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Abstract: The field of image synthesis intrinsically relies on the process of image compositing. This process can be auto-
matic or manual, and depends upon artistic intent. Compositing can introduce errors, due to human-detectable
differences in the general pixel level transforms of component elements of an image composite. We report on
a pilot study evaluating a proof-of-concept automatic image composite harmonisation system consisting of a
state-of-the-art deep harmonisation model and a perceptually-based composite luminance artifact detector. We
evaluate the performance of both systems on a large data-set of 68128 automatically generated image com-
posites and find that without any task-specific adaptations, the end-to-end system achieves comparable results
to the baseline harmoniser fed with ground truth composite masks. We discuss these findings in the context of
extending this to an end-to-end, multi-task system.

1 INTRODUCTION

Image compositing is a common task in image pro-
cessing where an object from one image is extracted
and inserted into another image, referred to as the
scene, with the aim of creating a plausible, realis-
tic result (Wright, 2013). Due to inherent dispar-
ities in appearance between the object and scene,
commonly resulting from differences in illumination,
camera intrinsics, post-processing, encoding or com-
pression, component elements of a composite often
require post-processing in order to create a com-
pelling and realistic final result. To address these
issues, a wide range of automatic compositing tech-
niques have been proposed. These include alpha mat-
ting - linear combinations of object and scene pixel
values (Porter and Duff, 1984), gradient-domain op-
timization techniques (Pérez et al., 2003; Agarwala
et al., 2004; Levin et al., 2004), visual appearance
transfer (Reinhard et al., 2001; Lalonde and Efros,
2007) and multi-scale methods (Burt and Adelson,
1983a,b; Sunkavalli et al., 2010).

More recently, deep learning (DL) based ap-
proaches have achieved considerable success in the
domain of image compositing. Notably Tsai et al.
(2017) adopt the denoising autoencoder (DAE) (Vin-
cent et al., 2008) attempting to learn the composit-
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ing function directly from image data, including se-
mantic information derived from ground truth seman-
tic segmentation labels. Chen and Kae (2019) lever-
age a generative adversarial network (GAN) to learn
both colour-based and geometric transformations in
order to perform compositing of arbitrary objects into
arbitrary scenes. Conditional GANs have also been
adopted to address this problem, by learning to model
joint distributions of different object classes and their
interactions in image space (Azadi et al., 2018), as
well as performing colour and gradient blending be-
tween composite elements, which have been semanti-
cally aligned.

These existing methods are not without limita-
tions. Firstly, they focus on creation of new compos-
ites, thus requiring object/scene segmentation masks
to be available at input. This limits their use for
cases where these are not available, such as improve-
ment of existing image composites. Secondly, they
do not explicitly leverage human perceptual charac-
teristics, such as their sensitivity to various image
artifacts or magnitude of mismatch between object
and scene (Dolhasz et al., 2016). Finally, the masks
supplied to such algorithms provide only a binary
indication whether a given pixel belongs to the ob-
ject or the scene. This implies the entire region re-
quires correction and induces a generic transforma-
tion, such as colour transfer, uniformly across the re-
gion. This can result in the harmonisation algorithm
over-compensating and generating a suboptimal out-



put, even compared to the unprocessed input compos-
ite.

We argue that perceptual detection of compos-
ite artifacts should be explicitly modelled in deep-
learning-based image compositing and harmonisa-
tion. Our reasoning behind this is as follows. Firstly,
it enables design of end-to-end harmonisation sys-
tems without the need for manually supplied ob-
ject masks, allowing harmonisation of composites for
which masks are not available. Secondly, the explicit
encoding of the location and perceptual magnitude
of errors in the output of the model allows the pro-
cess to take advantage of the benefits of multi-task
learning in terms of generalisation (Ruder, 2017; Ran-
jan et al., 2017). The potential applications of such
automatic compositing systems are wide-ranging, in-
cluding improvement of legacy content, detection of
image manipulations and forgery, perceptually-based
metrics and image synthesis.

Consequently, in this study, we design a proof-
of-concept end-to-end compositing pipeline consist-
ing of a detector network, which outputs masks cor-
responding to regions requiring harmonisation, and a
harmoniser network, which corrects the detected re-
gions. We then assess the impact of object masks
predicted by the detector on the accuracy of the
harmoniser, compared to using ground truth object
masks. Our study adopts two existing networks
- the Deep Harmonisation algorithm proposed by
Tsai et al. (2017) as the harmoniser network, and a
perceptually-based fully convolutional network pro-
posed by Dolhasz et al. (2019) as the detector net-
work.

We show that our prototype end-to-end system,
using the the detector network without any task-
specific adaptations or re-training, produces results
which are comparable to those obtained using ground
truth masks. To our knowledge this is the first work
investigating the combination of a deep-learning-
based detection model with a composite harmonisa-
tion one to both detect and fix composites. We are
currently developing a complete, end-to-end version
of the model, trained specifically for this purpose.

2 RELATED WORK

2.1 Image Compositing &
Harmonisation

Automatic image compositing and harmonisation are
both active and challenging problems in the domain
of image understanding and processing. Image com-

positing concerns the entire process of combining
regions from different source images into a plausi-
ble whole, while image harmonisation focuses on the
problem of matching the various appearance features
between the object and scene, such as noise, contrast,
texture or blur, while assuming correctly aligned ge-
ometric and illumination properties (Sunkavalli et al.,
2010).

Similarly to the problem of image in-painting,
compositing and harmonisation are both ill-posed
problems (Guillemot and Le Meur, 2013). For a given
region requiring correction many different arrange-
ments of pixels could be deemed plausible. This is
in contrast to problems where the solution is unique.
Depending on the content and context of an image
composite, some scene properties, and thus required
object corrections, may be inferable from the infor-
mation contained within the image or its metadata,
such as the characteristics of the illuminant (Shi et al.,
2016), colour palette, contrast range or the camera re-
sponse function. Other properties, such as an object’s
albedo, texture or shape are often unique to the object
and cannot be derived directly from contextual infor-
mation in the scene. While methods for approximat-
ing these do exist (Gardner et al., 2017), they are dif-
ficult to integrate into end-to-end systems and can be
difficult to parameterise. The recent successes in DL
have motivated a number of approaches (Tsai et al.,
2017; Azadi et al., 2018; Chen and Kae, 2019) which
attempt to exploit the huge amount of natural imagery
available in public datasets in order to learn the map-
ping between a corrupted composite image and a cor-
rected composite, or natural image.

2.2 Multi-task Learning

Due to the abundance of natural image data and the
ill-posed nature of the compositing problem, DL ap-
proaches are well-suited for this task. However, su-
pervised DL methods require large amounts of an-
notated data in order to learn and generalise well.
This requirement grows along with the complexity
of a problem and the desired accuracy. Two popular
DL paradigms, unsupervised learning and multi-task
learning, are often used to address the issues of data
labeling and model generalisation.

In recent years many tasks in image understand-
ing have achieved state-of-the-art performance by in-
corporating multi-task learning Evgeniou and Pontil
(2004), for example in predicting depth and normals
from a single RGB image (Eigen and Fergus, 2015),
detection of face landmarks (Zhang et al., 2014) or
simultaneous image quality and distortion estimation
Kang et al. (2015). This is afforded by the implicit



regularization that training a single model for mul-
tiple related tasks imposes (Caruana, 1997) and the
resulting improved generalisation.

State-of-the-art image harmonisation methods fo-
cus largely on improving composites in scenarios
where the identity of pixels belonging to the object
and scene are known a priori. Tsai et al. (2017) use a
DAE-based architecture to map corrupted composites
to corrected ones, incorporating a two-task paradigm,
which attempts to both correct the composite, as well
as segmenting the scene. However, they do not ex-
plicitly condition the network to learn anything more
about the corruption, such as its magnitude, type or
location. Instead they provide location information at
input time, using a binary mask. Chen and Kae (2019)
uses a similar approach - inputting the object mask
at training time, however also introducing mask seg-
mentation and refinement within the GAN, in addition
to geometric transformations. The segmentation net-
work, as part of the adversarial training process, dis-
criminates towards ground truth binary masks as an
output - omitting any perceptual factor in the discrimi-
nation task. This achieves improved results compared
to the DAE, however at the cost of a more complex
architecture and adversarial training.

Due to the many dimensions along which com-
binations of object and scene may vary, compositing
systems should be equipped to assess such differences
before attempting to correct them. Kang et al. (2015)
shows that a multi-task approach is an efficient way
to ensure that distortions are encoded by the model.

3 METHODOLOGY

3.1 Motivation

Whilst multi-task learning has been shown to be effi-
cient in the coupled process of detecting and correct-
ing arbitrary pixel level transformations within im-
ages, perceptually-based encoding of artifacts within
masks has not yet been shown to be effective in the
image harmonisation field. Before approaching the
multi-task model, it is necessary to prove empirically
that this end-to-end process is viable. Thus we design
an end-to-end approach using two existing standalone
networks for both detection and harmonisation to test
the efficacy of these perceptual masks in the domain.

3.2 Approach

Our overarching goal is the design of an end-to-end
automatic compositing pipeline, capable of detec-
tion and correction of common compositing artifacts,

Figure 1: Illustration of research methodology adopted in
this work.

without the need for specification of an object mask.
In order to evaluate the effectiveness of this approach
we propose to assess predicted perceptually-informed
object masks rather than ground truth object masks as
input to the deep harmonisation algorithm. We then
measure similarity between ground truth images and
composites corrected with the harmonisation algo-
rithm using either the original synthetic binary masks
Ms or the perceptually-based masks predicted by the
detector Mp. Accordingly, we refer to composites har-
monised using ground truth masks as Cs and compos-
ites generated by the end-to-end system as Cp.

We evaluate the hypothesis that the performance
of an end-to-end detection and harmonisation model
is comparable to a harmonisation model using man-
ually created object masks. Confirmation of this hy-
pothesis would support our case for incorporating ex-
plicit detection of composite artefacts into end-to-
end image composite harmonisation systems. Our re-
search methodology is summarised in Figure 1.

3.3 Detector and Harmoniser Models

Both the detector (Dolhasz et al., 2019) and the har-
moniser (Tsai et al., 2017) are deep, image-to-image,
fully convolutional autoencoder networks. The detec-
tor takes a single image as input and generates a 2-



Figure 2: System overview: illustration of the detector and harmoniser combined into an end-to-end composite harmonisation
system. A synthetic composite image is first supplied to the detector, which outputs a 2-channel mask indicating detected
negative and positive (not pictured here) luminance shifts. This mask is converted to a single-channel representation by taking
a maximum over predicted pixel-wise probabilities and fed to the harmoniser network. The harmoniser then produces a
harmonised composite, which we compare against the ground truth.

Figure 3: Dataset generation process adapted from Tsai
et al. (2017): a) source image sampled from MSCOCO, b)
corresponding object mask, c) target image, d) target image
object mask, e) result of luminance transfer (Reinhard et al.,
2001) of source - c), to target - e

channel output mask, which encodes probabilities for
each pixel, p, in the input image as being affected by
a negative (channel 0) or a positive (channel 1) per-
ceptually suprathreshold luminance offset. We com-
bine these two suprathreshold channels by taking a
pixel-wise maximum max(p0, p1). This way we gen-
erate a single mask in the same format as Ms from
MSCOCO, where each pixel encodes the probability
of a suprathreshold luminance offset. We do not ap-
ply any modifications to the harmoniser and adopt the
authors’ original trained implementation. The final
detector+harmoniser system can be see in Figure 2.

3.4 Dataset

To perform a fair comparison, we follow the compos-
ite generation approach of Tsai et al. (2017). Specif-
ically, we sample pairs of images containing objects
belonging to the same semantic category (e.g. per-
son, dog, bottle etc.) from the MSCOCO dataset (Lin
et al., 2014). Using their corresponding object masks,
we perform statistical colour transfer based on his-
togram matching, proposed by Reinhard et al. (2001).
This process can be see in Figure 3. This colour trans-
fer is performed between object regions of the same
semantic category. As the detector is only conditioned
for luminance offsets, we perform colour transfer only

on the luminance channel of Lab colourspace. We
generate a total of 68128 composites and correspond-
ing ground truth images. We also extract correspond-
ing the ground truth masks for comparison against the
masks predicted by the detector.

3.5 Similarity Metrics

To evaluate each of the two approaches, we calculate
similarity metrics between ground truth images Cgt
and composites corrected by the methods under test:
Cs and Cp. We adopt the objective metrics used in the
original work, i.e. Mean Squared Error (MSE):

MSE =
1
N

n

∑
i=0

(Yi− Ŷi)
2 (1)

where Y is the ground truth and Ŷ is the harmonised
image (either Cp or Cs), and Peak Signal-to-Noise ra-
tio (PSNR):

PSNR = 10log10

( R2

MSE

)
(2)

here R is the maximum possible pixel intensity - 255
for an 8 bit image. In addition, we leverage the
Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018), which measures similarity based
on human perceptual characteristics. We denote these
errors with subscripts referring to the method the
composite was fixed with, e.g. MSEp for MSE be-
tween the ground truth image and corresponding com-
posite fixed using predicted masks; MSEs for MSE
between ground truth and a composite fixed using the
original MSCOCO masks.

3.6 Procedure

Using our generated composite dataset we first eval-
uate the harmoniser with ground truth masks. We



Figure 4: A comparison of the distributions for both Cs (composites corrected with synthetic ground truth masks) and Cp
(corrected with masks predicted by the detector) with the number of images in each bin for each metric value. This is shown
for: (a) MSE, (b) PSNR and (c) LPIPS. Larger values of MSE and LPIPS indicate poorer performance, whilst this is true for
smaller values of PSNR.

Figure 5: The image-wise error differentials for Cp-Cs. This is shown for each of the three metrics: (a) MSE, (b) PSNR and (c)
LPIPS. Note, negative values for MSE and LPIPS indicate images for which Cp (composites corrected with masks predicted
by the detector) achieves lower error than Cs (composites corrected with synthetic ground truth masks). For PSNR, this is true
for positive values.

then use the same dataset to generate predicted ob-
ject masks using the detector and feed these along
with the corresponding composite images to the har-
moniser. We obtain two sets of corrected composites:
composites corrected using the ground truth masks Cs
and composites fixed using masks predicted by the
detector] Cp. We then calculate similarity metrics be-
tween the ground truth images used to generate the
composites in the first place, and each of the two sets
of corrected images Cs and Cp. These are reported in
the following section.

4 RESULTS

The results of our evaluation can be seen in Figure
4, which shows distributions of each of the similarity
metrics calculated between ground truth images and
composites fixed using Cs and Cp respectively. Mean
similarity metrics can be seen in Table 1. Overall,
masks predicted by the detector yield higher average
errors across all three metrics compared to the ground

truth masks, however the magnitude of these differ-
ences is small for each of the metrics. Figure 5 shows
distributions of image-wise error differentials for both
techniques.

Metric harmoniser detector + harmoniser

MSE 19.55 22.65
PSNR 35.81 35.18
LPIPS 0.0227 0.0292

Table 1: Means of similarity metrics for both techniques
evaluated against ground truth: harmoniser, and the detec-
tor+harmoniser. Lower is better for LPIPS and MSE, higher
is better for PSNR.

5 DISCUSSION

Our results indicate that using detected, instead of
ground truth object masks can yield comparable re-
sults when performing automatic image composite



Figure 6: Examples of the harmoniser with ground truth masks over-compensating, and applying colour shifts to compen-
sate a luminance transform, resulting in suboptimal output. From left: a) ground truth, b) input composite, c) output of
detector+harmoniser, d) output of harmoniser with ground truth masks, e) masks predicted by detector, f) ground truth masks

harmonisation. Errors obtained using ground truth
masks are on average lower compared to those ob-
tained using predicted masks, however in a number
of cases the situation is reversed. For example, Fig-
ure 6c and d shows cases of the harmoniser over-
compensating, while the detector+harmoniser com-
bination achieves a more natural-looking result. We
stress that these results were obtained with no addi-
tional training.

Further investigation indicates particular scenar-
ios where this occurs. In some cases, the harmoni-
sation algorithm applies an inappropriate correction,
rendering a higher error for Cs compared to the un-
harmonised input. Then, if Mp does not approximate
Ms well, is blank (no detection) or its average inten-
sity is lower than that of Ms, the additional error in-
duced by the harmonisation algorithm is minimised,
rendering lower errors for Cp. This can be seen in
both images in 6d. This indicates the benefit of a
perceptually motivated approach to mask prediction,
allowing the influence over the weight of the trans-
formation applied by the harmoniser. We also no-
tice that the deep harmonisation network tends to ap-
ply colour transformations regardless of whether they
are required. In some cases, the perceptually-based
masks mitigate this problem. Images showing exam-
ples of comparable performance of the two methods
can be found in Figure 7. Subfigures c and d show the
results of harmonisation using the apporaches under
test and subfigures e and f show Mp and Ms respec-
tively.

Due to the nature of the detector network currently
operating solely on luminance transforms, a further
benefit to the multi-task learning paradigm is the gen-
eralisability to arbitrary pixel level transforms, for ex-
ample colour shifts. The binary masks accepted by

harmoniser networks currently do not separate across
these transforms, they treat them all homogeneously.
A perceptually motivated approach to the predicted
mask can encode, on a feature-by-feature basis, the
perceptual likelihood of harmonisation required. This
is not to say necessarily that deep harmonisation net-
works cannot learn this behaviour, but further sup-
port to encode this non-linearity at the input to the
network and/or by explicit optimisation at the output,
particularly in a multi-task context, would likely ben-
efit performance and improve generalisation (Caru-
ana, 1997).

6 CONCLUSION

These findings, obtained by combination of off-
the-shelf models, not modified or re-trained for this
specific task, indicate that information about location
and magnitude of composite artifacts can be useful in
improving the performance of existing compositing
and harmonisation approaches. Furthermore, our re-
sults show that the requirement for provision of object
masks for such algorithms can be relaxed or removed
entirely by the explicit combination of composite ar-
tifact detection with their correction. This provides
a basis for investigation in future work of joint mod-
elling of both the detection and correction of compos-
ite image artifacts, e.g. under a multi-task learning
paradigm.



Figure 7: Comparison of harmonisation outputs from our evaluation. From left to right: a) ground truth, b) input composite,
c) corrected with detector+harmoniser Cp, d) corrected with ground truth masks + harmoniser Cs, e) Detected masks Mp, f)
ground truth masks Ms. Masks in colour indicate the raw output of the detector, where the direction of detected luminance
shifts is indicated - red for negative and green for positive shifts.
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