.
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• Step 1: RF applies bagging repeatedly forB times to selectB random bootstrap

samples for the B bootstrap trees, such that each bootstrap sample Sb; 1 ≤ b ≤

B is selected, with replacement, from the original training set of size m.

• Step 2: For each tree Tb; 1 ≤ b ≤ B, the root node rb is constructed from the

whole bootstrap sample Sb.

• Step 3: At each node nb,i, RF (1) selects kRF random features (i.e. feature subset

of size kRF ), and (2) searches through all the feature subset to find the best split

into two child nodes. Unlike traditional pruning of a tree, RF trees are grown

all the way down and not pruned. For memory efficiency, a maximum depth

or a minimum gain (i.e. improvement) is set in most implementations to stop

growing trees very deeply.

• Step 4: To classify a new instanceXt at session slot t, (1) each tree Tb in RF casts

a unit vote for a class label, and (2) RF selects the predicted class label y′t for Xt

having the most of B votes.

5.2.2.2 Extreme Gradient Boosting

EXtreme Gradient Boosting (XGBoost) [96] is a scalable gradient boosting library

that implements the principles of Gradient Boosting Machine (GBM) [97] for a clas-

sification or a regression task.

Gradient boosting is an ensemble of weak base models (decision trees or linear

models), where the models are learnt iteratively (i.e. in a boosting fashion), and then

generalised by optimising a defined cost function (i.e. loss function). The idea of

generalising the models could potentially cause an overfitting issue. To mitigate this

issue, several regularisation techniques have been introduced including, (1) shrink-

age [98], which scales the learnt weights by a factor η after each iteration in tree

boosting to reduce the influence of existing trees and allow future trees to improve

the model; (2) subsampling [99], which implements the concept of bagging proposed

by Breiman [100] to fit the model on a subsample at each iteration to prevent over-

fitting; and (3) penalising tree complexity [96], which smooths the learnt weights using

the penalty function Ω to minimise the complexity of the model.
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Chen and Guestrin [96] describe XGBoost as an ensemble model that learns in

an additive manner. Consider a training set of n training instances D =
(
Xt, yt

)
,

where Xt represents a training instance at session slot t, and yt represents the true

class label of an instance Xt. The additive function is defined as follows:

ŷt =
I∑
i=1

fi(X
t) (5.1)

where i = 1, . . . , I denotes the ith iteration of the total I number of iterations, and

fi(X) ∀i = 1, . . . , I is defined as a classification model (or regression model).

Chen and Guestrin [96] suggest to add fi at each iteration i to minimise the ob-

jective Lt defined as follows:

Lt =

m∑
t=1

l
(
yt, ŷti−1 + fi(X

t)
)

+ Ω(fi) (5.2)

where ŷti represents the predicted class label, and Ω denotes the penalty function to

minimise the complexity of the model.

5.2.2.3 Support Vector Machines

Support Vector Machine (SVM) or Kernel Machine [101] (termed Support Vector

Network [102]) is a supervised learning method that constructs maximum margin

hyperplane(s) to separate labelled data instances for a classification or a regression

task.

Linear SVM Consider a data set with two class labels c1, and c2. Each data instance

(feature vector) Xt at session slot t has a class label yt ∈ {c1, c2}. The concept of

SVM is to find a linear hyperplane (i.e. linear discriminant) to separate the data

instances of class label c1 from the data instances of class label c2, while maximising

the margin. A margin is defined as the distance from the linear hyperplane to the

data instances closest to it on either side [101]. These instances are referred to as

support vectors. In Figure 5.1, we present a two-class classification task, where the

blue circles and the red squares represent the data instances of class label c1 and

class label c2 respectively. Let the solid line represent the optimal hyperplane that
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FIGURE 5.1: Two-class SVM classification task. The blue circles and
the red squares represent the data instances of class label c1 and class
label c2 respectively. The solid line represents the optimal hyperplane
that separates the data instances of the two classes, and the dash lines
represent two margin hyperplanes that determine the margin. The blue
circles and red squares having a shadow represent the support vec-
tors that locate the two margin hyperplanes which determine the mar-

gin.

separates the data instances of the two classes, and the dash lines represent two

margin hyperplanes that determine the margin.

The equation for optimal hyperplane is given in Equation 5.3 given the set of

instances X satisfying:

w ·X − w0 = 0 (5.3)

where w is a weight vector that is normal (i.e. normal vector) to the hyperplane; and

w0 is a scalar threshold that determines the location of the hyperplane with respect

to the origin 0. Furthermore, the equations for the two margin hyperplanes are given

in Equation 5.4 and Equation 5.5:

w ·X − w0 = +1 (5.4)

w ·X − w0 = −1 (5.5)

where +1 and −1 allow to maximise the margin for the best generalisation. This

means that: if yt = c1 for an instance Xt, then w · Xt − w0 ≥ +1 (blue circles); and

if yt = c2 for an instance Xt, then w · Xt − w0 ≤ −1 (red squares). As illustrated
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in Figure 5.1, the blue circles and red squares having a shadow representing the

support vectors that locate the two margin hyperplanes which determine the margin.

As aforementioned, the support vectors are the data instances closest to the optimal

hyperplane from either side; the distance from the support vectors to the optimal

hyperplane is defined as 1
‖w‖ . In total, the total margin is 2

‖w‖ .

Polynomial SVM and Radial SVM However, the data in a classification task may

not be linearly separable; there exists no linear hyperplane (i.e. linear model) that

separates two classes. Instead of trying to fit a non-linear model, the feature vec-

tors (data instances) in the original feature space are mapped to a high dimensional

feature space using a non-linear basis function (kernel function). Based on the new

(mapped) feature vectors, a linear hyperplane is determined. In other words, the

linear model in the new feature space replaces a non-linear model in the original

space [101]. A kernel function is defined as a measure of similarity over pairs of

data instances (Xt,Xt′) in a data set. In the following, we introduce two types of

kernel functions: polynomial, and radial (or Gaussian).

The polynomial kernel function is given in Equation 5.6:

K(Xt, Xt′) = ((Xt′)T ·Xt + 1)q (5.6)

whereXt andXt′ are data instances at session slots t and t′ respectively; T designates

a transpose function; and q designates the degree of polynomial.

The radial kernel function is given in Equation 5.7

K(Xt, Xt′) = exp

[
−‖X

t −Xt′‖2

2s2

]
(5.7)

where exp designates an exponential function; s designates a covariance parameter

(i.e. spread of values). Note that the larger the s, the smoother the discriminant.

Optimisation Methods for SVM To train the SVM classifier, the classification task

is defined as an optimisation problem with the aim to maximise the margin and

to minimise ‖w‖ (see Cortes and Vapnik [102] for more details). Campbell [103]
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provides a survey of commonly used optimisation methods to solve an SVM op-

timisation problem including: column generation methods for linear optimisation

problems; conjugate gradient and primal-dual interior point methods for quadratic

optimisation problems; chunking method; Sequential Minimal Optimisation (SMO)

method; and the Lagrangian method.

5.3 CD-AMOTRE: Class Decomposition with Artificial Mi-

nority Oversampling and Trapper Removal

The imbalance of data weakens the performance of a supervised classifier in both the

learning phase and the prediction phase. In the learning phase, this hinders the clas-

sifier from finding an optimal decision boundary to separate between the majority

class (normal region) and the minority class (anomalous instances). When a classi-

fier tries to predict the class label of a new instance, it faces two different challenges:

classifying a minority instance as majority (i.e. false negatives), or classifying a ma-

jority instance as minority (i.e. false positives). False negatives may be attributed to

the location of the minority instance in a cluster of majority instances, or to the den-

sity of the minority instances within the cluster. On the other hand, false positives

may be caused by the similarity between the feature value of a majority instance and

the neighbour minority instances.

We address the imbalanced data problem in a hybrid approach, namely CD-

AMOTRE, which combines class decomposition and AMOTRE oversampling tech-

nique. The ultimate aim of this approach is to detect any-behaviour-all-threats –

threat hunting (based on observation (1) in Section 5.1), and to reduce the number

of false alarms (based on observation (2) in Section 5.1). As stated before, the prob-

lem of false alarms is still a limitation in the existing approaches for insider threat

detection.

In the following, we present our hybrid approach CD-AMOTRE that comprises

two approaches: class decomposition, and the proposed AMOTRE oversampling

technique.
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5.3.1 Class Decomposition

As described previously, the availability of data of both ‘normal’ class and ‘anoma-

lous class’ (i.e. high data maturity in an organisation) shapes the insider threat prob-

lem as a supervised classification problem. However, the challenge here lies in the

data with high imbalance ratio, where the normal instances dominate the minor

number of anomalous instances (i.e. malicious insider threats). The performance

of a classification method typically tends to decline when the data distributes in an

imbalanced way. One way to handle this problem is to adjust the original region of

the class in order to achieve better fit of the class’s decision boundary. For example,

the use of a polynomial kernel with Support Vector Machine (SVM) uses the original

features to project into a polynomial feature space, which allows a non-linear hy-

perplane to separate classes. However, this would lead to overfitting of the training

data, resulting in a poor prediction performance [77]. Overfitting refers to a model

(here a classification model) that learns the noise in the training data, and fails to

generalise (the problem of high variance), thus degrades the prediction performance

[101].

Vilalta et al. [77] proposed the idea of class decomposition to address the prob-

lem of high bias and low variance in the classification methods. The idea of class de-

composition tackles the class that distributes in a complex way and applies cluster-

ing to this class to decompose it into multiple clusters, thus identifying local patterns

within the class. The data of the original class label is assigned the corresponding

cluster label as a preprocessing step for the classification method. In this way, the

classifier learns multiple decision boundaries (per cluster), rather than a single deci-

sion boundary with respect to the original class, and thus avoids data overfitting.

In this work, we adopt class decomposition to address the problem of class im-

balance data. Although class decomposition was originally proposed to reduce high

bias in classifiers [77], it has the property of weakening the effect of the decomposed

class when constructing the classification model. Such a property is useful if class

decomposition is applied to the majority class to address the class imbalance prob-

lem. The idea is to decompose the majority class into clusters (i.e. subclasses) to

weaken the effect of the majority class with respect to the minority class.
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Some of the previous work addressing the class imbalance has considered weak-

ening the effect of the majority class by undersampling its instances [78]–[80]. As

previously mentioned, undersampling removes samples (instances) from the ma-

jority class in a way to balance the class distribution of data. In the insider threat

problem, the removed instances may hold a substantial knowledge about the nor-

mal behaviour of users, and thus will not be represented in the classification model.

Hence, the process of undersampling poses a drawback of the loss of information

related to the majority (normal) class, which would degrade the performance of the

classification method. In this work, the proposed idea of class decomposition is con-

sidered to weaken the effect of the majority class, however, retains all the normal

behaviours (instances) without information loss.

Other previous work addressing the class imbalance has considered the idea

of clustering (referred to as class decomposition) to guide the sampling process –

cluster-based sampling [104], [105]. The idea is not only to consider the between-class

imbalance, but also the within-class imbalance. The between-class imbalance refers to

the imbalance in the number of instances that belong to each class. The within-class

imbalance refers to the imbalance in the subclusters within a class. Japkowicz and

her co-authors have focused on the within-class imbalance [106]. For instance, the

idea in [104] is to cluster each class separately into subclasses, then randomly over-

sample the instances of the small clusters, so that all clusters will comprise an equal

number of instances. In this work, we focus on the between-class imbalance, not

the within-class imbalance. The challenge in the insider threat data sets lies in the

scarcity and sparsity of the anomalous behaviours attributed to the malicious in-

sider threats. As later discussed in this Chapter, the minority class is difficult to be

clustered given its original size (i.e. number of anomalous instances – ‘scarcity’) and

its data distribution (i.e. spread of anomalous instances – ‘sparsity’). Instead, we

proposed a selective oversampling technique for the minority class as described in

Section 5.3.2. A further clustering can be applied to the minority class, however, af-

ter oversampling its instances (a discussion in Section 5.3.1.2 is provided). On the

other hand, we adopted class decomposition for the majority class only to weaken

its effect and determine the local patterns, but no sampling process is applied for it.

A further example is the cluster-based undersampling approach suggested by
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Varassin et al. [107]. Its idea is to cluster the majority class into clusters, and then

select only the centroids of the clusters to represent the majority class. In this way,

the instances of the majority class are removed, and only the centroids of the clusters

are kept in the training data. Again, such an approach leads to the loss of information

related to normal behaviours.

k-means Clustering for Class Decomposition We select k-means clustering [108]

to decompose the class into k clusters (subclasses). k-means clustering is known to

be fast, robust, and less computationally demanding. It only requires tuning the

parameter k which controls the number of clusters. Favourably, it does not require,

and therefore is not influenced by, data-dependent parameters.

k-means clustering [108] is an unsupervised machine learning method that par-

titions a set of instances into k disjoint clusters, where each instance belongs to the

cluster with the nearest centre. The objective of k-means is to minimise the within-

cluster sum of squares; a cluster with a small sum of squares is more compact.

k-means first selects k initial centres for clusters (randomly). Second, it assigns

each instance to the cluster with the nearest cluster centre – assignment step. The

nearest centre is commonly defined in terms of the Euclidean distance. The Eu-

clidean distance between an instance Xt and the centre of a cluster Ci; 1 ≤ i ≤ k is

defined as follows:

dist(Xt, Ci) =

√√√√ m∑
f=1

(
Xt
f − Cif

)2
(5.8)

where Xt
f ; 1 � f � m represents the value of the f th feature of instance Xt, and

Cif ; 1 � f � m represents the value of the f th feature of cluster centre Ci.

k-means then updates the centre of each cluster based on the instances assigned

to it – update step. The steps of ‘assignment’ and ‘update’ are repeated until the

method converges, i.e. the centres or the clusters no longer change [109]. Thus, the

minimum within-cluster sum of squares is achieved.

There is a considerable body of literature that has successfully applied k-means

clustering for class decomposition and/or class imbalance data [104], [105], [109]–
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[111]. A recent approach [110] presented an Imbalanced Clustering (IClust) algo-

rithm that uses k-means to identify a set of initial clusters (group structures) in high-

dimensional media data.

Banitaan et al. [109] employed k-means clustering and hierarchical clustering

to study class decomposition prior to Naive Bayes classification. For k-means, k=2

provided the best results for most of the data sets.

Wu et al. [111] proposed Classification using lOcal clusterinG (COG) in multi-

label data with high class imbalance. COG applies k-means clustering in each large

(i.e. majority) class, but not across classes, to produce subclasses with relatively bal-

anced sizes – local decomposition. COG then applies traditional supervised machine

learning methods, including SVM and C4.5 decision tree [112].

Japkowicz, who focused on class decomposition to tackle the within-class im-

balance (as aforementioned), used k-means to determine the inner distribution of a

class followed by a proposed rebalancing method [105]. In a further approach [104],

Jo and Japkowicz suggested applying k-means clustering independently to major-

ity class and minority class, followed by oversampling all the clusters – cluster-based

oversampling. The best results were obtained at k=4 on each class.

5.3.1.1 Decomposing the Majority Class

As described above, we adopt the idea of class decomposition in the insider threat

problem to mitigate the bias towards the majority (normal) class in the classifica-

tion. We apply k-means clustering method to decompose the majority class into k

clusters (subclasses). In this way, the two-class classification problem (‘normal’ class

label versus ‘anomalous’ class label) is transformed into a multi-class classification

problem (labels of clusters (sub-classes) of ‘normal’ class versus ‘anomalous’ class).

Hence, class decomposition allows the classification method to delineate mul-

tiple decision boundaries instead of one decision boundary and to achieve better

separation between the majority subclasses and the minority class, thus improving

the prediction of new instances.

Let Xt = {xt1, xt2, ..., xtm} represent the feature vector at session slot t, where

xtf ; 1 � f � m represents the value of the f th feature. Let Y = {y1, y2} represent the
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FIGURE 5.2: Decomposition of the majority class into k=3 clusters.
The blue circles represent the majority instances (i.e. normal be-
haviours), and the red squares represent the minority instances (i.e.
anomalous behaviours). The green dashed circles represent the k=3

clusters identified among the majority data.

output space, where y1 is the majority class label and y2 is the minority class label.

Each instance (i.e. feature vector) Xt belongs to a class label yj , j = {1, 2}.

Let M = Xt ∀t;Xt ∈ y1 represent the set of instances that belong to the majority

class y1, and let I represent the set of instances that belong to the minority class y2. If

we apply k-means clustering method on the set M , then the class label y1 will break

down into k cluster labels. Hence, each instance Xt in the set M will be assigned a

cluster label instead of a class label. Let {yc11, yc12, ..., yc1k} represent the set of cluster

labels belonging to class label y1, where yc1c ; 1 � c � k represents the cth cluster

label.

Figure 5.2 illustrates the idea of applying class decomposition on the majority

class. Let the blue circles represent the majority instances (i.e. normal behaviours),

and let the red squares represent the minority instances (i.e. anomalous behaviours).

The green dashed circles represent the k=3 clusters (patterns) identified among the

majority data. In this case, the problem is defined as a multi-class (four-class) clas-

sification problem, where the output space is represented as Y = {yc11, yc12, yc13, y2},

such that Y C = {yc11, yc12, yc13} denotes the cluster labels, and y2 denotes the minority

class label.
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5.3.1.2 Decomposing the Minority Class

As previously mentioned, we proposed an oversampling technique to tackle the mi-

nority class. As later explained in the experiments, the concept of class decompo-

sition may be also applied to the minority class, however, after oversampling its

instances. The original size of the minority class is very small, where the number

of minority instances (e.g. 132 anomalous behaviours in com-I) is much lower than

the number of majority instances (e.g. 2964 normal behaviours in com-I) – we refer to

this as ‘scarcity’. Also, the distribution of minority instances is dispersed, where the

minority instances may exist among the majority behaviours or may be dispersed

among the whole data – we refer to this as ‘sparsity’. The scarcity and sparsity of

the minority instances in the insider threat data sets makes it difficult to cluster the

original minority class I . If we oversample the set I , then the updated set I will

append the artificial set Is. Eventually, the updated set I can then be decomposed

into k clusters. We clarify this later in Section 5.3.2.2 (Generating Artificial Samples at

Instance Level).

Consider I = Xt ∀t;Xt ∈ y2, the set of instances that belong to the minority

class y2. If we apply k-means clustering method on the set I , then the class label y2

will break down into k cluster labels. Hence, each instance Xt in the set I will be

assigned a cluster label instead of a class label. Let {yc21, yc22, ..., yc2k} represent the

set of cluster labels belonging to class label y2, where yc2c ; 1 � c � k represents the

cth cluster label.

5.3.2 AMOTRE Oversampling Technique

Here, we tackle the class imbalance data problem by sampling the instances of the

minority class to modify the original distribution of data among the classes and to

achieve an approximate balance between the majority class (or clusters of the ma-

jority class) and the minority class. We propose a selective oversampling technique,

namely AMOTRE, as an alternative to the state-of-the-art SMOTE sampling tech-

nique. In the following, we describe the steps of the AMOTRE oversampling tech-

nique.
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Algorithm 1 Identifying peculiarity of minority instances

1: foreach At ∈ I do
2: compute perclof tM
3: compute perclof tI
4: if perclof tM < τ then
5: remove trapper instance At from I
6: Ir ← I \At
7: end if
8: end for
9: foreach At ∈ Ir do

10: pt =
(
dperclof tMe × dperclof tIe

)
/104

11: p← p ∪ pt
12: end for
13: return p,Ir

5.3.2.1 Identifying the Peculiarity of Minority Instances

The first step in the AMOTRE oversampling technique is to identify the peculiarity

of the minority instances. This guides the process of generating artificial samples for

each minority instance At in the minority class I . Algorithm 1 gives a brief formali-

sation for identifying the peculiarity of the minority instances.

LOF for Minority Instances We utilise the Local Outlier Factor (LOF) [113] method

to find the LOF for each minority instance At ∈ I . LOF is a density-based method

that calculates the local outlier factor (score) for each instance in a data set with

respect to its kLOF (parameter kLOF ) nearest neighbours from the whole data set.

For instance, consider that LOF is normalised in the range [0, 1]. If the location of an

instance is in a high-density region (cluster), then the LOF is closer to 0 (too low).

However, if the instance is in a low-density region, then the LOF is closer to 1 (too

high). The advantage of LOF compared to global outlier methods is that LOF can

identify local outliers in certain regions of the data set which would not be identified

as outliers with respect to the whole data set.

We introduce two modified versions of LOF to utilise in the approach proposed

in this Chapter: lof tM and lof tI . In both versions, the idea is to calculate the local

outlier factor for each minority instance At ∈ I in the training data set. lof tM and

lof tI are tuned for different values of kLOF . We define lof tM and lof tI as follows:
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Definition 5.3.1: lof t
M The lof tM is the LOF for a minority instance At with respect

to the kLOF nearest neighbours from the majority class instances (M ) only excluding

the other minority class. In lof tM , we select the value of kLOF =
√

1 + card(M)

(thumb-rule), where the radicand 1 + card(M) represents the number of instances

utilised to calculate lof tM for At (1 minority instance At + all of majority instances

M ).

Definition 5.3.2: lof t
I The lof tI is the LOF for a minority instance At with respect to

the kLOF nearest neighbours from the minority class instances (I\At) only excluding

the majority class. In lof tI , we select the value of kLOF =
√
card(I) (thumb-rule),

where the radicand card(I) represents the number of minority instances utilised to

calculate lof tI for At (all minority instances I including At).

Note that lof tM is still calculated with respect to the whole majority class M (i.e.

all the majority instances) regardless of whether class M is decomposed into clus-

ters (subclasses). The reason behind this is that class decomposition only improves

classification (from two-class to multi-class classification) to weaken the effect of the

majority class. Similarly, lof tI is calculated with respect the the whole minority class

I (i.e. all other minority instances) regardless if class I is decomposed into clusters

(subclasses).

In the following, we infer the degree of outlierness of a minority instance At

based on the values of both lof tM and lof tI in three different cases illustrated in Figure

5.3:

• high lof tM (close to 1) and low lof tI (close to 0)⇒ At is in a high-density region

of minority instances away from the majority instances.

• high lof tM (close to 1) and high lof tI (close to 1)⇒ At is in an outlier away from

the majority and minority instances. We callAt here an extreme outlier instance.

• low lof tM (close to 0) ⇒ At is located in a high-density region of majority in-

stances.
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FIGURE 5.3: lof tM and lof tI cases of insider threat instances. lof tM
denotes the LOF for a minority instance At with respect to the kLOF

nearest neighbours from the majority class instances (M ). lof tI de-
notes the LOF for a minority instance At with respect to the kLOF

nearest neighbours from the minority class instances (I\At). The blue
circles represent the majority instances and the red squares represent

the minority instances.

The Percentile Rank for Minority Instances The inference from the values of lof tM

and lof tI in each of the above mentioned cases controls the number of artificial sam-

ples to be generated per minority instance. In lof tM , we define perclof tM as the per-

centile rank for each minority instance At compared to the majority instances. For

instance, if the lof tM for At is the highest compared to all the majority instances (i.e.

lof tM=1), then perclof tM = 100. If lof tM=0.7, then perclof tM=70; the lof tM for At is

greater than 70% of the majority instances. Similarly, we define perclof tI as the per-

centile rank for each minority instance At compared to other minority instances.

Removing Trapper Instances The anomalous behaviours attributed to malicious

insiders often have a high resemblance with the normal behaviours of the insiders

or their community (i.e. a group of users having the same role). In the feature space,

this appears as minority (anomalous) instances located in a high-density region of

majority (normal) instances. These minority instances are characterised by a low

degree of outlierness (i.e. low lof tM (close to 0)), thus a low perclof tM .

We define the parameter τ to be the survival threshold for the minority instances,

such that each minority instance At ∈ I having a perclof tM < τ is considered as a
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trapper instance. The high resemblance of the trapper instances with the surround-

ing majority instances, would trap the classifier to detect the surrounding majority

instances as minority (FPs). In our AMOTRE oversampling technique, we propose

to take a precautionary step and remove these trapper instances, in an attempt to

reduce its contribution to flagging false alarms (FPs). Hence, a new set of minority

instances Ir will include the minority instances having perclof tM ≥ τ ;∀At excluding

the removed trapper instances as detailed in Algorithm 1.

The idea of removing trapper instances is supported by the aim of the observa-

tion (1) in Section 5.1, where it is sufficient to detect any anomalous behaviour, not

necessarily all behaviours, for each malicious insider threat. This means that remov-

ing a minority trapper instance from the set I is practically removing an anoma-

lous behaviour from all the anomalous behaviours associated to a malicious insider

threat. In other words, the rest of the anomalous behaviours associated with the ma-

licious insider threat still exist, which permit the detection of the threat (i.e. insider)

regardless of the removed anomalous behaviour. Therefore, removing trapper in-

stances not only can improve the performance of the classifier, but also is supported

by our ultimate aim to detect any-behaviour-all-threat.

Peculiarity of Remaining Minority Instances We define the peculiarity of a mi-

nority instance At ∈ Ir using the probability pt. pt represents the probability of

generating artificial samples for At. Consider the Eq. 5.9:

pt =
(
dperclof tMe × dperclof tIe

)
/104 (5.9)

where pt is a probability devised from the product of perclof tM and perclof tI . The

rationale behind using the product is to utilise the degree of outlierness of the in-

stance At with respect to both: (1) the majority instances (perclof tM ), and (2) the

minority instances (perclof tI ). In other words, pt actually determines the peculiarity

of an instance At based on its location among the data distribution of both major-

ity instances and minority instances. And accordingly, pt gives the probability of

generating artificial samples for At.
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5.3.2.2 Generating Artificial Samples for Minority Instances

Let perc.over represent the percentage of artificial samples to be generated, and let

numS = (perc.over/100) × card(Ir) represent the number of artificial samples to

be generated. In the following, we only consider the set of remaining minority in-

stances Ir, excluding the removed trapper instances, to generate the artificial sam-

ples. As aforementioned, the peculiarity of the minority instances, which manifests

in the probability pt for each At ∈ Ir, will guide the process of sampling. The steps

described below are repeated for a number of iterations until numS of artificial sam-

ples is generated. Algorithm 2 gives a brief formalisation for generating artificial

samples for minority instances.

Identifying the Chances for Sampling Minority Instances Per Iteration A prob-

ability distribution Dp is devised using the above probabilities pt ∀At ∈ Ir to deter-

mine whether an artificial sample St will be generated for At at the current iteration.

We define Ic ∼ Dp where Ic represents the set of instances chosen according to Dp

to be sampled at the current iteration, and p is a continuous range of the values of

pt. For instance, if pt = 1, where perclof tM = 100 and perclof tI = 100, this means that

At is an extreme outlier instance and it is safe to create a cloud of artificial samples

around it as much as possible. However, as pt decreases, the chance of generat-

ing artificial samples around At declines, because an extreme outlier instance attracts

more artificial samples around it. For example, if pt = 0.25, this may map to two

cases: either high lof tM (close to 1) and low lof tI (close to 0), then At is surrounded

by minority instances and we give a lower chance to generating artificial samples

around At; or low lof tM (close to 0), then At is surrounded by majority instances and

we should seek to generate as few as possible artificial samples around it. In this

way, the minority instances having higher peculiarity pt are given more chance to

generate artificial samples surrounding them.

Artificial Sampling At Feature Level Let nt
′
f represent the value of the f th feature

of a majority instance N t′ ∈M at the session slot t′, and let atf represent the value of

the f th feature of a minority instance At ∈ Ic at the session slot t. For each feature

f ; 1 � f � m, we calculate the distance from atf of At to the nearest neighbour nt
′
f of
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Algorithm 2 Generating an artificial sample St

1: numS ← (perc.over/100)× card(Ir)
2: while card(Is) < numS do
3: Ic ∼ Dp

4: foreach At ∈ Ic do
5: St ← GENERATESAMPLE(At,M )
6: Is ← Is ∪ St
7: end for
8: end while
9: return Is

10:
11: function GENERATESAMPLE(At,M )
12: foreach atf in A

t do
13: pos nt

′
f ← positive nearest neighbour in M at the level of feature f

14: neg nt
′
f ← negative nearest neighbour in M at the level of feature f

15: dirS ∼ Dprob+

16: if ∃pos nt′f ∧ neg nt
′
f then

17: dirN ← dirS
18: if dirS = +1 then
19: distN ← dist(atf , pos n

t′
f )

20: else
21: distN ← dist(atf , neg n

t′
f )

22: end if
23: end if
24: if ∃pos nt′f then
25: distN ← dist(atf , pos n

t′
f )

26: end if
27: if ∃neg nt′f then
28: distN ← dist(atf , neg n

t′
f )

29: end if
30: stf ← atf + dirS × rand(0 : λ× distN)

31: St ← St ∪ stf
32: end for
33: return St

34: end function

N t′ at the level of feature f . In other words, we search the set of majority instances

M at the level of feature f only, and we find the closest feature nt
′
f for atf . At the level

of feature f , there exists two directions: positive (+ve), and negative (−ve). Thus,

atf may have (1) only a +ve nearest neighbour, (2) only a −ve nearest neighbour, or

(3) both a +ve nearest neighbour and a −ve neatest neighbour. For instance, if atf

is greater than nt
′
f , then the nearest neighbour’s distance distN=dist(atf , n

t′
f ) will be

positive. On the other hand, if atf is less than nt
′
f , then distN will be negative. The

value(s) of distN for atf is required to generate artificial feature values as demonstrated
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FIGURE 5.4: Cases of generating artificial insider threat samples in
AMOTRE over one feature (one dimension). The blue circle repre-
sents a majority feature value nt

′

f , the red square represents a minor-
ity feature value atf , and the red dashed square represents an artificial
feature value stf . Fig. 5.4(1) illustrates the case where atf has only a
+ve nearest neighbour nt

′

f . Fig. 5.4(3) illustrates the case where atf
has only a −ve nearest neighbour nt

′

f . Fig. 5.4(2) illustrates the case
where atf has two nearest neighbours in both directions.

in Equation 5.10.

We define prob+ as the probability of generating an artificial sample in the pos-

itive (+ve) direction. A probability distribution Dprob+ is devised using the proba-

bility prob+ to determine whether the direction dirS of the artificial feature value stf

is +1 or −1. We define dirS ∼ Dprob+ , where Dprob+ is a continuous range of the

values of prob+. Figure 5.4 illustrates generating an artificial feature value stf for atf

at the level of feature f . Let a blue circle represent a majority feature value (i.e. fea-

ture value nt
′
f of a majority instance), a red square represent a minority feature value

(i.e. feature value atf of a minority instance), and a red dashed square represent an

artificial feature value (i.e. feature value stf of an artificial instance) generated. In the

following, we describe the three cases for generating an artificial feature value:

• If atf has only a +ve nearest neighbour nt
′
f as Figure 5.4(1), then the probability

of generating an artificial feature value stf in the +ve direction is lower. We

set up prob+ = 0.2, such that the value of prob+ is low (in the range ]0, 0.5[)

to give a less chance for generating artificial feature values in the +ve direc-

tion. The rationale behind this is to give higher probability for sampling on
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the opposite direction of the +ve nearest neighbour (i.e. −ve direction), thus

creating a cloud of artificial minority instances away from the nearest major-

ity instances. If the chosen direction dirS = +1 based on Dprob+ , then stf is

calculated according to Eq. 5.10 such that λ = 0.3. Other wise, λ = 1.

• If atf has only a −ve nearest neighbour nt
′
f as Figure 5.4(3), then the probability

of generating an artificial feature value stf in the +ve direction is higher. We set

up prob+ = 0.8, such that the value of prob+ is high (in the range ]0.5, 1[) to give

a more chance for generating artificial feature values in the +ve direction. The

rationale behind this is to give higher probability for sampling on the opposite

direction of the −ve nearest neighbour (i.e. +ve direction), thus creating a

cloud of artificial minority instances away from the nearest majority instances.

If the chosen direction dirS = +1, then stf is calculated according to Eq. 5.10

such that λ = 1. Otherwise, λ = 0.3.

• If atf has two nearest neighbours in both directions, as in Figure 5.4(2), then

the probability of generating an artificial feature value stf in the +ve and −ve

direction is equal. We set up prob+ = 0.5, such that the value of prob+ gives

an equal chance ogenerating an artificial feature value both directions have

equal chance of generating an artificial feature value. If the chosen direction

dirS = +1 or dirS = −1, stf is calculated according to Eq. 5.10 such that

λ = 0.3.

stf = atf + dirS × rand(0 : λ× distN); stf ≥ 0 (5.10)

where λ represents the parameter that controls the distance permitted to generate

artificial feature values along the segment joining atf and nt
′
f ; and rand(0 : λ×distN)

represents a random number generated to specify the location of the artificial sample

along the segment joining atf and nt
′
f projected on the feature f . λ is set up to the

value of 0.3 in the range ]0, 0.5[, when the direction chosen to generate an artificial

feature value is the same as the direction of the nearest neighbour. The rationale

behind this is to locate the artificial feature values on the segment joining atf and nt
′
f

away from the majority nearest neighbour nt
′
f , thus shielding the majority instances.
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Otherwise, λ = 1, such that an artificial feature value can be located along the whole

segment in the opposite direction.

Recall that all the artificial feature values in the generated community behaviour

data sets are normalised to the range [0, 1]. Hence, if the calculated stf < 0, we assign

stf = minf to avoid negative feature values. minf represents the minimum value of

the f th feature among the minority instances.

Artificial Sampling At Instance Level Recall that if a minority instanceAt is given

the chance to be sampled at an iteration (based on its peculiarity), then an artificial

sample (instance) St is generated with a sampling process at the feature level. In

other words, for each feature f ; 1 � f � m, an artificial feature value stf is generated.

Accordingly, an artificial sample (instance) St={st1, st2, ..., stm}; 1 � f � m associated

with the minority instance At is generated.

As previously mentioned, the steps of Section 5.3.2.2 are repeated for a number

of iterations until numS of artificial samples are generated. Recall that Ir represents

the set of remaining minority instances after removing trapper instances. Let Is rep-

resent the set of artificial samples (instances) generated for Ir using the AMOTRE

technique. At each iteration, the generated St is appended to Is (Is=Is ∪ St as for-

malised in Algorithm 2). Consequently, the original set of minority instances I is

updated to I=Ir ∪ Is to comprise the set of remaining minority instances Ir (exclud-

ing trapper instances) and their generated minority samples Is.

Figure 5.5 demonstrates the idea of generating artificial samples over two fea-

tures (two dimensions). Let a blue circle represent a majority instance N t′ , a red

square represent a minority instance At, and a red dashed square represent an ar-

tificial sample (instance) St. It is evident that the farther the minority instance At

from the majority instances as well as other minority instances, the more chance is

given to generate artificial samples around it. Furthermore, the artificial samples

are mostly generated in the opposite direction of the nearest neighbours from the

majority instances, thus shielding the border of the majority instances.



76 Chapter 5. Supervised Learning for Imbalanced Insider Threat Detection

FIGURE 5.5: Cases of generating artificial insider threat samples in
AMOTRE over two features (two dimensions). The blue circle rep-
resents a majority instance N t′ , the red square represents a minority
instance At, and the red dashed square represents an artificial sample
(instance) St. The red dashed arcs represent the shield for the border

of the majority instances.

5.4 Experiments

In this section, we give a description of the variety of experiments carried out to eval-

uate the performance of the proposed approach, together with an explanation of the

values used for parameter tuning. After that, we introduce the default versions and

the refined versions of the evaluation measures utilised to evaluate the performance

of the methods. Last but not least, we discuss the results of the experiments with

a statistical significance test, and prove the merit of the proposed hybrid approach,

CD-AMOTRE.

5.4.1 Experimental Setup

In order to evaluate the effectiveness of the proposed approach, we performed a

variety of experiments on the CMU-CERT data sets on Windows Server 2016 on

Microsoft Azure (RAM 140GB, OS 64 − bits, CPU Intel Xeon E5 − 2673v3). We im-

plemented AMOTRE and carried out the experiments in R environment (R − 3.4.1)

using Rlof package for LOF in AMOTRE, DMwR package for SMOTE, caret pack-

age [114] for the classification methods and their evaluation, and MASS package for

the Wilcoxon Ranked test.
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TABLE 5.1: Definition of Experiments.

SMOTE SMOTE minority class I
CD(M)-SMOTE SMOTE + CD of majority class M only
CD(MI)-SMOTE SMOTE + CD of M and I
AMO-na AMOTRE I without trapper removal
AMOTRE AMOTRE I with trapper removal
CD(M)-AMOTRE AMOTRE + CD of M only
CD(MI)-AMOTRE AMOTRE + CD of M and I

5.4.2 Description of the Experiments

Table 5.1 presents the variety of experiments carried out to evaluate the performance

of the proposed technique AMOTRE: without trapper removal; with trapper re-

moval; with decomposition of the majority class M only; or with decomposition

of the majority class M and the minority class I . These experiments are also per-

formed over SMOTE to compare with AMOTRE using the measures defined later

on: F1 measure, TPT , FP. Note that the procedure of trapper removal is not ap-

plied with SMOTE, because it was first introduced as an essential part (-TRE part)

in the proposed AMO-TRE technique. In the experiments, we analyse the influence

of the -TRE part on our technique by applying the oversampling: (1) without trap-

per removal (AMO-na), and (2) with trapper removal (AMO-TRE). We then analyse

the influence of introducing class decomposition variations to each of SMOTE and

AMOTRE.

Each of the experiments is evaluated on five base classification methods: Ran-

dom Forest (rf); Extreme Gradient Boosting (xgb); Support Vector Machines with

linear kernel (svmL), polynomial kernel (svmP), and radial basis function kernel

(svmR).

The experiments are tuned for different values of parameters as shown in Table

5.2. Note that an extensive number of experiments was done to select the presented tuning

values for the parameters. The values were selected based on the experiments achieving the

best performance in terms of the evaluation measures described below.

Regarding class decomposition, we tuned the number of clusters for k={2, 4, 6}

for both (1) the decomposition of the majority class M , and (2) the decomposition of

the minority class I . However, the results for only k=2 are reported, due to revealing

better performance. The proposed approach was able to detect most of the malicious
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TABLE 5.2: Tuned Parameters for SMOTE and AMOTRE.

k={2, 4, 6} number of clusters
perc.over={200, 300, 400} percentage of oversampling
τ=10 survival threshold for At in -TRE part
prob+={0.2, 0.5, 0.8} controlled by the direction of nt

′
f

λ={0.3, 1} controlled by dirS and prob+

insider threats in the data sets for k=2. The literature demonstrated the effectiveness

of k-means clustering for small values of k when applied for class decomposition

[104], [109].

As explained in Section 4.3.2, a malicious insider threat comprises a complex

pattern of anomalous behaviours carried out by a malicious insider. For instance,

in community com-P, we have 17 malicious insider threats. These malicious insider

threats are associated to 366 anomalous instances (behaviours) that make up the

minority class I . Thus, when applying the class decomposition of the minority class

I , we are actually clustering the anomalous training instances from the 366 instances

appended to the artificial set Is; not from the 17 malicious insider threats.

Regarding SMOTE technique, the oversampling percentage is tuned for perc.over

={200, 300, 400} to assess whether increasing the percentage of generated artificial

samples to the minority class I improves the performance of SMOTE. The tuned

values of perc.over are selected to achieve an approximate balance between the sub-

classes (clusters). Similarly, our AMOTRE technique is tuned for perc.over={200, 300, 400}

to generate an equal number of artificial samples to that generated in SMOTE, in or-

der to ensure a fair comparison between SMOTE and AMOTRE. Note that we report

the results for only perc.over=200, due to achieving the lowest number of false posi-

tives (FP); which is the ultimate aim of our work.

The -TRE part is tuned for only a small value τ=10 to test the influence of remov-

ing trapper instances from the minority class instances on the overall performance

of AMOTRE. We select the survival threshold τ=10 so that each minority instance

At ∈ I having a percentile rank perclof tM < τ is considered as a trapper instance

and removed (as detailed in Section 5.3.2).

The details about tuning prob+ and λ, for the displayed values in Table 5.2, can

be found in the description of AMOTRE technique in Section 5.3.
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For evaluation, we performed the experiments with 2-fold cross validation and

10-fold cross validation on each of the communities respectively. The 10-fold cross

validation allows the base classification methods to learn on a 90% subsample of the

data, and test on a 10% subsample repetitively for 10 times. This would best pro-

vide a comprehensive analysis of the performance of each experiment. However,

the complexity of the insider threat problem is reflected in the scarcity of anoma-

lous instances (minority instances) available in the CMU-CERT data. In the 10-

fold cross validation, a 10% subsample testing data consists of a limited number

of anomalous instances (behaviours), as well as a small number of normal instances

(behaviours). Given this, it was challenging to show the merit of our approach com-

pared to SMOTE experiments in terms of the number of FPs and the number of

detected malicious insider threats. A 2-fold cross validation is also applied so that

the base classification methods learn on a 50% subsample of the data, and test on a

50% subsample repetitively for 2 times. This allows the 50% subsample testing data

to have more instances, including more anomalous instances (behaviours). Hence,

it helps us to reveal the superiority of the performance of AMOTRE experiments

compared to SMOTE experiments.

Whether in 2-fold cross validation or in 10-fold cross validation, each fold may

contain a subset of the anomalous behaviours belonging to a malicious insider threat.

In terms of the training, this provides ‘weak supervision’, as some of the anomalous

behaviours associated to a particular threat will be missing in the training fold(s). In

terms of the testing, this would show the ‘robustness’ of the approach being able to

detect the malicious insider threat whose behaviours are partially represented in the

training fold(s), even with a weak signal (threats are partially represented in the test

fold(s)). The results for both 2-fold cross validation and 10-fold cross validation are

reported in this Chapter.

We can sum up that 70 experiments are presented per community in terms of 7

types of experiments, 5 base classification methods, and 2 vs 10 fold cross validation.

Regarding the tuning of parameters k and perc.over, we carried out 420 experiments

per community.
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5.4.3 Evaluation Measures

Much research has been done to detect or mitigate malicious insider threats, but

standard measures have not been established to evaluate the proposed models [115].

The research practices show that the insider threat problem demands the measure-

ment of the effectiveness of the models before being deployed, preferably in terms

of true positives (TP) and false positives (FP) [116].

In the state-of-the-art, a remarkable number of approaches were validated in

terms of FP measure [21], [42], [44], [58], [63]. This sheds light on the importance

of the FP measure to address the shortcoming of the high number of false alarms

(FPs). Furthermore, some approaches were validated in terms of: TP measure [42];

F1 measure [38], [44]; AUC measure [37], [51], [59]; precision and recall [33], [48];

accuracy [48], [63]; and others.

The variety of the utilised evaluation measures in the state-of-the-art reveals the

critical need to formulate the insider threat problem and to define the measures that

would best validate the effectiveness of the proposed approach. In the following, we

define the evaluation measures utilised in this Chapter.

As previously mentioned, the ultimate aim of this approach is to detect any-

behaviour-all-threats (threat hunting as described in Section 5.1 observation (1)), and

to reduce the number of false alarms (based on observation (2)). In the following,

we define the measures used to evaluate the performance. We introduced refined

versions of some measures. The rationale behind this is related to our ultimate aim,

which is to detect the malicious insider threats (not necessarily all anomalous be-

haviours per threat), and at the same time to reduce FPs (all false alarms of false

predicted behaviours).

• P: Positives number of anomalous instances (anomalous behaviours);

• PT : Threats number of malicious insider threats associated to anomalous in-

stances. In other words, PT is the number of malicious insiders attributed to

the anomalous behaviours;

• TPT : True Positives a refined version of the default TP to evaluate the number

of threats detected by the system among all the PT malicious insider threats.
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TPT is incremented if at least one anomalous instance (behaviour associated to

the threat) is predicted as anomalous;

• FP: False Positives number of normal instances (behaviours) that are detected

as anomalous instances;

• TN: True Negatives number of normal instances (behaviours) that are predicted

as normal;

• FNT : False Negatives a refined version of the default FN to evaluate the number

of insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures. Note

that F1 is not close to 1 due to the use of refined versions of some measures, but

this does not reflect low performance. However, knowing that the maximum

TPT (evaluated per threat) is much lower than the minimum FP (evaluated per

behaviour), the defined F1 measure closer to 0.5 reveals good performance.

5.4.4 Results and Discussion

In this Section, we discuss the results of the variety of experiments carried out, and

show the merit of the proposed approach CD-AMOTRE according to the following

targets:

1. comparing SMOTE vs AMOTRE over the minority class;

2. assessing the influence of trapper removal on AMOTRE; and

3. assessing the effectiveness of class decomposition on the majority class and the

minority class.

5.4.4.1 SMOTE vs AMOTRE over Minority Class

Figure 5.6 presents the value of F1 measure for each of SMOTE and AMOTRE on the

minority class I over the communities in 2-fold cross validation. Figure 5.7 presents

the value of F1 measure for each of SMOTE and AMOTRE on the minority class

I over the communities in 10-fold cross validation. The results are reported with

respect to the five base classifiers {rf, xgb, svmL, svmP, svmR}.
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(A) com-P. (B) com-S. (C) com-I.

FIGURE 5.6: The value of F1 measure for SMOTE and AMOTRE over
communities in 2-fold cross validation. The x-axis represents the five
base classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis represents

the values of F1 measure.

(A) com-P. (B) com-S. (C) com-I.

FIGURE 5.7: The value of F1 measure for SMOTE and AMOTRE over
communities in 10-fold cross validation. The x-axis represents the five
base classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis represents

the values of F1 measure.

In 2-fold cross validation, the results show that AMOTRE outperforms SMOTE

for all classifiers over com-P and com-S. Over com-P, AMOTRE achieves the maxi-

mum F1=0.2894;xgb compared to a maximum F1=0.2653;xgb for SMOTE. Over com-

S, AMOTRE also achieves the maximum F1=0.2517;svmL compared to a maximum

F1=0.2077;xgb for SMOTE. However, over com-I, AMOTRE shows better perfor-

mance than SMOTE for all experiments except svmL and svmP. AMOTRE achieves

the maximum F1=0.6956;svmR compared to the maximum F1=0.5925;svmP for SMOTE.

Similarly, in 10-fold cross validation, AMOTRE demonstrates a better perfor-

mance compared to SMOTE for all classifiers over com-P and com-S, and for all

classifiers except svmP and svmR over com-I.

Figure 5.8 demonstrates the advantage of AMOTRE over SMOTE according to

each technique. Let the blue circles represent the majority instances, the solid-line

red square represent the minority instances, and the red dashed squares represent

the artificial samples generated to the minority class I . As shown in Figure 5.8a,
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(A) SMOTE. (B) AMOTRE.

FIGURE 5.8: SMOTE vs AMOTRE in generating artificial insider
threat samples. The blue filled circles represent the majority in-
stances, the red filled squares represent the minority instances, and
the red dashed squares represent the artificial samples of the minor-
ity instances. In Fig. 5.8a, SMOTE generates artificial samples along
the segment line joining minority instances. In Fig. 5.8b, AMOTRE
generates a cloud of artificial samples around the minority instance,

and shields the majority instances.

SMOTE generates the artificial samples along the segment line joining minority in-

stances, which results in minority artificial samples located among the majority in-

stances. The high resemblance of the majority instances and the minority artificial

samples contributes to the increase of FPs.

However, as shown in Figure 5.8b, AMOTRE first finds the nearest neighbour,

for the minority instance, from the majority instances. It then generates a cloud of

artificial samples around the minority instance, and shields the majority instances

according to its predefined parameter λ. In this way, AMOTRE avoids generating

minority artificial samples among majority instances, so that it reduces the number

of FPs.

From the aforementioned analysis, we can conclude that the higher performance

of AMOTRE compared to SMOTE is related to the merit of the proposed AMOTRE

technique in reducing the number of FPs (target (1)).

5.4.4.2 Influence of Trapper Removal on AMOTRE

The proposed technique AMOTRE consists of two key parts: the oversampling part

(AMO-), and the trapper removal part (-TRE). In the following, we analyse the in-

fluence of the -TRE part on the AMOTRE technique.

Figure 5.9 presents the value of F1 measure for AMO-na (AMO- without trapper

removal) and AMOTRE (AMO-TRE with trapper removal) on the minority class I

over the communities in 2-fold cross validation. Figure 5.10 presents the value of F1

measure for AMO-na and AMOTRE on the minority class I over the communities
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(A) com-P. (B) com-S. (C) com-I.

FIGURE 5.9: The value of F1 measure for AMO-na and AMOTRE over
communities in 2-fold cross validation. The x-axis represents the five
base classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis represents

the values of F1 measure.

(A) com-P. (B) com-S. (C) com-I.

FIGURE 5.10: The value of F1 measure for AMO-na and AMOTRE
over communities in 10-fold cross validation. The x-axis represents
the five base classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis

represents the values of F1 measure.

in 10-fold cross validation. The results are reported with respect to the five base

classifiers.

In 2-fold cross validation, over com-P, AMOTRE reports a higher F1 measure

than AMO-na for all classifiers except svmP and svmR. AMOTRE attains the max-

imum F1=0.2894;xgb compared to a maximum F1=0.2637;xgb for AMO-na. Over

com-S, AMOTRE also reports a higher F1 than AMO-na for all classifiers except

xgb. AMOTRE attains a maximum F1=0.2517;svmL compared to the maximum

F1=0.2556;xgb for AMO-na. Over com-I, AMOTRE reports a higher F1 than AMO-

na for all classifiers. AMOTRE attains the maximum F1=0.6956;svmR compared to

a maximum F1=0.5714;svmR for AMO-na. Note that AMO-na shows equal perfor-

mance AMOTRE in terms of F1 with respect to {svmL,svmP}.

Likewise in 10-fold cross validation, AMOTRE shows a better performance in

terms of F1 measure compared to AMO-na with respect to most of the classifiers

over all communities.

We can conclude that removing trapper instances from the minority class I boosts
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the performance of the base classifier in terms of F1 measure (target (2)). These

trapper instances, if not removed, would be selected in the AMOTRE iterations to

generate artificial samples around them. This would trap the classifier from finding

the optimal decision boundary that separates majority instances from minority in-

stances, which in turn results in a high number of false alarms. However, removing

trapper instances is a precautionary step towards reducing the number of FPs, and

achieving a higher F1 measure.

5.4.4.3 Effectiveness of Class Decomposition for Majority and Minority Class

Figure 5.11 presents the value of F1 measure for different class decomposition ap-

proaches with SMOTE and AMOTRE over the communities in 2-fold cross valida-

tion. Figure 5.12 presents the value of F1 measure for different class decomposition

approaches with SMOTE and AMOTRE over the communities in 10-fold cross vali-

dation. The results are reported with respect to the five base classifiers.

The first target is to analyse the effect of introducing class decomposition to each

of the oversampling techniques SMOTE and AMOTRE. Class decomposition is ap-

plied in two different strategies: to the majority class M only as in CD(M)-SMOTE

and CD(M)-AMOTRE; and to the majority class M as well as to the minority class

I after applying the oversampling techniques as in CD(MI)-SMOTE and CD(MI)-

AMOTRE. The second target is to compare the performance of AMOTRE alone to

AMOTRE with class decomposition.

In 2-fold cross validation over com-P, CD(M)-AMOTRE outperforms all other

SMOTE and AMOTRE experiments in terms of F1 with respect to {rf,xgb,svmR}.

Whereas, CD(MI)-AMOTRE outperforms all experiments with respect to {svmL,

svmP}. Overall, CD(M)-AMOTRE attains the maximum F1=0.32;{rf,xgb} followed

with a maximum F1=0.2894;xgb for AMOTRE without class decomposition.

Over com-S, CD(MI)-AMOTRE outperforms all other SMOTE and AMOTRE ex-

periments for all classifiers except svmL, where AMOTRE reports the best perfor-

mance in terms of F1. Overall, CD(MI)-AMOTRE attains the maximum F1=0.2834;rf

followed with a maximum F1=0.2517;svmL for AMOTRE.

Over com-I, AMOTRE outperforms all other SMOTE and AMOTRE experiments

with respect to {rf,svmR}. CD(MI)-AMOTRE outperforms all other experiments
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 5.11: The value of F1 measure for SMOTE and AMOTRE
with and without the class decomposition variations over commu-
nities in 2-fold cross validation. The x-axis represents the five base
classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis represents the

values of F1 measure.

with respect to xgb. However, CD(MI)-SMOTE wins all other SMOTE and AMOTRE

experiments with respect to {svmL,svmP}. Overall, AMOTRE attains the maximum

F1=0.6956;svmR followed with a maximum F1=0.6363;svmR for CD(M)-AMOTRE.

In 10-fold cross validation over com-P, CD(M)-AMOTRE shows the best per-

formance compared to all other SMOTE and AMOTRE experiments with respect

to {rf,svmL,svmR}. It is worth noting that CD(MI)-AMOTRE shows equal perfor-

mance to CD(M)-AMOTRE in terms of F1 measure with respect to svmL. On the

other hand, AMOTRE shows the best performance with respect to {xgb,svmP}.
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 5.12: The value of F1 measure for SMOTE and AMOTRE
with and without the class decomposition variations over commu-
nities in 10-fold cross validation. The x-axis represents the five base
classifiers {rf, xgb, svmL, svmP, svmR}, and the y-axis represents the

values of F1 measure.

Over com-S, CD(M)-AMOTRE shows the best performance for all classifiers ex-

cept rf, where CD(MI)-AMOTRE outperforms all other SMOTE and AMOTRE ex-

periments. Note that AMOTRE shows equal performance to CD(M)-AMOTRE in

terms of F1 measure with respect to svmR.

Over com-I, AMOTRE shows the best performance for all classifiers, though

CD(MI)-SMOTE shows equal performance to AMOTRE in terms of F1 measure with

respect to rf.
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We can deduce that introducing class decomposition to the oversampling tech-

nique AMOTRE revealed better performance compared to AMOTRE with no class

decomposition, as well as all SMOTE experiments (target (3)). It is quite remarkable

that each of CD(M)-AMOTRE and CD(MI)-AMOTRE reported the best performance

in terms of achieving the highest F1 measure alternatively among the communities

in 2-fold and 10-fold cross validations.

Statistical Significance: Wilcoxon Signed-Rank Test To test the significance of the

results, we use the Wilcoxon Signed-Rank Test which compares each pair of exper-

iments. All SMOTE experiments are compared against all AMOTRE experiments

in terms of F1 measure. Table 5.3 tabulates the p-value calculated for each pair of

experiments with respect to all base classifiers in 2-fold and 10-fold cross validations

at .05 significance level. For instance, the p-value for 〈SMOTE, AMOTRE〉 pair in

2-fold cross validation (first row) is a result of ‘the values of F1 measure for SMOTE

for all base classifiers {rf, xgb, svmL, svmP, svmR}’ compared with ‘the values of F1

measure for AMOTRE for all base classifiers.’

Table 5.3 shows that SMOTE (without class decomposition) is significantly dif-

ferent from AMOTRE reporting a p-value=3.015e − 02 < .05 in 2-fold cross vali-

dation and a p-value=3.83e − 02 < .05 in 10-fold cross validation. It also shows

that CD(M)-SMOTE is significantly different from CD(M)-AMOTRE reporting a p-

value=2.105e − 03 < .05 in 2-fold cross validation and a p-value=8.253e − 03 <

.05 in 10-fold cross validation. Regarding CD(MI)-SMOTE and CD(MI)-AMOTRE,

the p-values do not indicate a significant difference for this pair of experiments,

where a p-value=9.46e − 02 > .05 is reported in 2-fold cross validation and a p-

value=3.485e− 01 > .05 is reported in 10-fold cross validation.

Evaluation of TPT and FP Measures. The following will address the TPT and FP

measures, which represent key measures for the insider threat problem. Table 5.4

reports the maximum TPT in each of the SMOTE and AMOTRE experiments over

the communities, associated with the base classifier(s) which achieved the maximum

TPT . In Table 5.5, we report the minimum FP measure in each experiment over the

communities associated with the base classifier(s) which achieved the minimum FP.
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TABLE 5.3: Wilcoxon Signed-Rank Test at .05 significance level. The
p-value is calculated for each pair of experiments in 2-fold cross val-
idation and in 10-fold cross validation. For instance, the p-value for
〈SMOTE, AMOTRE〉 pair in 2-fold cross validation (first row) is a re-
sult of ‘the values of F1 measure for SMOTE for all base classifiers {rf,
xgb, svmL, svmP, svmR}’ compared with ‘the values of F1 measure

for AMOTRE for all base classifiers.’

CV folds Experiments pair p-value

2 SMOTE, AMOTRE 3.015e-02
2 CD(M)-SMOTE, CD(M)-AMOTRE 2.105e-03
2 CD(MI)-SMOTE, CD(MI)-AMOTRE 9.46e-02

10 SMOTE, AMOTRE 3.83e-02
10 CD(M)-SMOTE, CD(M)-AMOTRE 8.253e-03
10 CD(MI)-SMOTE, CD(MI)-AMOTRE 3.485e-01

TABLE 5.4: Maximum TPT /PT of detected insider threats over com-
munities associated with the base classifier(s) which achieved the
maximum TPT . Note that the parameter combination(s) which

achieved the maximum TPT are listed.

CV folds Experiment com-P com-S com-I

2 SMOTE 13/16 {xgb,svmL} 17/21 svmR 9/12 xgb
CD(M)-SMOTE 14/16 svmR 17/22 {xgb,svmL} 8/12 {rf,xgb}
CD(MI)-SMOTE 13/16 svmL 17/20 {xgb,svmP} 8/12 rf
AMOTRE 13/16 {svmL,svmP} 18/21 svmL 8/12 {svmP,svmR}
CD(M)-AMOTRE 14/16 {svmL,svmR} 17/22 ∀\ svmR 8/12 rf
CD(MI)-AMOTRE 13/16 {svmL,svmP} 18/21 {rf,xgb,svmL} 8/12 {rf,svmL}

10 SMOTE 8/10 {rf,xgb,svmP} 12/15 rf,svmP,svmR 3/7 ∀\rf
CD(M)-SMOTE 8/10 ∀\xgb 12/15 forall 3/7 {rf,xgb}
CD(MI)-SMOTE 8/11 ∀ 12/15 {svmP,svmR} 3/6 rf
AMOTRE 8/10 svmP 12/15 svmR 3/7 ∀ \ {svmP,svmR}
CD(M)-AMOTRE 8/10 svm- 12/15 svm- 3/7 xgb
CD(MI)-AMOTRE 8/11 svm- 12/15 {rf,svmR} 2/6 ∀ \ {rf,svmR}

∀ | for all base classifiers
∀\xxxx | for all base classifiers except xxxx

svm- | for all utilised SVM methods

In 2-fold cross validation over com-P, it shows that CD(M)-SMOTE and CD(M)-

AMOTRE achieve the maximum TPT=14/16, where only 2 malicious insider threats

are not detected. Note that 14/16 represents the number of detected threats TPT=14

out of the number of threats PT=16. Furthermore, CD(MI)-AMOTRE reduces the

number of FPs to the minimum FP=46;rf (3.36%), compared to a minimum FP=69;xgb

for SMOTE.

Over com-S, CD(MI)-SMOTE, AMOTRE and CD(MI)-AMOTRE attain the maxi-

mum TPT , where CD(MI)-SMOTE detects TPT=17/20; while AMOTRE and CD(MI)-

AMOTRE detect TPT=18/21. Only 3 malicious insider threats are missed. Further-

more, AMOTRE and CD(MI)-AMOTRE attain the minimum FP=88;xgb, compared
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TABLE 5.5: Minimum FP over communities associated with the base
classifier(s) which achieved the minimum FP. Note that the parameter

combination(s) which achieved the minimum FP are listed.

cv Folds Experiment com-P com-S com-I

2 SMOTE 69 xgb 117 xgb 5 svmR
CD(M)-SMOTE 80 xgb 123 rf 4 svmR
CD(MI)-SMOTE 80 rf 118 rf 0 svmP
AMOTRE 49 xgb 88 xgb 3 svmR
CD(M)-AMOTRE 47 rf,xgb 101 xgb 3 svmR
CD(MI)-AMOTRE 46 rf 88 xgb 6 svmR

10 SMOTE 15 {rf,xgb} 23 xgb 1 svmR
CD(M)-SMOTE 16 rf 22 xgb 1 ∀ \ {rf,xgb}
CD(MI)-SMOTE 16 rf 23 xgb 1 {svmP,svmR}
AMOTRE 9 xgb 19 xgb 2 {rf,svmR}
CD(M)-AMOTRE 9 rf 16 xgb 1 rf
CD(MI)-AMOTRE 9 {rf,xgb} 18 xgb 1 rf

to a minimum FP=117;xgb for SMOTE.

Over com-I, SMOTE attains the maximum TPT=9/12, where only 3 malicious in-

sider threats are missed. Furthermore, CD(MI)-SMOTE attains the minimum FP=0;

svmP, compared to a minimum FP=3;svmR for AMOTRE and CD(M)-AMOTRE.

In 10-fold cross validation, as aforementioned, given a 10% subsample testing

including a limited number of instances, it is challenging to show the merit of our

approach compared to SMOTE experiments in terms of detected threats and reduc-

ing the number of FPs. Unlike 2-fold cross validation, it is evident that TPT in 10-fold

cross validation shows no significant difference among the SMOTE and AMOTRE

experiments over all communities. Regarding the number of FPs, over com-P, all

AMOTRE experiments (without and with class decomposition) attain the minimum

FP=9 compared to a minimum FP=15 for SMOTE with respect to rf and xgb. Over

com-S, CD(M)-AMOTRE attains the minimum FP=16 compared to FP=22 for CD-

(M)SMOTE with respect to xgb. Over com-I, all SMOTE and AMOTRE experiments

attain the minimum FP=1 except for AMOTRE without class decomposition which

attains a minimum FP=2 with respect to {rf,svmR}.

In conclusion, AMOTRE experiments with class decomposition, namely CD(M)-

AMOTRE and CD(MI)-AMOTRE, demonstrate the best performance in terms of TPT

and FP measures in 2-fold and 10-fold cross validations over com-P and com-S. It is

worth noting that the number of FPs is reduced remarkably over AMOTRE experi-

ments compared to SMOTE experiments, especially in 2-fold cross validation.
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On the other hand, over com-I, it is quite evident that SMOTE experiments (with

and without class decomposition) outperform AMOTRE experiments in terms of

TPT and FP measures in 2-fold and 10-fold cross validations. In Table 5.4, SMOTE

and CD(MI)-SMOTE reveal the capability to detect one more malicious insider threat

compared to other experiments in 2-fold and 10-fold cross validation respectively.

In Table 5.5, CD(MI)-SMOTE reveals the capability to attain 0 FPs, compared to a

minimum FP=3 attained by AMOTRE and CD(M)-AMOTRE in 2-fold cross valida-

tion. Note that CD(MI)-SMOTE is still based on the proposed class decomposition,

however, not using AMOTRE technique, but SMOTE. Unlike 2-fold, all SMOTE and

AMOTRE experiments in 10-fold experiments, excluding AMOTRE without class

decomposition, show competitive performance in terms of FP measure (all attained

the minimum FP=1 excluding FP=2 for AMOTRE). We argue that the poorer per-

formance of AMOTRE compared to SMOTE experiments in terms of TPT and FP

measures over com-I is correlated to the peculiarities of the scenarios included in

com-I. First, in the utilised community data sets (com-P, com-S, and com-I), only

com-I includes malicious insider threats which map to scenario s3.

Second, the community com-I includes 2 malicious inside threats (i.e. malicious

insiders) of scenario s2, and 10 malicious insider threats of scenario s3. We notice

that 50 anomalous behaviours represent the 10 malicious insider threats of scenario

s3, which is much less than 82 anomalous behaviours representing only 2 malicious

insider threats of scenario s2. We argue that the poor representation of the malicious

insider threats of scenario s3 causes the lower performance of AMOTRE experiments

in com-I. The poor representation may relate to the peculiarity of the scenario s3.

Third, we recall that scenario s3 considers a masquerader who gains access to

their supervisor’s PC using a keylogger and sends an alarming mass email to em-

ployees in the organisation. A masquerade threat is simulated on two users: an

unauthorised user (i.e. masquerader), and an authorised user (i.e. victim). So, the

masquerade threat may not be detected in a user’s behaviour model, but in a com-

munity behaviour model, where the behaviours of multiple users having the same

role is represented. The idea of masquerade threat is addressed in this thesis by

constructing the community behaviour profiles (as discussed in Section 4.3) to build

the models later on. The community behaviour model captures the co-occurrence
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of the changes of users’ behaviours in the community. Thus, the co-occurrence of

the changes of masquerader’s behaviour and victim’s behaviour may be detected.

However, the masquerader’s attack is on the victim’s PC using their credentials and

authorised privileges. Hence, the detection system would be deceived by the mas-

querader’s attack as authorised on the victim’s PC. We argue that the complexity of

scenario s3 causes the low performance of AMOTRE experiments in com-I.

Therefore, the limitation related to scenario s3 will be addressed in future work

as discussed in Chapter 8.

To sum up The above experiments proved that AMOTRE outperforms SMOTE

achieving a higher F1 measure over the communities (target (1)). We showed that the

trapper removal is a key part of AMO-TRE oversampling technique, where AMOTRE

reveals higher F1 measure with respect to the base classifiers over all communities

(target (2)). Moreover, introducing class decomposition to each of the oversampling

techniques SMOTE and AMOTRE improved the performance of the base classifiers

(target (3)). The results show the merit of our hybrid approach CD-AMOTRE that in-

tegrates the class decomposition concept and the proposed AMOTRE oversampling

technique in terms of highest F1 measure, maximum number of detected threats

TPT , and minimum number of FPs.

5.5 Summary

In this Chapter, we address the insider threat problem as a class imbalance problem

with the aim of detecting malicious insider threats while reducing the number of

false alarms. We propose a hybrid approach, namely CD-AMOTRE, which com-

bines the class decomposition and AMOTRE oversampling and trapper removal

technique.

The aim of adopting class decomposition is to weaken the majority class by de-

composing it into subclasses (clusters), so the decision of the classifier would not bias

toward the majority class. Class decomposition can also be applied to the minority

class after oversampling in order to achieve balance between the subclasses. Hence,
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the result of class decomposition is transforming the two-class classification with

class imbalance into multi-class classification with balanced subclasses (clusters).

We define AMOTRE as a selective oversampling technique, where it selects the

minority instances to be oversampled based on a measured local outlier factor. The

minority instances located in a high-density region of majority instances are trapper

instances that would trap the classifier. In AMOTRE, trapper instances are removed

to reduce the number of false alarms. Furthermore, AMOTRE constrains the gener-

ation of artificial samples to the minority class using the parameter λ to shield the

border of the majority class. It allows generation of more artificial samples for mi-

nority instances away from the majority class than the ones closer to it. Hence, the

oversampling procedure together with trapper removal (-TRE part) contributed in

reducing FPs.

We evaluate different variations of applying AMOTRE with and without class

decomposition compared to the state-of-the-art sampling technique SMOTE with re-

spect to five high performing base classifiers. First, the results show that AMOTRE

outperforms SMOTE achieving a higher F1 measure. Second, introducing class de-

composition shows better performance for both CD-SMOTE and CD-AMOTRE with

class decomposition against SMOTE and AMOTRE, where the best maximum num-

ber of detected threats by both was 14/16 (87.5%). However, CD-AMOTRE outper-

forms CD-SMOTE in terms of FPs, where the best minimum FP reported by CD(MI)-

AMOTRE 46 (3.36%) is much lower than the minimum FP reported by SMOTE

69. It is worth noting that the class decomposition contributed into reducing the

FPs, though the class data may not be perfectly decomposed. In conclusion, CD-

AMOTRE provided better performance in terms of higher F1 measure and lower

number of false alarms.
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Chapter 6

Anomaly Detection for Insider

Threat Detection

6.1 Introduction

Anomaly detection tackles the rare-class problem by building a model based only

on the normal class label, then predicting whether acquired new data is normal or

anomalous. This class of anomaly detection methods is referred to as semi-supervised

anomaly detection in [117]. However, semi-supervised classification refers to those

techniques that operate having only a small set of labelled instances along with a

typically larger set of unlabelled ones, regardless of the assigned class [118]. Thus,

in this chapter, we use the term anomaly detection to refer to the one-class machine

learning problem.

The ongoing monitoring and logging of the insiders’ activities establishes huge

useful data sets of information to learn the normal baseline of behaviour. However,

the absence of previously logged malicious insider threats among the logs of normal

users’ behaviour in an organisation (the case of medium data maturity), shapes the

insider threat detection mechanism into a one-class data mining approach, namely

anomaly detection.

The ‘behaviour-based’ anomaly detection approaches reviewed in Section 2.3.2.2

have shown merit in addressing the insider threat detection problem, however, they

do suffer from a high number of false alarms. For instance, a recent anomaly detec-

tion approach, called RADISH [21], reports a False Alarm rate=92% (refer to Table

2.2). This means that 92% of the alarms flagged are actually benign (FPs).
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To tackle the shortcoming of the high number of FPs, in this Chapter we pro-

pose an anomaly detection framework that consists of two components: one-class

modelling component, and progressive update component. First, the role of the

one-class modelling component includes the decomposition of the normal class data

into k clusters, and the training of an ensemble of k base anomaly detection meth-

ods (One-class Support Vector Machine –ocsvm– or isolation Forest –iForest–). Each

base model of the ensemble is trained over one cluster, resulting in an ensemble of

k base models. This allows the detection of anomalous trapper instances that have a

high resemblance to normal instances, which would not be detected by the method if

trained over the whole normal class data. Second, the role of the progressive update

component is to adapt the decision boundary of each base model with sequentially

acquired FP chunks. It includes a selective oversampling method to generate artifi-

cial samples for FPs per chunk, with the aim to reduce the number of FPs.

The proposed anomaly detection framework provides the following major con-

tributions:

• a class decomposition method on the normal class data to detect the anomalous

trapper instances;

• a progressive update method with sequentially acquired FP chunks to address

the shortcoming of high number of FPs;

• an outlier-aware artificial oversampling method for FPs to avoid model over-

fitting by intelligently adapting decision boundaries of base models of the en-

semble fed with the synthetically oversampled data; and

• a thorough performance evaluation and a statistical significance test of a vari-

ety of experiments utilising ocsvm and iForest, validating the effectiveness of

class decomposition, progressive update, and oversampling, compared to that

of base ocsvm and base iForest.

The rest of the Chapter is organised as follows. In Section 6.2, we give a back-

ground of the utilised anomaly detection methods (ocsvm and iForest). In Section

6.3, we propose an anomaly detection framework, with a detailed description of its

components. In Section 6.4, we present the experimental setup and the refined ver-

sions of evaluation measures. We then evaluate a variety of experiments, to assess
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the effectiveness of the proposed framework and its components. Finally, we con-

clude this Chapter with a summary in Section 6.5.

6.2 Background

The approach to address the insider threat problem depends on the availability of

data; whether the organisation historically collected system and network logs of the

users’ activities. If the data is available, it would either consist of normal instances,

or normal instances with insider threat instances based on whether insider attacks

previously occurred in the organisation. In this Chapter, we focus on the cases when

the maturity of data availability in the organisation is medium (i.e. data logs for

only normal behaviour is available). Based on this, the insider threat problem may

be addressed from the perspective of anomaly detection.

The following gives a description of two popular anomaly detection methods:

One Class Support Vector Machine (ocsvm) and isolation Forest (iForest), which

will be used as base methods in the proposed framework to detect malicious in-

sider threats. We adopted ocsvm and iForest, because each of the methods has been

utilised for insider threat detection, either as a base method for the proposed ap-

proaches [22], [51], [63], or as a benchmark against which the performance of a deep

learning approach was compared to its performance [61].

6.2.1 One Class Support Vector Machine

One Class Support Vector Machine (ocsvm) is a one-class classification method that

learns from a target class and finds the hyperplane that separates the target class in-

stances from the origin. ocsvm addresses the anomaly detection problem by build-

ing a model from normal class instances only. New data instances are then clas-

sified as normal or anomalous based on their deviation from the model. Kernels

may be applied to map the data set into a high dimensional space and find a linear

maximum-margin hyperplane that may be non-linear in the original feature space.
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The availability of data logs for only normal behaviour makes ocsvm well suited

to tackle the insider threat detection problem. ocsvm builds a model based on nor-

mal instances only, and then identifies malicious insider threats that deviate signifi-

cantly from the pattern of normal behaviour.

6.2.2 Isolation Forest

isolation Forest (iForest) [50] is a model-based anomaly detection method that iso-

lates anomalies from the normal instances instead of profiling normal instances. Let

ψ represent a parameter that controls the size of the subsample extracted from the

original data set to construct each isolation Tree (iTree). iTree is constructed by recur-

sively partitioning data subsample instances until a specific tree height is attained.

The tree height is derived from the predefined parameter subsampling size ψ. The

task of anomaly detection requires finding an anomaly score for each instance, so

that instances having a high degree of anomaly or short path lengths along the iTrees

are more likely to be anomalous instances. iForest is defined as an ensemble of nt

iTrees that provides the average path length for each instance over nt number of

trees to accomplish convergence of results.

The application of iForest on the users’ behaviour separates the malicious insider

threats from the normal instances without constructing a behaviour profile.

6.3 Adaptive One-Class Ensemble-based Anomaly Detection

This Section presents the proposed anomaly detection framework for insider threat

detection and provides a detailed description of its components. Figure 6.1 illus-

trates two phases: one-class modelling component and progressive update compo-

nent.

6.3.1 One-class Modelling Component

The one-class modelling component acquires training data in the initial modelling

phase. It consists of a clustering component that applies k-means clustering method

on the normal class data in order to create k clusters. It then trains each cluster on
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FIGURE 6.1: Proposed conceptual framework for anomaly detec-
tion. The framework has two components: a one-class modelling
component which includes a clustering component, and a progres-
sive update component which includes an oversampling component.
{M1,M2, ...,Mk} represent the set of models generated by the ensem-
ble. The set of blue arrows represent the testing instances declared
as FPs, and each segment of blue arrows represents an FP chunk ac-

quired sequentially.

a base method. The result is an ensemble of a base method over k clusters, result-

ing in k models. In this work, we utilised two high-performing anomaly detection

methods, ocsvm and iForest, as base methods in the proposed framework to detect

malicious insider threats.

Clustering Component In Chapter 5, class decomposition was used to weaken

the effect of the majority class in classification. However, in this chapter, we aim

to cluster the normal class data to identify patterns in data, then build a one-class

classifier on each cluster. In this way, the local anomalies can be identified, which is

not the case if we used normal data as a whole.

Malicious insiders have authorised access to the network, system, and data, and

are aware of the system management and security policies. These aspects aid the

malicious insider to deceive the detection system, where some anomalous behaviour

may have a high resemblance with the normal user’s behaviour. This manifests as

local anomalous instances located among normal instances. To address this issue,
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we apply class decomposition [77] on the normal class data. The idea is to decom-

pose the normal class data into clusters and to train a detector per cluster, giving

more opportunity for the detector to identify local anomalous instances with respect

to a cluster that might not be detected over the whole data. We utilise k-means clus-

tering method to identify patterns in the normal class data, given its efficiency. More

information regarding the literature of class decomposition and the argument for

selecting the k-means clustering method can be found in Section 5.3.1.

LetXt={xt1, xt2, ..., xtm} represent the feature vector at session slot t, where xtf ; 1 �

f � m represents the value of the f th feature. Let y represent the normal class label.

Each instance (i.e. feature vector) Xt either belongs or does not belong to normal

class y. Let N=Xt ∀t;Xt ∈ y represent the set of instances that belong to the normal

class y. If we apply k-means clustering method on the set N , then N decomposes

into k clusters. Let C={C1, C2, ..., Ck} represent the set of k clusters.

Fig. 6.2 represents the normal instances with blue circles, and the anomalous in-

stances with squares. Let the solid-line outer circle represent the decision boundary

generated by the base method over the whole normal data to separate the normal

instances from the anomalous instances. Consider k=2, so that the normal data in-

stances are grouped into 2 clusters. We construct an ensemble of k base methods

and train a base method on each cluster of the k clusters. Let the inner dashed cir-

cles represent the decision boundaries generated by each cluster’s base method. Fig.

6.2 reveals two types of anomalous instances defined below:

• Borderline and outlier instances: represented by red filled squares. Those in-

stances are located at the borderline with respect to the solid-line outer deci-

sion boundary, or are far outliers; and

• Trapper instances: represented by red empty squares. Those instances are lo-

cated in a sparse or dense area of normal instances.

The borderline and outlier anomalous instances can be easily detected by one of

the aforementioned base methods trained over the whole normal data. However, as

shown in Fig. 6.2, the solid-line outer decision boundary would not be able to de-

tect trapper instances. As aforementioned, the trapper instances are located among
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FIGURE 6.2: Clustering normal class instances. The blue circles rep-
resent the normal instances, and the squares represent the anomalous
instances. The red filled squares represent borderline and outlier in-
stances, and red empty squares trapper instances. The solid-line outer
circle represents the decision boundary generated by the base method
over the whole normal data. The inner dashed circles represent the

decision boundaries generated by each cluster’s base method.

normal instances, and therefore the base method would declare as normal instances

(e.g. iForest would not assign a high anomaly score).

To address this issue, we propose to decompose the normal class data into clus-

ters and to train an ensemble of a base method per cluster, so that the trapper in-

stances can be identified by the base method(s) as anomalous with respect to clus-

ter(s). Fig. 6.2 shows that the inner dashed decision boundaries, generated by clus-

ters, can detect the trapper instances located in the disjoint area (i.e. sparse area of

normal instances). Nevertheless, some trapper instances would still exist inside the

clusters which may not be detected as positives, due to their existence in an inner

dense area of normal instances.

Upon decomposing the normal training data set into k clusters, the role of one-

class modelling component is to train an ensemble of a base method on the k clusters

to generate k initial models. Let M={M1,M2, ...,Mk} represent the set of models

generated by the ensemble. Each initial model Mi for Ci; 1 ≤ i ≤ k is then used

to detect the malicious insider threats in the testing data set. The decision dti for a

testing instance Xt with respect to Mi comes in Boolean form of {True, False}. In

case of ocsvm, an instance Xt either belongs or does not belong to the normal class

y. In case of iForest, Xt is identified as an anomalous instance if its anomaly score

is greater than a defined anomaly score threshold τ . The parameter τ requires to be

tuned, where an optimal isolation of anomalous instances is achieved at a certain

threshold τ , as examined later in Section 6.4.
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After that, the ensemble acquires a set of decisionsDt={dt1, dt2, ..., dtk} for a testing

instance Xt to vote whether Xt is normal or anomalous. Each decision dti ∈ Dt; 1 ≤

i ≤ k is taken by a model Mi for a cluster Ci in the ensemble. The voting mechanism

is executed as follows: (1) If dti ∈ Dt votes for anomalous ∀i (i.e. by all models), then

the overall decision Dt declares Xt as anomalous behaviour, and consequently flags

an alarm warning of a malicious insider threat; (2) If ∃dti ∈ Dt votes for normal, then

the overall decision Dt declares Xt as normal behaviour.

6.3.2 Progressive Update Component

The importance of the insider threat problem requires a continuous monitoring of

the implemented detection system by the system’s administrator(s). A false alarm is

a result of a normal behaviour detected as anomalous by the system. This maps to

normal instances that have a high similarity with anomalous instances, thus appear

as suspicious events. To address this issue and to reduce the number of false alarms

raised, we introduce the progressive update component. The role of this component

is to progressively update the detection system with acquired FP chunks. We define

an FP chunk as follows:

Definition 6.3.1: FP Chunk An FP chunk is a segment of capacity c that accumulates

test instances declared as FPs. Let FPchunks={FP1, FP2, ..., FPc} represent an FP

chunk acquired at sequence s, such that Dt for each FPt ∈ FPchunks; 1 ≤ t ≤ c is

predicted as a positive (i.e. anomalous instance) while the actual class label for FPt

is normal. Thus, each FPt is declared as FP.

Consider, in Fig. 6.1, the set of blue arrows represent the testing instances de-

clared as FPs, and each segment of blue arrows represents an FP chunk acquired

sequentially. For example, the segment of blue arrows at sequence s=1 represents

FPchunk1. We define c as the capacity (size) of FP chunks; each FP chunk FPchunks

can accumulate c number of FPs. Fig. 6.1 illustrates FP chunks of capacity c=3; each

FP chunk accumulates 3 FPs.

The progressive update method relies on the continuous monitoring by the ad-

ministrator to investigate whether the flagged alarms are true or false. Along the

run of the detection system, when an alarm is flagged, the administrator is required
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to investigate the suspected user and decide whether it is a malicious insider threat

or a false alarm. In the latter case, the FP (false alarm) is accumulated into the FP

chunk. This procedure continues until the current FP chunk is full (i.e. capacity c

of FP chunk is reached). The FP chunk is then fed to the progressive update com-

ponent to oversample the FP instances in order to generate artificial samples. The

oversampling component is later described in this Section. The set of FP instances to-

gether with the set of artificial instances are then utilised to update the pre-generated

models. Let N represent the pre-generated set of genuine normal instances, and let

As represent the set of artificial instances generated for FPchunks. Hence, the pre-

generated models are retrained on R=N∪ FPchunks ∪ As. Similarly, this process is

repeated progressively for each accumulated FP chunk.

The rationale behind the progressive update method is not simply to retrain the

models with new instances, but also to enrich the models with recently detected FPs

and synthetically generated artificial samples close (not replicates) to FPs. Therefore,

the decision boundary in each model adapts to the falsely detected behaviour and

reduces the chances of FPs in the upcoming testing instances.

The idea of continuous monitoring to investigate flagged alarms to identify FPs

has been applied in [61]. The authors defined cumulative recall measure based on

a daily budget. The term daily budget refers to the maximum number of alarms an

analyst can investigate per day to judge whether they are TPs or FPs.

Oversampling Component The method of updating pre-generated models with

FP instances in the FP chunks may not have a significant influence on the decision

boundary. However, the oversampling of FP instances generates artificial instances,

and enriches the updated model with recently acquired FP instances, as well as nor-

mal artificial samples. In this way, the recently acquired normal behaviour of a user

or a community will be well represented, and in turn will trigger the base method to

adapt the model’s decision boundary.

The oversampling component is in charge of generating artificial samples from

the FP instances upon the acquirement of each FPchunks. The task of allocating
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the number of samples to be generated for each FP instance in the FPchunks de-

pends on the degree of outlierness of each FP instance. Thus, the number of sam-

ples to be generated varies among FP instances. We utilise a density-based method,

namely, Local Outlier Factor (LOF) [113], to calculate the local outlier factor (score)

lof tN for each FP instance FPt in acquired FPchunks with respect to the kLOF nearest

neighbours from only the set of genuine normal class instances N . lof tN is tuned for

kLOF=
√

1 + card(N) (thumb-rule), where the radicand 1 + card(N) represents the

number of instances utilised to calculate lof tN . The motivation to integrate LOF to

calculate the anomaly score for FP instances, despite iForest can provide it, is that

LOF can be used independently of the base method (ocsvm or iForest).

Let perclof tN represent the percentile rank for each FPt compared to the set of

normal instances N . In Fig. 6.3, we represent the genuine normal instances N by

blue filled circles. We define two types of FP instances, where each type is oversam-

pled based on its degree of outlierness lof tN :

• Outlier instance: represented by a solid-line red empty circle. Each FP instance

FPt is considered an outlier instance, if it has a high lof tN value; located far

away from the genuine normal instances N . For example, if perclof tN=90, this

means that the lof tN for FPt is greater than 90% of the normal instances N .

• Safe instance: represented by a solid-line blue empty circle. Each FP instance

FPt is considered a safe instance, if it has a low lof tN value, located at or near

the borderline of genuine normal instances N .

In Fig. 6.3, the red dashed circles represent the artificial samples generated for FP

outlier instances, while the blue dashed circles represent the artificial samples for FP

safe instances. The idea is that safe instances are given more chance to generate ar-

tificial samples around them, while the outlier instances are given less chance. This

gives the update component more conservative control on the adaptation of the deci-

sion boundary. Oversampling more safe instances than outlier instances safeguards

the system from fast movement of the decision boundary due to outliers. Otherwise,

more False Negatives (FN) (i.e. anomalous instances predicted as normal) will be in

the upcoming FP chunks.
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FIGURE 6.3: Artificial oversampling of FP instances over two fea-
tures. The blue filled circles represent the genuine normal instances
N , the solid-line red empty circle represents an FP outlier instance,
and the solid-line blue empty circle represent an FP safe instance. The
red dashed circles represent the artificial samples generated for FP
outlier instances, and the blue dashed circles represent the artificial
samples for FP safe instances. The solid-line green boundary repre-
sents the decision boundary of the pre-generated model, and green
dashed decision boundary represents the adapted decision boundary

of the updated model.

Let perc.over represent the percentage of artificial samples to be generated, and

let numS=(perc.over/100)× c represent the number of artificial samples to be gener-

ated. The process of generating artificial samples associated to each FPt ∈ FPchunks

instance is executed feature-wise over a number of iterations.

Recall that xt
′
f represents the value of the f th feature of Xt

′ ∈ N at a session slot

t′. Likewise, let ptf represent the value of the f th feature of FPt at a session slot t,

given that FPt={pt1, pt2, ..., ptm}. For each feature f ; 1 � f � m, we find the nearest

neighbour xt
′
f of Xt′ ∈ N for ptf of FPt. In other words, we search the set of normal

instances N at the level of feature f only, and we find the closest feature xt
′
f for ptf .

At the level of feature f , there exists two directions: positive (+ve), and negative

(−ve). Thus, ptf may have (1) only +ve neighbours from the set N , (2) only −ve

neighbours, or (3) both +ve neighbours and −ve neighbours. We define the positive

(+ve) nearest neighbour and the negative (−ve) nearest neighbour as follows:

Definition 6.3.2: Positive nearest neighbour A +ve nearest neighbour is the closest

xt
′
f of Xt′ ∈ N for ptf of FPt, such that xt

′
f is located in the +ve direction to ptf .

Definition 6.3.3: Negative nearest neighbour A −ve nearest neighbour is the closest

xt
′
f of Xt′ ∈ N for ptf of FPt, such that xt

′
f is located in the −ve direction to ptf .
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Fig. 6.4 illustrates generating artificial samples of FP instances over one feature

(i.e. one dimension). Let the blue filled circle represent xt
′
f , the blue empty circle

represent ptf , and the blue dashed circle represent an artificial feature value atf asso-

ciated to ptf . The process of generating an artificial feature value atf is executed as

follows:

• If ptf has only a +ve nearest neighbour xt
′
f at the level of feature f (Fig. 6.4.1),

then atf is calculated in the +ve direction along the segment joining ptf and xt
′
f

according to Eq. 6.1, such that dir= + 1.

• If ptf has only a −ve nearest neighbour xt
′
f at the level of feature f (Fig. 6.4.2),

then atf is calculated in the −ve direction along the segment joining ptf and xt
′
f

according to Eq. 6.1, such that dir=− 1.

• If ptf has both a +ve nearest neighbour and a−ve nearest neighbour at the level

of feature f (Fig. 6.4.3), then atf can be calculated in the +ve or −ve direction.

A random direction dir is selected at each iteration, and atf is calculated in the

selected direction dir according to Eq. 6.1.

atf=ptf + dir × rand(0 : λ× dist(ptf , xt
′
f )) (6.1)

where dist(ptf , x
t′
f ) represents the distance between an FP feature value ptf and the

nearest neighbour xt
′
f .

Note that λ, tuned for λ=0.8, denotes a parameter that controls the distance per-

mitted to generate artificial features along the segment joining ptf and xt
′
f . The value

of λ is in the range ]0.5, 1[. The rationale behind this is to generate the artificial sam-

ples a bit closer to the FP instances and not the normal instances, so that the adapted

decision boundary is influenced by these samples.

Consequently, an artificial sample At={at1, at2, ..., atf} associated with an FPt in-

stance is generated at each iteration. The steps described are repeated for a number

of iterations until numS of artificial samples are generated.
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FIGURE 6.4: Artificial oversampling of FP instances over one feature.
The blue filled circle represents a genuine normal feature value xt

′

f ,
the blue empty circle represents an FP feature value ptf , and the blue
dashed circle represents an artificial feature value atf associated to
ptf . Fig. 6.4.1 illustrates the case where ptf has only a +ve nearest
neighbour xt

′

f . Fig. 6.4.2 illustrates the case where ptf has only a −ve
nearest neighbour xt

′

f . Fig. 6.4.3 illustrates the case where ptf has two
nearest neighbours in both directions.

6.4 Experiments

The experiments are conducted on the CMU-CERT data sets on Windows Server

2016 on Microsoft Azure (RAM 140GB, OS 64− bits, CPU Intel Xeon E5− 2673v3).

We implemented the experiments in R environment (R − 3.4.1) using the follow-

ing packages: e1071 package for ocsvm, isofor package for iForest, caret package

[114] for evaluation, Rlof package for LOF in the oversampling method, and MASS

package for the Wilcoxon Ranked test.

6.4.1 Experimental Setup

In Table 6.1, we define a variety of experiments performed using the aforemen-

tioned anomaly detection methods. Each experiment is set up to ocsvm or iForest

base methods with or without the following: ensemble method, progressive update

method, and oversampling method. To evaluate the methods, we performed 10 fold

cross-validation on each of the utilised communities.

The experiments are tuned for different values of parameters. Note that an exten-

sive number of experiments was done to select the presented tuning values for the parameters.

The values were selected based on the experiments achieving the best performance in terms

of the evaluation measures described below.

ocsvm is evaluated for the kernel values: Linear L, Polynomial P , and Radial

R. On the other hand, iForest is presented for different values of anomaly score
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TABLE 6.1: Definition of Experiments.

E-ocsvm E-iForest Ensemble
ocsvm-U iForest-U progressive Update
E-ocsvm-U E-iForest-U Ensemble+Update
ocsvm-OU iForest-OU Update+Oversampling
E-ocsvm-OU E-iForest-OU Ensemble+Update+Oversampling

threshold τ={0.35, 0.4, 0.45}, given the number of iTrees nt=20 and the subsample

size ψ. Note that no anomalous instances were isolated for τ > 0.5 over the utilised

CMU-CERT data sets. This reflects the complex patterns of malicious insider threat

behaviour in the data set, and the high resemblance of anomalous behaviour with

normal behaviour. Although the authors in [50] pointed out the efficiency of sub-

sampling, ψ is tuned for the whole sample size without extracting a subsample of

the data set. It is either set up to card(N) over the whole normal training data set, or

to card(Ci) over each cluster in the ensemble case. The rationale of using the whole

sample size in both cases is related to the progressive update method. It assures that

all the FP instances in the progressively acquired FP chunks are used to update the

iForest model.

Regarding the ensemble method, we tuned the number of clusters k over a set of

arbitrarily chosen small values k={2, 4}, as the goal is to detect the anomalous trap-

per instances. However, the results for only k=2 are reported, due to revealing better

performance in terms of detecting most of the malicious insider threats in the data

sets. As mentioned in Section 5.4.2, the literature demonstrated the effectiveness of

k-means clustering for small values of k when applied for class decomposition [104],

[109]. The capacity of FP chunks is presented over the values c={20, 40, 60, 80, 100}

to evaluate the effectiveness of updating the model with early-acquired-early-updated

FPs. For the oversampling method, the oversampling percentage is tuned for only

perc.over=200 to test the influence of applying oversampling to the FP chunks on

the progressive update method.

6.4.2 Evaluation Measures

The ultimate aim of the proposed framework is to detect all the malicious insider

threats (not necessarily all behaviours), while reducing the number of FPs (all false
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alarms). We utilised the previously defined measures in Chapter 5 to evaluate the

experiments. First, we recall the default versions of measures that are evaluated per

instance (behaviour): FP designates the number of normal instances (behaviours)

that are detected as anomalous instances. FP is evaluated with respect to the whole

testing set (not per chunk); and TN designates the number of normal instances pre-

dicted as normal.

Second, we recall the refined versions of measures that are evaluated per threat:

TPT is used instead of TP to evaluate the number of threats detected by the sys-

tem among all the PT malicious insider threats. TPT is incremented if at least one

anomalous instance (behaviour associated to the threat) is predicted as anomalous

(the aim of any-behaviour-all-threats –threat hunting); and FNT is used instead of FN

to evaluate the number of insider threats not detected.

As a result, F1 measure is defined based on the values of the above defined mea-

sures. The maximum of traditional F1 measure of 1 is not expected here, given the

refined definition of the measures. Dependent on the data distribution, F1 measure

closer to 0.5 reveals good performance. More detailed information about the evalua-

tion measures can be found in Section 5.4.3.

6.4.3 Results and Discussion

In this Section, we present the results of ocsvm experiments and iForest experiments

in terms of the pre-defined evaluation measures. We then show the merit of the

proposed framework according to the following targets:

• Testing the statistical significance of the results using the Wilcoxon Signed-

Rank Test;

• Comparing ocsvm experiments and iForest experiments;

• Assessing the influence of the proposed components on the framework; and

• Assessing the time efficiency of the progressive update component.
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TABLE 6.2: Minimum FP over communities associated with (1) the
kernel and FP chunk capacity c which achieved the minimum FP
for ocsvm based experiments, and (2) the anomaly score threshold
τ and c which achieved the minimum FP for iForest based experi-
ments. Note that the parameter combination(s) which achieved the
minimum FP are listed. The results are displayed as 〈FP kernel, c〉 for
ocsvm based experiments and 〈FP τ, c〉 for iForest based experiments.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 106 L 97 L 76 L,40 88 L,20 83 L,60 95 L,80
com-S 120 R 90 P 99 L,20 89 P,60 109 P,20 90 P,20
com-I 149 R 100,{L,P} 146 R,{20, 40} 52 P,20 132 P,20 97 P,20

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 88 0.45 66 0.45 85 0.45,∀c \ 100 50 0.45,20 84 0.45,40 57 0.45,20
com-S 85 0.45 73 0.45 82 0.45,{20, 100} 49 0.45,20 78 0.45,100 70 0.45,20
com-I 80 0.45 69 0.45 68 0.45,60 43 0.45,20 72 0.45,60 53 0.45,20

TABLE 6.3: Maximum TPT of detected insider threats over commu-
nities associated with (1) the kernel and FP chunk capacity c which
achieved the maximum TPT for ocsvm based experiments, and (2)
the anomaly score threshold τ and c which achieved the maximum
TPT for iForest based experiments. Note that the parameter combi-
nation(s) which achieved the maximum TPT are listed. The results
are displayed as 〈FP kernel, c〉 for ocsvm based experiments and 〈FP

τ, c〉 for iForest based experiments.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 17 P 16 R 17 P,∀c 16 R,∀c \ 20 17 P,∀c 16 R,∀c
com-S 22 P 21 R 22 P,∀c 22 P,{20− 40} 22 L,{20, 60} P, 80 21 R, ∀
com-I 12 ∀kernel 12 R 12 ∀kernel,∀c 12 R,∀c 12 ∀kernel,∀c 12 P, 20 R,∀c

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 16 0.35 16 0.35 16 0.35,∀c 16 0.35,∀c 17 0.35,{20− 60} 17 0.35,20
com-S 21 0.35 21 0.35 21 0.35,∀c 21 0.35,∀c 22 0.35,∀c \ 60 22 0.35,∀
com-I 12 ∀τ 12 ∀τ 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c

6.4.4 Results

Tables 6.2 and 6.3 present the minimum FP and the maximum TPT attained respec-

tively for ocsvm and iForest based experiments over the three communities. The

tables report kernel and FP chunk capacity c associated with the minimum FP or

maximum TPT attained for ocsvm based experiments. On the other hand, the tables

present anomaly score threshold τ and c associated with the minimum FP or max-

imum TPT attained for iForest based experiments. This allows the identification of

the superior kernel or τ , and analysing the influence of FP chunk capacity c on the

progressive update method.
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 6.5: The variation of F1 measure as a function of FP chunk
capacity c for ocsvm based experiments over communities. The x-
axis represents the FP chunk capacity c={20, 40, 60, 80, 100}, and the
y-axis represent the values of F1 measure, and the graphs in Fig. 6.5a,

Fig. 6.5b, and Fig. 6.5c represent the results for kernel={ L, P, R }.

6.4.4.1 ocsvm Experiments

Fig. 6.5 presents the variation of F1 measure as a function of FP chunk capacity c

for ocsvm based experiments over the communities. The results are reported with

respect to kernel values.

Over com-P, ocsvm-U outperforms ocsvm, as well as all other ocsvm based ex-

periments in terms of F1 measure, FP, and TPT . ocsvm-U achieves the maximum

F1=0.261; kernel=L while reducing the false positives to the minimum FP=76; kernel=L

compared to FP=106 in ocsvm. Knowing that PT=17, ocsvm-U detects all the mali-

cious insider threats TPT=17; kernel=P without missing any threat.

Over com-S, E-ocsvm-U and E-ocsvm-OU report better performance for all kernels,
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where E-ocsvm-U achieves the maximum F1=0.318; kernel=P with the minimum

FP=89; kernel=P compared to FP=120 in ocsvm. E-ocsvm-OU follows it with

F1=0.300; kernel=L and FP=90;P. However, E-ocsvm-U attains the maximum

TPT=22; kernel=P out of PT=22, unlike the latter that missed one threat.

Over com-I, E-ocsvm-U reports the best performance in terms of all measures

compared to other ocsvm based experiments. It achieves the maximum

F1=0.246; kernel=P, while reducing the number of false positives to FP=52; kernel=P

knowing that FP=149 in ocsvm. Furthermore, it attains TPT=12 out of PT=12 (same

TPT as for other experiments).

6.4.4.2 iForest Experiments

Fig. 6.6 presents the variation of F1 measure as a function of FP chunk capacity c

for iForest based experiments over the communities. The results are reported with

respect to anomaly score threshold τ values.

Over com-P, E-iForest-U and E-iForest-OU gave a significant boost to F1 mea-

sure for τ=0.45, where it reaches F1=0.365,0.337 respectively. E-iForest-U reduces

the number of false positives to the minimum FP=50; τ=0.45 compared to FP=88 in

iForest, however, it detects TPT=16; τ=0.35, thus missing one threat. On the other

hand, E-iForest-OU reaches a minimum FP=57; τ=0.45, while detecting all the mali-

cious insider threats

TPT=17; τ=0.35.

Over com-S, E-iForest-U reports the best performance in terms of F1 and FP com-

pared to other iForest based experiments. It achieves the highest F1=0.422; τ=0.45,

and the minimum FP=49; τ=0.45 compared to FP=85 in iForest. However, it reports

TPT=21; τ=0.35, thus missing the detection of one malicious insider threat. It is

worth to note that the iForest based experiments with oversampling method (with

or without the ensemble method) attain to detect all the threats for τ=0.35

Over com-I, E-iForest-U shows the best performance in terms of all measures. It

achieves the maximum F1=0.358; τ=0.45, while reducing the number of false posi-

tives to FP=43; τ=0.45 compared to FP=80 in iForest. It also attains the maximum

TPT=12;∀τ (same TPT for other experiments).
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 6.6: The variation of F1 measure as a function of FP chunk
capacity c for iForest based experiments over communities. The x-
axis represents the FP chunk capacity c={20, 40, 60, 80, 100}, and the
y-axis represent the values of F1 measure, and the graphs in Fig. 6.6a,
Fig. 6.6b, and Fig. 6.6c represent the results for τ={00.35, 0.4, 0.45}.

6.4.5 Statistical Significance: Wilcoxon Signed-Rank Test

To test the significance of the results, we use the Wilcoxon Signed-Rank Test that

compares each pair of experiments. Each ocsvm-based experiment and iForest-

based experiment is compared with base ocsvm and base iForest respectively. Table

6.4 tabulates the p-value calculated for each experiment at .05 significance level. For

instance, E-ocsvm (first cell) shows the p-value for the 〈E-ocsvm, ocsvm〉 pair; a re-

sult of ‘the values of F1 measure for E-ocsvm ∀kernel,∀c’ compared with ‘the values

of F1 measure for ocsvm ∀kernel,∀c.’

With respect to ocsvm, all ocsvm-based experiments, except E-ocsvm (0.1073 >

.05), are significantly different from base ocsvm where p-value < .05. With respect to
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TABLE 6.4: Wilcoxon Signed-Rank Test at .05 significance level. The
p-value is calculated for each ocsvm based experiment or iForest
based expeiment compared with base ocsvm or base iForest respec-
tively. For instance, E-ocsvm (first cell) shows the p-value for the
〈E-ocsvm, ocsvm〉 pair; a result of ‘the values of F1 measure for
E-ocsvm ∀kernel,∀c’ compared with ‘the values of F1 measure for

ocsvm ∀kernel,∀c.’

E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

1.073e-01 6.101e-09 8.243e-06 8.587e-07 1.687e-06

E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

2.719e-01 1.945e-04 4.104e-08 0.1165 1.986e-05

base iForest, all iForest-based experiments are significantly different from base iFor-

est, except for E-iForest and iForest-OU. The results were predictable, because both

E-ocsvm and E-iForest show low performance in terms of the evaluated measures.

6.4.6 Comparing ocsvm Experiments and iForest Experiments

Finally, it is noteworthy that base iForest flagged a lower number of false alarms

and reported a higher F1 measure compared to base ocsvm. Moreover, the best

performing iForest-based experiments over each community achieved the minimal

FP compared to ocsvm-based experiments. For instance, E-iForest attains the mini-

mum FP=50; τ=0.45, c=20, while ocsvm-U attains FP=76; kernel=L, c=40, compared

to FP=106 in base ocsvm over com-P. Over com-S, E-iForest-U reaches the minimum

FP=49; τ=0.45, c=20, while E-ocsvm-U and E-ocsvm-OU attain FP=89; kernel=P, c=60

and FP=90 respectively. Finally, E-iForest-U achieves the minimum

FP=43; τ=0.45, c=20, compared to FP=52; kernel=P, c=20 in E-ocsvm-U over com-I.

In these experiments, ocsvm works better for kernel={L,P}, and iForest shows its

best performance for τ=0.45. Moreover, the less the capacity (size) c of FP chunk,

the better the performance of the progressive update method. This emphasises the

effectiveness of updating the model with early-acquired-early-updated FPs in reducing

the number of FPs.

The ensemble-ocsvm approach proposed by Parveen et al. [22] reports a percent-

age of FP rate (FP=30%) on the 1998 DARPA Intrusion Detection data set [71]. How-

ever, our framework reports approximately a half of this value, where %FP varies

between (14%-18%) over all utilised communities in the r5.2 CMU-CERT data sets.
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It is worth noting that the provided comparison is only indicative of the performance given

that the ensemble-ocsvm and our framework were evaluated on different data sets.

6.4.7 Influence of Proposed Components on the Framework

Based on the above extensive experiments carried out to evaluate the influence of

the different components on the proposed framework, we sum up what follows.

ocsvm-U, E-ocsvm-U, and E-ocsvm-OU outperform other ocsvm-based experiments

in terms of F1 measure, FP, and TPT for all communities. On the other hand, E-

iForest-U and E-iForest-OU outperform other iForest-based experiments for all com-

munities.

The importance of the clustering component and the progressive update compo-

nent as a whole is quite evident, where the number of FPs reached its minimal in

experiments that utilised the ensemble method and the progressive update method

with FP chunks (e.g. E-ocsvm-U, E-ocsvm-OU, E-iForest-U, E-iForest-OU). We de-

duce that the effectiveness of the proposed framework relies on the joint collabora-

tion of both components. The use of the clustering component solely, in E-ocsvm and

E-iForest, did not improve the performance significantly in terms of the evaluated

measures. The Wilcoxon test supported this as revealed in Table 6.4. However, the

joint use of progressive update method with ensemble method showed better per-

formance in terms of reducing the number of FPs significantly and achieving higher

F1 measure.

Furthermore, we can infer from Table 6.3 the support for the oversampling method

that detects all the malicious insider threats over all communities without missing

any threat. Also, it is quite remarkable that E-ocsvm-OU and E-iForest-OU show

comparable performance to E-ocsvm-U and E-iForest over com-S and com-P respec-

tively in terms of F1 measure and FP. This reveals the potential of the oversampling

component.
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6.4.8 Time Efficiency of Progressive Update Component

Regarding the time complexity, the merit of the proposed progressive update method

is its time efficiency. Let tas represent the time to accumulate an FPchunks. We ar-

gue that the time to update the ensemble models with the current FPchunks is much

less than the time to accumulate FPchunks+1 (tas+1). This ensures that the progres-

sive update of the models is synchronised with the accumulation of sequentially

acquired FP chunks.

Recall that, an instance Xt from the acquired test instances is accumulated in

the FP chunk, if Xt is declared FP. The FP chunk is progressively accumulated until

the capacity c is reached. Hence, the time to accumulate an FP chunk FPchunks+1

actually depends on, (1) n: number of acquired test instances after FPchunks until

capacity c of FPchunks+1 is reached, and (2) slot: period of a session slot for a test

instance. Analytically, tas+1=n× slot.

Consider c=20 and slot=4 hours. If n=20, this means that c=20 FPs are accumu-

lated in FPchunks+1 after 20 test instances are acquired. Thus, ALL the n acquired

test instances are actually FPs. In this case, tas+1=20 × 4=80 hours (approximately

3 days). This case represents the worst case scenario, where the next FPchunks+1 is

accumulated while 80 hours (3 days) are available to update the models with the

current FPchunks. 80 hours is more than enough to update the models using any

state-of-the-art cloud facility. In fact, the time needed to update the ensemble mod-

els with the current FPchunks is actually much less than 80 hours, which confirms

the time efficiency of the method.

In the aforementioned worst case scenario, the progressive update is required to

run after 80 hours. However, in a typical scenario where an FP chunk is accumulated

after n > c number of test instances is acquired, the progressive update will run

much less frequently.

6.5 Summary

In this Chapter, we address the shortcoming of the high number of FPs based on the

availability of only data for normal behaviour, with no previously logged insider

incidents.
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We propose an adaptive one-class ensemble-based anomaly detection frame-

work with a progressive artificial oversampling method of FPs in class decomposed

data. First, this framework introduces a class decomposition method to cluster the

normal class data in order to detect anomalous trapper instances. The result is an

ensemble of k base methods (ocsvm or iForest) trained over the k clusters. Unlike

the proposed framework, CD-AMOTRE in Chapter 5 applied class decomposition

to weaken the effect of the normal class to handle the class imbalance data problem

(transform two-class into multi-class classification). Furthermore, unlike targeting

trapper instances as anomalous instances in the proposed framework, the -TRE part

in Chapter 5 removed the trapper instances which would trap the classifier.

Second, a progressive update method updates the pre-generated models with

progressively acquired FP chunks. This allows the models to benefit from already

declared FPs and to progressively adapt to the change in user’s behaviour in order

to reduce FPs in upcoming data.

Third, an oversampling procedure is integrated to the progressive update method.

The merit of oversampling is that it is outlier-aware, which allows to intelligently up-

date and enrich the models with artificial samples of FPs, thus avoiding data over-

fitting. Unlike the proposed framework, the oversampling method in Chapter 5 is

applied on anomalous instances, not normal instances (FPs).

We evaluate the proposed framework in a variety of experiments (with and with-

out the following methods: class decomposition/progressive update/oversampling)

using ocsvm and iForest. The results demonstrated the effectiveness of the joint

collaboration of the methods on the performance in terms of higher F1 measure,

lower FP (the best minimum was 14.4%), and detecting all malicious insider threats.

iForest-based experiments report a better F1 and a lower FP compared to that of

ocsvm.
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Chapter 7

Streaming Anomaly Detection for

Insider Threat Detection

7.1 Introduction

A data stream is a continuous acquisition of data generated from various source(s) in

a dynamic environment, typically in a high velocity, leading to accumulation of large

volumes of data. This characterisation leads to a typical Big Data computational

problem. The dynamic nature of a data stream imposes a change in the data over

time. In real-time data streaming, a change refers to an anomalous data that deviates

from the normal baseline (e.g. credit card fraud, network intrusion, cancer, etc.).

The ultimate aim of such stream mining problems is to detect anomalous data in

real-time.

The absence of prior knowledge (no historical database i.e. low data maturity)

is often a complication of a real-time stream mining problem. The anomaly detec-

tion system is required to employ unsupervised learning to construct an adaptive

model that continuously (1) updates itself with new acquired data, and (2) detects

anomalous data in real-time. The system usually acquires data as segments and

identifies the outliers in the segment as anomalous. An outlier is an observation that

deviates so much from other observations as to arouse suspicion that it was gen-

erated by a different mechanism [119]. To detect outliers in a stream mining prob-

lem, several approaches have been proposed, nevertheless, unsupervised clustering

has been successfully applied to identify the patterns in the data and spot outliers
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FIGURE 7.1: Continuous data stream of behaviours. Each arrow de-
notes a behaviour (instance)Xt executed by a user at a specific period
of time t. The blue arrows represent the normal behaviours, and the
green arrows and the red arrows represent the anomalous behaviours
that belong to the malicious insider threats T1 and T2 respectively. To
detect a malicious insider threat T1, it is required to detect any green

behaviour Xt.

[120]. In this Chapter, we tackle the insider threat problem to detect malicious in-

sider threats (outliers) in real-time. With the absence of labelled data (no previously

logged activities executed by users in an organisation), the insider threat problem

poses a challenging stream mining problem.

As described in Section 3.3, we formulate this work with the aim to detect any-

behaviour-all-threat; it is sufficient to detect any anomalous behaviour in all ma-

licious insider threats. The design of the proposed approach with such a relaxing

condition contributes in reducing the frequent false alarms.

Fig. 7.1 illustrates a continuous data stream of behaviours (instances) including

normal behaviours and anomalous behaviours. Each arrow denotes a behaviour

(instance) Xt executed by a user at a specific period of time t. Let the blue arrows

represent the normal behaviours. Let the green arrows and the red arrows represent

the anomalous behaviours that belong to the malicious insider threats T1 and T2

respectively. To detect a malicious insider threat T1, it is required to detect any green

behaviour Xt. Hence, it is essential to detect any of the anomalous behaviours per

malicious insider threat; the aim to detect any-behaviour-all-threat. Note that the

proposed approach may detect more than one behaviour that belong to a malicious

insider threat, nevertheless, the ultimate aim is to detect one anomalous behaviour

per threat.

The ‘behaviour-based’ streaming anomaly detection approaches reviewed in Sec-

tion 2.3.2.3 have shown merit in addressing the insider threat detection problem,

however, they do suffer from high false alarms. For example, ensemble-GBAD [63]
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reports a significant high FP rate=54%, ensemble-ocSVM reports FP rate =31% in

[63], and ensemble-ocsvm further reports FP rate=24% in [22] (refer to Table 2.2).

To address the shortcoming of the high number of false alarms, we propose

a streaming anomaly detection approach, namely Ensemble of Random subspace

Anomaly detectors In Data Streams (E-RAIDS). We presented a preliminary ver-

sion of E-RAIDS (termed Random Subspace Outlier detector – RandSubOut) in [25].

E-RAIDS is built on top of established outlier detection techniques (Micro-cluster-

based Continuous Outlier Detection –MCOD– or Anytime Outlier detection –AnyOut–

) that employ clustering over continuous data streams. The merit of E-RAIDS is its

capability to detect malicious insider threats in real time (based on the definition of

real-time in terms of window iterations as discussed in Section 7.4).

E-RAIDS learns an ensemble of p outlier detection techniques (either MCOD or

AnyOut), such that each model of the p models learns on a random feature sub-

space. The acquired data is accumulated in a temporary buffer of predefined capac-

ity (equals to a fixed window size). At each window iteration, each of the p models

in the ensemble is updated with the acquired data, and local outliers are identified

in the corresponding feature subspace.

Let p=m + 1 denote the number of feature subspaces selected randomly, such

that m is set to the number of features (dimensions) of the feature space F in the

community data set. m represents the number of feature pairs (i.e. 2 features per

subspace), and 1 represents the whole feature space (i.e. all features). In this way,

E-RAIDS is capable to detect local outliers in the m feature pairs, as well as global

outliers in the whole feature space. Hence, E-RAIDS employs the idea of random

feature subspaces to detect local outlier(s) (anomalous behaviour(s)), which might

not be detected over the whole feature space. These anomalous behaviour(s) might

refer to malicious insider threat(s).

E-RAIDS introduces two factors: (1) a survival factor vfs, which confirms whether

a subspace votes for an alarm, if outlier(s) survive for a vfs number of window itera-

tions; and (2) a vote factor vfe, which confirms whether an alarm should be flagged,

if a vfe number of subspaces in the ensemble vote for an alarm. E-RAIDS employs

an aggregate component that aggregates the results from the p feature subspaces, in

order to decide whether to generate an alarm. The rationale behind this is to reduce
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the number of false alarms.

The main contributions of this chapter are summarised as follows:

• an ensemble approach on random feature subspaces to detect local outliers

(malicious insider threats), which would not be detected over the whole fea-

ture space;

• a survival factor that confirms whether outlier(s) on a feature subspace survive

for a number of window iterations, to control the vote of a feature subspace;

• an aggregate component with a vote factor to confirm whether to generate an

alarm, to address the shortcoming of high number of FPs;

• a thorough performance evaluation of E-RAIDS-MCOD and E-RAIDS-AnyOut,

validating the effectiveness of voting feature subspaces, and the capability to

detect (more than one)-behaviour-all-threat (Target 2) in real-time (Target 1).

The rest of this Chapter is organised as follows. Section 7.2 (1) reviews the tech-

niques that utilised clustering to detect outliers, and (2) gives background on estab-

lished continuous distance-based outlier detection techniques. Section 7.3 presents

the proposed streaming anomaly detection approach, namely E-RAIDS, for insider

threat detection. Experiments and results are discussed in Section 7.4. Finally, Sec-

tion 7.5 summarises the Chapter.

7.2 Background

The absence of labelled data (i.e. low data maturity) means that an organisation

has no previously logged activities executed by users (no historical database). We

address the absence of prior knowledge using unsupervised streaming anomaly de-

tection built on top of established outlier detection techniques.

Clustering has been successfully applied to identify patterns in data for outlier

detection [120]. Continuous acquisition of data generated from various sources de-

fines the streaming environment of the insider threat problem. Several clustering

methods have been proposed to handle the streaming environment. The state-of-

the-art presents two primitive clustering methods: Balanced Iterative Reducing and

Clustering using Hierarchies (BIRCH) [121], and CluStream [122].



7.2. Background 121

BIRCH is an incremental hierarchical clustering method that was first proposed

for very large data sets. BIRCH incrementally and dynamically clusters acquired

data instances. It maintains a tree of cluster features (information about clusters)

that is updated in an iterative fashion [123]. Thereafter, BIRCH was applied to

data stream clustering. BIRCH was the first to introduce the concepts of micro- and

macro- clusters [124].

CluStream is a data stream clustering method that employed those two concepts

for the clustering process: online micro-clustering, and offline macro-clustering. In

the online phase, CluStream scans the acquired data instances and creates micro-

clusters in a single pass to handle the big (unbounded) data stream. In the offline

phase, CluStream only utilises the micro-clusters and re-clusters into macro-clusters

[123].

From BIRCH to CluStream, the concept of data stream clustering is applied, de-

spite the fact that BIRCH includes incremental processing of data instances. Incre-

mental clustering processes one data instance at a time and maintains a predefined

data structure (i.e. model) that is incrementally updated without the need for model

reconstruction [125]. In fact, many incremental methods predate the data stream

mining methods. The intrinsic nature of data streams requires methods which im-

plement incremental processing of data instances, in order to handle the resource

limitations (i.e. time and memory) [125]. But unlike earlier incremental clustering

methods, data stream clustering methods require a more efficient time complexity to

cope with high data rates [126]. Indeed, the literature stresses the importance of

considering the inherent time element in data streams [125]. For instance, a typical

data stream clustering method exhibits the temporal aspect of cluster tracking [125].

The dynamic behaviour of cluster over a data stream manifests in the evolving of ex-

isting clusters over time; the emergence of new clusters; and the removal of clusters

based on a time stamp and/or size. Those cluster updates must be performed on the

data structure (i.e. model) very efficiently [126]. Hence, the data stream clustering

methods are not only incremental, but are also fast in terms of the inherent temporal

aspects.

In this work, data stream clustering is used to underpin the outlier detection

techniques for real-time anomaly detection. In the insider threat problem, it is vital
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to consider the temporal aspect, in order to detect malicious insider threats in real-

time (based on the definition of real-time in terms of window iterations as discussed

in Section 7.4). Hence, data stream clustering methods are more appropriate to be

utilised in this work than typical incremental clustering methods.

In the following we review the techniques which utilised clustering to detect

outliers. Thereafter, we shed light on two outlier detection techniques (MCOD and

AnyOut) that employ data stream clustering. These two techniques are later utilised

in the proposed framework.

We then give a background on distance-based outlier detection techniques, in-

cluding a description and formalisation of the established techniques – MCOD and

AnyOut.

7.2.1 Clustering for Outlier Detection

It is important to distinguish our objective – to optimise outlier detection – from that

of a benchmark of clustering methods developed to optimise clustering (such as

DBSCAN [127], BIRCH [121]). The outliers in these methods [121], [127] are referred

to as noise, where they are usually tolerated or ignored. However, in our work, we

refer to outliers as anomalous (suspicious) behaviour(s) that may be associated with

malicious insider threats. Therefore, clustering is utilised to optimise the detection

of outliers.

On the other hand, a benchmark of clustering methods to optimise outlier detec-

tion (such as LOF [113], CBLOF [128]) are developed. Breunig et al. [113] introduced

the concept of Local Outlier Factor (LOF) to determine the degree of outlierness of

an instance using density-based clustering. The locality of an instance (local density)

is estimated by the distance to its k nearest neighbours. Thus, the LOF of an instance

located in a dense cluster is close to 1, while higher LOF is assigned for other in-

stances. It is worth noting that LOF was utilised in the approaches of Chapter 5,

and Chapter 6. He et al. [128] present a measure, called Cluster-based Local Outlier

Factor (CBLOF), to identify the physical significance of an outlier using a similarity

function. The CBLOF of an instance is determined by (1) the distance to its nearest

cluster (if it belongs to a small cluster), or (2) the distance to its cluster (if it belongs

to a large cluster).
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However, the aforementioned methods do not tackle outlier detection in con-

tinuous data streams. MCOD [126] and AnyOut [120] are two established outlier

detection techniques that employ data stream clustering in continuous data streams.

MCOD and AnyOut are utilised as building block outlier detection techniques for

the proposed E-RAIDS approach. A detailed description and formalisation for these

techniques can be found in Section 7.3.2.

7.2.2 Background on Distance-based Outlier Detection Techniques

The state-of-the-art presents one of the most widely employed techniques for anomaly

detection, which are distance-based outlier detection techniques. According to the

definition in [129], an instance Xt is an outlier, if there exists less than k number of

neighbours located at a distance at most r form Xt.

In this work, we are interested in continuous outlier detection over a data stream,

where recent instances arrive and previous instances expire. The demo paper [130]

gives a comparison of four continuous distance-based outlier detection techniques:

STream OutlieR Miner (STORM) [131]; Abstract-C [132]; Continuous Outlier Detec-

tion (COD) [126]; and Micro-cluster-based Continuous Outlier Detection (MCOD)

[126]. COD and MCOD have O(n) space requirements and a faster running time

than the exact algorithms of both [131] and [132]. Note that since all algorithms are

exact, they identify the same outliers [130]. According to [130], COD and MCOD

demonstrate a more efficient performance compared to STORM and Abstract-C in

terms of lower space and time requirements. Hence, the latter are excluded, but

not COD and MCOD. Furthermore, based on the experimental evaluation in [126],

MCOD outperforms COD over benchmark tested data sets. Hence, MCOD is se-

lected to be utilised as a base learner in the proposed E-RAIDS approach.

The state-of-the-art presents a further continuous distance-based outlier detec-

tion technique, called Anytime Outlier detection (AnyOut) [120]. However, AnyOut

has not been compared to the four techniques in the demo paper [130]. We select

MCOD and AnyOut as base learners in E-RAIDS to compare their performance. It

is worth noting that the previously mentioned distance-based outlier detection tech-

niques are implemented by the authors of [130] in the open-source tool for Massive

Online Analysis (MOA) [133].
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In the following, a brief description of MCOD and AnyOut techniques is pro-

vided.

7.2.2.1 Micro-cluster-based Continuous Outlier Detection

Micro-cluster-based Continuous Outlier Detection (MCOD), an extension to Con-

tinuous Outlier Detection (COD), stems from the adoption of an event-based tech-

nique. The distinctive characteristic of MCOD is that it introduces the concept of

evolving micro-clusters to mitigate the need to evaluate the range query for each

acquired instance Xt with respect to all the preceding active instances. Instead, it

evaluates the range queries with respect to the (fewer) centres of the micro-clusters.

The micro-clusters are defined as the regions that contain inliers exclusively (with

no overlapping). The micro-clustering is fully performed online [126].

Given that, the centre mci of a micro-cluster MCi may or may not be an actual

instance Xt; the radius of MCi is set to r
2 , such that r is the distance parameter for

outlier detection; and the minimum capacity (size) of MCi is k+ 1. Below we give a

brief formalisation of MCOD. Let k represent the number of neighbours parameter.

Let PD represent the set of instances that doesn’t belong to any micro-cluster.

The micro-clusters (i.e. centres of micro-clusters) in MCOD are determined as

described in [122]. In the initialisation step, seeds (with a random initial value) are

sampled with a probability proportional to the number of instances in a given micro-

cluster. The corresponding seed represents the centroid of that micro-cluster. In later

iterations, the centre mci is the weighted centroid of the micro-cluster MCi.

• Step 1: For each acquired instance Xt, MCOD finds (1) the nearest micro-

cluster MCi, whose centre mci is the nearest to it, and (2) the set of micro-

cluster(s) R, whose centres are within a distance 3×r
2 from Xt.

• Step 2: If dist(Xt,mci) ≤ r
2 ; such that mci is the centre of the nearest cluster

MCi, Xt is assigned to the corresponding micro-cluster.

• Step 3: Otherwise, a range query q for Xt is evaluated with respect to the

instances in (1) the set PD and (2) the micro-clusters of the set R.
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• Step 4: Consider n; the number of neighbours N t′ ∈ PD to Xt, such that

dist(Xt, N t′) ≥ r
2 . If n > θk; θ ≥ 1, then a new micro-cluster with centre Xt is

created and the n neighbours are assigned to this micro-cluster.

• Step 5: A micro-cluster whose size decreases below k + 1 is deleted and a

range query similar to that described forXt is performed for each of its former

instances.

• Step 6: An instance Xt is flagged as an outlier, if there exists less than k in-

stances in either PD or R.

7.2.2.2 Anytime Outlier Detection

Anytime Outlier detection (AnyOut) is a cluster-based technique that utilises the

structure of ClusTree [134], an extension to R-tree [135], [136], to compute an out-

lier score. The tree structure of AnyOut suggests a hierarchy of clusters, such that

the clusters at the upper level subsume the fine grained information at the lower

level. ClusTree is traversed in top-down manner to compute the outlier score of an

acquired instance Xt until it is interrupted by the subsequent (next) instance Xt.

Thus, the descent down the tree improves the certainty of the outlier score, never-

theless, the later the arrival of the subsequent instance the higher the certainty [120].

Given that, a cluster is represented by a Cluster Feature tuple CF = (n,LS, SS),

such that n is the number of instances in the cluster, LS and SS are respectively the

linear sum and the squared sum of these instances. The compact structure of the tree

using CF tuples reduces space requirements. From BIRCH [121] to CluStream [122],

cluster features and variations have been successfully used for online summarisation

of data, with a possible subsequent offline process for global clustering.

Let es represent a cluster node entry in ClusTree. Given the defined two scores

to compute the degree of outlierness of an instance Xt: (1) a mean outlier score

sm(Xt)=dist(Xt, µ(es)), such that µ(es) is the mean of the cluster node entry es ∈

ClusTree where Xt is interrupted; and (2) a density outlier score is sd(Xt)=1 −

g(Xt, es), such that g(Xt, es) is the Gaussian probability density of Xt for µ(es) as

defined in [120], below we give a brief formalisation of AnyOut.

In the case of a constant data stream:
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• Step 1: Initialisation: Each Xt in the data stream is assigned with an actual

confidence value conf(Xt)=e−s(X
t).

• Step 2: Distribute the computation time for each Xt based on the scattered

confidences.

• Step 3: For each acquired instanceXt, AnyOut traverses the tree in a top-down

manner until the arrival of the instance Xt+1 in the data stream.

• Step 4: At the moment of interruption, Xt is inserted to the cluster node entry

es ∈ ClusTree, where Xt arrives (pauses).

• Step 5: The outlier score of Xt, according to the specified parameter sm(Xt) or

sd(X
t), is computed with respect cluster node entry es.

• Step 6: The expected confidence value for the outlier score of Xt is updated

based on the computation time. The confidence value (certainty) increases as the

computation time increases.

7.3 E-RAIDS: Ensemble of Random Subspace Anomaly De-

tectors In Data Streams

This Section presents the proposed E-RAIDS for insider threat detection with a de-

tailed description of the feature subspace anomaly detection and the aggregate com-

ponent (ensemble voting).

The established continuous distance-based outlier detection techniques (MCOD

and AnyOut), described and formalised in Section 7.3.2, are utilised as building

block outlier detection techniques techniques for the proposed E-RAIDS approach.

In this work, we propose a streaming anomaly detection approach, namely En-

semble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for in-

sider threat detection. In other words, E-RAIDS is an ensemble of an established

distance-based outlier detection technique (MCOD or AnyOut), such that each model

of the ensemble learns on a random feature subspace. The idea of E-RAIDS is to

employ an outlier detection technique on a feature subspace, to detect local outliers

that might not be detected over the whole feature space. These local outliers may
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FIGURE 7.2: E-RAIDS framework. The set of blue arrows represent
a data stream, where each arrow represents an instance Xt acquired
at a session slot t. The buffer is a temporary short memory of al-
located capacity (equals to w) which accumulates the instances in a
data stream. {M1,M2, . . . ,Mp} represents the p models of the ensem-
ble which learn on p feature subspaces. The E-RAIDS aggregate com-
ponent aggregates the results from the p feature subspaces to confirm

whether to generate an alarm.

refer to anomalous behaviours (instances) attributed to a malicious insider threat.

Hence, the ultimate aim of the E-RAIDS approach is to detect any-behaviour-all-

threat (threat hunting); a process that leads to a reduction of the number of false

alarms.

Fig. 7.2 presents the E-RAIDS framework. The set of blue arrows represent a

data stream, where each arrow represents an instance (feature vector) Xt acquired

at a session slot t. Consider the formalisations below:

• window: a segment of a fixed size w that slides along the instances in a data

stream with respect to time (i.e. session slots);

• buffer: a temporary short memory of allocated capacity (equals to w). It tem-

porarily accumulates the instances in a data stream. The buffer starts to accu-

mulate the instances in a data stream at the start of the window and stops once

the buffer is full after w number of instances. The full buffer is then input to the

base learner component to be processed; and
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• window iteration wIter: an iteration of the window slide. It starts at the al-

ready processed instances (in the previous buffer) procInst and ends at

procInst+w. For instance,wIter=0 starts at procInst=0 and ends atw. wIter=1

starts at procInst=w and ends at 2×w. The window iteration wIter allows the

synchronisation between the window slide and the buffer accumulation.

Based on the aforementioned formalisation, at each window iteration wIter, the

buffer accumulates w number of instances. Once the buffer is full, the instances in

the buffer are input to the base learner component. A base learner component refers

to the distance-based outlier detection technique to be utilised (MCOD or AnyOut).

It employs a p number of base models to learn on randomly selected p feature sub-

spaces. A feature subspace FSi ⊆ F is defined as a subset of features selected from

the whole feature space f , where F = {f1, f2, . . . , fm}. The rationale behind the idea

of random feature subspaces is to detect local outlier(s) (anomalous behaviour(s))

that might not be detected over the whole feature space.

Let p=m + 1 represent the number of feature subspaces selected randomly, such

that m is set to the number of features (dimensions) of the feature space F in the

community data set. m represents the number of feature pairs (i.e. 2 features per

subspace), and 1 represents the whole feature space (i.e. all features). The p fea-

ture subspaces are utilised to build the ensemble of pmodels {M1,M2, . . . ,Mm,Mp},

such that {M1,M2, . . . ,Mm} learn on feature pairs, and Mp learns on the whole fea-

ture space. In this way, E-RAIDS is capable of detecting local outliers in the m feature

pairs, as well as global outliers in the whole feature space.

7.3.1 Feature Subspace Anomaly Detection

For each model Mi over a feature subspace FSi, we define the following data repos-

itories and a survival factor:

• outSet: a temporary set of the outliers detected by a base learner (MCOD or

AnyOut) at wIter;

• outTempList: a list that stores the triples 〈out, wIter, tempC〉: (1) an outlier

out ∈ outSet, (2) thewIter where it was first detected, and (3) a temporal count
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tempC that counts the number of subsequent windows where the outlier out

was detected;

• subV oteList: a list that stores the triples 〈wIter, subV ote, subOutSet〉: (1) a

wIter, (2) a subV ote parameter set to 1 if the feature FSi votes for an alarm to

be generated at wIter and 0 otherwise, and (3) an outlier set subOutSet; and

• vfs: a survival factor that confirms whether a feature subspace FSi votes for an

alarm to be generated at wIter. In other words, if an outlier out survived (has

been detected) for a vfs number of subsequent windows, then out is defined

as a persistent outlier. A persistent outlier boosts the chance of an alarm to be

generated at wIter.

Over each feature subspace FSi, the base learner (MCOD or AnyOut) processes

the buffer at the current wIter to update the model Mi. Mi identifies the outlier set

outSet that includes (1) the outliers from the buffer at the current wIter; and (2) the

outliers from the previously learned instances before the model being updated. The

type (2) outlier refers to an instance that was identified as an inlier, however, turned

into an outlier in the current wIter.

For each outlier out ∈ outSet, if out does not exist in outTempList, a new triple

〈out, wIter, 1〉 is appended to outTempList. In this case, tempC is assigned to 1 to

declare that it is the first time an outlier out detected. If out exists in the outTempList,

tempC is incremented by 1 in the triple for out.

For each outlier out ∈ outTempList, E-RAIDS checks (1) if tempC=vfs, then out

survived for a vfs number of subsequent windows. We call it a persistent outlier.

Thus, a persistent outlier confirms that the FSi votes for an alarm at wIter. Thus,

subV ote is set to 1 in the triple for wIter in subV oteList. (2) If wIter − tempC=vfs,

then out has turned into an inlier. We call it an expired outlier. Thus, the triple for the

expired outlier out is removed from the outTempList. (3) If wIter − tempC < vfs,

then out is neither a persistent outlier nor an expired outlier. We call it a potential

outlier.

Eventually, outTempList consists of persistent outliers and potential outliers (ex-

pired outliers has been removed). E-RAIDS appends persistent outliers and poten-

tial outliers in outTempList to the subOutSet in the triple for wIter in subV oteList.
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Algorithm 3 Feature Subspace

1: wIter ← 0
2: foreach Xt ∈ stream do
3: accumulate Xt to buffer
4: if buffer is full then
5: outSet← get outliers detected by base
6: foreach out ∈ outSet do
7: if outinoutTempList then
8: a new triple 〈out, wIter, 1〉 is appended to outTempList
9: else

10: increment tempC by 1 for out in outTempList
11: end if
12: end for
13: foreach out ∈ outTempList do
14: if tempC = vfs then
15: set subV ote to 1 in subV oteList for the current wIter
16: remove out from outTempList
17: subOutSet← persistent out∪ potential outliers
18: append subOutSet to subV oteList at wIter
19: end if
20: if wIter − tempC = vfs then
21: remove out from outTempList
22: end if
23: end for
24: increment wIter
25: end if
26: empty buffer
27: end for
28: return subV oteList

Finally, the buffer is emptied to be prepared for the subsequent (next) window of

upcoming instances (wIter + 1). A step-by-step pseudo code for the E-RAIDS base

learner procedure is provided in Algorithm 3.

Algorithm 4 Ensemble of Random Feature Subspaces

1: foreach wIter do
2: foreach FSi ∈ FS do
3: subV ote← get subV ote for wIter from subV oteList for FSi
4: eV ote← eV ote+ subV ote for wIter in eV oteList
5: subOutSet← get subOutSet for wIter from subV oteList for FSi
6: append subOutSet to eOutSet for wIter in eV oteList
7: end for
8: if eV ote = vfe then
9: flag an alarm

10: end if
11: end for
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7.3.2 Ensemble of Random Feature Subspaces Voting

For the ensemble of p models {M1,M2, . . . ,Mm,Mp} on feature subspaces

{FS1, FS2, . . . , FSm, FSp} respectively, we define the following data repository and

a vote factor:

• eV oteList: a list that stores the triples (1) a wIter, (2) an eV ote parameter that

counts the number of feature subspaces that vote for an alarm, and (3) an out-

lier set eOutSet that appends the subOutSet from each FSi votes for an alarm.

It has the form 〈wIter, eV ote, eOutSet〉.

• vfe: a vote factor that confirms whether an alarm to be generated at wIter by

the whole ensemble. In other words, if a vfe number of feature subspaces vote

for an alarm, then an alarm is generated at wIter.

As illustrated in Fig. 7.2, the E-RAIDS aggregate component aggregates the re-

sults from the p feature subspaces, in order to confirm whether to generate an alarm

or not at each window iteration wIter. For each feature subspace FSi, if subV ote=1

for wIter, E-RAIDS adds subV ote to eV ote for wIter in eV oteList. Furthermore,

E-RAIDS gets subOutSet for wIter from subV oteList, and appends to eOutSet for

wIter in eV oteList.

After getting the votes from all the feature subspaces in the ensemble, E-RAIDS

checks if eV ote=vfe. If the condition is satisfied, then an alarm of a malicious insider

threat is generated at wIter. The voting mechanism is technically controlled by the

vote factor vfe, such that if a vfe number of feature subspaces vote for anomalous be-

haviour(s) at a window iterationwIter, then an alarm is generated. This accordingly

handles the case of a conflict, where p
2 (50%) of the feature subspaces in the ensemble

vote for anomalous behaviour(s) and the other p
2 vote for normal behaviour(s). The

ensemble technically checks if p2 = vfe, then an alarm is generated.

A step-by-step pseudo code for the E-RAIDS aggregate procedure is provided in

Algorithm 4.



132 Chapter 7. Streaming Anomaly Detection for Insider Threat Detection

7.4 Experiments

We evaluated the effectiveness of the proposed approach on the CMU-CERT data

sets using Windows Server 2016 on Microsoft Azure (RAM 140GB, OS 64−bits, CPU

Intel XeonE5−2673v3) for data pre-processing and Microsoft Windows 7 Enterprise

(RAM 12GB, OS 64 − bits, CPU Intel Core i5 − 4210U ) for experiments. We imple-

mented E-RAIDS-MCOD and E-RAIDS-AnyOut and carried out the experiments in

Java environment (Eclipse Java Mars) using the open-source MOA package [133].

7.4.1 Experimental Tuning

In this work, we define two experiments based on the proposed E-RAIDS approach.

The E-RAIDS-MCOD learns an ensemble of p MCOD base learners, such that each

MCOD base learner is trained on a feature subspace of the p feature subspaces. Like-

wise, the E-RAIDS-AnyOut learns an ensemble of p AnyOut base learners.

The experiments are tuned for different values of parameters. Table 7.1 presents

the values for the parameters tuned in each of MCOD and AnyOut, with a short

description. Note that an extensive number of experiments was done to select the presented

tuning values for the parameters. The values were selected based on E-RAIDS achieving the

best performance in terms of the evaluation measures described below.

For MCOD, the parameter k has a default value k=50 in the MOA package. In

this Chapter, we present k={50, 60, 70} to evaluate the E-RAIDS-MCOD for different

number of neighbours. The parameter r, with a default value r=0.1, is presented for

a range for r={0.3, 0.4, 0.5, 0.6, 0.7} to check the influence of r.

The range of values presented for the parameters k and r provided the best re-

sults on the CMU-CERT data sets in terms of TPT and FPAlarm.

For AnyOut, the parameter |Dtrain| is presented for 500 instances, knowing that

no threats are present at the beginning of the stream in these 500 instances. The

parameters confAgr and conf did not show a significant influence on the utilised

data sets, so both are assigned to their default values, in the MOA package, 2 and 4

respectively. τ has a minimum value 0 and a maximum value 1, so it is presented

for τ={0.1, 0.4, 0.7} to evaluate the influence of varying the outlier score threshold
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TABLE 7.1: Tuned Parameters.

MCOD parameter description

k={50, 60, 70} number of neighbours parameter
r={0.3, 0.4, 0.5, 0.6, 0.7} distance parameter for outlier detection

AnyOut parameter description

|Dtrain|=500 training set size
confAgr=2 size of confidence aggregate
conf=4 initial confidence value
τ={0.1, 0.4, 0.7} outlier score threshold
oscAgr={2, 4, 6, 8} size of outlier score aggregate

on the outliers detected. oscAgr has a minimum value 1 and a maximum value 10,

so it is presented for the oscAgr={2, 4, 6, 8}.

The range of values for the parameters τ and oscAgr are presented to analyse the

effect of varying the values on the performance of E-RAIDS-AnyOut.

In general, for E-RAIDS approach with either MCOD or AnyOut base learner,

we present the vouch factor vfs=2, so it confirms an outlier as positive (anomalous)

after it survives for 2 subsequent windows. We present the vote factor vfe=1, so if

at least 1 feature subspace in the ensemble flags an alert, an alarm of a malicious

insider threat is confirmed to be generated.

The window size w, which is equal to the capacity of the buffer, is a main param-

eter to be tuned in the proposed E-RAIDS. For both E-RAIDS-MCOD and E-RAIDS-

AnyOut, the window size is presented for w = {50, 100, 150, 200}. The presented

range of values for the parameter w provided the best performance on the CMU-

CERT data sets in terms of detecting malicious insider threats, and reducing false

alarms.

As previously described, an instance (feature vector) is a set of events executed

during a pre-defined session slot. In this work, we define a session slot per 4 hours.

Let w represent the window size that accumulates the acquired instances in a data

stream. If w=50 and vfs=2, then the instances in each window are processed after

4 × 50=200 hours ' 8 days. Based on the description of E-RAIDS, a threat (outlier)

may be confirmed as an outlier at least over the window it belongs to (after 8 days) or

over the next window (after' 8×2=16 days). Ifw=200 and vfs=2, then the instances

in each window are processed after 4× 200=800 hours ' 33 days. In other words, a



134 Chapter 7. Streaming Anomaly Detection for Insider Threat Detection

threat (outlier) may be confirmed as an outlier at least after 33 days or over the next

window (after ' 33× 2=66 days). Note that the malicious insider threats simulated

in the CMU-CERT data sets span over at least one month and up to 4 months. Hence,

we set the following targets of E-RAIDS in Target 1.

Objective 1: The E-RAIDS approach is capable of detecting the malicious insider threats

in real-time (during the time span of the undergoing threat).

7.4.2 Evaluation Measures

As aforementioned, the ultimate aim of the E-RAIDS approach is to detect all the

malicious insider threats over a data stream in real-time, while reducing the number

of false alarms.

The challenge of the insider threat problem lies in the variety and complexity

of the malicious insider threats in the data sets. Each malicious insider threat com-

prises a set of anomalous behaviours. An anomalous behaviour is represented by

an instance (feature vector) that describes a set of events (features) carried out by

a malicious insider. Based on the challenge of the problem, we formulate the E-

RAIDS approach with the aim to detect any-behaviour-all-threat. This means that it

is sufficient to detect any anomalous behaviour (instance) in all malicious insider

threats. Hence, the E-RAIDS approach is formulated as a threat hunting approach,

where a threat is detected if (1) a vfe number of feature subspaces confirm an under-

going threat (flag alarm) over a window and (2) the outliers, associated to the alarm

flagged over the window, include at least one True Positive (anomalous behaviour

detected as outlier). Note that although the detection of one behaviour confirms

detection of the threat, we set the following target of E-RAIDS in Target 2.

Objective 2: The E-RAIDS approach is capable of detecting more than one behaviour from

the set of behaviours that belong to a malicious insider threat. We refer to as (more than

one)-behaviour-all-threat detection in E-RAIDS.

Furthermore, the property of the E-RAIDS approach of using windows over data

streams introduces a refined version of the evaluation of False Positives (FP). In this

work, we use the FPAlarm to evaluate the false positives. If all the outliers associ-

ated with the alarm generated over a window are actually normal, then the alarm is
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considered a False Alarm (i.e. FPAlarm is incremented by 1). A formal definition for

FPAlarm is given in the following.

Unlike the evaluation measures utilised in Chapter 5 and Chapter 6, in this Chap-

ter, we define different measures used to evaluate the performance of E-RAIDS. The

rationale behind this is the streaming nature of the E-RAIDS approach. The evalua-

tion measures include a refined version of the default (known) evaluation measures,

taking our ultimate aim into account.

• TPT : True Positives a refined version of the default TP to evaluate the number of

threats detected by the framework among all the PT malicious insider threats.

TPT is incremented if at least one anomalous instance (behaviour attributed to

the threat) is associated as an outlier with a flagged alarm;

• FPAlarm: False Positive Alarm a refined version of the default FP to evaluate

the number of false alarms generated. An alarm is declared false if all the

outliers associated with the alarm are actually normal instances. This means

that none of the instances contributed to generating the alarm, therefore, it is a

false alarm;

• FNT : False Negatives a refined version of the default FN to evaluate the number

of insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures.

The evaluation for E-RAIDS includes not only the defined evaluation measures,

but also proving the previously stated targets.

7.4.3 Results and Discussion

In this work, the results are presented and discussed for E-RAIDS-MCOD and E-

RAIDS-AnyOut as follows: in terms of (1) the pre-defined evaluation measures; (2)

voting feature subspaces; (3) real time anomaly detection; and (4) the detection of

(more than one)-behaviour-all-threat.
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TABLE 7.2: Maximum TPT of detected insider threats over communities associated
with (1) the number of neighbours k, the distance parameter r, and the window size
w which achieved the maximum TPT for E-RAIDS-MCOD, and (2) the outlier score
threshold τ , the size of outlier score aggregate oscAgr, and the window size w which
achieved the maximum TPT for E-RAIDS-AnyOut. Note that the parameter combina-
tion(s) which achieved the maximum TPT are listed. The parameters are displayed as

〈k, r, w〉 for E-RAIDS-MCOD and 〈τ, oscAgr, w〉 for E-RAIDS-AnyOut.

community E-RAIDS-MCOD Parameters k, r, w

com-P 16 50,0.3,100 60,0.4,50
60,0.6,100 60,0.7,150
70,0.4,50

com-S 21 70,0.4,150
com-I 10 50,0.4,50 70,0.3,100

community E-RAIDS-AnyOut Parameters τ, oscAgr, w

com-P 16 0.1,2,100-200 {0.3, 0.7},2,50-200
com-S 20 0.1,2,50-100 0.3,2,50-100

0.7,2,150
com-I 12 0.1,2,50-200 0.3,2,50-100

0.7,2,{50, 200}

7.4.3.1 MCOD versus AnyOut Base Learner for E-RAIDS in Terms of Evaluation

Measures

In the following, we analyse the performance of E-RAIDS with MCOD base learner

versus AnyOut base learner in terms of the pre-defined evaluation measures: TPT

out of PT ; FPAlarm; and F1 measure.

Tables 7.2 and 7.3 present the maximum TPT and the minimum FPAlarm at-

tained by E-RAIDS-MCOD and E-RAIDS-AnyOut over the communities. The re-

sults are reported in terms of the parameter values in the given sequence k, r, w for

E-RAIDS-MCOD and τ, oscAgr, w for E-RAIDS-AnyOut respectively.

TABLE 7.3: Minimum FPAlarm over communities associated with (1) the number of
neighbours k, the distance parameter r, and the window size w which achieved the
minimum FPAlarm for E-RAIDS-MCOD, and (2) the outlier score threshold τ , the size
of outlier score aggregate oscAgr, and the window size w which achieved the mini-
mum FPAlarm for E-RAIDS-AnyOut. Note that the parameter combination(s) which
achieved the minimum FPAlarm are listed. The results are displayed as 〈k, r, w〉 for

E-RAIDS-MCOD and 〈τ, oscAgr, w〉 for E-RAIDS-AnyOut.

community E-RAIDS-MCOD Parameters k, r, w

com-P 0 50,0.4,200 60,{0.3, 0.5, 0.6},200
com-S 0 50,0.4,200 50,0.7,100

60,0.3,200 60,0.5-0.7,100
70,0.6-0.7,150

com-I 0 50,0.3,200 60,0.5,200
70,0.5-0.7,200

community E-RAIDS-AnyOut Parameters τ, oscAgr, w

com-P 2 ∀τ ,∀oscAgr,200
com-S 2 ∀τ ,∀oscAgr,150-200
com-I 1 0.1,{2, 4},200 0.3,2-6,200

0.7,2-4,200
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E-RAIDS-MCOD Fig. 7.3 presents the variation of F1 measure as a function of

window size w for E-RAIDS with MCOD base learner over the communities. The

results are reported with respect to k and r parameter values.

A preliminary analysis of the F1 measure shows no evident pattern in terms

of any of the parameters k, r, or w. Over the community com-P, E-RAIDS-MCOD

achieves the maximum F1=0.9411; k=60, r=0.7, w=150. It detects the maximum TPT=16

out of PT=17, thus missing one malicious insider threat. However, it flags only

one false positive alarm (FPAlarm=1). Furthermore, Table 7.3 shows that E-RAIDS-

MCOD reports the minimum FPAlarm=0 at w=200 for different values of k and r.

Over the community com-S, E-RAIDS-MCOD achieves the maximum F1=0.9523;

k=70, r={0.6, 0.7}, w=150. It detects a TPT=20 out of PT=22, while flagging no false

positive alarms (FPAlarm= 0). The maximum TPT=21 is attained at k=70, r=0.4, w=150,

however, flagging FPAlarm=2.

Over the community com-I, E-RAIDS-MCOD achieves the maximum F1=0.6451;

k=70, r=0.3, w=100. It detects a TPT=10 out of PT=12, thus missing two malicious

insider threats, while flagging FPAlarm=9. Nevertheless, Table 7.3 shows that E-

RAIDS-MCOD reports the minimum FPAlarm=0 at w=200 for different values of k

and r.

We can deduce that, in these experiments, the window size w=150, 200 give the

best performance for E-RAIDS-MCOD in terms of the evaluation measures.

E-RAIDS-AnyOut Fig. 7.4 presents the variation of F1 measure as a function of

window size w for E-RAIDS with AnyOut base learner over the communities. The

results are reported with respect to τ and oscAgr parameter values.

It is evident that F1 measure is inversely proportional to the parameter oscAgr

for E-RAIDS-AnyOut. The values of F1 measure at oscAgr=2 is the highest with

respect to all the window sizes w=50 to 200 over all communities. Moreover, Figure

7.4 reveals that F1 measure is directly proportional to the parameter w. The value of

F1 measure increases as the window size w increases.

Over the community com-P, E-RAIDS-AnyOut achieves the maximum F1=0.9142;

∀τ, oscAgr=2, w=200. It detects the maximum TPT=16 out of PT=17, while reducing
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 7.3: The variation of F1 measure as a function of window size w for E-RAIDS
with MCOD base learner over the communities. The x-axis represents the window size
w = {50, 100, 150, 200}, the y-axis represents the values of F1 measure, and the legend
represents the values of the radius parameter r={0.3, 0.4, 0.5, 0.6, 0.7}. The graphs in

Fig. 7.3a, Fig. 7.3b, and Fig. 7.3c represent the results for k={50, 60, 70}.

the false positive alarms to FPAlarm=2. Table 7.3 shows that E-RAIDS-AnyOut re-

ports the minimum FPAlarm=2 ∀τ,∀oscAgr at w=200. Thus, the higher the window

size, the lower the FPAlarm. Table 7.2 shows that E-RAIDS-AnyOut reports the max-

imum TPT=16 at oscAgr=2 in general terms ∀τ,∀w. Thus, the lower the oscAgr, the

higher the TPT detected.

Over the community com-S, E-RAIDS-AnyOut achieves the maximum F1=0.9090;

τ=0.7, oscAgr=2, w=150. It detects a TPT=20 out of PT=22, while flagging two false

positive alarms (FPAlarm=2).

Over the community com-I, E-RAIDS-AnyOut achieves the maximum F1=0.9600;
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 7.4: The variation of F1 measure as a function of window size w for E-RAIDS
with AnyOut base learner over the communities. The legend represents the oscAgr
parameter values. The x-axis represents the window size w = {50, 100, 150, 200}, the
y-axis represents the values of F1 measure, and the legend represents the values of
oscAgr={2, 4, 6, 8}. The graphs in Fig. 7.4a, Fig. 7.4b, and Fig. 7.4c represent the

results for τ={0.1, 0.4, 0.7}.

∀τ, oscAgr=2, w=200. It detects a TPT=12 out of PT=12, while flagging one false pos-

itive alarm (FPAlarm=1).

In terms of the evaluation measures, E-RAIDS-MCOD outperforms E-RAIDS-

AnyOut over the communities, where E-RAIDS-MCOD achieves a higher F1 mea-

sure over com-P and com-S, a higher TPT over com-S, and a lower FPAlarm=0 over

all communities.
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7.4.3.2 MCOD versus AnyOut for E-RAIDS in terms of Voting Feature Subspaces

In the following, we address the merit of using feature subspaces in the E-RAIDS

approach. We compare the number of feature subspaces in the ensemble that voted

for a malicious insider threat in each of E-RAIDS-MCOD and E-RAIDS-AnyOut.

The rationale behind using a random feature subspace to train each model of the p

models in the ensemble, is to train the base learner (MCOD or AnyOut) on a subset

of the features and to detect local outliers that might not be detected over the whole

feature space.

Figure 7.5 illustrates the number of votes that contributed in flagging an alarm

of a malicious threat with respect to the number of instances processed (given the

window size w) over the communities. The number of votes actually corresponds to

the number of feature subspaces in the ensemble that generated an alert. We selected

E-RAIDS-MCOD and E-RAIDS-AnyOut with their parameters that showed the best

performance in terms of the evaluation measures. For com-P, Figure 7.5a shows the

E-RAIDS-MCOD at k=60, r=0.7, w=150 and E-RAIDS-AnyOut at τ=0.1, oscAgr=2, w=200.

For com-S, Figure 7.5b shows the E-RAIDS-MCOD at k=70, r=0.6, w=150 and E-

RAIDS-AnyOut at τ=0.7, oscAgr=2, w=150. For com-I, Figure 7.5c shows the E-

RAIDS-MCOD at k=70, r=0.3, w=100 and E-RAIDS-AnyOut at τ=0.1, oscAgr=2, w=200.

Given that the |Dtrain|=500, this justifies why the votes for E-RAIDS-AnyOut start

after 500 training instances has been processed over all communities.

Given the window size w, a window iteration wIter starts at the number of al-

ready processed instances procInst and ends at procInst+w. For example, given

w=100, the first window iterationwIter=0 starts at procInst=0 and ends at procInst+

w=100; wIter=1 starts at 100 and ends at 200; etc.

A preliminary analysis of the results shows that E-RAIDS-AnyOut flags alarms

continuously for all wIter after procInst=500. However, E-RAIDS-MCOD shows

distinct alarms flagged, with no alarms at certain windows iterations. We recall that

E-RAIDS-MCOD outperforms E-RAIDS-AnyOut in terms of FPAlarm measure. The

continuous alarms flagged ∀wIter in E-RAIDS-AnyOut explain the higher FPAlarm,

as well as they reveal the uncertainty of E-RAIDS-AnyOut compared to E-RAIDS-

MCOD.
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 7.5: The number of votes which contributed in flagging an alarm of a mali-
cious threat with respect to the number of instances processed over the communities.
The x-axis represents the number of instances processed, and the y-axis represents the

number of votes.

Knowing that the number of feature subspaces utilised in the ensemble is p = 17,

the number of votes ∀wIter in E-RAIDS-AnyOut has a minimum votes=11 and a

maximum votes=17, which reveals a level of uncertainty. The case where 17 feature

subspaces vote for an alarm, indicates that all (17) models of the ensemble detect

at least one outlier (positive) associated to a malicious insider threat. On the other

hand, the number of votes in E-RAIDS-MCOD has a maximum votes=2 (3 or 5 in

rare cases). This means that only 1 or 2 feature subspaces vote for an alarm. We re-

call the complexity of the malicious insider threat scenarios in the CMU-CERT data

sets. The anomalous instances usually exist in (sparse or dense) regions of normal

instances, and rarely as global outliers with respect to the whole feature space. To ad-

dress this, the E-RAIDS approach aims to detect local outliers that may be found over

ANY (not ALL) of feature subspaces. Having all the feature subspaces in E-RAIDS-

AnyOut voting for a threat, compared to a couple (1 or 2) of feature subspaces in

E-RAIDS-MCOD, reinforces the uncertainty of E-RAIDS-AnyOut. We argue that
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the reason behind the uncertain performance of E-RAIDS-AnyOut is due to the in-

terruption event in AnyOut where the outlier score of an instance Xt is computed

upon the arrival of a new instance Xt+1. In fact, the processing of the instance Xt

is interrupted at a certain level of the ClusTree (refer to 7.2.2.2), and therefore the

outlier score is computed with a lower level of confidence (i.e. uncertain). The issue

of uncertainty (i.e. lower level of confidence associated to an outlier score) is not

actually faced in E-RAIDS-MCOD, because the underlying MCOD technique does

not implement an interruption event.

7.4.3.3 Real Time Anomaly Detection in E-RAIDS

To prove Target 1 to be true, it is necessary to check if the E-RAIDS detects the ma-

licious insider threats in real-time (where real-time means that the alarm is flagged

during the time span of the undergoing threat). Based on the previous conclusion

regarding the uncertainty of E-RAIDS-AnyOut, and the superiority of E-RAIDS-

MCOD in terms of (1) the evaluation measures and (2) the voting feature subspaces,

we select E-RAIDS-MCOD to verify Target 1.

Fig. 7.6 illustrates the actual malicious insider threats versus the threats detected

in E-RAIDS-MCOD with respect to the number of instances processed over the com-

munities. The malicious insider threats are displayed in the legend over each com-

munity using the following label scenRef_insiderID (e.g. s1_ALT1465), such that

scenRef (e.g. s1, s2, s3, or s4) represents the reference number for the scenario fol-

lowed in the malicious insider threat; and insiderID (e.g. ALT1465, AYG1697) rep-

resents the user ID of the insider attributed to the threat. Hence, each colour in the

legend refers to a malicious insider threat.

We observe in Fig. 7.6 that a malicious insider threat is detected either (obs1) at

the current window iteration wIter where it is actually simulated, or (obs2) at the

subsequent (next) wIter. Hence, Target 1 is verified.

Based on the description of the E-RAIDS approach, a feature subspace votes for

a threat at wIter if at least one outlier survived for a vfs number of subsequent win-

dows, and consequently a specific threat is detected at wIter if (cond1) a vfe number

of subspaces vote (an alarm is flagged), and (cond2) at least one outlier (positive) as-

sociated with the alarm belongs to the threat. However, the outliers associated with
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(A) com-P.

(B) com-S.

(C) com-I.

FIGURE 7.6: The actual malicious insider threats versus the threats detected in E-
RAIDS-MCOD with respect to the number of instances processed over the communi-
ties. The legend (colors) represents the malicious insider threats over each community
using the following label scenRef_insiderID (e.g. s1_ALT1465). The x-axis represents
the number of instances processed, and the y-axis presents the colors (malicious insider

threats).

the alarm (as mentioned in (cond2)) consist of persistent outliers (that survived from

wIter-1) and potential outliers (at the current wIter). A potential outlier, if satisfies

(cond2), allows real-time detection at the currentwIter (obs1). A persistent outlier, if

satisfies condition (cond2), allows real-time detection as observed at the subsequent

wIter (obs2).
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7.4.3.4 (More than One)-Behaviour-All-Threat Detection in E-RAIDS

The final analysis addresses Target 2. The idea of threat hunting aims to detect any-

behaviour-all-threat, however, Fig. 7.6 shows the capability of E-RAIDS-MCOD to

detect more than one behaviour (not only one) from the set of behaviours that belong

to a malicious insider threat. It manifests as multiple alarms (colour spikes) gener-

ated for a specific threat over a number of windows. Hence, Target 2 is verified.

Analytically, this manifests in multiple outliers associated with the alarm(s)

flagged over window(s), which are actually true positives belonging to a specific

malicious insider threat.

7.5 Summary

This Chapter addresses the shortcoming of high number of false alarms in the ab-

sence of labelled data (i.e. low data maturity). We present a streaming anomaly

detection approach, namely Ensemble of Random subspace Anomaly detectors In

Data Streams (E-RAIDS), for insider threat detection.

E-RAIDS is built on top of the established continuous outlier detection tech-

niques (MCOD or AnyOut). These techniques use data stream clustering to optimise

the detection of outliers (that may refer to malicious insider threats). E-RAIDS is an

ensemble of p outlier detectors (p MCOD base learners or p AnyOut base learners),

where each model of the p models learns on a random feature subspace. The merit

of using feature subspaces is to detect local outliers that might not be detected over

the whole feature space. These outliers may refer to anomalous behaviour(s) that

belong to a malicious insider threat. Unlike E-RAIDS, the proposed framework in

Chapter 6 presents an ensemble of k base anomaly detection models, where each

model learns on a normal cluster.

To reduce the number of false alarms, E-RAIDS introduces two factors: as sur-

vival factor vfs, and a vote factor vfe. vfs is defined to confirm whether a feature

subspace votes for an alarm at each window iteration. vfe is implemented in an

aggregate component to control whether the aggregated votes over the ensemble

confirm to generate an alarm.
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We define two experiments: E-RAIDS-MCOD with MCOD base learner, and

E-RAIDS-AnyOut with AnyOut base learner. We compare the performance of E-

RAIDS using each of MCOD and AnyOut in terms of, (1) the evaluation measures:

F1 measure, TPt of threats detected, and FPAlarm flagged; (2) the effectiveness of the

concept of voting feature subspaces; (3) the capability of E-RAIDS to detect insider

threats in real-time (Target 1); and (4) the capability of E-RAIDS to detect more than

one behaviour belonging to an insider threat (Target 2) despite our formulation to

the opportunistic approach.

The results show that E-RAIDS-MCOD outperforms E-RAIDS-AnyOut, where

the latter shows a low level of certainty in the detection of outliers. E-RAIDS-

MCOD reports a higher F1 measure=0.9411 and 0.9523 over com-P and com-S, no

FPAlarm=0 over all communities, and misses only one threat TPT=16 and 21 over

com-P and com-S. Furthermore, E-RAIDS-MCOD demonstrates the capability of de-

tecting more than one behaviour per threat in real-time.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This research focuses on the detection of insider threats posed by malicious insiders

in an organisation. The recent insider threat cases such as, Harold Martin, Edward

Snowden, and Bradley manning (now known as Chelsea Manning), have increased

the concern of academia, companies, and governments to develop effective insider

threat detection mechanisms.

In this thesis, we address the shortcoming of the high number of false alarms

(false positives). A False Positive – FP – refers to normal behaviour(s) detected

or predicted as anomalous by a detection system. These FPs are often normal be-

haviours having a high similarity to neighbour anomalous behaviours. Analytically,

this manifests as normal instances (feature vectors) whose feature values are similar

to the feature values of anomalous instances. In a detection system, the aim to de-

tect the malicious insider threats is substantial, nevertheless, the aim to mitigate the

high number of false alarms is inevitable. The high number of false alarms flagged

continuously by the detection system, deceive administrator(s) or analyst(s) about

ongoing suspicious behaviours of many users who are actually benign. An adminis-

trator may spend a lot of time investigating the suspected users. Besides, the benign

users accused of malicious intents would lose trust in their chief executives, which

would reflect on their productivity and commitment to the organisation.

The ultimate aims of the proposed approaches were to detect any-behaviour-all-

threat (Aim 1), while reducing the false alarms (Aim 2) as outlined in Section 1.4. To

fulfil the aims, the objectives stated in Section 1.3 must be met.
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In this research, for the first time, we formulated the machine learning approach

to detect insider threats as an opportunistic approach (threat hunting) as defined in

Section 3.3 in Chapter 3. The aim of an opportunistic approach is set to detect any-

behaviour-all-threat; it is sufficient to detect any anomalous behaviour (instance) for

all malicious insider threats in the data sets. In other words, we hunt a malicious

insider threat by identifying at least one anomalous behaviour attributed to it, but

not all behaviours. The design of the opportunistic approach with such a relaxing

condition contributed to reducing frequent false alarms (attained objective 1).

We defined the feature space for the insider threat problem in Chapter 4. Accord-

ing to the literature, features in the established feature set were categorised into five

groups, including frequency-based features, time-based features, Boolean features,

attribute-based features, and others. Based on this feature set, we extracted feature

vectors (instances) from activity logs to best describe the behaviour of users.

This work was conducted on synthetic insider threat data sets generated by

CMU-CERT, where the CMU-CERT data is the only available data repository which

implements malicious insider threat scenarios. We utilised the r5.2 data sets which

consist of a considerable variety of malicious insider threats. We constructed com-

munity behaviour profiles, with session slots per four hours, for users having the

same role in order to represent the correlation among users’ behaviour in a com-

munity. The constructed community data sets are: Production line worker – com-P,

Salesman – com-S, and IT admin – com-I. Recall that com-P consists of 2730 nor-

mal behaviours (instances), 366 anomalous behaviours (associated to 17 malicious

insider threats), and an IR=7.4590; com-S consists of 2579 normal behaviours, 515

anomalous behaviours (associated to 22 malicious insider threats), and an IR=5.0077;

and com-I consists of 2964 normal behaviours, 132 anomalous behaviours (associ-

ated to 12 malicious insider threats), and an IR=22.4545.

In this research, the insider threat problem was inspected from three different

perspectives. In particular, we outline our three contribution approaches to detect

insider threats based on the levels of data maturity as described in Section 1.4. Table

8.1 lists the levels of data maturity in an organisation; the objectives outlined to

inspect the insider threat problem based on the data maturity; and a brief description

of the approaches proposed to meet the objectives.
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TABLE 8.1: Summary of research contribution approaches.

Data maturity Objective Chapter Contribution Approach Base Learner(s) Keywords

high Objective 2 Chapter 4 CD-AMOTRE RF class imbalance data
XGBoost class decomposition
SVM minority oversampling

trapper removal

medium Objective 3 Chapter 6 E-base-OU ocSVM one-class data
iForest class decomposition

ensemble
FP chunks
progressive update
FP oversampling

low Objective 4 Chapter 7 E-RAIDS MCOD stream data
AnyOut feature subspaces

ensemble
clustering
outlier detection
real-time

In the case of high data maturity, the insider threat problem is inspected as a

class imbalance data problem, where there exists a rare occurrence of anomalous be-

haviours (minority class) among the normal baseline of users’ behaviours (majority

class). To meet objective 2, in Chapter 4, we proposed the first class imbalance ap-

proach for insider threat detection, namely CD-AMOTRE. To address the issue of

class imbalance in data, we introduced a class decomposition concept, and a novel

artificial minority oversampling technique (AMO-TRE) with a trapper removal pro-

cedure. In this approach, the class decomposition is applied to weaken the impact

of the majority (normal) class. The normal class data is decomposed into k clus-

ters, so that the two-class data (‘normal’ class label versus ‘anomalous’ class label),

is transformed to a multi-class data (k ‘normal’ cluster (class) labels versus ‘anoma-

lous’ class label(s)). Introducing the concept of class decomposition contributed into

reducing the FPs, though the class data may not be perfectly clustered. The role

of the AMOTRE technique is to oversample the minority (anomalous) class data to

generate artificial samples of the anomalous class. The merit of the oversampling

procedure is that it is selective. AMOTRE includes a -TRE part in charge of remov-

ing the trapper instances from the anomalous class. Trapper instances are anomalous

instances having a high resemblance with normal instances, often located in dense

regions of normal instances. If not removed, these instances would trap the classi-

fier to detect the surrounding normal instances as anomalous (FPs). Thus, trapper

removal (-TRE part) contributed to reducing the number of FPs. The idea of trapper
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removal is supported by our formulated opportunistic approach, where it is suf-

ficient to detect any-behaviour-all-threat. Thus, removing anomalous instances is

safe. As described in Chapter 4, each of the base classification methods (RF, XG-

Boost, SVM) utilised in CD-AMOTRE is applied as a multi-class machine learning

method on the aforementioned multi-class data.

In the case of medium data maturity, the insider threat problem is inspected as

a one-class data problem, where labelled data for only normal class is available. To

meet objective 3, in Chapter 6, we proposed an adaptive one-class ensemble-based

anomaly detection framework (E-base-OU), for insider threat detection. In the pro-

posed CD-AMOTRE approach in Chapter 4, class decomposition was introduced

to weaken the effect of the normal class. The idea of class decomposition is also ap-

plied in the proposed anomaly detection framework in Chapter 6 on the normal class

data, however, the target is to detect local anomalous instances (trapper instances)

that would not be detected over the whole data. And unlike CD-AMOTRE, the trap-

per instances in this framework are not removed, however, detected as anomalous

behaviours that may refer to malicious insider threat(s). The class decomposition

component clusters the normal class data into k clusters, then trains an ensemble of

k base anomaly detection methods to construct k models (k ocSVM models or k iFor-

est models). Each model of the k models is trained on a cluster of the k clusters, to

identify trapper instances, thus increasing the chance of any-behaviour-all-threat de-

tection. This framework introduced the progressive update component that includes

an oversampling procedure to progressively adapt (retrain) the k models with (1) se-

quential FP chunks in the acquired data and (2) artificial samples of the FP instances

in the current FP chunk. This reduced the number of FPs in the upcoming data. The

merit of the artificial oversampling procedure is that it is outlier-aware. It intelli-

gently updates the decision boundaries of the k models by avoiding to oversample

the outliers from the FPs with respect to the genuine normal class instances. And

unlike CD-AMOTRE, the oversampling procedure in this framework is applied on

normal instances (FPs), not anomalous instances.

In the case of low data maturity, the insider threat problem was inspected as an

online streaming data problem, where there exists no historical labelled data for nor-

mal class and anomalous class. To meet objective 4, in Chapter 7, we proposed a data



150 Chapter 8. Conclusion and Future Work

TABLE 8.2: Summary of results for research contribution approaches.

Chapter Contribution Approach Community TPT /PT FP (%FP= FP
FP+TN

× 100) or FPAlarm

Chapter 4 CD-AMOTRE com-P 14/16 FP=46 (3.36%)
com-S 18/21 FP=88 (6.68%)
com-I 8/12 FP=3 (0.20%)

Chapter 6 E-base-OU com-P 17/17 FP=50 (18.2%)
com-S 22/22 FP=49 (18.9%)
com-I 12/12 FP=43 (14.4%)

Chapter 7 E-RAIDS com-P 16/17 FPAlarm=0
com-S 21/22 FPAlarm=0
com-I 10/12 FPAlarm=0

stream anomaly detection approach, namely E-RAIDS, for real-time insider threat

detection. To address streaming data, we suggested a temporary memory – buffer

– of a predefined capacity (equals to a predefined window size) to accumulate the

acquired data instances. A full buffer is processed in an ensemble of p base outlier

detection techniques to construct p models (p MCOD models or p AnyOut models).

In the proposed anomaly detection framework in Chapter 6, the ensemble approach

learns k models, such that each model of the k models is trained on a cluster of the

k normal clusters. Unlike the anomaly detection framework, each model of the p

models in the proposed E-RAIDS is trained on a feature subspace of the p random

feature subspaces. The rationale behind feature subspaces allows to detect local out-

liers (anomalous instances) that would not be detected over the whole feature space,

thus increasing the chance of any-behaviour-all-threat detection. E-RAIDS defined

two factors: (1) a survival factor to control the vote of a feature subspace for an alarm

at each window iteration; and (2) a vote factor to control the flagging of an alarm at

each window iteration. This resulted in reducing the number of false alarms (FPs)

flagged. The survival factor was implemented on each feature subspace, so that if

an outlier survived for a number of subsequent windows, a subspace votes for an

alarm. The vote factor was implemented in the aggregate component of E-RAIDS to

combine the ensemble votes and results.

Table 8.2 summarises the best results achieved in each of the mentioned contri-

bution approaches to meet the ultimate aims (Aim 1 and Aim 2) outlined in Section

1.3. The results are shown for each of the communities (com-P, com-S, and com-I) in

terms of: (1) the maximum TPT detected out of PT malicious insider threats (Aim 1);

and (2) the minimum FP (or FPAlarm) attained by the proposed approaches (Aim 2).
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Each of the listed contribution approaches in Table 8.2 is proposed based on a

certain level of data maturity, nevertheless, we will give a quick comparison of the

results obtained. It is evident that E-base-OU in Chapter 6 achieved the maximum

TPT detected out of PT over all the communities, where it didn’t miss any malicious

insider threat. However, the percentage of FPs is higher than that of CD-AMOTRE

in Chapter 4 over the utilised communities com-P, com-S, and com-I. Although CD-

AMOTRE attains the minimum %FP over all communities compared to E-base-OU,

CD-AMOTRE misses 1 to 4 threats over the communities in terms of TPT detected.

In Chapter 7, the data stream problem required a different false positive measure to

be utilised for evaluation, so FPAlarm over window iterations was defined in Section

7.4.3. E-RAIDS attained a minimum FPAlarm of 0 over the utilised communities. At

the same time, E-RAIDS missed only one to two threats over each of the communi-

ties.

As a conclusion, we have been able to fulfil all of the aims and objectives outlined

in Section 1.3. We summarise the contributions of this thesis as follows:

• Contribution 1: An opportunistic approach – threat hunting – to detect insider

threats with the aim of any-behaviour-all-threat detection.

• Contribution 2: Defining the insider threat feature space and extracting the

feature set to construct community data sets – data preprocessing.

• Contribution 3: The first class imbalance approach for insider threat detection,

namely CD-AMOTRE, for the case of high data maturity.

• Contribution 4: An adaptive one-class ensemble-based anomaly detection frame-

work to detect insider threats, for the case of medium data maturity.

• Contribution 5: A data stream anomaly detection approach, namely E-RAIDS,

to detect insider threats in real-time, for the case of low data maturity.

Each of the above mentioned contributions contributed to fulfil the ultimate aims

of detecting all malicious insider threats, while reducing the number of false posi-

tives (false alarms).
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8.2 Future Work

The research work in this thesis opens the door to a number of key research direc-

tions. The following extensions can be proposed for our work.

8.2.1 Real-world Insider Threat Data

As discussed in Chapter 4.1, the lack of real world data has been a significant im-

pediment for researchers working on the insider threat problem. The governments

and organisations from all domains commonly refuse to share data with researchers

or research institutions to protect its users (e.g. employees, business partners, cus-

tomers, etc.) and assets. The real data is a result of an everyday monitoring and

logging process of the activities of users in an organisation, including information re-

lated to private user profile, intellectual property, and confidential content [2]. Only

in rare cases, such real data may be shared by an organisation under certain data

sharing agreements and regulations.

Taking this impediment into consideration, this research was conducted on syn-

thetic insider threat data sets generated by CMU-CERT, following the trend of the

current research studies to utilise these data sets.

A recent insider threat data set, namely The Wolf Of Sutd (TWOS) data set [137],

has been collected from real user interaction with a host machine during the competi-

tion organised by Singapore University of Technology and Design (SUTD) in March

2017. The TWOS data set was generated from the activity of 24 users over a period

of 5 days through confidentiality agreements with the users. The authors recently

announced that a copy of the TWOS data set can be obtained upon meeting several

conditions (5 months ago) [138]. Future work includes applying the proposed ap-

proaches on the TWOS data set to gauge how they would perform in a more realistic

real-life scenario.

The future direction should also target organisations and seek a data sharing

agreement in order to get access to real world insider threat data and evaluate the

proposed approaches in this thesis. Our interest is ultimately toward financial or-

ganisations (institutions) such as banks, insurance companies, and investment com-

panies. As described in Chapter 1.1, there exist three types of insider threats: fraud,
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sabotage, and IP theft [2]. These types of insider threats put financial institutions at

a serious risk.

8.2.2 Broader Impact of Contribution Approaches

The contribution approaches in this thesis are applied to the insider threat problem

to detect malicious insider threats. However, these contribution approaches can be

applied to other real world problems such as credit card fraud detection, network

intrusion detection, fault detection, cancer detection, event detection in sensor net-

works, and others.

Recall that the class imbalance data problem was addressed in Chapter 4. We

proposed a hybrid approach called CD-AMOTRE, which combines class decompo-

sition and a novel oversampling technique, namely AMOTRE, to balance the data

distribution of the majority (normal) class and the minority (anomalous) class. As

part of future work, CD-AMOTRE can be applied to class imbalance data problems

other than the insider threat problem. For example, the cancer problem is a class im-

balance data problem where there exists rare malignant (cancer) data among the ma-

jor distribution of the normal data. The cancer problem is another problem from the

medical or health domain, such that the ultimate aim is to detect the rare instances

(cancer data), and to reduce the number of false positives. The false diagnosis (FPs)

deceives the doctor and would have a huge impact on the patients (e.g. resulting in

depression, anxiety, and fear).

Recall also that a one-class anomaly detection problem was addressed in Chapter

6, where only data of normal class is available. We proposed an anomaly detection

framework with two components: one-class modelling component and progressive

update component. Future work opens a key direction to adopt anomaly detection

framework in a real world problem such as the fault detection problem from the con-

trol engineering domain. The progressive update component allows the framework

to learn from the false faults (FPs), and retrain the models to reduce the future false

faults in the system.

Finally in Chapter 7, we addressed online anomaly detection problem over data

streams. We proposed E-RAIDS, an ensemble of random subspace anomaly detec-

tors using continuous outlier detection techniques. A real world problem such as
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event detection in wireless sensor networks would be a future direction for this con-

tribution approach. To ensure reliable detection of critical events in wireless sensor

networks, E-RAIDS can continuously adapt the model with new sensor data and

reduce the false alarm rate.

8.2.3 Further Experimental Studies

Several directions on utilising alternative methods in the proposed approaches are

open. For Chapter 4, future work includes optimising the hyperparameters of the

classification methods through metaheuristics methods, such as Genetic Algorithm

(GA) for example, which can lead to a higher precision and recall. Also, one can

test the proposed concept of class decomposition in conjunction with an alternative

renowned oversampling technique other than SMOTE, and evaluate its performance

compared to CD-SMOTE and CD-AMOTRE. Furthermore, one can adopt the pro-

posed concept of trapper removal (-TRE part) in conjunction with a renowned over-

sampling technique. This would show some empirical evidence of successful hy-

bridisation (e.g. SMOTE-TRE, which is a hybridisation of the -TRE part and the

state-of-the-art SMOTE).

For both Chapter 4 and Chapter 6, we can utilise an alternative clustering method

for the concept of class decomposition other than k-means clustering. For instance,

Nickerson et al. [139] utilised Principal Direction Divisive Partitioning (PDDP) to

guide the resampling in imbalanced data sets. PDDP [140] determines the internal

structure of a class and has a linear complexity of running time. This work is actually

one of the works of renowned Nathalie Japkowicz and her co-authors who focused

on cluster-based sampling to tackle the within-class imbalance problems [105], [106].

For Chapter 7, future work can include testing the performance of an alterna-

tive continuous outlier detection method for data streams, such as STORM [131],

Abstract-C [132], COD [126], or other methods. Although these methods were ex-

cluded in our experimental studies as argued in Section 7.2.2, incorporating these

methods in the proposed approach could show successful performance on insider

threat data sets.

In the future work in general, we would suggest to study the sensitivity of the

parameters in the different approaches to test the robustness of the models in the
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presence of uncertainty of these parameters. This would provide us with a view

regarding the influence of the parameters and their corresponding tuned values on

the models to further optimise the performance of the proposed approaches. More-

over, the 2-fold and 10-fold cross validations may be replaced with leave-one-out

cross validation, which may implement (1) leave-one anomalous instance out; or

leave-one threat (including the set of anomalous instances associated to it) out.

It is worth also noting that future work may include the study of the time com-

plexity of the proposed contribution approaches, particularly the E-RAIDS approach

in Chapter 7 which requires real-time detection of malicious insider threats.

8.2.4 Incorporating ‘Big Data’/‘Security’ Tools

The insider threat problem, especially in the case of data streaming addressed in

Chapter 7, leads to a typical ‘big data’ computational problem. This problem can

be addressed by utilising ‘big data’/‘security’ tools, such as Google Cloud Platform

[141], which includes cloud storage, high performance infrastructure, data analyt-

ics, and machine learning; Splunk [142], which monitors and correlates real-time

data in an indexed big data repository to diagnose problems using alerts and dash-

boards; and E8 security [143], which applies multi-dimensional modelling and ma-

chine learning to detect advanced attacks and malicious insider activities.

8.2.5 Addressing the Masquerade Scenario

As discussed in Chapter 4, the proposed CD-AMOTRE showed a lower performance

in terms of TPT measure and FP measure over the community com-I, due to the mas-

querade scenario (scenario s3). Almost all the malicious insider threats (10 out of 12)

in com-I map to scenario s3, where the masquerader steals the identity of the au-

thorised user (victim), accesses the PC machine using the latter’s credentials, and

sends mass emails to users in the organisation. First, only 50 anomalous behaviours

(instances) refer to the 10 malicious insider threats. Therefore, the threats related to

scenario s3 are not well represented compared to the other scenarios (more details

regarding the other scenarios can be found in Section 4.1). Second, the case of the

masquerade scenario in s3 is complex, because the attack is actually executed on
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the authorised user’s PC machine using their privileges, which deceives the detec-

tion system and makes it appear as normal. Hence, the under representation of the

anomalous data related to scenario s3 and the complexity of the scenario makes the

detection more challenging. This explains the lower performance of CD-AMOTRE

over scenario s3 in com-I. We propose to explore how CD-AMOTRE can be extended

to address this special masquerade scenario in order to improve its performance in

terms of detecting all threats, while reducing FPs.
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Abstract—The malicious insider threat is getting increased
concern by organisations, due to the continuously growing
number of insider incidents. The absence of previously logged
insider threats shapes the insider threat detection mechanism into
a one-class anomaly detection approach. A common shortcoming
in the existing data mining approaches to detect insider threats
is the high number of False Positives (FP) (i.e. normal behaviour
predicted as anomalous). To address this shortcoming, in this
paper, we propose an anomaly detection framework with two
components: one-class modelling component, and progressive
update component. To allow the detection of anomalous instances
that have a high resemblance with normal instances, the one-
class modelling component applies class decomposition on normal
class data to create k clusters, then trains an ensemble of k
base anomaly detection algorithms (One-class Support Vector
Machine or Isolation Forest), having the data in each cluster
used to construct one of the k base models. The progressive
update component updates each of the k models with sequentially
acquired FP chunks; segments of a predetermined capacity of
FPs. It includes an oversampling method to generate artificial
samples for FPs per chunk, then retrains each model and adapts
the decision boundary, with the aim to reduce the number of
future FPs. A variety of experiments is carried out, on synthetic
data sets generated at Carnegie Mellon University, to test the
effectiveness of the proposed framework and its components. The
results show that the proposed framework reports the highest
F1 measure and less number of FPs compared to the base
algorithms, as well as it attains to detect all the insider threats
in the data sets.

I. INTRODUCTION

Anomaly detection tackles the rare-class problem by build-
ing a model based only on the normal class label, then
predicting whether acquired new data is normal or anomalous.
This class of anomaly detection algorithms is referred to as
semi-supervised anomaly detection in [1]. However, semi-
supervised classification refers to those techniques that operate
having only a small set of labelled instances along with
a typically larger set of unlabelled ones, regardless of the
assigned class [2]. Thus, in this paper, we use the term
anomaly detection to refer to the one-class machine learning
problem.

The ongoing monitoring and logging of the insiders’ activ-
ities establishes huge useful data sets of information to learn
the normal baseline of behaviour. However, the absence of
previously logged malicious insider threats, among the logs of
normal users’ behaviour in an organisation, shapes the insider
threat detection mechanism into a one-class data mining ap-
proach, namely anomaly detection. The topic of insider threat

detection is getting increased concern by organisations, as a
result of the significant number of malicious insider threats
reported in recent years [3]. These threats are attributed to
insiders; current or former employees, contractors, or business
partners in an organisation, who have privileged access to the
network, system, and data. The risk of the malicious activities
carried by insiders is worth a considerable attention more than
that of outsiders, due to the horrendous costly corruption that
it causes to an organisation. Most of the security mechanisms
implemented in an organisation usually tackle the outsider
attacks (e.g. anti-viruses, firewalls, intrusion prevention and
detection systems), which fortunately reduces the risk of
outsiders. However, the privileges given to insiders make the
detection of the malicious insider threats more challenging.
The users within an organisation are aware of the system
and have authorised access to sensitive information, which,
if disclosed, will result in costly consequences.

The machine learning approaches proposed for detecting
insider threats still have a common shortcoming, which is the
great number of false alarms flagged [4], [5], deceiving the ad-
ministrator(s) about suspicious behaviour of many users. This
consumes a valuable time from the administrator’s schedule,
while investigating the suspected users. On the other hand,
it impacts the level of trust between the suspected users and
their senior executives in an organisation. A recent Real-time
Anomaly Detection In Streaming Heterogenity (RADISH)
system, based on k Nearest Neighbours was proposed in
[4]. The experimental results showed that 92% of the alarms
flagged for malicious behaviour are actually benign. We at-
tribute such high number of False Positives (FPs) to the fact
that previously proposed machine learning methods attempt
to find all suspicious behaviours (instances) associated with
any possible insider threat. However, the focus should be on
detecting one or more instance(s) of malicious behaviour(s)
per threat. Designing machine learning methods with such a
relaxing condition, we argue, has the potential to reduce the
frequent false alarming problem.

Taking into consideration this relaxing condition, and to
tackle this shortcoming of the high number of FPs, in this
paper, we propose an anomaly detection framework that
consists of two components: one-class modelling component,
and progressive update component. First, the role of the one-
class modelling component ramifies to decompose the normal
class data into k clusters, and to train an ensemble of k
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base anomaly detection algorithms (One-class Support Vector
Machine –ocsvm– or Isolation Forest –iForest–). Each base
model of the ensemble is trained over one cluster, resulting
in an ensemble of k base models. This allows the detection
of anomalous trapper instances that have a high resemblance
with normal instances, which would not be detected by the
algorithm if trained over the whole normal class data. Second,
the role of the progressive update component is to adapt
the decision boundary of each base model with sequentially
acquired FP chunks. It includes a selective oversampling
method to generate artificial samples for FPs per chunk, with
the aim to reduce the number of FPs.

The proposed anomaly detection framework provides the
following major contributions:
• a class decomposition method on the normal class data

to detect the anomalous trapper instances;
• a progressive update method with sequentially acquired

FP chunks to address the shortcoming of high number of
FPs;

• an outlier-aware artificial oversampling method for FPs to
avoid model overfitting by intelligently adapting decision
boundaries of base models of the ensemble fed with the
synthetically oversampled data; and

• a thorough performance evaluation and a statistical sig-
nificance test of a variety of experiments utilising ocsvm
and iForest, validating the effectiveness of class decom-
position, progressive update, and oversampling, compared
to that of base ocsvm and base iForest.

The rest of the paper is organised as follows. In Section
II, we review the related work on the anomaly detection ap-
proaches, including ocsvm and iForest approaches, for insider
threat detection. In Section III, we propose an anomaly detec-
tion framework, with a detailed description of its components.
In Section IV, we describe the utilised data sets [6], and
we present the experimental setup and the refined versions
of evaluation measures. In Section V, we evaluate a variety
of experiments, to assess the effectiveness of the proposed
framework and its components. Finally, we conclude our paper
with a summary in Section VI.

II. RELATED WORK

The approach to address the insider threat problem depends
on whether the organisation historically collected system and
network logs of the users’ activities. If the data is available, it
would either consist of normal instances, or normal instances
with insider threat instances based on whether insider attacks
previously occurred in the organisation. In this paper, we
focus on the cases when data logs for only normal behaviour
are available. Based on this, the insider threat problem may
be addressed from the perspective of anomaly detection. In
the following, we give the related work on the anomaly
detection approaches for insider threat detection, including the
approaches that utilised ocsvm and iForest.

Zargar et al. [7] introduced a Zero-Knowledge Anomaly-
based Behavioural Analysis (XABA) method that learns each

user’s behaviour from raw logs and network traffic in real-
time. Gates et al. [8] used the structure of the file system
hierarchy and access similarity measure techniques to build
user behaviour profiles and detect anomalous behaviour.

To our knowledge, the ensemble-ocsvm proposed by
Parveen et al. [5] is the only approach that utilised ocsvm
to classify data into normal versus anomalous for detecting
malicious insider threats. It acquires data chunks (e.g. daily
logs) of a continuous data stream, where it learns a new
model for each chunk, and continuously updates the ensemble
with the k models having the minimum prediction error. The
results showed the superiority of ocsvm over two-class Support
Vector Machine (two-class SVM) in terms of detecting threats.
Furthermore, the ensemble-based ocsvm with the updating
stream concept achieves better performance than ocsvm with
no updating. The authors extended their work in a follow-
up paper [9], where the ensemble approach was applied on
unsupervised Graph-Based Anomaly Detection (GBAD). The
ensemble-ocsvm outperformed ensemble-GBAD in terms of
FPs.

A recent framework based on a graph approach and iForest
was presented by Gamachchi et al. [10] to isolate suspicious
malicious insiders from the workforce. The graph approach
extracts graph and subgraph properties based on user activities
as well as time dependent features to generate input for iForest.
iForest then calculates anomaly scores to separate anomalous
behaviour of a user from normal behaviour, without profiling
normal behaviour.

A further recent unsupervised ensemble-based anomaly
detection system named PRODIGAL was presented in [11];
a result of five years work on the insider threat detection
problem [12], [13], [14]. iForest is configured as one of the
user-day detectors in PRODIGAL to detect complex insider
threat scenarios in real user activities.

The above methods have shown merit in addressing the
insider threat detection problem, however, as aforementioned,
they do suffer from high false alarms. In this paper, we design
an approach aiming at false alarm reduction, adopting a num-
ber of proposed methods. Details of the proposed approach
are given in the following section.

III. ANOMALY DETECTION APPROACH FOR INSIDER
THREAT DETECTION

This section identifies the feature space in the insider threat
problem and the categories of the feature set extracted. It
then presents the proposed anomaly detection framework for
insider threat detection, and provides a detailed description of
its components.

A. Insider Threat Feature Space

The first step to tackle the insider threat problem is to
identify the feature space. In this paper, we utilised the
synthetic data sets generated by Carnegie Mellon University
- Community Emergency Response Team (CMU-CERT) [6],
where different malicious insider threat scenarios are simu-
lated. The data sets log the behaviour of users as system and
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Fig. 1: Conceptual Framework.

network logs (e.g. logons/logoffs, connecting removable media
devices, copying files, browsing websites, sending emails,
etc.). Based on the literature [4], [15], we extract a feature set
from these logs to represent the baseline of users’ behaviour
including malicious insider threat records. The features used
in this work are categorised in four groups: frequency-based
(frequency of logon, frequency of connecting device); time-
based (logon after work hours, device usage after work hours);
Boolean flag={0, 1} (non-empty email-bcc, email to a non-
employee); attribute-based (browsing a particular URL job
websites, WikiLeaks); and others (number of email recipients,
number of attachments to emails, access to sensitive files based
on file extension).

Based on the identified feature set, we create community
behaviour profiles for users, such that each profile represents
the behaviour of users having the same role (e.g. Salesman, IT
admin) over session slots. A session slot defines the period of
time from start time to end time, such that the behaviour logs
of all users in the community during this period of time are
used to extract the identified features. In this work, the session
slot is defined per 4 hours, so that the feature set associated
to each session slot maps to the community users’ behaviour
logged during the 4 hours from start time to end time.

B. Anomaly Detection Framework

In the following, we introduce the proposed anomaly de-
tection framework with its components. Fig. 1 illustrates
two phases: one-class modelling component, and progressive
update component.

1) One-class Modelling Component: The one-class mod-
elling component acquires training data in the initial modelling
phase. It consists of a clustering component that applies k-
means clustering algorithm on the normal class data in order
to create k clusters. It then trains each cluster on a base
algorithm. The result is an ensemble of a base algorithm over
k clusters, resulting in k models. In this work, we utilised
two highly performing anomaly detection algorithms: ocsvm
and iForest, as base algorithms in the proposed framework
to detect malicious insider threats. We adopted ocsvm and
iForest, because each method has been utilised for insider

threat detection, either as a base algorithm for the proposed
approaches [5], [9], [10], [11], or as a benchmark against
which the performance of a deep learning approach was
compared to its performance [16].

a) Clustering Component: Malicious insiders have au-
thorised access to the network, system, and data, and are
aware of the system management and security policies. These
aspects aid the malicious insider to deceive the detection
system, where some anomalous behaviour may have a high
resemblance with the normal user’s behaviour. This manifests
as local anomalous instances located among normal instances.
To address this issue, we apply class decomposition [17]
on the normal class data. The idea is to decompose the
normal class data into clusters and train a detector per cluster,
giving more opportunity for the detector to identify local
anomalous instances with respect to a cluster which might not
be detected over the whole data. We utilise k-means clustering
algorithm to identify patterns in the normal class data, given
its efficiency.

Let Xt={xt1, xt2, ..., xtm} represent the feature vector at
session slot t, where xtf ; 1 � f � m represents the value of
the f th feature. Let y represent the normal class label. Each
instance (i.e. feature vector) Xt either belongs or does not
belong to normal class y. Let N=Xt ∀t;Xt ∈ y represent
the set of instances which belong to the normal class y. If
we apply k-means clustering algorithm on the set N , then N
decomposes into k clusters. Let C={C1, C2, ..., Ck} represent
the set of k clusters.

Fig. 2 represents the normal instances with blue circles,
and the anomalous instances with squares. Let the solid-line
outer circle represent the decision boundary generated by the
base algorithm over the whole normal data to separate the
normal instances from the anomalous instances. Consider k=2,
so that the normal data instances are grouped into 2 clusters.
We construct an ensemble of k base algorithms and train a
base algorithm on each cluster of the k clusters. Let the dash-
line inner circles represent the decision boundaries generated
by each cluster’s base algorithm. Fig. 2 reveals two types of
anomalous instances defined below:
• Borderline and outlier instances: represented by red filled

squares. Those instances are located at the borderline with
respect to the solid-line outer decision boundary, or are
far outliers; and

• Trapper instances: represented by red empty squares.
Those instances are located in a sparse or dense area of
normal instances.

The borderline and outlier anomalous instances can be
easily detected by one of the aforementioned base algorithms
trained over the whole normal data. However, as shown in
Fig. 2, the solid-line outer decision boundary would not be
able to detect trapper instances. As aforementioned, the trapper
instances are located among normal instances, and therefore
the base algorithm would declare normal instances (e.g. iForest
would not assign a high anomaly score).

To address this issue, we propose to decompose the normal
class data into clusters and to train an ensemble of a base
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Fig. 2: Clustering normal instances.

algorithm per cluster. So that the trapper instances can be
identified by the base algorithm(s) as anomalous with respect
to cluster(s). Fig. 2 shows that the dash-line inner decision
boundaries, generated by clusters, can detect the trapper in-
stances located in the disjoint area (i.e. sparse area of normal
instances).

Nevertheless, there would still exist some trapper instances
inside the clusters which may not be detected as positives, due
to their existence in an inner dense area of normal instances.

Upon decomposing the normal training data set into k clus-
ters, the role of one-class modelling component ramifies into
training an ensemble of a base algorithm on the k clusters to
generate k initial models. Let M={M1,M2, ...,Mk} represent
the set of models generated by the ensemble. Each initial
model Mi for Ci; 1 ≤ i ≤ k is then used to detect the
malicious insider threats in the testing data set. The decision
dti for a testing instance Xt with respect to Mi comes in
Boolean form of {True, False}. In case of ocsvm, an instance
Xt either belongs or does not belong to the normal class y.
In case of iForest, Xt is identified as an anomalous instance
if its anomaly score is greater than a defined anomaly score
threshold τ . The parameter τ requires to be tuned as examined
later in Section IV.

After that, the ensemble acquires a set of decisions
Dt={dt1, dt2, ..., dtk} for a testing instance Xt to vote whether
Xt is normal or anomalous. Each decision dti ∈ Dt; 1 ≤ i ≤ k
is taken by a model Mi for a cluster Ci in the ensemble. The
voting mechanism is executed as follows: (1) If dti ∈ Dt votes
for anomalous ∀i (i.e. by all models), then the overall decision
Dt declares Xt as anomalous behaviour, and consequently
flags an alarm warning of a malicious insider threat; (2) If
∃dti ∈ Dt votes for normal, then the overall decision Dt

declares Xt as normal behaviour.

2) Progressive Update Component: The importance of the
insider threat problem requires a continuous monitoring of
the implemented detection system by the system’s adminis-
trator(s). A false alarm is a result of a normal behaviour
detected as anomalous by the system. This maps to normal
instances that have a high similarity with anomalous instances,
thus appear as suspicious events. To address this issue and to
minimise the number of false alarms raised, we introduce the
progressive update component. The role of this component
ramifies to progressively update the detection system with
acquired FP chunks. We define an FP chunk as follows:

Definition III.1. FP Chunk An FP chunk is a segment of
capacity c that accumulates test instances declared as FPs. Let
FPchunks={FP1, FP2, ..., FPc} represent an FP chunk acquired
at sequence s, such that Dt for each FPt ∈ FPchunks; 1 ≤ t ≤
c is predicted as a positive (i.e. anomalous instance) while the
actual class label for FPt is normal. Thus, each FPt is declared
as FP.

Consider, in Fig. 1, the set of blue arrows represent the
testing instances declared as FPs, and each segment of blue
arrows represents an FP chunk acquired sequentially. For ex-
ample, the segment of blue arrows at sequence s=1 represents
FPchunk1. We define c as the capacity (size) of FP chunks;
each FP chunk FPchunks can accumulate c number of FPs.
Fig. 1 illustrates FP chunks of capacity c=3; each FP chunk
accumulates 3 FPs.

The progressive update method relies on the continuous
monitoring by the administrator to investigate whether the
flagged alarms are true or false. Along the run of the detection
system, when an alarm is flagged, the administrator is required
to investigate the suspected user and decide whether it is
a malicious insider threat or a false alarm. In the latter
case, the FP (false alarm) is accumulated into the FP chunk.
This procedure continues until the current FP chunk is full
(i.e. capacity c of FP chunk is reached). The FP chunk is
then fed to the progressive update component to oversample
the FP instances in order to generate artificial samples. The
oversampling component is later described in this section. The
set of FP instances together with the set of artificial instances
are then utilised to update the pre-generated models. Let N
represent the pre-generated set of genuine normal instances,
and let As represent the set of artificial instances generated
for FPchunks. Hence, the pre-generated models are retrained
on R=N∪ FPchunks ∪As. Similarly, this process is repeated
progressively for each accumulated FP chunk.

The rationale behind the progressive update method is not
simply to retrain the models with new instances, however, to
enrich the models with recently detected FPs and synthetically
generated artificial samples close (not replicates) to FPs. So
that the decision boundary in each model adapts to the falsely
detected behaviour and minimises the chances of FPs in the
upcoming testing instances.

The idea of continuous monitoring to investigate flagged
alarms to identify FPs has been applied in [16]. The authors
defined cumulative recall measure based on a daily budget.
The term daily budget refers to maximum number of alarms
an analyst can investigate per day to judge whether it is TP
or FP.

a) Oversampling Component: The method of updating
pre-generated models with FP instances in the FP chunks
may not have a significant influence on the decision boundary.
However, the oversampling of FP instances generates artificial
instances, and enriches the updated model with recently ac-
quired FP instances as well as normal artificial samples. In
this way, the recently acquired normal behaviour of a user or
a community will be well represented, and in turn will trigger

2018 International Joint Conference on Neural Networks (IJCNN)



the base algorithm to adapt the model’s decision boundary.
The oversampling component is in charge of generating

artificial samples from the FP instances upon the acquirement
of each FPchunks. The task of allocating the number of
samples to be generated for each FP instance in the FPchunks
depends on the degree of outlierness of each FP instance.
Thus, the number of samples to be generated varies among
FP instances. We utilise a density-based method, namely,
Local Outlier Factor (LOF) [18], to calculate the local outlier
factor (score) lof tN for each FP instance FPt in acquired
FPchunks with respect to the k nearest neighbours from
only the set of genuine normal class instances N . lof tN is
tuned for k=

√
1 + card(N) (thumb-rule), where the radicand

1 + card(N) represents the number of instances utilised to
calculate lof tN . The motivation to integrate LOF to calculate
the anomaly score for FP instances, though iForest can provide
it, is that LOF can be used independently of the base algorithm
(ocsvm or iForest).

Let perclof tN represent the percentile rank for each FPt

compared to the set of normal instances N . In Fig. 3a, we
represent the genuine normal instances N by blue filled circles.
We define two types of FP instances, where each type is
oversampled based on its degree of outlierness lof tN :

• Outlier instance: represented by a solid-line red empty
circle. Each FP instance FPt is considered an outlier
instance, if it has a high lof tN value; located far away
from the genuine normal instances N . For example, if
perclof tN=90, this means that the lof tN for FPt is greater
than 90% of the normal instances N .

• Safe instance: represented by a solid-line blue empty
circle. Each FP instance FPt is considered a safe instance,
if it has a low lof tN value; located at or near the borderline
of genuine normal instances N .

In Fig. 3a, the dash-line red circles represent the artificial
samples generated for FP outlier instances, while the dash-
line blue circles represent the artificial samples for FP safe
instances. The idea is that safe instances are given more
chance to generate artificial samples around them, while the
outlier instances are given less chance. This gives the update
component more conservative control on the adaptation of
the decision boundary. Oversampling more safe instances than
outlier instances safeguards the system from fast movement of
the decision boundary due to outliers. Otherwise, more False
Negatives (FN) (i.e. anomalous instances predicted as normal)
in the upcoming FP chunks.

Let perc.over represent the percentage of artificial sam-
ples to be generated, and let numS=(perc.over/100) × c
represent the number of artificial samples to be generated.
The process of generating artificial samples associated to each
FPt ∈ FPchunks instance is executed feature wise over a
number of iterations.

Recall that xt
′

f represents the value of the f th feature of Xt
′

at session slot t′. Likewise, let ptf represent the value of the f th

feature of FPt at session slot t, given that FPt={pt1, pt2, ..., ptm}.
For each feature f ; 1 � f � m, we find the nearest neighbour

(a) Over two features. (b) Over one feature.

Fig. 3: Artificial oversampling of FP instances.

xt
′

f of Xt′ ∈ N for ptf of FPt. In other words, we search the
set of normal instances N at the level of feature f only, and
we find the closest feature xt

′

f for ptf . At the level of feature f ,
there exists two directions: positive (+ve), and negative (−ve).
Thus, ptf may have (1) only +ve neighbours from the set N ,
(2) only −ve neighbours, or (3) both +ve neighbours and −ve
neighbours. We define the positive (+ve) nearest neighbour as
follows:

Definition III.2. Positive nearest neighbour A +ve nearest
neighbour is the closest xt

′

f of Xt′ ∈ N for ptf of FPt, such
that xt

′

f is located in the +ve direction to ptf .

Similarly, the negative (−ve) nearest neighbour is defined.
Fig. 3b illustrates generating artificial samples of FP instances
over one feature (i.e. one dimension). Let the blue filled circle
represent xt

′

f , the blue empty circle represent ptf , and the
dash-line blue circle represent an artificial feature value atf
associated to ptf . The process of generating an artificial feature
value atf is executed as follows:
• If ptf has only a +ve nearest neighbour at the level of

feature f (Fig. 3b.1), then atf is calculated in the +ve

direction along the segment joining ptf and xt
′

f according
to Eq. 1, such that dir= + 1.

• If ptf has only a −ve nearest neighbour at the level of
feature f (Fig. 3b.2), then atf is calculated in the −ve
direction along the segment joining ptf and xt

′

f according
to Eq. 1, such that dir=− 1.

• If ptf has both a +ve nearest neighbour and a −ve
nearest neighbour at the level of feature f (Fig. 3b.3),
then atf can be calculated in the +ve or −ve direction.
A random direction dir is selected at each iteration, and
atf is calculated in the selected direction dir according
to Eq. 1.

atf=ptf + dir × rand(0 : λ× dist(ptf , xt
′

f )) (1)

Note that λ, tuned for λ=.8, denotes a parameter that
controls the distance permitted to generate artificial features
along the segment joining ptf and xt

′

f . The rationale behind
this is to generate the artificial samples a bit closer to the FP
instances and not the normal instances, so that the adapted
decision boundary is influenced by these samples.

Consequently, an artificial sample At={at1, at2, ..., atf} asso-
ciated to an FPt instance is generated at each iteration. The
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TABLE I: Definition of Experiments.

E-ocsvm E-iForest Ensemble
ocsvm-U iForest-U progressive Update
E-ocsvm-U E-iForest-U Ensemble+Update
ocsvm-OU iForest-OU Update+Oversampling
E-ocsvm-OU E-iForest-OU Ensemble+Update+Oversampling

steps described are repeated for a number of iterations until
numS of artificial samples are generated.

IV. EXPERIMENTS

The experiments are conducted on the CMU-CERT data sets
in Windows Server 2016 on Microsoft Azure (RAM 140GB,
OS 64−bits, CPU Intel Xeon E5−2673v3). First, MATLAB
R2016b was used to preprocess the data sets and generate
community behaviour profiles per session slots of 4 hours.
Second, we implemented the experiments in R environment
(R− 3.4.1).

A. Description of the Dataset

For this paper, we used r5.2 data set from the insider
threat data sets generated by CMU-CERT. This data set logs
the behaviour of 2000 employees over 18 months. Unlike
the previously released data sets, the communities in the
r5.2 data set consist of multiple malicious insider threats
which map to 4 different scenarios. Among these employees,
we extracted the data logs for employees belonging to the
following communities: Production line worker (com-P) with
17 malicious insider threats, Salesman (com-S) with 22, and
ITAdmin (com-I) with 12. More information regarding CMU-
CERT data sets [19] and simulated scenarios can be found in
[6].

B. Experimental Setup

In Table I, we define a variety of experiments performed
using the aforementioned anomaly detection algorithms. Each
experiment is set up to ocsvm or iForest base algorithms with
or without the following: ensemble method, progressive update
method, and oversampling method. To evaluate the methods,
we performed 10 fold cross-validation on each of the utilised
communities.

The experiments are tuned for different values of param-
eters. ocsvm is evaluated for the kernel values: Linear L,
Polynomial P , and Radial R. On the other hand, iForest
is evaluated for different values of anomaly score threshold
τ={.35, .4, .45}, given the number of iTrees nt=20 and the
subsample size psi. Note that no anomalous instances were
isolated for τ > .5 over the utilised CMU-CERT data sets.
This reflects the complex patterns of malicious insider threat
behaviour in the data set, and the high resemblance of anoma-
lous behaviour with normal behaviour. Although the authors
in [20] pointed out the efficiency of subsampling, psi is tuned
for the whole sample size without extracting a subsample of
the data set. It is either set up to card(N) over the whole
normal training data set, or to card(Ci) over each cluster in
the ensemble case. The rationale of using the whole sample
size in both cases is related to the progressive update method.

It assures that all the FP instances in the progressively acquired
FP chunks are used to update the iForest model.

Regarding the ensemble method, we tuned the number
of clusters k over a set of arbitrarily chosen small values
k={2, 4}, as the goal is to detect the anomalous trapper
instances. However, the results for only k=2 are reported,
due to revealing better performance than k=4. The capacity
of FP chunks is tuned over the values c={20, 40, 60, 80, 100}
to evaluate the effectiveness of updating the model with
early-acquired-early-updated FPs. Regarding the oversam-
pling method, the oversampling percentage is tuned for only
perc.over=200 to test the influence of applying oversampling
to the FP chunks on progressive update method.

C. Evaluation Measures

The ultimate aim of the proposed framework is to detect
all the malicious insider threats, while minimising the number
of FPs. We utilised the following measures to evaluate the
experiments. First, we define default versions of measures
that are evaluated per instance (behaviour): FP designates the
number of normal instances (behaviours) that are detected as
anomalous instances. FP is evaluated with respect to the whole
testing set (not per chunk); and TN designates the number of
normal instances predicted as normal.

Second, we define refined versions of measures that are
evaluated per threat: TPT is used instead of TP to evaluate
the number of threats detected by the system among all the
PT malicious insider threats. TPT is incremented if at least
one anomalous instance (behaviour associated to the threat)
is predicted as anomalous; and FNT is used instead of FN
to evaluate the number of insider threats not detected. Note
that the rationale behind introducing refined versions of some
measures is related to the ultimate aim of the framework,
which is to detect all threats (not necessarily all behaviours),
but to minimise FPs (all false alarms).

As a result, the F1 measure is defined based on the values
of the above defined measures. Note F1 is not close to 1 due to
the use of refined versions of some measures, but this does not
reflect low performance. However, knowing that the maximum
TPT (evaluated per threat) is much less than the minimum FP
(evaluated per behaviour), the defined F1 measure closer to
0.5 reveals significant performance.

V. RESULTS AND DISCUSSION

In this section, we present the results of ocsvm experiments
and iForest experiments in terms of the pre-defined evaluation
measures. We then show the merit of the proposed framework
according to the following objectives:
• Testing the statistical significance of the results using

Wilcoxon Signed-Rank Test;
• Comparing ocsvm experiments and iForest experiments;
• Assessing the influence of the proposed components on

the framework; and
• Assessing the time efficiency of the progressive update

component.
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A. Results

Fig. 4 presents the variation of F1 measure as a function of
FP chunk capacity c for ocsvm and iForest based experiments
over the communities. The results are reported with respect to
kernel values and anomaly score threshold τ values for ocsvm
based experiments and iForest based experiments respectively.
Tables III and IV present the minimum FP and the maximum
TPT attained respectively for ocsvm and iForest based ex-
periments over communities. It reports kernel and FP chunk
capacity c associated to the minimum FP and maximum TPT
attained for ocsvm based experiments. On the other hand, it
reports anomaly score threshold τ and c associated for iForest
based experiments. This allows to identify the superior kernel
or τ , and to analyse the influence of FP chunk capacity c on
the progressive update method.

1) ocsvm Experiments: Over com-P, ocsvm-U outperforms
ocsvm as well as all other ocsvm based experiments in terms
of F1 measure, FP, and TPT . ocsvm-U achieves the maximum
F1=0.261;L while reducing the false positives to the minimum
FP=76;L compared to FP=106 in ocsvm. Knowing that PT=17,
ocsvm-U detects all the malicious insider threats TPT=17;P
without missing any threat.

Over com-C, E-ocsvm-U and E-ocsvm-OU report better
performance ∀kernel, where E-ocsvm-U achieves the max-
imum F1=0.318;P with the minimum FP=89;P compared to
FP=120 in ocsvm. E-ocsvm-OU follows it with F1=0.300;L
and FP=90;P. However, E-ocsvm-U attains the maximum
TPT=22;P out of 22, unlike the latter which missed one threat.

Over com-I, E-ocsvm-U reports the best performance in
terms of all measures compared to other ocsvm based experi-
ments. It achieves the maximum F1=0.246;P, while minimising
the number of false positives to FP=52;P knowing that FP=149
in ocsvm. Furthermore, it attains TPT=12 out of PT=12 (same
TPT for other experiments).

2) iForest Experiments: Over com-P, E-iForest-U and E-
iForest-OU gave a significant boost to F1 measure for τ=.45,
where it reaches F1=0.365,0.337 respectively. E-iForest-U
reduces the number of false positives to the minimum
FP=50; .45, however, it detects TPT=16; .35, thus missing one
threat. On the other hand, E-iForest-OU reaches a minimum
FP=57; .45, while detecting all the malicious insider threats
TPT=17; .35.

Over com-C, E-iForest-U reports the best performance in
terms of F1 and FP compared to other iForest based experi-
ments. It achieves the highest F1=0.422; .45, and the minimum
FP=49; .45. However, it reports TPT=21; .35, thus missing the
detection of one malicious insider threat. It is worth to note
that the iForest based experiments with oversampling method
(with or without the ensemble method) attain to detect all the
threats for τ=.35

Over com-I, E-iForest-U shows s significant performance in
terms of all measures. It achieves the maximum F1=0.358; .45,
while minimising the number false positives to FP=43; .45. It
also attains the maximum TPT=12;∀τ (same TPT for other
experiments).

TABLE II: Wilcoxon Signed-Rank Test at .05 significance level.

E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

0.1073 6.101e-09 8.243e-06 8.587e-07 1.687e-06

E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

0.2719 1.945e-04 4.104e-08 0.1165 1.986e-05

B. Statistical Significance: Wilcoxon Signed-Rank Test

To test the significance of the results, we use Wilcoxon
Signed-Rank Test which compares each pair of experiments.
Each ocsvm based experiment and iForest based experiment
is compared with base ocsvm and base iForest respectively.
Table II tabulates the p-value calculated for each experiment at
.05 significance level. With respect to ocsvm, all ocsvm based
experiments, except E-ocsvm (0.1073 > .05), are significantly
different from base ocsvm where p-value < .05. With respect
to base iForest, all iForest based experiments are significantly
different from base iForest, except for E-iForest and iForest-
OU. The results were predictable, because both E-ocsvm and
E-iForest show low performance in terms of the evaluated
measures.

C. Comparing ocsvm Experiments and iForest Experiments

Finally, it is noteworthy that base iForest flagged a lower
number of false alarms and reported a higher F1 measure
compared to base ocsvm. Moreover, the best performing
iForest based experiments over each community achieved
the minimal FP compared to ocsvm based experiments. For
instance, E-iForest attains the minimum FP=50; .45, 20, while
ocsvm-U attains FP=76;L, 40, compared to FP=106 in base
ocsvm over com-P. Over com-S, E-iForest-U reaches the
minimum FP=49; .45, 20, while E-ocsvm-U and E-ocsvm-OU
attain FP=89;P, 60 and FP=90 respectively. And lastly, E-
iForest-U achieves the minimum FP=43; .45, 20, compared to
FP=52;P, 20 in E-ocsvm-U over com-I. It is apparent that
ocsvm works better for kernel={L,P}, and iForest shows its
best performance for τ=.45. Moreover, the less the capacity
(size) c of FP chunk, the better the performance of the
progressive update method. This emphasises the effectiveness
of updating the model with early-acquired-early-updated FPs
in minimising the number of FPs.

On a side note, the ensemble-ocsvm approach proposed by
Parveen et al. [5] reports a percentage of FP rate (%FP=30%).
However, our framework reports approximately the half, where
%FP varies between (14%-18%) over all the utilised commu-
nities.

D. Influence of Proposed Components on the Framework

Based on the above extensive experiments carried out to
evaluate the influence of the different components on the
proposed framework, we sum up what follows. ocsvm-U, E-
ocsvm-U, and E-ocsvm-OU outperform other ocsvm based ex-
periments in terms of F1 measure, FP, and TPT ∀ communities.
On the other hand, E-iForest-U and E-iForest-OU outperform
iForest based experiments ∀ communities.
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 4: The variation of F1 measure as a function of FP chunk capacity c for ocsvm and iForest based experiments over communities.

TABLE III: Minimum FP over Communities.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 106 L 97 L 76 L,40 88 L,20 83 L,60 95 L,80
com-S 120 R 90 P 99 L,20 89 P,60 109 P,20 90 P,20
com-I 149 R 100,{L, P} 146 R,{20, 40} 52 P,20 132 P,20 97 P,20

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 88 .45 66 .45 85 .45,∀c \ 100 50 .45,20 84 .45,40 57 .45,20
com-S 85 .45 73 .45 82 .45,{20, 100} 49 .45,20 78 .45,100 70 .45,20
com-I 80 .45 69 .45 68 .45,60 43 .45,20 72 .45,60 53 .45,20

TABLE IV: Maximum TPT of Detected Insider Threats over Communities.

community ocsvm E-ocsvm ocsvm-U E-ocsvm-U ocsvm-OU E-ocsvm-OU

com-P 17 P 16 R 17 P,∀c 16 R,∀c \ 20 17 P,∀c 16 R,∀c
com-S 22 P 21 R 22 P,∀c 22 P,{20− 40} 22 L,{20, 60} P, 80 21 R, ∀
com-I 12 ∀kernel 12 R 12 ∀kernel,∀c 12 R,∀c 12 ∀kernel,∀c 12 P, 20 R,∀c

community iForest E-iForest iForest-U E-iForest-U iForest-OU E-iForest-OU

com-P 16 .35 16 .35 16 .35,∀c 16 .35,∀c 17 .35,{20− 60} 17 .35,20
com-S 21 .35 21 .35 21 .35,∀c 21 .35,∀c 22 .35,∀c \ 60 22 .35,∀
com-I 12 ∀τ 12 ∀τ 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c 12 ∀τ ,∀c

The importance of the clustering component and the pro-
gressive update component as a whole is quite evident, where
the number of FPs reached its minimal in experiments which
utilised the ensemble method and the progressive update
method with FP chunks (e.g., E-ocsvm-U, E-ocsvm-OU, E-
iForest-U, E-iForest-OU). We deduce that the effectiveness of
the proposed framework relies on the joint collaboration of
both components. The use of the clustering component solely,
in E-ocsvm and E-iForest, did not improve the performance
significantly in terms of the evaluated measures. The Wilcoxon
test supported this as revealed in Table II. However, the
joint use of progressive update method with ensemble method
showed outstanding performance in terms of minimising the

number of FPs significantly and achieving higher F1 measure.
Furthermore, we can infer, from Table IV, the support of

the oversampling method in detecting all the malicious insider
threats over all communities without missing any threat. It is
quite remarkable that E-ocsvm-OU and E-iForest-OU show
competitive performance to E-ocsvm-U and E-iForest over
com-S and com-P respectively. This reveals the potential of
the oversampling component.

E. Time Efficiency of Progressive Update Component

Regarding the time complexity, the merit of the proposed
progressive update method is its time efficiency. Let tas
represent the time to accumulate an FPchunks. We hypoth-
esise that the time to update the ensemble models with the
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current FPchunks is much less than the time to accumulate
FPchunks+1 (tas+1). This ensures that the progressive update
of the models is synchronised with the accumulation of
sequentially acquired FP chunks.

Recall that, an instance Xt from the acquired test instances
is accumulated in the FP chunk, if Xt is declared FP. The
FP chunk is progressively accumulated until the capacity
c is reached. Hence, the time to accumulate an FP chunk
FPchunks+1 actually depends on, (1) n: number of acquired
test instances after FPchunks until capacity c of FPchunks+1

is reached, and (2) slot: period of a session slot for a test
instance. Analytically, tas+1=n× slot.

Consider c=20 and slot=4 hours. If n=20, this means
that c=20 FPs are accumulated in FPchunks+1 after 20 test
instances are acquired. Thus, ALL the n acquired test instances
are actually FPs. In this case, tas+1=20×4=80 hours (approx-
imately 3 days). This case represents the worst case scenario,
where the next FPchunks+1 is accumulated while 80 hours
(3 days) are available to update the models with the current
FPchunks. 80 hours is more than enough to update the models
using any state-of-the-art cloud facility. Nevertheless, it would
require much less than 80 hours. Hence, the hypothesis is
verified.

In the aforementioned worst case scenario, the progressive
update is required to run after 80 hours. However, in a typical
scenario where an FP chunk is accumulated after n > c
number of test instances is acquired, the progressive update
will run much less frequently.

VI. CONCLUSION

The malicious insider threats are getting increased concern
by organisations, due to the continuously growing number
of insider incidents. A common shortcoming in the proposed
detection approaches is the high number of FPs. In this paper,
we address this shortcoming based on the availability of only
data for normal behaviour, with no previously logged insider
incidents.

We propose an adaptive one-class ensemble-based anomaly
detection framework with a progressive artificial oversampling
method of FPs in class decomposed data. First, a class
decomposition method clusters the normal class data, so that
an ensemble of k base algorithms (ocsvm or iForest) is trained
over the clusters. This allows to detect anomalous trapper
instances. Second, a progressive update method updates the
pre-generated models with progressively acquired FP chunks.
This allows the models to benefit from already declared FPs, in
order to reduce FPs in upcoming data. Third, an oversampling
method is integrated to progressively enrich the models with
artificial samples of FPs.

We evaluate the proposed framework in a variety of ex-
periments (with and without: class decomposition/progressive
update/oversampling) using ocsvm and iForest. The results
show the influence of each method on the performance in
terms of higher F1 measure, lower FP, and detecting all
malicious insider threats. Moreover, iForest based experiments
report a better F1 and a lower FP compared to that of ocsvm.
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[4] B. Böse, B. Avasarala, S. Tirthapura, Y.-Y. Chung, and D. Steiner,
“Detecting insider threats using radish: A system for real-time anomaly
detection in heterogeneous data streams,” IEEE Systems Journal, 2017.

[5] P. Parveen, Z. R. Weger, B. Thuraisingham, K. Hamlen, and L. Khan,
“Supervised learning for insider threat detection using stream mining,”
in 2011 IEEE 23rd International Conference on Tools with Artificial
Intelligence. IEEE, 2011, pp. 1032–1039.

[6] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach
to generating insider threat data,” in Security and Privacy Workshops
(SPW), 2013 IEEE. IEEE, 2013, pp. 98–104.

[7] A. Zargar, A. Nowroozi, and R. Jalili, “Xaba: A zero-knowledge
anomaly-based behavioral analysis method to detect insider threats,” in
Information Security and Cryptology (ISCISC), 2016 13th International
Iranian Society of Cryptology Conference on. IEEE, 2016, pp. 26–31.

[8] C. Gates, N. Li, Z. Xu, S. N. Chari, I. Molloy, and Y. Park, “Detecting
insider information theft using features from file access logs,” in
European Symposium on Research in Computer Security. Springer,
2014, pp. 383–400.

[9] P. Parveen, N. Mcdaniel, Z. Weger, J. Evans, B. Thuraisingham,
K. Hamlen, and L. Khan, “Evolving insider threat detection stream
mining perspective,” International Journal on Artificial Intelligence
Tools, vol. 22, no. 05, p. 1360013, 2013.

[10] A. Gamachchi, L. Sun, and S. Boztas, “Graph based framework for
malicious insider threat detection,” pp. 2638,2647, 2017.

[11] H. Goldberg, W. Young, M. Reardon, B. Phillips et al., “Insider threat
detection in prodigal,” in Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[12] E. Ted, H. G. Goldberg, A. Memory, W. T. Young, B. Rees, R. Pierce,
D. Huang, M. Reardon, D. A. Bader, E. Chow et al., “Detecting insider
threats in a real corporate database of computer usage activity,” in
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1393–1401.

[13] W. T. Young, H. G. Goldberg, A. Memory, J. F. Sartain, and T. E.
Senator, “Use of domain knowledge to detect insider threats in computer
activities,” in Security and Privacy Workshops (SPW), 2013 IEEE.
IEEE, 2013, pp. 60–67.

[14] W. T. Young, A. Memory, H. G. Goldberg, and T. E. Senator, “Detecting
unknown insider threat scenarios,” in Security and Privacy Workshops
(SPW), 2014 IEEE. IEEE, 2014, pp. 277–288.

[15] P. A. Legg, O. Buckley, M. Goldsmith, and S. Creese, “Automated
insider threat detection system using user and role-based profile assess-
ment,” IEEE Systems Journal, 2015.

[16] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson,
“Deep learning for unsupervised insider threat detection in structured
cybersecurity data streams,” 2017.

[17] R. Vilalta, M.-K. Achari, and C. F. Eick, “Class decomposition via
clustering: a new framework for low-variance classifiers,” in Data
Mining, 2003. ICDM 2003. Third IEEE International Conference on.
IEEE, 2003, pp. 673–676.

[18] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM sigmod record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[19] C. M. U. CERT Team, “Cmu cert synthetic insider threat data sets,”
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=508099,
[Online; accessed 04-April-2018].

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on. IEEE, 2008,
pp. 413–422.

2018 International Joint Conference on Neural Networks (IJCNN)



Data Stream Clustering for Real-time Anomaly
Detection: An Application to Insider Threats

Diana Haidar and Mohamed Medhat Gaber

Abstract Insider threat detection is an emergent concern for academia, industries,
and governments due to the growing number of insider incidents in recent years.
The continuous streaming of unbounded data coming from various sources in an
organisation, typically in a high velocity, leads to a typical Big Data computational
problem. The malicious insider threat refers to anomalous behaviour(s) (outliers)
that deviate from the normal baseline of a data stream. The absence of previously
logged activities executed by users shapes the insider threat detection mechanism
into an unsupervised anomaly detection approach over a data stream. A common
shortcoming in the existing data mining approaches to detect insider threats is the
high number of false alarms/positives (FPs). To handle the big data issue and to ad-
dress the shortcoming, we propose a streaming anomaly detection approach, namely
Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS),
for insider threat detection. E-RAIDS learns an ensemble of p established outlier
detection techniques (Micro-cluster-based Continuous Outlier Detection –MCOD–
or Anytime Outlier Detection –AnyOut–) which employ clustering over continu-
ous data streams. Each model of the p models learns from a random feature sub-
space to detect local outliers, which might not be detected over the whole feature
space. E-RAIDS introduces an aggregate component that combines the results from
the p feature subspaces, in order to confirm whether to generate an alarm at each
window iteration. The merit of E-RAIDS is that it defines a survival factor and
a vote factor to address the shortcoming of high number of FPs. Experiments on
E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets in-
cluding malicious insider threat scenarios generated at Carnegie Mellon University,
to test the effectiveness of voting feature subspaces, and the capability to detect
(more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-
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MCOD reports the highest F1 measure and less number of false alarm=0 compared
to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider
threats in real-time.

1 Introduction

A data stream is a continuous acquisition of data generated from various source(s) in
a dynamic environment, typically in a high velocity, leading to accumulation of large
volumes of data. This characterisation leads to a typical Big Data computational
problem. The dynamic nature of a data stream imposes a change in the data over
time. In real-time data streaming, a change refers to an anomalous data that deviates
from the normal baseline (e.g. credit card fraud, network intrusion, cancer, etc.).
The ultimate aim of such stream mining problems is to detect anomalous data in
real-time.

The absence of prior knowledge (no historical database) is often entangled to
a real-time stream mining problem. The anomaly detection system is required to
employ unsupervised learning to construct an adaptive model that continuously (1)
updates with new acquired data, and (2) detects anomalous data in real-time. The
system usually acquires data as segments and identifies the outliers in the segment as
anomalous. An outlier is an observation that deviates so much from other observa-
tions as to arouse suspicion that it was generated by a different mechanism [22]. To
detect outliers in a stream mining problem, several approaches have been proposed,
nevertheless, unsupervised clustering have been successfully applied to identify the
patterns in the data and spot outliers [3]. In this work, we select the insider threat
problem as a real-world application to detect malicious insider threats (outliers) in
real-time. With the absence of labelled data (no previously logged activities exe-
cuted by users in an organisation), the insider threat problem poses a challenging
stream mining problem.

Insider threat detection is an emergent concern for academia, industries, and gov-
ernments due to the growing number of insider incidents in recent years. An insider
is a current or former employee, contractor, or business partner of an organisation
who has authorised access to the network, system, or data (e.g. trade secrets, organ-
isation plans, and intellectual property) [34]. Malicious insider threats are attributed
to insiders who exploit their privileges with the intention to compromise the con-
fidentiality, integrity, or availability of the system or data. According to the 2011
Cybersecurity Watch Survey [40], 21% of attacks are attributed to insiders in 2011,
while 58% are attributed to outsiders. However, 33% of the respondents inspect the
insider attacks to be more costly, compared to 51% in 2010. For instance, Harold
Martin, a former top-security contractor at the National Security Agency (NSA),
was recently convicted for stealing around 500 million pages of national defence
information over the course of 20 years [37]. Earlier in 2013, Snowden’s attack was
reported as the biggest intelligence leakage in the US [42]. Edward Snowden, a for-
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Fig. 1: Continuous data stream of behaviours.

mer contractor to the NSA, disclosed 1.7 million classified documents to the mass
media.

The challenge of the insider threat detection problem lies in the variety of ma-
licious insider threats in the data sets. Each malicious insider threat is devised of a
complex pattern of anomalous behaviours carried out by a malicious insider, thus
making it difficult to detect all anomalous behaviours per threat. Analytically, some
anomalous instances (behaviours) which exist in a dense area of normal instances
have a high similarity to normal instances. These anomalous instances are difficult
to detect and may be missed by the detection system.

Based on the challenge of the problem, we formulate this work with the aim to
detect any-behaviour-all-threat; it is sufficient to detect any anomalous behaviour
in all malicious insider threats. In other words, we can hunt a malicious insider threat
by at least detecting one anomalous behaviour among the anomalous behaviours as-
sociated to this threat. We call this approach threat hunting. The design of the pro-
posed approach with such a relaxing condition contributes in reducing the frequent
false alarms.

Fig. 1 illustrates a continuous data stream of behaviours (instances) including
normal behaviours and anomalous behaviours. Each arrow denotes a behaviour (in-
stance) X t executed by a user at a specific period of time. Let the blue arrows rep-
resent the normal behaviours. Let the green arrows and the red arrows represent
the anomalous behaviours which belong to the malicious insider threats T1 and T2
respectively. To detect a malicious insider threat T1, it is required to detect any
green behaviour X t . Hence, it is essential to detect any of the anomalous behaviours
per malicious insider threat; the aim to detect any-behaviour-all-threat. Note that
the proposed approach may detect more than one behaviour which belong to a
malicious insider threat, nevertheless, the ultimate aim is to detect one anomalous
behaviour per threat.

Based on the above argument, the feature space is defined as a set of features
which describe the users behaviour. Each feature is extracted from the data set logs
to represent a users behaviour related to a particular activity. A feature vector (i.e.
instance, behaviour) represent a set of feature values (i.e. actions, commands) eval-
uated at a period of time. A more detailed description about the feature space is
provided in Section 3.
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Several machine learning approaches have been suggested to address the insider
threat problem. However, these approaches still suffer from a high number of false
alarms. A recent real-time anomaly detection system, named RADISH, based on k
Nearest Neighbours (k-NN) is proposed by Bose et al. [5]. The experimental results
showed that 92% of the alarms flagged for malicious behaviour are actually benign
(False Positives –FPs–).

To address the shortcoming of the high number of false alarms, we propose
a streaming anomaly detection approach, namely Ensemble of Random subspace
Anomaly detectors In Data Streams (E-RAIDS). We presented a preliminary version
of E-RAIDS (coined RandSubOut) in [21]. E-RAIDS is built on the top of estab-
lished outlier detection techniques (Micro-cluster-based Continuous Outlier Detec-
tion –MCOD– or Anytime Outlier Detection –AnyOut–) which employ clustering
over continuous data streams. The merit of E-RAIDS is its capability to detect ma-
licious insider threats in real time (based on the definition of real-time in terms of
window iterations as discussed in section 4).

E-RAIDS learns an ensemble of p outlier detection techniques (either MCOD
or AnyOut), such that each model of the p models learns on a random feature sub-
space. The acquired data is accumulated in a temporary buffer of predefined capac-
ity (equals to a fixed window size). So that, at each window iteration, each of the
p models in the ensemble is updated with the acquired data, and local outliers are
identified in the corresponding feature subspace.

Let p=n + 1 denote the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). In this way,
E-RAIDS is capable to detect local outliers in the n feature pairs, as well as global
outliers in the whole feature space. Hence, E-RAIDS employs the idea of random
feature subspaces to detect local outlier(s) (anomalous behaviour(s)) which might
not be detected over the whole feature space. These anomalous behaviour(s) might
refer to malicious insider threat(s).

E-RAIDS introduces two factors: (1) a survival factor v fs, which confirms
whether a subspace votes for an alarm, if outlier(s) survive for a v fs number of win-
dow iterations; and (2) a vote factor v fe, which confirms whether an alarm should be
flagged, if a v fe number of subspaces in the ensemble vote for an alarm. E-RAIDS
employs an aggregate component that aggregates the results from the p feature sub-
spaces, in order to decide whether to generate an alarm. The rationale behind this is
to reduce the number of false alarms.

The main contributions of this chapter are summarised as follows:

• an ensemble approach on random feature subspaces to detect local outliers (ma-
licious insider threats), which would not be detected over the whole feature
space;
• a survival factor that confirms whether outlier(s) on a feature subspace survive

for a number of window iterations, to control the vote of a feature subspace;
• an aggregate component with a vote factor to confirm whether to generate an

alarm, to address the shortcoming of high number of FPs;
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• a thorough performance evaluation of E-RAIDS-MCOD and E-RAIDS-AnyOut,
validating the effectiveness of voting feature subspaces, and the capability to de-
tect (more than one)-behaviour-all-threat detection (Hypothesis 2) in real-time
(Hypothesis 1).

E-RAIDS extends the preliminary version RandSubOut [21], where it upgrades
the selection of the set of outliers (anomalous behaviours) identified at a window
iteration over a feature subspace to improve the detection performance of malicious
insider threats over the whole ensemble. This is later described in Section 3.3.1.
Unlike RandSubOut, we evaluate E-RAIDS on community data sets such that each
community is richer with malicious insider threats which map to a variety of scenar-
ios. Moreover, E-RAIDS is evaluated, not only in terms of the number of detected
threats and FP Alarms, however, in terms of (1) F1 measure (2) voting feature sub-
spaces, (3) real time anomaly detection, and (4) the detection of (more than One)-
behaviour-all-threat.

The rest of this chapter is organised as follows. Sect. 2 reviews the techniques
which utilised clustering to detect outliers, and the stream mining approaches pro-
posed for insider threat detection. Sect. 3 presents the proposed streaming anomaly
detection approach, namely E-RAIDS, for insider threat detection. Experiments and
results are discussed in Sect. 4. Finally, Sect. 5 summarises the chapter and suggests
future work.

2 Related Work

The absence of labelled data (i.e. low data maturity) reveals that an organisation
has no previously logged activities executed by users (no historical database). We
address the absence of prior knowledge using unsupervised streaming anomaly de-
tection built on top of established outlier detection techniques.

Clustering have been successfully applied to identify the patterns of the data
for outlier detection [3]. The continuous acquisition of data generated from various
sources defines the streaming environment of the insider threat problem. Several
clustering methods have been proposed to handle the streaming environment. The
state-of-the-art presents two primitive clustering methods: Balanced Iterative Re-
ducing and Clustering using Hierarchies (BIRCH) [46], and CluStream [1].

BIRCH is an incremental hierarchical clustering method which was first pro-
posed for very large data sets. BIRCH incrementally and dynamically clusters ac-
quired data instances. It maintains a tree of cluster features (information about clus-
ters) which is updated in an iterative fashion [20]. Thereafter, BIRCH was applied
to data stream clustering.

BIRCH was the first to introduce the concepts of micro- and macro- clusters [25].
CluStream is a data stream clustering method that employed those two concepts
for the clustering process: online micro-clustering, and offline macro-clustering. In
the online phase, CluStream scans the acquired data instances and creates micro-
clusters in a single pass to handle the big (unbounded) data stream. In the offline
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phase, CluStream only utilises the micro-clusters and re-clusters into macro-clusters
[20].

From BIRCH to CluStream, the concept of data stream clustering is applied,
despite the fact that BIRCH includes incremental processing of data instances. In-
cremental clustering processes one data instance at a time and maintain a predefined
data structure (i.e. model) that is incrementally updated without the need for model
reconstruction [39]. In fact, many incremental methods predate the data stream min-
ing methods. The intrinsic nature of data streams requires methods which implement
incremental processing of data instances, in order to handle the resource limitations
(i.e. time and memory) [39]. But unlike earlier incremental clustering methods, data
stream clustering methods require a more efficient time complexity to cope with
high data rates [27]. Indeed, the literature stresses the importance of considering the
inherent time element in data streams [39]. For instance, a typical data stream clus-
tering method exhibits the temporal aspect of cluster tracking [39]. The dynamic
behaviour of cluster over a data stream manifests in the evolving of existing clusters
over time; the emergence of new clusters; and the removal of clusters based on a
time stamp and/or size. Those cluster updates must be performed on the data struc-
ture (i.e. model) very efficiently [27]. Hence, the data stream clustering methods are
not only incremental, but are also fast in terms of the inherent temporal aspects.

In this work, data stream clustering is used to underpin the outlier detection tech-
niques for real-time anomaly detection. In the insider threat problem, the tempo-
ral aspect is substantial to consider, in order to detect malicious insider threats in
real-time (based on the definition of real-time in terms of window iterations as dis-
cussed in Section 4). Hence, data stream clustering methods are more adequate to
be utilised in this work than typical incremental clustering methods.

In the following we review the techniques which utilised clustering to detect out-
liers. Thereafter, we shed light on two outlier detection techniques (MCOD and
AnyOut) which employ data stream clustering. Those two techniques are later
utilised in the proposed framework.

We also review the streaming anomaly detection approaches proposed for insider
threat detection.

2.1 Clustering for Outlier Detection

It is important to distinguish our objective – to optimise outlier detection – from
that of a benchmark of clustering methods developed to optimise clustering (such as
DBSCAN [10], BIRCH [46]). The outliers in these methods [10, 46] are referred to
as noise, where they are usually tolerated or ignored. However, in our work, we refer
to outliers as anomalous (suspicious) behaviour(s) which may correlate to malicious
insider threats. Therefore, clustering is utilised to optimise the detection of outliers.

On the other hand, a benchmark of clustering methods to optimise outlier detec-
tion (such as LOF [6], CBLOF [23]) are developed. Breunig et al. [6] introduced the
concept of Local Outlier Factor (LOF) to determine the degree of outlierness of an
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instance using density-based clustering. The locality of instance (local density) is
estimated by the distance to its k nearest neighbours. Thus, the LOF of an instance
located in a dense cluster is close to 1, while lower LOF is assigned for other in-
stances. He et al. [23] present a measure, called Cluster-based Local Outlier Factor
(CBLOF), to identify the physical significance of an outlier using similarity func-
tion. The CBLOF of an instance is determined by (1) the distance to the its nearest
cluster (if it belongs to a small cluster), or (2) the distance to its cluster (if it belongs
to a large cluster).

However, the aforementioned methods do not tackle outlier detection in continu-
ous data streams. MCOD [27] and AnyOut [3] are two established outlier detection
techniques, which employ data stream clustering in continuous data streams. MCOD
and AnyOut are utilised as building block clustering techniques for the proposed E-
RAIDS approach. A detailed description and formalisation for these techniques is
found in Section 3.2.

2.2 Streaming Anomaly Detection for Insider Threat Detection

Few approaches have utilised streaming anomaly detection to detect insider threats
[35, 36, 41, 45] with no prior knowledge. We give a brief description for these
approaches in the following.

Among the emerging interest in deep learning, Tuor et al. [41] present a prelim-
inary effort to utilise deep learning in an online unsupervised approach to detect
anomalous network activity in real-time. The authors presented two models: a Deep
Neural Network model (DNN) which is trained on each acquired instance only once;
and a Recurrent Neural Network (RNN) which learns an RNN per user such that the
weights are shared among all users, however, the hidden states are trained per user.

Zargar et al. [45] introduce a Zero-Knowledge Anomaly-Based Behavioural
Analysis Method, namely XABA, that learns each user’s behaviour from raw logs
and network traffic in real-time. XABA is implemented on a big-stream platform
without predefined or preprocessed activity logs, to handle high rates of network
sessions. The authors indicated that XABA reports a low number of FPs, when
evaluated on a real traitor scenario.

One of the remarkable approaches is an ensemble of one class SVM (ocSVM),
namely Ensemble based Insider Threat (EIT), proposed by Parveen et al. [36]. The
authors proposed an ensemble approach, based on static ocSVM learners, to model
a continuous data stream of data chunks (i.e. daily logs). The EIT maintains an en-
semble of a k predefined number of models M, where the ensemble is continuously
updated at each day session upon the learning of a new model Ms. The EIT selects
the best k−1 models from the k models, having the minimum prediction error over
the data chunk Cs, and appends the new model Ms. The results show that ensemble-
ocSVM outperforms ocSVM, where it reports a higher accuracy and almost half
the number of FP. The authors extended their work in a future paper [35], where
the ensemble approach is applied to unsupervised Graph-Based Anomaly Detection



8 Diana Haidar and Mohamed Medhat Gaber

(GBAD). The results show that ensemble-ocSVM outperforms the ensemble-GBAD
in terms of FP.

The above approaches have shown merit in addressing the insider threat detection
problem, however, as aforementioned, they do suffer from high false alarms. In this
book chapter, we utilise data stream clustering to detect outliers (malicious insider
threats), while reducing the number of false alarms.

3 Anomaly Detection in Data Streams for Insider Threat
Detection

This section identifies the feature space in the insider threat problem and the cat-
egories of the feature set extracted. It then describes and formalises established
continuous distance-based outlier detection techniques (MCOD and AnyOut). It
presents the proposed E-RAIDS for insider threat detection with a detailed descrip-
tion of the feature subspace anomaly detection and the aggregate component (en-
semble voting).

3.1 Insider Threat Feature Space

In this book chapter, we utilise the synthetic data sets, including a variety of ma-
licious insider threat scenarios, generated by Carnegie Mellon University (CMU-
CERT) [15]. The CMU-CERT data sets comprise system and network logs for the
activities carried out by users in an organisation over 18 months (e.g. logons, con-
necting removable devices, copying files, browsing websites, sending emails, etc.).
We extract a feature set from these logs in the CMU-CERT data sets according to
the literature [5, 29, 30]. This feature set allows us to assess the behaviour of users,
and compare it to the previous behaviour of the users or their community of users.
We extract each feature considering the evidence it would reveal about an undergo-
ing anomalous behaviour. For example, consider the feature logon after hours; this
feature if its values is greater than 1, it reveals an evidence of an unusual activity un-
dergoing after the official working hours. Thus, it contributes in the overall decision
of the system whether a malicious alarm should be flagged or not.

In the following, we give a more detailed description of the feature set used in
this work. We categorise the features into four groups with some examples of each.

• Frequency-based features: assess the frequency of an activity carried out by a
community of users over each session slot. (integer e.g. frequency of logon,
frequency of connecting devices);

• Time-based features: assess an activity carried out within the non-working
hours period of time. (integer e.g. logon after work hours, device usage after
work hours);
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• Boolean features: assess the presence/absence of an activity-related informa-
tion. ( f lag={0,1} e.g. non-empty email-bcc, a non-employee email recipient,
sensitive file extension);

• Attribute-based features: are more specialised features, which assess an activity
with respect to a particular attribute (feature) value. (integer e.g. browsing a
particular URL (job websites, WikiLeaks)); and

• Other features: assess the count of other activity-related information. (integer
e.g. number of email recipients, number of attachments to emails).

This feature set defines the feature space of the insider threat problem, and is
used to construct community behaviour profiles for users having the same role (e.g.
Salesman, IT admin). A community behaviour profile represents instances (i.e. vec-
tors of feature values) evaluated over session slots, where a session slot represents a
period of time from start time to end time. Each vector of feature values is extracted
from the behaviour logs of the community users during a session slot.

In this work, we define the session slot per four hours to find local anomalous
behaviour within a day which would not be detected per day. The rationale be-
hind choosing the session slot per four hours is that this period of time is long
enough to extract an instance (i.e. vector of feature values) which provides an ad-
equate evidence of anomalous behaviour. Thus, it supports the system to capture
the anomalous behaviours in feature space. If the session slot is chosen per min-
utes, for example, the extracted instances would lack the adequate evidence of the
occurrence of anomalous behaviour. On the other hand, if the session slot is cho-
sen per days/weeks, for example, the period of time will be too long to capture the
anomalous behaviour blurred among the normal behaviour in the extracted vector
of feature values.

After constructing the community behaviour profiles, we normalise each vector
of feature values (over a session slot) to the range [0,1], and associate it with a class
label {Normal,Anomalous}.

3.2 Background on Distance-based Outlier Detection Techniques

The state-of-the-art presents one of the most widely employed techniques for
anomaly detection, which are distance-based outlier detection techniques. Accord-
ing to the definition [26], an instance X t is an outlier, if there exists less than k
number of neighbours located at a distance at most r form X t .

In this work, we are interested in continuous outlier detection over a data stream,
where recent instances arrive and previous instances expire. The demo paper [14]
gives a comparison of four continuous distance-based outlier detection techniques:
STream OutlieRMiner (STORM) [2]; Abstract-C [44]; Continuous Outlier Detec-
tion (COD) [27]; and Micro-cluster-based Continuous Outlier Detection (MCOD)
[27]. COD and MCOD have O(n) space requirements, and they have a faster running
time than the exact algorithms of both [2] and [44]. Note that since all algorithms
are exact, they output the same outliers [14]. According to [14], COD and MCOD
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demonstrate a more efficient performance compared to STORM and Abstract-C in
terms of lower space and time requirements. Hence, the latter are excluded, but
not COD and MCOD. Furthermore, based on the experimental evaluation in [27],
MCOD outperforms COD over benchmark tested data sets. Hence, MCOD is se-
lected to be utilised as a base learner in the proposed E-RAIDS approach.

The state-of-the-art presents a further continuous distance-based outlier detection
technique, called Anytime Outlier Detection (AnyOut) [3]. However, AnyOut has
not been compared to the four techniques in the demo paper. We select MCOD and
AnyOut as base learners in E-RAIDS to compare their performance. It is worth to
note that the aforementioned distance-based outlier detection techniques are imple-
mented by the authors of [14] in the open-source tool for Massive Online Analysis
(MOA) [32].

In the following, a brief description of MCOD and AnyOut techniques is pro-
vided.

3.2.1 Micro-cluster-based Continuous Outlier Detection

Micro-cluster-based Continuous Outlier Detection (MCOD), an extension to Con-
tinuous Outlier Detection (COD), stems from the adoption of an event-based tech-
nique. The distinctive characteristic of MCOD is that it introduces the concept of
evolving micro-clusters to mitigate the need to evaluate the range query for each
acquired instance X t with respect to all the preceding active instances. Instead, it
evaluates the range queries with respect to the (fewer) centers of the micro-clusters.
The micro-clusters are defined as the regions that contain inliers exclusively (with
no overlapping). The micro-clustering is fully performed online [27].

Given that, the center mci of a micro-cluster MCi may or may not be an actual
instance X t ; the radius of MCi is set to r

2 , such that r is the distance parameter for
outlier detection; and the minimum capacity (size) of MCi is k+ 1. Below we give
a brief formalisation of MCOD.

Let k represent the number of neighbours parameter. Let PD represent the set of
instances that doesn’t belong to any micro-cluster.

The micro-clusters (i.e. centers of micro-clusters) in MCOD are determined as
described in [1]. In the initialisation step, seeds (with a random initial value) are
sampled with a probability proportional to the number of instances in a given micro-
cluster. The corresponding seed represents the centroid of that micro-cluster. In later
iterations, the center mci is the weighted centroid of the micro-cluster MCi.

• Step 1: For each acquired instance X t , MCOD finds (1) the nearest micro-cluster
MCi, whose center mci is the nearest to it, and (2) the set of micro-cluster(s) R,
whose centers are within a distance 3×r

2 from their centers.
• Step 2: If dist(X t ,mci) ≤ r

2 ; such that mci is the center of the nearest cluster
MCi, X t is assigned to the corresponding micro-cluster.

• Step 3: Otherwise, a range query q for X t is evaluated with respect to the in-
stances in (1) the set PD and (2) the micro-clusters of the set R.
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• Step 4: Consider n: the number of neighbours Nt ′ ∈P to X t , such that dist(X t ,Nt ′)≥
r
2 . If n > θk;θ ≥ 1, then a new micro-cluster with center X t is created and the
n neighbours are assigned to this micro-cluster.

• Step 5: A micro-cluster whose size decreases below k+1 is deleted and a range
query similar to that described for X t is performed for each of its former in-
stances.

• Step 6: An instance X t is flagged as an outlier, if there exists less than k instances
in either PD or R.

3.2.2 Anytime Outlier Detection

Anytime Outlier Detection (AnyOut) is a cluster-based technique that utilises the
structure of ClusTree [28], an extension to R-tree [19, 38], to compute an outlier
score. The tree structure of AnyOut suggests a hierarchy of clusters, such that the
clusters at the upper level subsume the fine grained information at the lower level.
ClusTree is traversed in top-down manner to compute the outlier score of an ac-
quired instance X t until it is interrupted by the subsequent (next) instance X t . Thus,
the descent down the tree improves the certainty of the outlier score, nevertheless,
the later the arrival of the subsequent instance the higher the certainty [3].

Given that, a cluster is represented by a Cluster Feature tuple CF = (n,LS,SS),
such that n is the number of instances in the cluster, LS and SS are respectively the
linear sum and the squared sum of these instances. The compact structure of the tree
using CF tuples reduces space requirements. From BIRCH [46] to CluStream [1],
cluster features and variations have been successfully used for online summarisation
of data, with a possible subsequent offline process for global clustering.

Let es represent a cluster node entry in ClusTree. Given defined two scores
to compute the degree of outlierness of an instance X t : (1) a mean outlier score
sm(X t)=dist(X t ,µ(es)), such that µ(es) is the mean of the cluster node entry es ∈
ClusTree where X t is interrupted; and (2) a density outlier score is sd(X t)=1−
g(X t ,es), such that g(xi,es) is the Gaussian probability density of X t for µ(es) as
defined in [3]. Below we give a brief formalisation of AnyOut.

In the case of a constant data stream:

• Step 1: Initialisation: Each X t in the data stream is assigned with an actual
confidence value con f (X t)=es(X t ).

• Step 2: Distribute the computation time for each X t based on the scattered con-
fidences.

• Step 3: For each acquired instance X t , AnyOut traverses the tree in a top-down
manner until the arrival of the instance X t+1 in the data stream.

• Step 4: At the moment of interruption, X t is inserted to the cluster node entry
e ∈ ClusTree, where X t arrives (pauses).

• Step 5: The outlier score of X t , according to the specified parameter sm(X t) or
sd(X t), is computed with respect cluster node entry es.
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Fig. 2: E-RAIDS framework.

• Step 6: The expected confidence value for the outlier score of X t is updated
based on the computation time. The confidence value (certainty) increases as
the computation time increases.

3.3 E-RAIDS Approach

The established continuous distance-based outlier detection techniques (MCOD and
AnyOut), described and formalised in section 3.2, are utilised as building block data
stream clustering techniques for the proposed E-RAIDS approach.

In this work, we propose a streaming anomaly detection approach, namely En-
semble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for
insider threat detection. In other words, E-RAIDS is an ensemble of an estab-
lished distance-based outlier detection technique (MCOD or AnyOut), such that
each model of the ensemble learns on a random feature subspace. The idea of E-
RAIDS is to employ an outlier detection technique on a feature subspace, to detect
local outliers which might not be detected over the whole feature space. These lo-
cal outliers may refer to anomalous behaviours (instances) attributed to a malicious
insider threat. Hence, the ultimate aim of the E-RAIDS approach is to detect any-
behaviour-all-threat (threat hunting as defined in Section 1); a process that leads to
a reduction of the number of false alarms.

Fig. 2 presents the E-RAIDS framework. The set of blue arrows represent a data
stream, where each arrow represents an instance (feature vector) X t acquired at a
session slot t. Consider the formalisations below:
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• window: a segment of a fixed size w that slides along the instances in a data
stream with respect to time (i.e session slots);

• buffer: a temporary short memory of allocated capacity (equals to w). It tem-
porarily accumulates the instances in a data stream. The buffer starts to accu-
mulate the instances in a data stream at the start of the window and stops once
the buffer is full after w number of instances. The full buffer is then input to the
base learner component to be processed; and

• window iteration wIter: an iteration of the window slide. It starts at the already
processed instances (in the previous buffer) procInst and ends at procInst +w.
For instance, wIter=0 starts at procInst=0 and ends at w. wIter=1 starts at
procInst=w and ends at 2×w. The window iteration wIter allows the synchro-
nisation between the window slide and the buffer accumulation.

Based on the aforementioned formalisations, at each window iteration wIter, the
buffer accumulates w number of instances. Once the buffer is full, the instances
in the buffer are input to the base learner component. A base learner component
refers to the distance-based outlier detection technique to be utilised (MCOD or
AnyOut). It employs a p number of base models to learn on randomly selected p
feature subspaces. A feature subspace FSi ⊆ F is defined as a subset of features
selected from the whole feature space f , where F = { f1, f2, . . . , fn}. The rationale
behind the idea of random feature subspaces is to detect local outlier(s) (anomalous
behaviour(s)) which might not be detected over the whole feature space.

Let p=n+ 1 represent the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). The p feature
subspaces are utilised to build the ensemble of p models {M1,M2, . . . ,Mn,Mp}, such
that {M1,M2, . . . ,Mn} learn on feature pairs, and Mp learns on the whole feature
space. In this way, E-RAIDS is capable to detect local outliers in the n feature pairs,
as well as global outliers in the whole feature space.

3.3.1 Feature Subspace Anomaly Detection

For each model Mi on a feature subspace FSi, we define the following data reposi-
tories and a survival factor:

• outSet: a temporary set of the outliers detected by a base learner (MCOD or
AnyOut) at wIter;

• outTempList: a list that stores the triples (1) an outlier out ∈ outSet, (2) the
wIter where it was first detected, and (3) a temporal count tempC which
counts the number of subsequent windows out was detected at. It has the form
〈out,wIter, tempC〉; and

• subVoteList: a list that stores the triples (1) a wIter, (2) a subVote parameter set
to 1 if the feature FSi votes for an alarm to be generated at wIter and 0 other-
wise, and (3) an outlier set subOutSet. It has the form 〈wIter,subVote,subOutSet〉.
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• v fs: a survival factor that confirms whether a feature subspace FSi votes for an
alarm to be generated at wIter. In other words, if an outlier out survived (has
been detected) for a v fs number of subsequent windows, then out is defined
as a persistent outlier. A persistent outlier boosts the chance of an alarm to be
generated at wIter.

Over each feature subspace FSi, the base learner (MCOD or AnyOut) processes
the buffer at the current wIter to update the model Mi. Mi identifies the outlier set
outSet, which includes (1) the outliers from the buffer at the current wIter; and (2)
the outliers from the previously learned instances before the model being updated.
The type (2) outlier refers to an instance that was identified as an inlier, however,
turned into an outlier in the current wIter.

For each outlier out ∈ outSet, if out does not exist in outTempList, a new triple
〈out,wIter,1〉 is appended to outTempList. In this case, tempC is assigned to 1 to de-
clare that it is the first time an outlier out detected. If out exists in the outTempList,
tempC is incremented by 1 in the triple for out.

For each outlier out ∈ outTempList, E-RAIDS checks (1) if tempC=v fs, then
out survived for a v fs number of subsequent windows. We call it persistent outlier.
Thus, a persistent outlier confirms that the FSi votes for an alarm at wIter. Thus,
subVote is set to 1 in the triple for wIter in subVoteList. (2) If wIter− tempC=v fs,
then out has turned into an inlier. We call it expired outlier. Thus, the triple for the
expired outlier out is removed from the outTempList. (3) If wIter− tempC < v fs,
then out is neither a persistent outlier nor an expired outlier. We call it potential
outlier.

Eventually, outTempList consists of persistent outliers and potential outliers (ex-
pired outliers has been removed). E-RAIDS appends persistent outliers and potential
outliers in outTempList to the subOutSet in the triple for wIter in subVoteList.

In the preliminary version RandSubOut [21], only the persistent outliers in
outTempList are appended to the subOutSet in the triple for wIter in subVoteList.
The subOutSet at wIter represents the set of anomalous behaviours detected over
a feature subspace FSi. As later described in Section 3.3.2, if the ensemble votes
to generate an alarm, then the subOutSet for each feature subspace is utilised to
evaluate whether all malicious insider threats are detected (i.e. the aim of any-
behaviour-all-threat). The experiments carried out on both versions (E-RAIDS and
RandSubOut) showed that E-RAIDS outperforms the latter in terms of detecting
more malicious insider threats. Analytically, unlike RandSubOut, E-RAIDS consid-
ers further the potential outliers in the subOutSet to check for detected malicious
insider threats. Thus, the use of potential outliers significantly boosts the detection
performance of the proposed approach.

Finally, the buffer is emptied to be prepared for the subsequent (next) window of
upcoming instances (wIter+1). A step-by-step pseudo code for the E-RAIDS base
learner procedure is provided in Algorithm 1.



Data Stream Clustering for Anomaly Detection 15

Algorithm 1 Feature Subspace
1: wIter← 0
2: foreach X t ∈ stream do
3: accumulate X t to buffer
4: if buffer is full then
5: outSet← get outliers detected by base
6: foreach out ∈ outSet do
7: if outinoutTempList then
8: a new triple 〈out,wIter,1〉 is appended to outTempList
9: else

10: increment tempC by 1 for out in outTempList
11: end if
12: end for
13: foreach out ∈ outTempList do
14: if tempC = v fs then
15: set subVote to 1 in subVoteList for the current wIter
16: remove out from outTempList
17: subOutSet← persistent out∪ potential outliers
18: append subOutSet to subVoteList at wIter
19: end if
20: if wIter− tempC = v fs then
21: remove out from outTempList
22: end if
23: end for
24: increment wIter
25: end if
26: empty buffer
27: end for
28: return subVoteList

Algorithm 2 Ensemble of Random Feature Subspaces
1: foreach wIter do
2: foreach FSi ∈ FS do
3: subVote← get subVote for wIter from subVoteList for FSi
4: eVote← eVote+ subVote for wIter in eVoteList
5: subOutSet← get subOutSet for wIter from subVoteList for FSi
6: append subOutSet to eOutSet for wIter in eVoteList
7: end for
8: if eVote = v fe then
9: flag an alarm

10: end if
11: end for

3.3.2 Ensemble of Random Feature Subspaces Voting

For the ensemble of p models {M1,M2, . . . ,Mn,Mp} on feature subspaces
{FS1,FS2, . . . ,FSn,FSp} respectively, we define the following data repository and
a vote factor:
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• eVoteList: a list that stores the triples (1) a wIter, (2) an eVote parameter that
counts the number of feature subspaces that vote for an alarm, and (3) an outlier
set eOutSet that appends the subOutSet from each FSi votes for an alarm. It has
the form 〈wIter,subVote,subOutSet〉.

• v fe: a vote factor that confirms whether an alarm to be generated at wIter by the
whole ensemble. In other words, if a v fe number of feature subspaces vote for
an alarm, then an alarm is generated at wIter.

As illustrated in Fig. 2, the E-RAIDS aggregate component aggregates the results
from the p feature subspaces, in order to confirm whether to generate an alarm or
not at each window iteration wIter. For each feature subspace FSi, if subVote=1
for wIter, E-RAIDS adds subVote to eVote for wIter in eVoteList. Furthermore,
E-RAIDS gets subOutSet for wIter from subVoteList, and appends to eOutSet for
wIter in eVoteList.

After getting the votes from all the feature subspaces in the ensemble, E-RAIDS
checks if eVote=v fe. If the condition is satisfied, then an alarm of a malicious insider
threat is generated at wIter. The voting mechanism is technically controlled by the
vote factor v fe, such that if a v fe number of feature subspaces vote for anomalous be-
haviour(s) at a window iteration wIter, then an alarm is generated. This accordingly
handles the case of a conflict, where p

2 (50%) of the feature subspaces in the ensem-
ble vote for anomalous behaviour(s) and the other p

2 vote for normal behaviour(s).
The ensemble technically checks if p

2 = v fe, then an alarm is generated.
A step-by-step pseudo code for the E-RAIDS aggregate procedure is provided in

Algorithm 2.

4 Experiments

We evaluated the effectiveness of the proposed approach on the CMU-CERT data
sets using Windows Server 2016 on Microsoft Azure (RAM 140GB, OS 64−bits,
CPU Intel Xeon E5−2673v3) for data pre-processing and Microsoft Windows 7 En-
terprise (RAM 12GB, OS 64− bits, CPU Intel Core i5− 4210U) for experiments.
First, MATLAB R2016b was used to pre-process the data set and generate com-
munity behaviour profiles per session slots of 4 hours. Second, we implemented
E-RAIDS-MCOD and E-RAIDS-AnyOut and carried out the experiments in Java
environment (Eclipse Java Mars) using the open-source MOA package [32].

4.1 Description of the Dataset

A significant impediment to researchers who work on the insider threat problem is
the lack of real world data. The real data logs the activities executed by the users in
an organisation. These data log files contain: private user profile information (e.g.
name, email address, mobile number, home address, etc.); intellectual property (e.g.
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strategic or business plans, engineering or scientific information, source code, etc.);
and confidential content (e.g. email content, file content, etc.) [7]. Organisations
commonly refuse to give researchers access to real data to protect its users and
assets.

In the current decade, there exists a great recent trend towards the utilisation of
the CMU-CERT data set(s) for the insider threat detection systems [5, 11, 12, 29, 41,
43]. The CMU-CERT data sets are synthetic insider threat data sets generated by the
CERT Division at Carnegie Mellon University [8, 15]. CMU-CERT data repository
is the only one available for insider threat scenarios (5 scenarios) and has recently
become the evaluation data repository for researchers addressing the insider threat
problem [5, 16, 41].

In the preliminary version [21], we used r5.1 CMU-CERT data set, where each
community consists of one malicious insider threat which map to one scenario.

For this chapter, we used r5.2 CMU-CERT data set which logs the behaviour of
2000 employees over 18 months. Unlike the previously released data sets, the com-
munities in the r5.2 data set consist of multiple malicious insider threats which map
to different scenarios. Among those employees, we extracted the data logs for em-
ployees belonging to the following three communities: Production line worker com-
P, Salesman com-S, and IT admin com-I. The community com-P consists of 300
employees, 17 malicious insider threats (associated to 366 anomalous behaviours),
where each threat maps to one of the scenarios {s1,s2,s4}. The community com-
S consists of 298 employees, and 22 malicious insider threats (associated to 515
anomalous behaviours), where each threat maps to one of the scenarios {s1,s2,s4}.
The community com-I consists of 80 employees, and 12 malicious insider threats
(associated to 132 anomalous behaviours), where each threat maps to one of the
scenarios {s2,s3}.

4.2 Experimental Tuning

In this work, we define two experiments based on the proposed E-RAIDS approach.
The E-RAIDS-MCOD learns an ensemble of p MCOD base learners, such that each
MCOD base learner is trained on a feature subspace of the p feature subspaces.
Likewise, the E-RAIDS-AnyOut learns an ensemble of p AnyOut base learners.

The experiments are tuned for different values of parameters. Table 1 presents
the values for the parameters tuned in each of MCOD and AnyOut, with a short
description. Note that an extensive number of experiments was done to select the
presented tuning values for the parameters. The values were selected based on E-
RAIDS achieving the best performance in terms of the evaluation measures de-
scribed below.

For MCOD, the parameter k has a default value k=50 in the MOA package. In this
chapter, we present k={50,60,70} to evaluate the E-RAIDS-MCOD for different
number of neighbours. The parameter r, with a default value r=0.1, is presented for
a range for r={0.3,0.4,0.5,0.6,0.7} to check the influence of r.
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Table 1: Tuned Parameters.

MCOD parameter description

k={50,60,70} number of neighbours parameter
r={0.3,0.4,0.5,0.6,0.7} distance parameter for outlier detection

AnyOut parameter description

|Dtrain|=500 training set size
con f Agr=2 size of confidence aggregate
con f =4 initial confidence value
τ={0.1,0.4,0.7} outlier score threshold
oscAgr={2,4,6,8} size of outlier score aggregate

For AnyOut, the parameter |Dtrain| is presented for 500 instances, knowing that
no threats are present at the beginning of the stream in these 500 instances. The
parameters con f Agr and con f did not show a significant influence on the utilised
data sets, so both are assigned to their default values, in the MOA package, 2 and
4 respectively. τ has a minimum value 0 and a maximum value 1, so it is presented
for τ={0.1,0.4,0.7} to evaluate the influence of varying the outlier score threshold
on the outliers detected. oscAgr has a minimum value 1 and a maximum value 10,
so it is presented for the oscAgr={2,4,6,8}.

In general, for E-RAIDS approach with either MCOD or AnyOut base learner,
we present the vouch factor v fs=2, so it confirms an outlier as positive (anomalous)
after it survives for 2 subsequent windows. We present the vote factor v fe=1, so if
at least 1 feature subspace in the ensemble flags an alert, an alarm of a malicious
insider threat is confirmed to be generated.

Likewise, for both E-RAIDS-MCOD and E-RAIDS-AnyOut, the window size is
presented for w = {50,100,150,200}. As previously described, an instance (feature
vector) is a set of events executed during a pre-defined session slot. In this work, we
define a session slot per 4 hours. Let w represent the window size, which accumu-
lates the acquired instances in a data stream. If w=50 and v fs=2, then the instances
in each window are processed after 4× 50=200 hours ' 8 days. Based on the de-
scription of E-RAIDS, a threat (outlier) may be confirmed as an outlier at least over
the window it belongs to (after 8 days) or over the next window (after ' 8× 2=16
days). If w=200 and v fs=2, then the instances in each window are processed after
4× 200=800 hours ' 33 days. A threat (outlier) may be confirmed as an outlier at
least after 33 days) or over the next window (after ' 33×2=66 days). Note that the
malicious insider threats simulated in the CMU-CERT data sets span over at least
one month and up to 4 months. Hence, we hypothesise the following in Hypothesis
1.

Hypothesis 1: The E-RAIDS approach is capable to detect the malicious insider
threats in real-time (during the time span of the undergoing threat).
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4.3 Evaluation Measures

Many research work has been done to detect or mitigate malicious insider threats,
but nevertheless has established standard measures to evaluate the proposed models
[17]. The research practices show that the the insider threat problem demands to
measure the effectiveness of the models before being deployed, preferably in terms
of true positives (TP) and false positives (FP) [18].

In the state-of-the-art, a remarkable number of approaches were validated in
terms of FP measure [4, 5, 13, 31, 35]. This sheds light on the importance of the
FP measure to address the shortcoming of the high number of false alarms (FPs).
Furthermore, some approaches were validated in terms of: TP measure [31]; F1
measure [4, 33]; AUC measure [9, 11, 16]; precision and recall [24, 29]; accuracy
[24, 35]; and others.

The variety of the utilised evaluation measures in the state-of-the-art reveals the
critical need to formulate the insider threat problem and to define the measures
that would best validate the effectiveness of the propose E-RAIDS approach. In
the following, we give a formulation for the E-RAIDS approach and we define the
evaluation measures utilised in this work.

As aforementioned, the ultimate aim of the E-RAIDS approach is to detect all
the malicious insider threats over a data stream in real-time, while minimising the
number of false alarms.

The challenge of the insider threat problem lies in the variety and complexity
of the malicious insider threats in the data sets. Each malicious insider threat is
devised of a set of anomalous behaviours. An anomalous behaviour is represented
by an instance (feature vector) which describes a set of events (features) carried
out by a malicious insider. Based on the challenge of the problem, we formulate
the E-RAIDS approach with the aim to detect any-behaviour-all-threat (as defined
in Section 1). This means that it is sufficient to detect any anomalous behaviour
(instance) in all malicious insider threats. Hence, E-RAIDS approach is formulated
as a threat hunting approach, where a threat is detected if (1) a v fe number of feature
subspaces confirm an undergoing threat (flag alarm) over a window and (2) the
outliers, associated to the alarm flagged over the window, include at least a True
Positive (anomalous behaviour detected as outlier). Note that although the detection
of one behaviour confirms the detection of the threat, we hypothesise the following
in Hypothesis 2.

Hypothesis 2: The E-RAIDS approach is capable of detecting more than one be-
haviour from the set of behaviours which belong to a malicious insider threat. We
refer to as (more than one)-behaviour-all-threat detection in E-RAIDS.

Furthermore, the property of the E-RAIDS approach of using windows over data
streams introduces a refined version of the evaluation of False Positives (FP). In this
work, we use the FPAlarm to evaluate the false positives. So that if all the outliers
associated to the alarm generated over a window are actually normal, then the alarm
is considered a False Alarm (i.e. FPAlarm is incremented 1). A formal definition for
FPAlarm is given in the following.
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We define the measures used to evaluate the performance of E-RAIDS, which
include a refined version of the default (known) evaluation measures, taking our
ultimate aim into account.

• PT : Threats number of malicious insider threats associated to anomalous in-
stances. In other words, PT is the number of malicious insiders attributed to the
anomalous behaviours;

• TPT : True Positives a refined version of default TP to evaluate the number of
threats detected by the framework among all the PT malicious insider threats.
TPT is incremented if at least one anomalous instance (behaviour attributed to
the threat) is associated as an outlier to a flagged alarm;

• FPAlarm: False Positive Alarm a refined version of default FP to evaluate the
number of false alarms generated. An alarm is declared false if all the outliers
associated to the alarm are actually normal instances. This means that none of
the instances contributed to generating the alarm, therefore, false alarm;

• FNT : False Negatives a refined version of default FN to evaluate the number of
insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures.

The evaluation for E-RAIDS does not employ only the defined evaluation mea-
sures, however, it is required to prove the previously stated hypothesises to be true.

4.4 Results and Discussion

In the preliminary version [21], RandSubOut was evaluated in terms of TPT detected
threats and FPAlarm.

In this work, the results are presented and discussed for E-RAIDS-MCOD and
E-RAIDS-AnyOut as follows: in terms of (1) the pre-defined evaluation measures;
(2) voting feature subspaces; (3) real time anomaly detection; and (4) the detection
of (more than One)-behaviour-all-threat.

4.4.1 MCOD vs AnyOut Base Learner for E-RAIDS in terms of Evaluation
Measures

In the following, we analyse the performance of E-RAIDS with MCOD base learner
vs AnyOut base learner in terms of the pre-defined evaluation measures: T PT out of
PT ; FPAlarm; and F1 measure.

Tables 2 and 3 present the maximum T PT and the minimum FPAlarm attained
E-RAIDS-MCOD and E-RAIDS-AnyOut over the communities. The results are re-
ported in terms of the parameter values in the given sequence k,r,w for E-RAIDS-
MCOD and τ,oscAgr,w for E-RAIDS-AnyOut respectively.
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Table 2: Maximum T PT of Detected Insider Threats over Communities.

community E-RAIDS-MCOD Parameters k,r,w

com-P 16 50,0.3,100 60,0.4,50
60,0.6,100 60,0.7,150
70,0.4,50

com-S 21 70,0.4,150
com-I 10 50,0.4,50 70,0.3,100

community E-RAIDS-AnyOut Parameters τ,oscAgr,w

com-P 16 0.1,2,100-200 {0.3,0.7},2,50-200
com-S 20 0.1,2,50-100 0.3,2,50-100

0.7,2,150
com-I 12 0.1,2,50-200 0.3,2,50-100

0.7,2,{50,200}

Table 3: Minimum FPAlarm over Communities.

community E-RAIDS-MCOD Parameters k,r,w

com-P 0 50,0.4,200 60,{0.3,0.5,0.6},200
com-S 0 50,0.4,200 50,0.7,100

60,0.3,200 60,0.5-0.7,100
70,0.6-0.7,150

com-I 0 50,0.3,200 60,0.5,200
70,0.5-0.7,200

community E-RAIDS-AnyOut Parameters τ,oscAgr,w

com-P 2 ∀τ ,∀oscAgr,200
com-S 2 ∀τ ,∀oscAgr,150-200
com-I 1 0.1,{2,4},200 0.3,2-6,200

0.7,2-4,200

E-RAIDS-MCOD

Fig. 3 presents the variation of F1 measure as a function of window size w for E-
RAIDS with MCOD base learner over the communities. The results are reported
with respect to k and r parameter values.

A preliminary analysis of the F1 measure shows no evident pattern in terms of
any of the parameters k, r, or w. Over the community com-P, E-RAIDS-MCOD
achieves the maximum F1=0.9411;60,0.7,150. It detects the maximum TPT =16 out
of PT =17, thus missing one malicious insider threat. However, it flags only a false
positive alarm (FPAlarm=1). Furthermore, Table 3 shows that E-RAIDS-MCOD
reports the minimum FPAlarm=0 at w=200 for different values of k and r.

Over the community com-S, E-RAIDS-MCOD achieves the maximum F1=0.9523;
70,{0.6,0.7},150. It detects a TPT =20 out of PT =22, while flagging no false pos-
itive alarms (FPAlarm= 0). The maximum TPT =21 is attained at 70,0.4,150, how-
ever, flagging FPAlarm=2.

Over the community com-I, E-RAIDS-MCOD achieves the maximum F1=0.6451;
70,0.3,100. It detects a TPT =10 out of PT =12, thus missing two malicious insider
threats, while flagging FPAlarm=9. Nevertheless, Table 3 shows that E-RAIDS-
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MCOD reports the minimum FPAlarm=0 at w=200 for different values of k and
r.

We can deduce that the window size w=150,200 give the best performance for
E-RAIDS-MCOD in terms of the evaluation measures.

E-RAIDS-AnyOut

Fig. 4 presents the variation of F1 measure as a function of window size w for E-
RAIDS with AnyOut base learner over the communities. The results are reported
with respect to τ and oscAgr parameter values.

It is evident that there exists a positive correlation between F1 measure and the
parameter oscAgr for E-RAIDS-AnyOut. The variation of F1 measure at oscAgr=2
is the highest with respect to all the window sizes w=50 to 200 over both communi-
ties. Moreover, Figure 5a reveals a positive correlation between F1 measure and the
parameter w. The value of F1 measure increases as the window size w increases.

Over the community com-P, E-RAIDS-AnyOut achieves the maximum F1=0.9142;
∀τ,2,200. It detects the maximum TPT =16 out of PT =17, while reducing the false
positive alarms to FPAlarm=2. Table 3 shows that E-RAIDS-AnyOut reports the
minimum FPAlarm=2 ∀τ,∀oscAgr at w=200. Thus, the higher the window size,
the lower the FPAlarm. Table 2 shows that E-RAIDS-AnyOut reports the maximum
TPT =16 at oscAgr=2 in general terms ∀τ,∀w. Thus, the lower the oscAgr, the higher
the TPT detected.

Over the community com-S, E-RAIDS-AnyOut achieves the maximum F1=0.9090;
0.7,2,150. It detects a TPT =20 out of PT =22, while flagging two false positive
alarms (FPAlarm=2).

Over the community com-I, E-RAIDS-AnyOut achieves the maximum F1=0.9600;
∀τ,2,200. It detects a TPT =12 out of PT =12, while flagging one false positive alarm
(FPAlarm=1).

In terms of the evaluation measures, E-RAIDS-MCOD outperforms E-RAIDS-
AnyOut over the communities, where E-RAIDS-MCOD achieves a higher F1 mea-
sure over com-P and com-S, a higher TPT over com-S, and a lower FPAlarm=0 over
all communities.

4.4.2 MCOD vs AnyOut for E-RAIDS in terms of Voting Feature Subspaces

In the following, we address the merit of using feature subspaces in the E-RAIDS
approach. We compare the number of feature subspaces in the ensemble that voted
for a malicious insider threat in each of E-RAIDS-MCOD and E-RAIDS-AnyOut.
The rationale behind using a random feature subspace to train each model of the p
models in the ensemble, is to train the base learner (MCOD or AnyOut) on a subset
of the features and to detect local outliers which might not be detected over the
whole feature space.
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 3: The variation of F1 measure as a function of window size w for E-RAIDS
with MCOD base learner over the communities. The legend represents the r param-
eter values.

Figure 5 illustrates the number of votes which contributed in flagging an alarm of
a malicious threat with respect to the number of instances processed (given the win-
dow size w) over the communities. The number of votes actually corresponds to the
number of feature subspaces in the ensemble which generated an alert. We selected
E-RAIDS-MCOD and E-RAIDS-AnyOut with their parameters which showed the
best performance in terms of the evaluation measures. For com-P, Figure 5a shows
the E-RAIDS-MCOD at 60,0.7,150 and E-RAIDS-AnyOut at 0.1,2,200. For com-
S, Figure 5b shows the E-RAIDS-MCOD at 70,0.6,150 and E-RAIDS-AnyOut at
0.7,2,150. For com-I, Figure 5c shows the E-RAIDS-MCOD at 70,0.3,100 and
E-RAIDS-AnyOut at 0.1,2,200. Given that the |Dtrain|=500, this justifies why the



24 Diana Haidar and Mohamed Medhat Gaber

(a) com-P.

(b) com-S.

(c) com-I.

Fig. 4: The variation of F1 measure as a function of window size w for E-RAIDS
with AnyOut base learner over the communities. The legend represents the oscAgr
parameter values.

votes for E-RAIDS-AnyOut start after 500 train instances has been processed over
both communities.

Given the window size w, a window iteration wIter starts at the number of already
processed instances procInst and ends at procInst+w. For example, given w=100,
the first window iteration wIter=0 starts at procInst=0 and ends at procInst +
w=100; wIter=1 starts at 100 and ends at 200; etc.

A preliminary analysis of the results shows that E-RAIDS-AnyOut flags alarms
continuously ∀wIter after procInst=500. However, E-RAIDS-MCOD shows dis-
tinct alarms flagged, with no alarms at certain windows iterations. We recall that
E-RAIDS-MCOD outperforms E-RAIDS-AnyOut in terms of FPAlarm measure.
The continuous alarms flagged ∀wIter in E-RAIDS-AnyOut explains the higher
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 5: The number of votes which contributed in flagging an alarm of a malicious
threat with respect to the number of instances processed over the communities.

FPAlarm, as well as it reveals the uncertainty of E-RAIDS-AnyOut compared to
E-RAIDS-MCOD.

Knowing that the number of feature subspaces utilised in the ensemble is p = 17,
the number of votes ∀wIter in E-RAIDS-AnyOut has a minimum votes=11 and a
maximum votes=17, which reveals a level of uncertainty. The case where 17 fea-
ture subspaces vote for an alarm, indicates that all (17) models of the ensemble
detect at least one outlier (positive) associated to a malicious insider threat. On the
other hand, the number of votes in E-RAIDS-MCOD has a maximum votes=2. This
means that only 1 or 2 feature subspaces vote for an alarm. We recall the com-
plexity of the malicious insider threat scenarios in the CMU-CERT data sets. The
anomalous instances usually exist in (sparse or dense) regions of normal instances,
and rarely as global outliers with respect to the whole feature space. To address
this, the E-RAIDS approach aims to detect local outliers which may be found over
ANY (not ALL) of feature subspaces. Having all the feature subspaces in E-RAIDS-
AnyOut voting for a threat, compared to a couple (1 or 2) of feature subspaces in
E-RAIDS-MCOD, reinforces the uncertainty of E-RAIDS-AnyOut. The reason be-
hind the uncertain performance of AnyOut in the E-RAIDS approach may be due
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to that the outlier score of an instance X t is computed upon the arrival of a new in-
stance X t+1. Thus, the processing of the instance X t is interrupted at a certain level
of the ClusTree, and the outlier score is computed with a lower level of confidence
(i.e. uncertain).

4.4.3 Real Time Anomaly Detection in E-RAIDS

To prove the aforementioned Hypothesis 1 to be true, it is required to check if the
E-RAIDS detects the malicious insider threats in real-time (where real-time means
that the alarm is flagged during the time span of the undergoing threat). Based on
the previous conclusion regarding the uncertainty of E-RAIDS-AnyOut, and the
superiority of E-RAIDS-MCOD in terms of (1) the evaluation measures and (2) the
voting feature subspaces, we select E-RAIDS-MCOD to verify Hypothesis 1.

Fig. 6 illustrates the actual malicious insider threats vs the threats detected in
E-RAIDS-MCOD with respect to the number of instances processed over the com-
munities. The malicious insider threats are displayed in the legend over each com-
munity using the following label scenRef insiderID (e.g. s1 ALT1465) such that,
scenRef (e.g. s1, s2, or s4) represents the reference number for the scenario followed
in the malicious insider threat; and insiderID (e.g. ALT1465, AYG1697) represents
the user ID of the insider attributed to the threat. Hence, each colour in the legend
refers to a malicious insider threat.

We observe in Fig. 6 that a malicious insider threat is detected either (obs1) at
the current window iteration wIter where it is actually simulated, or (obs2) at the
subsequent (next) wIter. Hence, Hypothesis 1 is verified.

Based on the description of the E-RAIDS approach, a feature subspace votes
for a threat at wIter if at least an outlier survived for a v fs number of subsequent
windows, and consequently a specific threat is detected at wIter if (cond1) a v fe
number of subspaces vote (an alarm is flagged), and (cond2) at least outlier (posi-
tive) associated to the alarm belongs to the threat. However, the outliers associated
to the alarm (as mentioned in (cond2)) consist of persistent outliers (which survived
from wIter-1) and potential outliers (at the current wIter). A potential outlier, if
satisfies (cond2), allows real-time detection at the current wIter (obs1). A persistent
outlier, if satisfies condition (cond2), allows real-time detection as observed at the
subsequent wIter (obs2).

4.4.4 (More than One)-Behaviour-All-Threat Detection in E-RAIDS

The final analysis addresses Hypothesis 2. As defined in Section 1, the idea of threat
hunting aims to detect any-behaviour-all-threat, however, Fig. 6 shows the capability
of E-RAIDS-MCOD to detect more than one behaviour (not only one) from the set
of behaviours which belong to a malicious insider threat. It manifests as multiple
alarms (colour spikes) generated for a specific threat over a number of windows.
Hence, Hypothesis 2 is verified.
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(a) com-P.

(b) com-S.

(c) com-I.

Fig. 6: The actual malicious insider threats vs the threats detected in E-RAIDS-
MCOD with respect to the number of instances processed over the communities.

Analytically, this underlies in having multiple outliers, associated to the alarm(s)
flagged over window(s), which are actually true positives belonging to a specific
malicious insider threat.
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5 Conclusion and Future Work

This chapter addresses the shortcoming of high number of false alarms in the ex-
isting insider threat detection mechanisms. The continuous flagging of false alarms
deceives the administrator(s) about suspicious behaviour of many users. This con-
sumes a valuable time from their schedule, while investigating the suspected users.

We present a streaming anomaly detection approach, namely Ensemble of Ran-
dom subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat
detection. The ultimate aim of E-RAIDS is to detect any-behaviour-all-threat (threat
hunting as defined in section 1), while reducing the number of false alarms.

E-RAIDS is built on the top of established continuous outlier detection tech-
niques (MCOD or AnyOut). These techniques use data stream clustering to op-
timise the detection of outliers (which may refer to malicious insider threats). E-
RAIDS is an ensemble of p outlier detectors (p MCOD base learners or p AnyOut
base learners), where each model of the p models learns on a random feature sub-
space. The merit of using feature subspaces is to detect local outliers which might
not be detected over the whole feature space. These outliers may refer to anomalous
behaviour(s) which belong to a malicious insider threat. E-RAIDS presents also an
aggregate component to combine the votes from the feature subspaces, and take a
decision whether to flag an alarm or not.

We define two experiments: E-RAIDS-MCOD with MCOD base learner, and
E-RAIDS-AnyOut with AnyOut base learner. The experiments are carried out on
CMU-CERT data sets which include simulated malicious insider threats scenar-
ios. We compare the performance of E-RAIDS using each of MCOD and AnyOut
in terms of, (1) the evaluation measures: F1 measure, TPt of threats detected, and
FPAlarm flagged; (2) the effectiveness of the concept of voting feature subspaces;
(3) the capability of E-RAIDS to detect insider threats in real-time (Hypothesis 1);
and (4) the capability of E-RAIDS to detect more than one behaviour belonging
to an insider threat (Hypothesis 2) despite our formulation to the insider threat ap-
proach (threat hunting).

The results show that E-RAIDS-MCOD outperforms E-RAIDS-AnyOut, where
the latter shows a low level of certainty in the detection of outliers. E-RAIDS-
MCOD reports a higher F1 measure=0.9411 and 0.9523 over com-P and com-S, a
lower FPAlarm=0 over all communities, and misses only one threat TPT =16 and 21
over com-P and com-S. It is worth to also mention that the window size w=150,200
gives the best performance for E-RAIDS-MCOD compared to the tuned values. E-
RAIDS verifies the hypothesised capabilities in terms of the detection of more than
one behaviour per threat in real-time.
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Outlier Detection in Random Subspaces
over Data Streams: An Approach for
Insider Threat Detection

Diana Haidar and Mohamed Medhat Gaber

Abstract Insider threat detection is an emergent concern for industries and
governments due to the growing number of attacks in recent years. Several
Machine Learning (ML) approaches have been developed to detect insider
threats, however, they still suffer from a high number of false alarms. None
of those approaches addressed the insider threat problem from the perspec-
tive of stream mining data where a concept drift or an outlier is an indi-
cation of an insider threat. An outlier refers to anomalous behaviour that
deviates from the normal baseline of community’s behaviour and is the focus
of this paper. To address the shortcoming of existing approaches and realise
a novel solution to the problem, we present RandSubOut (Random Subspace
Outliers) approach for insider threat detection over real-time data streams.
RandSubOut allows the detection of insider threats represented as localised
outliers in random feature subspaces, which would not be detected over the
whole feature space, due to dimensionality. We evaluated the presented ap-
proach as an ensemble of established distance-based outlier detection meth-
ods, namely, Micro-cluster-based Continuous Outlier Detection (MCOD) and
Anytime OUTlier detection (AnyOut), according to evaluation measures in-
cluding True Positive (TP) and False Positive (FP).

1 Introduction

Insider threat detection is an emergent concern for academia, industries, and
governments due to the growing number of attacks in recent years. Insiders
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are current or former employees, contractors or business partners of an organ-
isation who have authorised access to the network system, data, or sensitive
information (e.g. trade secrets, organisation plans, and Intellectual Property)
[15]. Their authorised access makes the organisation prone to insider threats
that could have a vital negative impact on the system. Insider threats can be
categorised into two groups, which are malicious insider threats and uninten-
tional insider threats. Malicious insider threats are caused by insiders who
exploit their privileges with the intention to compromise the confidentiality,
integrity, or availability of the system and data. Their motivation would be
to disclose or modify organisation’s information for financial gain, for the
advantage of a competitor company with the promise of a higher-paying job,
or for revenge [4]. Unintentional insider threats are caused by insiders who
accidentally harm the organisation’s assets. This includes human mistakes
and errors that are the result of faulty system design or the non-malicious
negligence of insiders.

Legg et al. [14] stated that according to the 2011 Cybersecurity Watch
Survey, 58% of attacks are associated outsiders, while 21% are associated in-
siders. However, the risk of insider attacks is much more than that of outsider
attacks, because insiders have authorised access to sensitive data that could
be used to damage the company’s reputation, brand integrity, or customer
confidence. An important example is the insider attack of Edward Snowden
[21], a contractor hired by the National Security Agency (NSA). Snowden,
in May 2013, stole approximately 1.7 million documents containing secret
data from the NSA and revealed it to the public via newspapers and mass
media. This incident was reported as the biggest US intelligence leakage, and
has caused increased concern amongst governments and companies. More-
over, there exist various security measures for outsider threats, which is not
the case for insider threats, such as firewalls, Intrusion Detection/Prevention
Systems (IDS/IPS), and antiviruses.

The continuous streaming of insider threat data generated from various
sources (e.g. security logs, traffic data, web requests, and email headers) in-
creases the volume and velocity of this data acquisition. To handle the big
data streams and detect insider threats, several machine learning approaches
have been developed, however, they still suffer from a high number of false
alarms. None of those approaches addressed the insider threat problem from
the perspective of stream mining data where a concept drift or an outlier is an
indication of an insider threat. We can recognize two types of drifts: a normal
drift and a concept drift. A normal drift is the change in data distribution
over time; the normal change in a user’s behaviour over time according to
tasks assigned, developed knowledge level and other elements [24]. A concept
drift may manifest in different patterns such as sudden/abrupt, incremental,
gradual, and reoccurring concepts [9]. The focus of this paper is on outliers
which refer to anomalous behaviour that deviates from the normal baseline
of user’s behaviour or community (i.e. a group of users having the same role)
behaviour.
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Hence, we present RandSubOut (Random Subspace Outliers) approach for
insider threat detection over real-time data streams. The idea is to construct
an ensemble of p+ 1 outlier detection base learners, including p learners over
random subspaces of feature pairs and one learner over all feature space.
RandSubOut allows the detection of insider threats represented as localised
outliers in random feature subspaces, which would not be the case over the
whole feature space. The main contributions of this paper are summarised as
follows:

• extraction of new feature types from the synthetic insider threat data by
CMU−CERT 1 [11] to generate community behaviour profiles;

• presentation of RandSubOut for Insider Threat Detection with MCOD
and AnyOut outlier detection base learners;

• detection of insider threats represented as distance-based outliers using
RandSubOut; and

• evaluation of the performance of RandSubOut according to the evaluation
measures including TP and FP.

The rest of this paper is organised as follows. Section 2 summarises the
related work. Section 3 introduces some outlier detection methods over a data
stream and describes RandSubOut for Insider Threat Detection. Experiments
and results are discussed in Section 4. Finally, Section 5 concludes the paper
and suggests future work.

2 Related Work

There exists a significant body of research on applying ML approaches for
detecting insider threats. A great research trend is towards utilising proba-
bilistic and k Nearest Neighbours (k-NN) approaches. The probabilistic ML
approaches include Naive Bayes [25][19], Bayesian Network (BN) [3], and
Hidden Markov Model (HMM) [12]. Others chose to combine BN and other
ML algorithms, such as HMM [20] and Stochastic Gradient Boosting [5],
with the aim to improve their models’ performance. While, the k-NN ap-
proaches [7][8][18] are distance-based so any deviation of a user’s behaviour
from her/his normal baseline or the baseline of the community’s behaviour
flags anomalous behaviour. In addition, there exists research on implementing
Fuzzy Inference Systems [24][6] to evaluate the degree of insider threat.

However, neither of those approaches addressed the insider threat problem
from the perspective of mining data streams with concept drift, except for
[16]. Parveen et al. [16] proposed an ensemble of One Class Support Vector
Machine (OCSVM) to model a time series of daily logs. It maintains a k
number of ensemble models having the minimum prediction error. The en-
semble of OCSVM reported higher accuracy and almost half the number of

1 https://www.cert.org/insider-threat/tools/
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false positives compared to traditional OCSVM. The authors extended their
work in a future paper [17] where the ensemble approach was applied on
unsupervised Graph-based Anomaly Detection (GBAD). The results proved
that the ensemble approach based on supervised OCSVM outperformed that
based on unsupervised GBAD which reported a higher false rate.

Parveen’s approach [16] models normal user’s behaviour acquired from
data streams over an ensemble of OCSVM classifiers in order to find a de-
cision boundary between normal class label c = 1 and abnormal class label
c = 0 (i.e. malicious insider threats). However, the idea of RandSubOut is to
detect malicious insider threats represented as distance-based outliers contin-
uously over real-time data streams. It also allows to detect localised outliers
over random feature subspaces which may not be detected over the whole
feature space as addressed in [16]. In addition, the paper [16] evaluated the
proposed approach over 1998 DARPA Intrusion Detection data set 2 which
is not specifically developed for insider threat detection. Unlike [16], our ap-
proach RandSubOut is evaluated over a synthetic data set with insider threat
scenarios generated by CMU−CERT.

3 Outlier based Insider Threat Detection

This section describes an established distance-based outlier detection meth-
ods, as well as the proposed approach RandSubOut utilizing those methods
for insider threat detection.

3.1 Outlier Detection Methods

The state of the art introduces different outlier detection methods over a
data stream. The paper [10] provides a comparison of four distance-based
outlier detection methods including STORM [1], Abstract-C [22], COD [13],
and MCOD [13]. According to [10], COD and MCOD have lower space and
time requirements than STORM and Abstract-C. However, all of the four
outlier detection methods output the same outliers [10]. Thus, STORM and
Abstract-C were excluded from being tested in the proposed approach. More-
over, the experimental evaluation in [13] shows better performance for MCOD
compared to COD over benchmark tested data sets. Hence, MCOD was se-
lected among the four methods. All of the four methods in addition to a
further distance-based outlier detection method called AnyOut [2] have been
implemented in the open-source tool for Massive Online Analysis (MOA)3.

2 http://www.ll.mit.edu/ideval/data/1998data.html
3 http://moa.cms.waikato.ac.nz/
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We select MCOD and AnyOut, which has not been compared to the four
methods, to test their performance on synthetic insider threat data sets gen-
erated by the CERT Division at Carnegie Mellon University (CMU−CERT).
A description of the selected algorithms is provided below.

3.1.1 MCOD

MCOD (Micro-cluster-based Continuous Outlier Detection) is an event-based
approach that introduces the concept of evolving micro-clusters. The micro-
clusters are the regions containing inlier instances with no overlapping. This
allows to evaluate the range queries for new instance x with respect to the
centers of micro-clusters instead of all the preceding active instances in the
current window w. Thus, reducing the space and time requirements. Let S
represent the set of instances that doesn’t belong to any micro-cluster. For
each new instance x, MCOD selects the center of the nearest micro-cluster c.
If the dist(x, c) ≤ r

2 such that r is the distance parameter for outlier detection,
x is assigned to the corresponding micro-cluster. Otherwise, a range query
for x is evaluated with respect to the set S of instances that doesn’t belong
to any micro-cluster. Let b represent the number of neighbours N ⊆ S of x
where ∀n ∈ N, dist(x, n) ≥ r

2 and let k represent the number of neighbours
parameter. If b > θk such that parameter θ ≥ 1, then a new micro-cluster
with center x is created and the neighbours N are assigned to this micro-
cluster. A micro-cluster whose size decreases below k + 1 is deleted and a
range query similar to that described for x is performed for each of its former
instances. An instance x is flagged as an outlier, if there exists less than k
instances in either S or in each micro-cluster of center c that satisfies the
following: dist(x, c) ≤ 3

2r.

3.1.2 AnyOut

AnyOut (Anytime Outlier detection) is a cluster-based approach that sug-
gests a hierarchy of clusters in tree structure named ClusTree where upper
level clusters include fine grained information about lower levels. It represents
a cluster by a Cluster Feature tuple CF = (n,LS, SS), where n is the number
of instances in the cluster, LS and SS are respectively the linear sum and
the squared sum of those instances. The compact structure of the tree using
CF tuples reduces space requirements. The idea of AnyOut is to traverse the
tree in top-down manner and compare the current instance xi to the clusters
at each level until the arrival of new instance xi+1 interrupts the descent
down the tree. At the moment of interruption, it inserts xi to the cluster
node e arrived into in the ClusTree and provides its degree of outlierness.
Thus, maintaining real-time feedback. AnyOut defines two scores to reflect
the degree of outlierness of an instance xi. Mean outlier score is dist(xi, µ(e))
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where µ(e) is the mean of e that xi is inserted to. Density outlier score is
1− gaus(xi, e) where gaus(xi, e) is the Gaussian probability density of xi for
µ(e).

3.2 RandSubOut Approach for Insider Threat
Detection

Features extracted from system and network logs describe the activity of a
community. The deviation of such activity from its normal pattern accord-
ing to a certain determined threshold could correlate to a malicious insider
behaviour [23]. Those features are treated as priori indicators. For example,
increased removable media activity which could correlate to IP theft; logon
after working hours or from a different county location; vast number of file
events like downloads, uploads, or email forwards. Another indicator is re-
lated to text categorization where specific keywords, phrases or emails could
correlate to malicious insider activities. An illustrative case could be browsed
suspicious websites and on the top of the list is WikiLeaks and job hunting
sites.

The feature space identified in this research consists of a combination of
system and network logs. The feature set assesses each user’s logged activities,
devices, and assigned attribute values. It is categorized into four feature types
sorted according to session slots:

• Frequency-based features (e.g. freq. (i.e. frequency) of logon, freq. of con-
necting a device, freq. of copying files to removable media device, etc.);

• Time-based features (e.g. logon after working hours, device usage after
working hours, duration of connecting a device, etc.);

• Boolean features (e.g. logon from new pc flag= 0,1, email-bcc non-empty,
email-to or -cc or -bcc include a non-employee, etc.);

• Attribute-based features (e.g. freq. of visiting a particular URL, freq. of
sending emails to a particular user, etc.).

We propose an approach for insider threat detection named RandSubOut
(Random Subspace Outliers). The aim of RandSubOut is based on detecting
localised outliers in random subspaces of feature pairs. Those localised out-
liers represent insider threats, which would not be detected over the whole
feature space. For instance, let f represent the number of features and p = f
represent the number of feature subspaces. The idea is to construct an ensem-
ble of p+ 1 base learners, including p learners over random feature subspaces
and one learner over all feature space. Each learner in the ensemble will build
a model, so based on a voting mechanism of those models, an alarm may be
generated reporting a malicious insider threat. In the following, a detailed
description of RandSubOut is provided.
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3.2.1 Over each feature subspace

At each window slide wIter (fixed size of window slide), RandSubOut cre-
ates an outlier temporal list OutTempList of the detected outliers OutSet,
each associated with a temporal factor tempF and the window slide wIter.
A temporal factor tempF counts the number of windows that the outlier sur-
vived in (i.e. the outlier did not turn into an inlier). For example, if an outlier
out ∈ OutTempList remains as an outlier at next window slide wIter + 1,
tempF associated to out is incremeted by 1.

RandSubOut then creates a list of flag alerts SubF lagAlertList associated
to the window slides wIter for the corresponding feature subspace. A flag
alert flagAlert is a boolean variable assigned to {0, 1}. We define a vouch
factor vouchF as a parameter which confirms whether an outlier is a positive
(i.e. a malicious insider threat). At each window slide wIter, we check if
tempF = vouchF , then the outlier survived for a vouchF number of windows
and flagAlert is assigned 1 for the window slide wIter that the outlier is
confirmed as a positive at. Thus, minimizing the number of false alarms (i.e.
false flag alerts). Algorithm 1 gives a a pseudo code to describe the steps of
the procedure over each feature subspace. Note that outMethod represents
the distance-based outlier detection method utilized as a base learner. This
refers to either MCOD or AnyOut in this paper.

3.2.2 Over the ensemble of random feature subspaces

In total, RandSubOut creates a list of votes EnsembleV oteList which counts
the number of times a flagAlert is assigned to 1 at each window slide wIter
over all the random feature subspaces. This count is maintained in a variable
vote. Let voteF represent a vote factor which confirms whether a flag alarm
should be generated as a total vote of the ensemble. If vote ≥ voteF , then
a an alarm is generated at this window slide wIter. A description for the
procedure over the ensemble of random feature subspaces is provided in a
pseudo code in Algorithm 2.

4 Experiments

In this section, we present the experiments performed to evaluate RandSub-
Out with MCOD and AnyOut based learners over CMU−CERT data. The
results are displayed and discussed in order to select the optimal tuned pa-
rameters for detecting malicious insider threat represented as outliers.
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Algorithm 1 Over each feature subspace
1: wIter ← 0
2: found← 0
3: while nbrProcInst < nbrInst do
4: outMethod.process(newInst)
5: if (nbrProcInst mod w) = 0 then
6: OutSet← outMethod.getOutliersFound()
7: for Outlier out : OutSet do
8: if out ∈ OutTempList.getOutliers() then
9: tempF ← OutTempList.getOutTuple(out).getTempF()

10: OutTempList.getOutTuple(out).setTempF(tempF + 1)
11: found← 1
12: end if
13: if found = 0 then
14: tempF ← 1
15: OutTempList.addOutTuple(out, tempF , wIter)
16: end if
17: end for
18: for Outlier out ∈ OutTempList.getOutliers() do
19: if OutTempList.getOutTuple(out).getTempF()= vouchF then
20: if SubFlagAlertList.getFlagAlert(wIter)= 0 then
21: flagAlert← 1
22: SubFlagAlertList.setFlagAlert(wIter, flagAlert)
23: end if
24: OutTempList.removeOutTuple(out)
25: else
26: outWIter ← OutTempList.getOutTuple(out).getWIter()
27: if wIter − outWIter + 1 = vouchF then
28: OutTempList.removeOutTuple(out)
29: end if
30: end if
31: end for
32: wIter ← wIter + 1
33: end if
34: end while

Algorithm 2 Over the ensemble of random feature subspaces
1: for FeatureSubspace FSubspace : FeatureSpace do
2: for WindowIterSlide wIter : SubFlagAlertList.getWIters() do
3: tempV ote← EnsembleVoteList.getVote(wIter)
4: vote← tempV ote+ SubFlagAlertList.getFlagAlert(wIter)
5: EnsembleVoteList.setVote(wIter, vote)
6: end for
7: end for
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4.1 Experimental Setup

We extracted a set of the features defined previously from the CMU−CERT
data sets. This feature set builds up a community behaviour profile for each
community (e.g. computer programmers, mathematicians, test engineers,etc.)
sorted according to session slots. A session slot is per 4 hours to handle the
detection of insider threat as soon as possible near to real-time. Since the
range of feature values varies widely, we performed feature scaling in the
range of [0, 1].

As discussed before, a malicious insider threat may manifest in different
patterns of concept drift or an outlier which is the focus of this paper. We
consider a malicious insider threat scenario that maps to outliers, where a
user uses a USB drive at markedly higher rate than previous activity to steal
data 4 [11]. The total number of instances nbrInst = 3000 in a community
behaviour model represents the number of session slots. The period of the
malicious insider threat scenario maps to a start at lowerBound = 922 and
an end at upperBound = 1323.

We evaluated RandSubOut as an ensemble of MCOD base learners and
an ensemble of AnyOut base learners according to TP (i.e. true alarms that
correlate to malicious insider threat) and FP (i.e. false alarms that correlate
to normal instances detected as outliers) measures.

For MCOD, Table 1 displays a description of the tuned parameters. For
AnyOut, the experiments revealed that varying the values of the parameters
trainSetSize, confAggr, conf , and threshold does not have a significant
effect on the results, so they were assigned to fixed values. However, we tuned
other parameters as described in Table 2.

Table 1 MCOD Tuned Parameters.

k = {50, 60, 70} number of neighbours parameter
r = {0.3, 0.4, 0.5, 0.6, 0.7} distance parameter for outlier detection
w = {100, 150, 200} window size

Table 2 AnyOut Tuned Parameters.

trainSetSize = 500 training set size
confAggr = 2 size of confidence aggregate
conf = 4 initial confidence value
threshold = 0.4 outlier score threshold
oScoreAggr = {2, 8} size of outlier score aggregate
w = {100, 200} window size

4 https://www.cert.org/insider-threat/tools/



Diana Haidar and Mohamed Medhat Gaber

The vouch factor vouchF defined previously is assigned vouchF = 2 for
MCOD, so it confirms whether an outlier is positive after it survives for 2
window slide iterations. However, it is tuned to vouchF = {2, 4} for AnyOut,
because it affects the results, which is not the case for MCOD where no flag
alarms are generated then. The vote Factor voteF is assigned voteF = 2, so
it confirms whether a flag alarm should be generated as a total vote of the
ensemble.

4.2 Results and Discussion

Fig. 1 TP votes generated by RandSubOut with MCOD over w = 100.

Fig.1, Fig.2, and Fig.3 show the number of TP votes generated by Rand-
SubOut using MCOD base learners over window size w = 100, w = 150,
and w = 200 respectively with varying values of parameters k and r. Note
that the parameters which didn’t show TP votes are not displayed in fig-
ures. The window slide iteration wIter ends at the number of processed
instances nbrProcInst and starts at nbrProcInst − w (e.g. for w = 100,
the first window slide iteration wIter = 1 ends at nbrProcInst = 100
and starts at nbrProcInst − w = 0). In order to satisfy real-time or near
real-time detection of a malicious insider threat (i.e. TP), we should con-
sider the flag alarms generated at real-time or near real-time. For instance,
in Fig.1, if vouchF = 2, then a flag alarm of TP votes should be gener-
ated between lowerV ouchBound = ceil(lowerBound+w× (vouchF − 1)) =
floor(922 + 100× 1) = 1100 and upperV ouchBound = floor(upperBound+
w × vouchF ) = ceil(1323 + 100 × 1) = 1500. Fig.1 shows that the alarms
started to be flagged at lowerV ouchBound = 1100, however more flag alarms



Outlier Detection in Random Subspaces over Data Streams

Fig. 2 TP votes generated by RandSubOut with MCOD over w = 150.

Fig. 3 TP votes generated by RandSubOut with MCOD over w = 200.

are generated after upperV ouchBound = 1500. This is justified by that in-
stances assigned as inliers by RandSubOut may turn into outliers after a
number of window slide iterations. In MCOD, an instance may not belong
to any micro-cluster but still is an inlier, thus considered a potential out-
lier. RandSubOut considers a flag alarm as a true if it signals a vote ≥ voteF
and it is generated between lowerV ouchBound and upperV ouchBound. This
means that at least two feature subspaces voted for a flag alarm at this win-
dow slide iteration wIter. Thus, minimizing the number of false alarms. To
select the optimal parameter values, we consider the parameter values which
satisfies a true flag alarms ONLY generated between lowerV ouchBound
and upperV ouchBound. Fig. 1 for k = 60, r = 0.5, w = 100 reports a
true alarm with vote ≥ voteF ; voteF = 2 at nbrProcInst = 1500 (i.e.
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Fig. 4 TP votes generated by RandSubOut with AnyOut over w = 100.

Fig. 5 TP votes generated by RandSubOut with AnyOut over w = 200.

wIter = nbrProcInst ÷ w = 1500 ÷ 100 = 15 such that wIter starts at 0).
Also, Fig. 2 for k = 70, r = 0.4, w = 150 reports a true alarm with vote ≥ 2
for TP = 1 at nbrProcInst = 1350, where lowerV ouchBound = 1200
and upperV ouchBound = 1500 (i.e. wIter = 9). However, no case in
Fig.3 satisfies the condition of a true flag alarm ONLY generated between
lowerV ouchBound and upperV ouchBound with vote ≥ voteF ; voteF = 2
for TP = 1.

Similarly, Fig.4, and Fig. 5 show the number of TP votes generated by
RandSubOut using AnyOut base learners over window size w = 100, and w =
200 respectively with varying values of parameters oScoreAggr and vouchF .
It is clear that no case in both figures satisfies the condition of a true flag
alarm ONLY generated between lowerV ouchBound and upperV ouchBound
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Fig. 6 TP votes vs. FP votes generated
by RandSubOut with MCOD over w =
100.

Fig. 7 TP votes vs. FP votes generated by
RandSubOut with MCOD over w = 150.

with vote ≥ voteF ; voteF = 2. Moreover, the results revealed flag alarms with
a great number of votes which do not map to the malicious insider threat
scenario. For instance, the worst case of vote = 14 implies that 14 feature
subspaces voted for this flag alarm as true, so approximately 14 or less random
features reported a malicious insider threat which is not the case. Mapping
to the malicious insider threat scenario considered, only few features such
as freq. of connecting a device and freq. of copying files to removable media
device would only report a malicious insider threat. The reason behind those
unstatisfying results correlate to that an outlier score of an instance xi is
computed once a new instance xi+1 arrives. This means that the processing
is interrupted and the confidence of the outlier score computed would be very
low.

Based on the above experiments, we select two cases of RandSubOut with
MCOD base learners. The first case for k = 60, r = 0.5, w = 100 is reported in
Fig. 6 showing the TP votes vs. FP votes with respect to processed instances.
The second case for k = 70, r = 0.4, w = 150 is reported in Fig. 7 showing
the TP votes vs. FP votes with respect to processed instances. Fig. 6 flags
a true alarm with vote = 2 for TP = 1 and a false alarm with vote = 2 for
FP = 1 at nbrProcInst = 1500. However, Fig. 7 only flags a true alarm
with vote = 2 for TP = 1 at nbrProcInst = 1350, but it didn’t flag any false
alarm with vote ≥ 2. Thus, in this case FP = 0 where no false alarms are
generated. Hence, the vote goes to RandSubOut with MCOD base learners
for k = 70, r = 0.4, w = 150, vouchF = 2, voteF = 2.
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5 Conclusion

This paper addresses the problem of high number of false alarms in the
existing insider threat detection approaches from the perspective of stream
mining data where a concept drift is an indication of an insider threat. We
present RandSubOut approach for insider threat detection over real-time
data streams. RandSubOut allows to detect insider threats represented as
localised outliers over random feature subspaces, which may not be detected
over the whole feature space. It also introduces two parameters: a vouch
factor to confirm whether a flag alarm should be generated over a feature
subspace, and a vote factor to confirm whether a flag alarm should be gen-
erated as a total vote of the ensemble. We evaluated RandSubOut as an
ensemble of MCOD and AnyOut outlier detection methods, according to
evaluation measures including TP and FP. The experiments revealed that
RandSubOut with MCOD base learners outperforms RandSubOut with Any-
Out base learners. Moreover, RandSubOut with MCOD base learners for
k = 70, r = 0.4, w = 150vouchF = 2, voteF = 2 provided the best results,
where it votes for true alarms with vote ≥ 2 for TP = 1 at real-time or near
real-time. In this case, the votes for FP are ≤ 2, so no false alarms were
generated.

Future work will be to address malicious insider threat scenarios that map
to the different patterns of concept drift other than outliers. It will also tackle
how to distinguish between a normal drift and a concept drift over real-time
data streams.
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[9] Gama J, Žliobait I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A
survey on concept drift adaptation. ACM Computing Surveys (CSUR)
46(4):44

[10] Georgiadis D, Kontaki M, Gounaris A, Papadopoulos AN, Tsichlas K,
Manolopoulos Y (2013) Continuous outlier detection in data streams: an
extensible framework and state-of-the-art algorithms. In: Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data, ACM, pp 1061–1064

[11] Glasser J, Lindauer B (2013) Bridging the gap: A pragmatic approach
to generating insider threat data. In: Security and Privacy Workshops
(SPW), 2013 IEEE, IEEE, pp 98–104

[12] Huang L, Stamp M (2011) Masquerade detection using profile hidden
markov models. computers & security 30(8):732–747

[13] Kontaki M, Gounaris A, Papadopoulos AN, Tsichlas K, Manolopoulos
Y (2011) Continuous monitoring of distance-based outliers over data
streams. In: 2011 IEEE 27th International Conference on Data Engi-
neering, IEEE, pp 135–146

[14] Legg PA, Moffat N, Nurse JR, Happa J, Agrafiotis I, Goldsmith M,
Creese S (2013) Towards a conceptual model and reasoning structure
for insider threat detection. JoWUA 4(4):20–37

[15] Nurse JR, Legg PA, Buckley O, Agrafiotis I, Wright G, Whitty M, Up-
ton D, Goldsmith M, Creese S (2014) A critical reflection on the threat
from human insiders–its nature, industry perceptions, and detection ap-
proaches. In: International Conference on Human Aspects of Information
Security, Privacy, and Trust, Springer, pp 270–281

[16] Parveen P, Weger ZR, Thuraisingham B, Hamlen K, Khan L (2011)
Supervised learning for insider threat detection using stream mining.
In: 2011 IEEE 23rd International Conference on Tools with Artificial
Intelligence, IEEE, pp 1032–1039

[17] Parveen P, Mcdaniel N, Weger Z, Evans J, Thuraisingham B, Hamlen
K, Khan L (2013) Evolving insider threat detection stream min-
ing perspective. International Journal on Artificial Intelligence Tools
22(05):1360,013



Diana Haidar and Mohamed Medhat Gaber

[18] Punithavathani DS, Sujatha K, Jain JM (2015) Surveillance of anomaly
and misuse in critical networks to counter insider threats using compu-
tational intelligence. Cluster Computing 18(1):435–451

[19] Sen S (2014) Using instance-weighted naive bayes for adapting concept
drift in masquerade detection. International Journal of Information Se-
curity 13(6):583–590

[20] Tang K, Zhou MT, Wang WY (2009) Insider cyber threat situational
awareness framwork using dynamic bayesian networks. In: Computer
Science & Education, 2009. ICCSE’09. 4th International Conference on,
IEEE, pp 1146–1150

[21] Verble J (2014) The nsa and edward snowden: surveillance in the 21st
century. ACM SIGCAS Computers and Society 44(3):14–20

[22] Yang D, Rundensteiner EA, Ward MO (2009) Neighbor-based pattern
detection for windows over streaming data. In: Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, ACM, pp 529–540

[23] Young WT, Goldberg HG, Memory A, Sartain JF, Senator TE (2013)
Use of domain knowledge to detect insider threats in computer activities.
In: Security and Privacy Workshops (SPW), 2013 IEEE, IEEE, pp 60–67

[24] Yu Y, Graham JH (2006) Anomaly instruction detection of masquer-
aders and threat evaluation using fuzzy logic. In: 2006 IEEE Interna-
tional Conference on Systems, Man and Cybernetics, IEEE, vol 3, pp
2309–2314

[25] Zhang R, Chen X, Shi J, Xu F, Pu Y (2014) Detecting insider threat
based on document access behavior analysis. In: Asia-Pacific Web Con-
ference, Springer, pp 376–387


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem Statement
	Aims and Objectives
	Research Contributions
	Ethics Statement
	Structure of the Thesis

	Approaches for Insider Threat Detection
	Introduction
	Signature-based Approaches
	Machine Learning Approaches
	Sequence-based Approaches
	Behaviour-based Approaches
	Classification
	Anomaly Detection
	Streaming Anomaly Detection

	Others

	Discussion
	Shortcoming of High Number of False Alarms

	Summary

	An Opportunistic Approach for Insider Threat Detection
	Introduction
	Challenges in Existing Machine Learning Approaches
	Challenges in Sequence-based Approach
	Challenges in Behaviour-based Approach

	The Proposed Opportunistic Approach
	Summary

	Feature Space for Insider Threat Detection
	Introduction
	Description of the Data Sets
	Scenarios of Malicious Insider Threats

	Data preprocessing for CMU-CERT Insider Threat Data Sets
	Feature Extraction for CMU-CERT Community Data Sets
	The Data Imbalance of CMU-CERT Community Data Sets

	Summary

	Supervised Learning for Imbalanced Insider Threat Detection
	Introduction
	Background
	Oversampling Imbalanced Data
	Classification Methods
	Random Forests
	Extreme Gradient Boosting
	Support Vector Machines


	CD-AMOTRE: Class Decomposition with Artificial Minority Oversampling and Trapper Removal
	Class Decomposition
	Decomposing the Majority Class
	Decomposing the Minority Class

	AMOTRE Oversampling Technique
	Identifying the Peculiarity of Minority Instances
	Generating Artificial Samples for Minority Instances


	Experiments
	Experimental Setup
	Description of the Experiments
	Evaluation Measures
	Results and Discussion
	SMOTE vs AMOTRE over Minority Class
	Influence of Trapper Removal on AMOTRE
	Effectiveness of Class Decomposition for Majority and Minority Class


	Summary

	Anomaly Detection for Insider Threat Detection
	Introduction
	Background
	One Class Support Vector Machine
	Isolation Forest

	Adaptive One-Class Ensemble-based Anomaly Detection
	One-class Modelling Component
	Progressive Update Component

	Experiments
	Experimental Setup
	Evaluation Measures
	Results and Discussion
	Results
	ocsvm Experiments
	iForest Experiments

	Statistical Significance: Wilcoxon Signed-Rank Test
	Comparing ocsvm Experiments and iForest Experiments
	Influence of Proposed Components on the Framework
	Time Efficiency of Progressive Update Component

	Summary

	Streaming Anomaly Detection for Insider Threat Detection
	Introduction
	Background
	Clustering for Outlier Detection
	Background on Distance-based Outlier Detection Techniques
	Micro-cluster-based Continuous Outlier Detection
	Anytime Outlier Detection


	E-RAIDS: Ensemble of Random Subspace Anomaly Detectors In Data Streams
	Feature Subspace Anomaly Detection
	Ensemble of Random Feature Subspaces Voting

	Experiments
	Experimental Tuning
	Evaluation Measures
	Results and Discussion
	MCOD versus AnyOut Base Learner for E-RAIDS in Terms of Evaluation Measures
	MCOD versus AnyOut for E-RAIDS in terms of Voting Feature Subspaces
	Real Time Anomaly Detection in E-RAIDS
	(More than One)-Behaviour-All-Threat Detection in E-RAIDS


	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Real-world Insider Threat Data
	Broader Impact of Contribution Approaches
	Further Experimental Studies
	Incorporating `Big Data'/`Security' Tools
	Addressing the Masquerade Scenario


	Bibliography
	Appendices



