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ABSTRACT
Due to the high availability of large-scale annotated image datasets, paramount progress has been made
in deep convolutional neural networks (CNNs) for image classification tasks. CNNs enable learning
highly representative and hierarchical local image features directly from data. However, the availability
of annotated data, especially in the medical imaging domain, remains the biggest challenge in the field.
Transfer learning can provide a promising and effective solution by transferring knowledge from generic
image recognition tasks to the medical image classification. However, due to irregularities in the dataset
distribution, transfer learning usually fails to provide a robust solution. Class decomposition facilitates
easier to learn class boundaries of a dataset, and consequently can deal with any irregularities in the data
distribution. Motivated by this challenging problem, the paper presents Decompose, Transfer, and Compose
(DeTraC) approach, a novel CNN architecture based on class decomposition to improve the performance
of medical image classification using transfer learning and class decomposition approach. DeTraC enables
learning at the subclass level that can be more separable with a prospect to faster convergence. We validated
our proposed approach with three different cohorts of chest X-ray images, histological images of human
colorectal cancer, and digital mammograms. We compared DeTraC with the state-of-the-art CNN models
to demonstrate its high performance in terms of accuracy, sensitivity, and specificity.

INDEX TERMS Convolution neural networks; class decomposition; data irregularity; medical image
classification; transfer learning.

I. INTRODUCTION

CLASSIFICATION of chest X-ray (CXR) images into
normal or having Tuberculosis (TB) is an essential

component in computer-aided diagnosis (CAD) of lung
health-care [1]–[4]. Fig. 1 shows a negative example of
normal CXR without any signs of TB and a positive one with
manifestations.

Statistical/classical machine learning algorithms have been
extensively used for lung classification [5]–[8] and nodule di-
agnosis from computed tomography (CT) images [9]. For in-
stance, in [10], three statistical features were calculated from
lung texture to discriminate between malignant and benign
lung nodules using support vector machines (SVM) classifier.
A grey-level co-occurrence matrix (GLCM) method was used
along with back-propagation network (BPN) [11] to classify
computed tomography (CT) images from being normal or

FIGURE 1. Example of a) normal and b) abnormal CXR.

cancerous. For emphysema diseases of lung images, different
approaches were used to describe the texture features from
lung region, such as in [12] Local Binary Pattern (LBP)
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FIGURE 2. Decompose, Transfer, and Compose (DeTraC) model: (a) decomposition of the original classes into sub-classes, (b) transfer learning using ImageNet
pre-trained CNN-based model, and (c) recombination back to the final problem.

was used with k nearest neighbour (kNN) as a classifier to
classify the lung region into three classes, and in [13] SVM
also used with radial basis function (RBF) kernel. Other
statistical machine learning methods have also demonstrated
good classification performance in other domains, with dif-
ferent data types [14]–[16]. Deep learning algorithms have
also demonstrated their great success in different domains
including bioinformatics [17]–[19], plant identification [20],
medical image analysis [3], [21], [22] and wind power
prediction [23]. With the availability of enough annotated
images, deep learning approaches [2], [24]–[30] have demon-
strated their superiority over the statistical machine learning
approaches [9]. In [31], two deep learning approaches, deep
belief network (DBN) and restricted Boltzmann machine
(RBM) were used to classify the lung nodules from CT
into malignant or benign based on three feature extraction
methods (GLCM, histogram features, and wavelet transfor-
mation). A deep residual network (ResNet) with curriculum
learning and transfer learning was applied in [32] to classify
lung nodules, and in [33] the stacked denoising auto-encoder
(SDAE) was used for classification of the nodules in CT
images into two classes: benign and pulmonary and from
CXR in [34]. Convolutional networks (CNN) architecture
is one of the most popular deep learning approaches with
superior achievements in the medical imaging domain [35],
[36]. The primary success of the ConvNet is due to its ability
to learn features automatically from domain-specific images
[37], unlike the statistical machine learning methods. The
popular strategy for training a CNN architecture is to transfer
learned knowledge from a pre-trained network that fulfilled
one task into a new task [20], [38], [39]. This solution is
efficient and easy to apply without the need for a huge an-
notated dataset for training; therefore many researchers tend
to apply this strategy especially with medical imaging [19],
[40]. Transfer knowledge from pre-trained models via fine-
tuning showed outstanding performance in X-ray image clas-
sification [25], [36], [41] and recently for the classification of
14 diseases as a multi-task learning [42]. Transfer learning
can be accomplished with three major scenarios [43]: a)
“shallow tuning”, which adopts only the last classification
layer to cope with the new task, and freezes the parameters of
the remaining layers without training; b) “deep tuning” which

aims to retrain all the parameters of the pre-trained network
from end-to-end manner; and (c) “fine-tuning” that aims to
gradually train more layers by tuning the learning parameters
until a significant performance boost is achieved.

However, building a robust image classification model for
datasets with imbalanced classes can be a very challenging
task, especially in the medical imaging domain [44]–[47].
Class decomposition aims to the simplification of the local
structure of a dataset, by learning the boundary between
certain characters within each class, in a way to cope with
any irregularities or imbalances in the data distribution. Class
decomposition has been previously used in various automatic
learning workbooks as a preprocessing step to improve the
performance of different classification models and in the
medical diagnostic domain, it has been applied to signifi-
cantly enhance the classification performance of models such
as Random Forests, Naive Bayes, C4.5, and SVM [48]–[52].

In this paper, we propose a novel convolutional neural net-
work architecture based on class decomposition, which we
term Decompose, Transfer, and Compose (DeTraC) model,
to improve the performance of pre-trained models on the
classification of X-ray images. This is done by adding class
decomposition and composition components, respectively,
before and after transferring knowledge using an ImageNet
pre-trained CNN model. The proposed workflow aims to
partition each class within the image dataset into k subsets
and then assign new labels to the new set, where each subset
is treated as an independent class, then those subsets are as-
sembled back to produce the final predictions (a classification
of a subclass is mapped to its parent class), as illustrated by
Fig. 2. For the classification performance evaluation, we used
images of CXR as an exemplar to distinguish between nor-
mal and abnormal cases. The dataset possesses complicated
computer vision challenging problems due to the intensity
inhomogeneity and the huge intensity-overlap between the
classes. Moreover, we evaluated our framework on two other
different cohorts of digital mammograms and images of
human colorectal cancer to demonstrate the robustness of our
solution to data irregularities.

The paper is organised as follows. Section II provides
an overview of related work and motivates our work. In
Section III, we discuss, in details, the main components
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of our proposed framework. Section IV illustrates detailed
experiments on three different image data sets. Section V
highlights the key findings of our work. Finally, Section VI
concludes the work with a summary and pointers to possible
future work.

II. CONTRIBUTION
With the availability of large annotated datasets, the chance
for the different classes to be well-represented is high. As
a consequence, the learned in-between class-boundaries are
most likely to be generic enough to new samples. On the
other hand, with the limited availability of annotated data,
especially when some classes are suffering more compared
to others in terms of the size and representation, the general-
isation error might increase. This is due to the fact that there
might be a miscalibration between the minority and majority
classes.

Class decomposition has its roots in [51], when it was first
proposed to enhance low variance classifiers by increasing
the flexibility of the decision boundary. A similar method has
been applied in enhancing k-Nearest Neighbours classifiers
using clusters (resulted from class decomposition) instead
of individual instances as the nearest neighbours, applying
gravity, density, and distance, as proximity measures [53].
Class decomposition found its way to enhance more classi-
fication methods like decision tree classifier [54], SVM [55]
and Random Forests [56], [57] which providing even more
flexibility to their respective decision boundaries. A special
focus on applying the method in the medical domain can
be traced in these papers. The reason behind this special
attention to medical data is the inherent complexity of the
decision boundaries in this domain. Classes can greatly over-
lap, resulting in harder to detect decision boundaries.

Although class decomposition has been successfully ap-
plied to medical datasets, it is yet to be tested in the area
of medical imaging. Thus, the work reported in this paper
investigates the adoption of the method to classification in
medical imaging. In this paper, we propose a novel image
classification framework inspired by the capability of class-
decomposition in dealing with data irregularities to improve
the performance of ImageNet pre-trained CNN models. To
the best of our knowledge, this is the first attempt to employ
class decomposition within the CNN framework for image
classification. In this work, to demonstrate the effectiveness
and importance of class decomposition mechanism in CNN,
we compared the performance of our proposed approach
before and after the class decomposition process. We used
the Wilcoxon signed-rank test [58] to show that applying
class decomposition yields statistically significantly more
accurate classification results than not applying it. Moreover,
to demonstrate the robustness of our solution to data irregu-
larities, we evaluated and compared the performance of our
framework with state-of-the-art CNN models on three dif-
ferent datasets of real chest X-ray images (with binary class
structure), histological images of human colorectal cancer
(with multi-class balance structure) and digital mammograms

(with multi-class imbalance structure).

III. THE DETRAC MODEL

In this section, we describe in detail our proposed Decom-
pose, Transfer, and Compose (DeTraC) model. The pro-
posed approach has three phases. In the first phase, we
use ImageNet pre-trained CNN as an off-the-shelf feature
extractor to extract a set of local features from the indi-
vidual images. Accordingly, a class-decomposition method
was used to simplify the complexity of the local structure
of our image dataset. In the second phase, we apply a
sophisticated gradient descent optimisation method to fine-
tune the same CNN model (of the first phase) pre-trained
from ImageNet to our image classification task. Finally, we
adapt and refine the final classification of the input images
using error-correction criteria applied to a softmax layer. Fig.
3 shows an overview of the proposed network. We adopt
an ImageNet pre-trained CNN model to the classification of
our images into the original classes. This step aims to a)
extract a set of representative features for the differentiation
between the different classes, and b) fine-tune the CNN
feature maps accordingly. The high-dimension feature space
is reduced using principal component analysis (PCA) (black
arrow) and a class decomposition method (yellow arrow) is
used to simplify the complexity of the data, which results
in more classes. Then the converged CNN weights can be
transferred to the same network structure (blue arrow) but
adopted specifically to cope with the new classes. The benefit
of this transformation is to speed up the convergence and
to cope with the limited availability of training samples and
irregularities. Finally, a class relabelling (red arrow) is used
to remap the classification back to the original problem using
a simple error correction criterion.

A. CLASS DECOMPOSITION

A shallow-tuning mode was used during the adaptation,
weight initialisation, and training of an ImageNet pre-trained
CNN model using our image dataset. The representation
was considered from the last fully-connected layer. In other
words, we used the off-the-shelf CNN features of pre-trained
models on ImageNet (where the training is accomplished
only on the final classification layer) to construct the im-
age feature space. However, due to the high dimensionality
associated with the images, we applied PCA to project the
high-dimension feature space into a lower-dimension, such
that the highly correlated features were ignored. This step
is important for the class decomposition to produce more
homogeneous classes, reduce the memory requirements, and
improve the efficiency of the framework.

Now assume that our feature space (PCA’s output) is
represented by a 2-D matrix (denoted as dataset α), and L
is a class category. α and L can be written as
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FIGURE 3. The generic architecture of DeTraC model: (a) feature extraction using ImageNet pre-trained CNN model and principle component analysis (black
arrow), (b) class decomposition process (yellow arrow) with weight transformation (blue arrow), and (c) fine-tuned ImageNet pre-trained CNN model with error
correction using class composition (red arrow) for output prediction.

α =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

...
...

an1 an2 . . . anm

 ,L = {l1, l2, . . . , lc} , (1)

where c is the number of classes and m is the number of
features. For class decomposition, we used k-means cluster-
ing [59] to further divide each class into homogeneous sub-
classes, where each pattern in the original class L is assigned
to a class label associated with the nearest centroid based on
the squared euclidean distance (SED):

SED =
k∑

j=1

n∑
i=1

‖ a(j)i − µj ‖, (2)

where centroids are denoted as µj .
Now, if k = 2 then each class in L is divided into two

clusters, resulting in a new dataset (denoted as dataset B) with
4 sub-classes denoted as (normal1, normal2, abnormal1,
abnormal2), see Fig. 4.

Let C = {l11, l12, . . . , l1k, l21, l22, . . . , l2k, . . . lck}, rep-
resents the set of subclasses/clusters (i.e. |C| = c × k)
and |.| denotes the number of elements in the set. Note
that this definition applies for homogeneous decomposition,
where each class is decomposed to the same number of
clusters/subclasses (e.g. k = 2) .

Also, the feature space of both dataset A and B can be
illustrated as:

A =



a11 a12 . . . a1m l1
a21 a22 . . . a2m l1

...
...

...
...

...
...

... ...
... l2

an1 an2 . . . anm l2

 ,

B =



b11 b12 . . . b1m l11
b21 b22 . . . b2m l1c

...
...

...
...

...
...

... ...
... l21

bn1 bn2 . . . bnm l2c

 .
(3)

where aij = bij ,∀i ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . ,m}.

Table 2 shows the new distribution of the dataset when
AlexNet was used as the pre-trained model with our class
decomposition approach.
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FIGURE 4. Class decomposition process: (a) original class distribution (e.g.
CXR dataset A), and (b) new class distribution after class decomposition (e.g.
CXR dataset B).

B. TRANSFER LEARNING
In this phase, we used several ImageNet pre-trained CNN
models before and after class decomposition including: a)
AlexNet [60] which is composed of 5 convolutional lay-
ers and 3 fully connected layers. AlexNet uses 3x3 max-
pooling layers with ReLU activation and different kernel
filters (e.g. 11 x 11, 5 x 5 and 3 x 3); b) VGG16 and
VGG19 [61] with 13 and 16 convolution layers, respectively,
3x3 sized filters, and 2x2 max-pooling; c) GoogleNet [62],
which has a deeper architecture with 22 layers with a smaller
number of parameters compared to AlexNet and VGGNet;
and d) ResNet [63], which showed excellent performance
(with 3.57% of the error rate) on ImageNet with only 18
layers. Here we consider different training scenarios. We
consider fine-tuning parameters of all (except the last fully-
connected layer) or a part of CNN layers (when the rest are
randomly initialised and the last layer is adapted according
to our specific application). We also conduct an off-the-shelf
CNN features of pre-trained models on ImageNet and train
only the final classification layer to cope with our task. All
those scenarios have been investigated before and after class
decomposition to highlight the robustness and effectiveness
of our solution.

With the limited availability of training data, stochastic
gradient descent (SGD) can heavily be fluctuating the objec-
tive/loss function and hence overfitting can occur. To improve
convergence and overcome overfitting, the mini-batch of
stochastic gradient descent (mSGD) was used to minimise
the objective function, E(·), with cross-entropy loss

E
(
yj , z(xj)

)
= − 1

n

n∑
j=0

[yj ln z
(
xj
)

+
(
1− yj

)
ln
(
1− z

(
xj
))
], (4)

where xj is the set of input images in the training, yj is the
ground truth labels while z(·) is the predicted output from a
softmax function.

Due to the onerousness in collecting and annotating a
huge amount of medical images, large scale annotated image
datasets (such as ImageNet) provide effective solutions to
such a challenge via transfer learning where tens of mil-

lions parameters (of CNN architectures) are required to be
trained. In addition to the fact that DeTraC can deal with
data irregularities by class decomposition, DeTraC can also
provide an efficient solution when a limited number of train-
ing images are available. This is by transferring knowledge
from a generic object recognition task (i.e. large-scale im-
age classification) to our specific-domain tasks (i.e. medical
image classification) using ImageNet pre-trained models. A
potential limitation of DeTraC is that since it is an image-
wise CNN, it might confuse when coping with complex large
images. This is due to the down-sampling process of input
images that might result in losing some spatial information
during the training.

C. COMPOSITION AND EVALUATION
For performance evaluation, we adopted Accuracy (ACC),
Specificity (SP) and Sensitivity (SN) metrics from the confu-
sion matrix, see Fig. 5. They are defined as:

Accuracy(ACC) =
TP + TN

n
, (5)

Sensitivity(SN) =
TP

TP + FN
, (6)

Specificity(SP ) =
TN

TN + FP
, (7)

where, TP is the true positive in case of abnormal and TN
is the true negative in case of normal, while FP and FN
are the incorrect model predictions for abnormal and normal
cases, which are indicated with a red and a blue triangle
respectively for dataset A, and the summation values of all
the red and blue triangles respectively after error correction
for dataset B. More precisely, with class decomposition, the
TP is the summation of all the values in abnormal1 and
abnormal2 which is represented with the red square while
TN is the summation of all the values in normal1 and
normal2, which is represented by the blue square.

FIGURE 5. Confusion matrix tabular: (a) Binary classes within dataset A, and
(b) Multi-classes after applying class decomposition process (dataset B).

In the case of a multi-classification problem, the model has
been evaluated using a multi-class confusion matrix of [64].
Before error correction, the input image can be classified into
one of (c) non-overlapping classes. As a consequence, the
confusion matrix would be a (Nc×Nc) matrix, and TP , TN ,
FP and FN for a specific class i are defined as:
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TPi =
n∑

i=1

xii (8)

TNi =
c∑

j=1

c∑
k=1

xjk, j 6= i, k 6= i (9)

FPi =
c∑

j=1

xji, j 6= i (10)

FNi =
c∑

j=1

xij , j 6= i (11)

where xii is an element in the diagonal of the matrix. We
applied the same scenario after error correction to evaluate
our framework for colorectal cancer and digital mammo-
grams datasets.

D. ALGORITHMIC DESCRIPTION
Having discussed the formulations of DeTraC model, in
the following, the procedural steps of DeTraC model are
summarised in Algorithm 1.

Algorithm 1 DeTraC
1: procedure

• Input:
– Input images.
– Image-wise labels.

• Output:
– Classification scores.

Stage I. Class Decomposition:
2: Load and initialise weights of an ImageNet pre-trained CNN model.
3: Extract off-the shelf CNN deep features using input images.
4: Reduce the dimensionality of the feature space using PCA.
5: Decompose original classes into a number of sub-classes.

Stage II. Transfer Learning:
6: Adapt the final classification layer of the selected pre-trained CNN model to

the new classes.
7: Apply the mini-batch of sophisticated gradient descent optimisation method

to fine-tune the adapted CNN model.
Stage III. Class Composition:

8: Calculate the classification scores for images associated to the decomposed
classes.

9: Refine the final classification using error-correction criteria.

IV. EXPERIMENTAL RESULTS
In this section, we validate the performance of DeTraC with
three different datasets:

• CXR image dataset from the Japanese Society of Radio-
logical Technology (JSRT) [65], [66], which consists of
138 images (with 4020 × 4892 pixels) divided into 58
abnormal cases and 80 normal cases.

• Histological images of human colorectal cancer [67]
of 5000 histological images (with 150 × 150 pixels),
divided into three classes (see Table 8 for the number of
samples in each class): tumour epithelium, stroma and
mucosal glands.

• Digital mammograms from [68], which contains 322
mammograms images (with 1024 × 1024 pixels) and
divided into seven classes (see Table 10 for the number

TABLE 1. The sensitivity to the parameter k in each dataset.

dataset ACC (%)
k = 1 k = 2 k = 3

chest X-ray 69.1 71.2 65.8
digital mammograms 70 73.2 69.4

colorectal cancer 71.6 73 77.5

of samples in each class): normal, calcification (CALC),
well-defined/circumscribed masses (CIRC), spiculated
masses (SPIC), ill-defined masses (MISC), Architec-
tural distortion (ARCH) and asymmetry (ASYM).

Each dataset was randomly divided into two groups; 70%
as training/validation set, and 30% as testing set. We used
10-fold cross-validation technique to fine-tune the parame-
ters of DeTraC while the performance of DeTraC has been
evaluated on the testing set. For a fair comparison, all the
experiments in our work have been carried out in MATLAB
2019a on a PC with the following configuration: 3.70 GHz
Intel(R) Core(TM) i3-6100 Duo, NVIDIA Corporation with
the donation of the Quadra P5000GPU, and 8.00 GB RAM.

A. PARAMETER SENSITIVITY
To demonstrate the sensitivity to changes in the parameter k
(the number of classes in class decomposition component)
with the three datasets, we evaluated the performance of
our framework (based on 10-fold cross-validation) when
different k values were used. As illustrated by Table 1, the
highest accuracy of 71.2% and 73.2% were obtained when
k = 2 for chest X-rays and digital mammograms datasets,
respectively, while 77.5% was obtained when k = 3 for
colorectal cancer dataset. Hence, the value of k was fixed to 2
for both chest X-ray and digital mammogram datasets and 3
for the colorectal cancer dataset. We also tested the variability
between features of PCA to reduce the dimension of feature
space in each dataset. We found that the first 5, 127 and
77 components for chest X-ray, digital mammograms, and
colorectal cancer datasets, respectively, explain more than
95% of all variability.

B. CLASSIFICATION PERFORMANCE ON CHEST X-RAY
DATASET
We first validated DeTraC on the chest X-ray dataset (Table
2) based on AlexNet with a fine-tuning strategy by training
specific layers of its architecture, see Table 3. We have
stopped the training of the layers at the layer named Conv3
to avoid overfitting due to the limited availability of the data
and the deep architecture of the network. Note that we have
followed the conventional naming of layers in the pre-trained
CNN architectures [60], [61]. Likewise, we used the pre-
trained network VGG16 by fine-tuning its parameters starting
from the last fully connected layer (fc8) and incrementally
learn layers until approached Conv4-1, see Table 4. As illus-
trated by Tables 3 and 4, DeTraC shows better performance in
terms of accuracy, sensitivity, and specificity when compared
to the classical models (AlexNet and VGG16) in both shal-
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low and fine-tuned modes, in a layer-wise fashion. DeTraC
achieved the highest accuracy of 74.7% with VGG16 with a
sensitivity of 67.3% and a specificity of 85.0%.

TABLE 2. The number of instances in dataset A and B

.

Dataset A # Instances Dataset B # Instances
normal 80 normal1 42

normal2 38
abnormal 58 abnormal1 28

abnormal2 30

Moreover, three different pre-trained CNN models
(VGG19, GoogleNet, and ResNet) were also tested based on
a shallow tuning mode before and after class decomposition,
where the comparison is reported in Table 5. Note that the
classification performance has been slightly improved in all
cases with the highest accuracy of 75.4% with a sensitivity
of 82% and specificity of 83% when ResNet was used. The
standard deviation (std)) was calculated and used as a robust-
ness measure (when a 10-fold cross-validation technique was
used for the accuracy, sensitivity, and specificity metrics), see
Fig. 6. As illustrated by Fig. 6, applying class decomposition
yields more robust results than not applying it with all the
used pre-trained models.

To demonstrate the effectiveness of DeTraC classification
framework, we train DeTraC on the previously used pre-
trained models (i.e. AlexNet, VGG, GoogleNet, and ResNet)
with a deep-tuning strategy. First, a data augmentation with
multiple pre-processing techniques was used to increase
the number of samples in each class. We used a variety
of pre-processing methods such as flipping, transformation
(translating, scaling, and rotation with various angles), colour
processing and small random noise perturbation. This pro-
cess resulted in a total of 40,000 lung fields. Second, we
investigated the effect of various training/testing sizes on the
classification performance, see Fig 7. As illustrated in Fig. 7,
the under-fitting issue is occurred more clearly by gradually
decreasing the size of the training set.

The base learning rate was set to 0.0001 for all the CNN
layers of all pre-trained models and 0.01 for the last fully
connected layer, and was decreased by value 0.9 after every
3 epochs. L2-weight decay was applied with value 0.001 and
the momentum of 0.9 was used. As illustrated by Table 7,
DeTraC has achieved excellent performance in the classifi-
cation of chest X-ray images, when compared to the related
state-of-the-art statistical machine learning and deep learning
methods. The highest accuracy of 99.8% was obtained with
ResNet and outperformed 8 previously proposed approaches.

The previous experiments demonstrated the effectiveness
of class decomposition. We also measured the statistical
significance using the Wilcoxon signed-rank test [58] with
continuity correction to establish the statistical significance
of the results. At 0.05 significance level, the p-value =
0.0008506. This confirms the alternative hypothesis: true lo-
cation shift is not equal to 0 (i.e. classification result obtained
by applying class decomposition is statistically significantly
more accurate than not applying it).

Fig. 8 shows the learning curves of the accuracy and loss
in case of deep tuning scenario with AlexNet, without under-
fitting or overfitting problems.

Fig. 9 illustrates the receiver operating characteristics
(ROC) curves between the true positive rate and false-
positive rate. Note that the ROC curve for the ResNet (red)
has an area under the ROC curve (AUC) that is significantly
greater than the other ROC curves obtained by other models.

To demonstrate the direct effect of knowledge transforma-
tion between the original model and the fine-tuned one, we
compare the classification performance among the different
versions of the original model (with and without augmenta-
tion) and DeTraC, see Table 6. Note how robust our model
to the knowledge transferred from the different pre-trained
models. As shown in Table 6, the best accuracy obtained by
the original model (using ResNet with ImagNet) was 82.24%
while DeTraC has achieved an accuracy of 99.8% with the
same pre-trained model.

C. ROBUSTNESS TO DATA IRREGULARITY
1) Classification performance on histological images
To demonstrate the robustness of DeTraC model in coping
with data irregularity, we used 5000 histological images [67]
with three classes: tumour epithelium, stroma and mucosal
glands (see Fig 10).

The distribution of the original data (Dataset A) and the
generated one after class composition (DatasetB) is shown in
Table 8. DeTraC was trained using a learning rate of 0.0001
for all the layers, the last fully connected layer was 0.01, the
learning rate decreased by value 0.95 after every 4 epochs.
The model was trained using mini-batch stochastic gradient
descent with 128 samples per batch except VGG was 64, L2-
weight decay was applied with value 0.0001 and the default
momentum in the network was 0.9.

To demonstrate the superiority of our model, the model
has been evaluated using a multi-classes confusion matrix
of [64] before and after class decomposition, see Table 9.
As shown by Table 9, DeTraC with ResNet achieved the
highest accuracy of 99.1% while DeTraC with VGG16 and
GoogleNet was behaving almost the same (with 99.8% and
99.7% accuracies, respectively), in case of the colorectal
cancer dataset.

2) Classification performance on mammogram images
We also validated DeTraC on 322 mammogram images that
were taken from [68]. The size of all the images is 1024 ×
1024 pixels. The data set has seven types of classes as shown
in Fig 11. The data distribution in the different classes before
and after the composition is reported in Table 10

All the images resized into 256 × 256 via the Bicubic
Interpolation method [70], which is very effective to produce
images that are very similar to the original ones. The network
was trained using a learning rate of 0.001 for all the CNN lay-
ers, 0.01 for the last fully connected layer, and was decreased
by value 0.9 after every 2 epochs. The CNN model is trained
using mini-batch stochastic gradient descent with 64 samples
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TABLE 3. Classification performance before and after class decomposition, obtained by AlexNet using 10-fold cross-validation.

Learning mode: layer(s) Pre-trained (AlexNet) DeTraCAlexNet

ACC (%) SN (%) SP (%) ACC (%) SN (%) SP (%)
Sallow-tuning: only fc8 67.3 42.0 73.4 69.6 51.3 78.7

Fine-tuning: fc7-fc8 67.2 56.3 75.0 67.5 50.6 80.1
Fine-tuning: fc6-fc8 67.3 48.6 79.7 70.2 55.0 81.3

Fine-tuning: conv5-fc8 70.6 64.2 77.5 72.3 65.3 77.5
Fine-tuning: conv4-fc8 72.4 57.6 72.5 70.16 61.6 76.25
Fine-tuning: conv3-fc8 65.8 38.6 83.4 74.5 60.3 85.0

TABLE 4. Classification performance before and after class decomposition, obtained by VGG16 using 10-fold cross-validation.

Learning mode: layer(s) Pre-trained (VGG16) DeTraCV GG16

ACC (%) SN (%) SP (%) ACC (%) SN (%) SP (%)
Shallow-tuning: only fc8 65.0 68.3 61.6 67.4 60.1 78.7

Fine-tuning: fc7-fc8 65 67.6 65 72.6 69.13 75.0
Fine-tuning: fc6-fc8 70.2 71.3 69.0 69.6 70.2 80.0

Fine-tuning: conv5-3-fc8 65.0 70.3 66.3 68.2 65.33 73.75
Fine-tuning: conv5-2-fc8 61.5 71.6 54.8 70.4 65.6 81.25
Fine-tuning: conv5-1-fc8 61.7 69.3 58.0 72.6 71.3 80.0
Fine-tuning: conv4-3-fc8 62.3 75 62.2 70.3 64.0 75.0
Fine-tuning: conv4-2-fc8 61.5 81 64.5 72.6 70.33 80.0
Fine-tuning: conv4-1-f8 72.2 65.4 70.2 74.7 67.3 85.0

TABLE 5. Classification performance before and after class decomposition, obtained by VGG19, GoogleNet, and ResNet in case of shallow tuning.

before after (DeTraC)
Acc (%) SN SP Acc (%) SN SP

Vgg19 67.4 73 62.6 70 68.3 71.6
GoogleNet 68.3 61.7 74.6 70.4 78.1 68.3

ResNet 72.4 68 75.3 75.4 83.3 82.5

FIGURE 6. The standard deviation for ACC, SN, and SP obtained by DeTraC (after class decomposition) and standard pre-trained models (before class
decomposition)

TABLE 6. Classification performance on X-ray dataset obtained by original knowledge transformations and shallow-tuned and fine-tuned versions of (DeTraC).

Knowledge Transformation (DeTraC)
ACC (%) w/o Aug. ACC (%) w/ Aug. Shallow-tuned ACC (%) fine-tuned ACC (%)

AlexNet 66.8 80.71 68.2 99.2
Vgg16 65 78.43 67.5 97.6
Vgg19 67.4 77.39 70 98.8

GoogleNet 68.3 75.91 70.4 98.2
ResNet 72.4 82.24 75.4 99.8
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FIGURE 7. Loss error curves obtained by various sizes for the training set (blue curves) and testing set (red curves): (a) 70% Training and 30% test, (b) 60%
Training and 40% test, and (c) 50% Training and 50% test.

FIGURE 8. The learning curve accuracy and error obtained by AlexNet
pre-trained network.

TABLE 7. Classification accuracy obtained by DeTraC and other
state-of-the-art related models.

Model ACC (%) SN (%) SP (%)
DeTraCAlexNet 99.2 98 98
DeTraCV gg16 97.6 98 97.4

DeTraCGoogleNet 98.2 97 97.5
DeTraCResNet 99.8 98 98.5

[12] 95.2 97 93
[13] 96.4 95 98
[6] 93.3 91.4 100

[10] 94 100 93
[33] 94.4 91 98
[32] 89.90 91 89
[69] 93.33 94 916
[31] 94.56 96 94

FIGURE 9. Comparison of ROC curves obtained by training DeTraC with
deep tuning, based on different pre-trained models (e.g.AlexNet,VGG16,
GoogleNet, ResNet).

FIGURE 10. Example images from colorectal cancer dataset:(a) tumour
epithelium (b) stroma, and (c) mucosal gland.
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TABLE 8. The number of instances in original classes and after class
decomposition

.

Dataset A # Instances Dataset B # Instances
Tumor 625 Tumor1 272

Tumor2 167
Tumor3 186

Stroma 625 Stroma1 242
Stroma2 199
Stroma3 184

Mucosal 625 Mucosal1 94
Mucosal2 276
Mucosal3 255

FIGURE 11. Example images of digital mammograms: (a) normal, (b)
Calcification (CALC), (c) Well-defined/circumscribed masses (CIRC), (d)
Speculated masses (SPIC), (e) ill-defined masses (MISC), (f) Architectural
distortion (ARCH) and (g) Asymmetry (ASYM).

per batch, L2-weight decay was applied with value 0.00001
and the default momentum in the network 0.9 is used. As
demonstrated by Table 11, our model shows the highest
accuracy of 99.8% with ResNet and 99.6% with GoogleNet.
Moreover, Tables 9 and 11, show the ability of our framework
to cope with data irregularities effectively where significant
differences, in terms of accuracy and computational time, can
be noticed before and after class decomposition with all used
pre-trained models.

D. TIME COMPLEXITY
To illustrate the time complexity of DeTraC model, we de-
scribe the time complexity for each component: For the PCA,
the time complexity is O

(
p3 + p2n

)
, where n is the number

of data points, each one represented with p features, O
(
p2n
)

is the covariance matrix, and its eigen-value decomposition
is O

(
p3
)
. The time complexity for the k-means cluster is

O (t× k × n× d), where t is number of iterations, k is
the number of clusters or class decomposition component,
n is the number of data points to be clustered and d is

the number of dimensions. Finally, the time complexity for
the core component of DeTraC network (e.g. convolution
operation) is O

(∑d
l=1 nl−1 × s2l × nl ×m2

l

)
, where d is

the number of convolution layer, nl and sl are the number
and the size of filters respectively, nl−1 is the number of input
channels of the l layer, andml is the size of the output feature
map. Subsequently, the total time complexity of DeTraC is
O
(
nd−1 × s2d × nd ×m2

d

)
.

V. DISCUSSION
The historical conception of computer diagnosis systems
from medical images has been comprehensively explored
through several approaches ranging from feature engineering
to feature learning. Deep Convolutional Neural Network
(DCNN) is one of the most popular and effective approaches
in the medical imaging domain, especially for classification
problems. The superiority of DCNNs over classical/statistical
machine learning approaches comes from their ability to
learn different levels of abstraction in a hierarchical fashion
directly from the images. Training DCNNs can be accom-
plished using two different strategies. They can be used
as an end-to-end network, where an enormous number of
annotated images must be provided (which is impractical
in medical imaging). Alternatively, transfer learning usually
provides an effective solution with the limited availability
of annotated images by transferring knowledge from pre-
trained CNNs (that have been learned from a bench-marked
natural dataset) to the specific medical imaging task. Transfer
learning can be further accomplished by three main scenar-
ios: shallow-tuning, fine-tuning, or deep-tuning. However,
data irregularities, especially in medical imaging applica-
tions, remain a challenging problem that usually results in
miscalibration between the different classes in the dataset.
Here, we propose an effective and yet efficient workflow
solution, we call DeTraC, to deal with such a challenging
problem by exploiting the advantages of class decomposition
within the CNNs for image classification. DeTraC achieved
high accuracies of 99.8% with ResNet on CXR images,
98.5% with VGG16 on digital mammograms, and 99.7%
with GoogleNet on CRC images, when class-decomposition
was applied with a deep-tuning strategy. The classification
performance of DeTraC when the shallow-tuning mode was
used, has shown a significant improvement based on sev-
eral ImageNet pre-trained models before and after class-
decomposition. Eventually, a full study has been provided to
demonstrate the effect of class decomposition on knowledge
transferred from the individual layers of AlexNet and VGG
to confirm the robustness and superiority of DeTraC in all
cases.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a CNN architecture based on a
class decomposition approach to improve the performance of
ImageNet pre-trained CNN models using transfer learning.
Our framework can provide effective and robust solutions
for the classification of medical images and cope with data
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TABLE 9. Classification performance and Elapsed Time (ET.) on colorectal cancer dataset before and after (DeTraC) class decomposition, based on different
pre-trained networks.

before after (DeTraC)
ACC (%) SN (%) SP (%) # Epochs ET. (∼h:m) ACC (%) SN (%) SP (%) # Epochs ET. (∼h:m)

AlexNet 97.7 97 97 46 2:28 98.3 98 99 47 1:54
Vgg16 97.8 98.2 97 31 16:00 99.8 98 98 32 14:00

GoogleNet 98.1 98 98 49 4:46 99.7 99 99.5 66 6:38
ResNet 98.3 98 98 43 3:38 99.1 99 99.8 39 4:12

TABLE 10. Samples distribution in digital mammograms database before and after class decomposition.

dataset A ARCH ASYM CALC CIRC MISC Norm SPIC
# instances 19 15 24 22 14 209 19
dataset B ARC_1 ARC_2 ASY_1 ASY_2 CA_1 CA_2 CI_1 CI_2 MI_1 MI_2 Nor_1 Nor_2 SPI_1 SPI_2

# instances 13 6 10 5 9 15 9 13 6 8 137 72 11 8

TABLE 11. Classification performance on digital mammograms dataset before and after (DeTraC) class decomposition, based on different pre-trained networks.

before after (DeTraC)
ACC (%) SN (%) SP (%) # Epochs ET. (∼h:m) ACC (%) SN (%) SP (%) # Epochs ET. (∼h:m)

AlexNet 95.7 98 97 42 3 : 00 99.5 99 99 34 2 : 15
Vgg16 98.5 98 98 34 32 : 00 99 99.7 98 27 14 : 00

GoogleNet 97.1 97 98 63 9 : 00 99.6 99.7 98 43 3 : 30
ResNet 97.8 98 98.7 38 4 : 30 99.8 98 99 32 2 : 00

irregularity and the limited number of training samples too.
The proposed method has been validated with three different
datasets of chest X-ray, digital mammograms, and histolog-
ical sections of human colorectal cancer. Several pre-trained
architectures were integrated and tested with class decom-
position and the experiments demonstrated the effectiveness
with all architectures.

The work reported in this paper opens the door for a
number of research directions. First, the adoption of class
decomposition to other image classification tasks, especially
in the area of medical imaging, where different data irreg-
ularities exist, thanks to the underlying complexities of the
biological processes, is an interesting direction. Second, the
optimisation of different hyperparameters (e.g. number of
subclasses per class) required to carry out the class decom-
position process has the potential to further enhance the per-
formance of the models in terms of accuracy and convergence
time. Finally, the application of class decomposition to other
deep learning architectures like Recurrent Neural Networks
(RNNs) and Long Short Term Memory (LSTM) for sequence
models can be explored.
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