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Abstract 

Incidents of water pollution or contamination have occurred repeatedly in recent years, causing 

significant disasters and negative health impacts. Water quality sensors need to be installed in the 

water distribution system (WDS) to allow real-time water contamination detection to reduce the risk 

of water contamination. Deploying sensors in WDS is essential to monitor and detect any pollution 

incident at the appropriate time. However, it is impossible to place sensors on all nodes of the 

network due to the relatively large structure of WDS and the high cost of water quality sensors. For 

that, it is necessary to reduce the cost of deployment and guarantee the reliability of the sensing, 

such as detection time and coverage of the whole water network. In this paper, a dynamic approach 

of sensor placement that uses an Evolutionary Algorithm (EA) is proposed and implemented. The 

proposed method generates a multiple set of water contamination scenarios in several locations 

selected randomly in the WDS. Each contamination scenario spreads in the water networks for 

several hours, and then the proposed approach simulates the various effect of each contamination 

scenario on the water networks. On the other hand, the multiple objectives of the sensor placement 

optimization problem, which aim to find the optimal locations of the deployed sensors, have been 

formulated. The sensor placement optimization solver, which uses the EA, is operated to find the 

optimal sensor placements. The effectiveness of the proposed method has been evaluated using two 

different case studies on the example of water networks: Battle of the Water Sensor Network 

(BWSN) and another real case study from Madrid (Spain). The results have shown the capability of 

the proposed method to adapt the location of the sensors based on the numbers and the locations of 

contaminant sources. Moreover, the results also have demonstrated the ability of the proposed 

approach for maximising the coverage of deployed sensors and reducing the time to detect all the 

water contaminants using a few numbers of water quality sensors.  

Keywords: Water distributed system, Water quality monitoring, Sensor placement, Optimization, 

Evolutionary algorithm; 
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1. Introduction 

The fundamental duties of water utilities are to supply and distribute water to customers in 

acceptable quality, quantity, and pressure through the entire water distribution system (WDS) (Liu 

et al. 2017). The usable water is at first treated to meet the standards of the drinking water quality 

before delivery. During transmission and dispersion, a few contaminants may enter WDS that 

adversely affect drinking water quality and cause health risks to customers (Du Plessis 2017; Kara 

et al. 2016). 

 

The growth of infectious diseases begins with biological and chemical contaminants in drinking 

water (Cotruvo et al. 2018). Rapid and sensitive detection strategies are, therefore, crucial to 

guarantee a clean and safe water supply. Harmful supply of water affects human health, causing 

infectious illness, for example, influenza, hepatitis, gastric ulcers, pneumonia, and pulmonary 

disease (Richardson 2011). Water supplies contain various non-biological contaminants, including 

silica, sodium, sulphur, ammonia, and chlorine (De Vera and Wert 2019). In addition to these 

contaminants, the presence of microbiological contaminants in drinking water at the stage of 

consumption is another problem of water quality (Angelakis and Snyder 2015). Water utilities need 

to continually monitor both the quantity and quality of distributed water to maintain human health 

and improve safety (Shahra and Wu 2019). 

WDS is typically comprised of numerous components to serve large zones with protected and 

constant supply of drinking water. They need regular administration, control, and maintenance 

(Gheisi et al. 2016). Therefore, monitoring water quality in WDS is not a simple job, and water 

utilities use traditional and advanced methods to complete this. In the conventional method, a group 

of water utility qualified employees visits the pre-determined monitoring sites for in situ water 

quality measurements and sampling at predefined frequencies (Capodaglio 2017). The data obtained 

using traditional monitoring provides discontinuous information on the monitored points of the 

water network. Thus, the detection and prevention of water contaminants are neither direct nor 

controlled. Alternatively, integrated inline sensor-based monitoring (ISBM) and supervisory control 

and data acquisition (SCADA) are an improved way to manage, maintain, control, and continuously 

monitor the quantitative and qualitative parameters of the system in many parts of a WDS (Zaev et 

al. 2016). As it is not possible to monitor all the parameters of water quality in the WDS, so it is 

necessary to balance the costs and the ease of use. As a result, ISBM systems typically use deployed 

sensors to measure hydraulic and typical water quality parameters such as electrical conductivity, 

turbidity, pH, temperature, chlorine, and dissolved oxygen (Dong et al. 2015). Unlike traditional 

monitoring, the ISBM system with available sensors is always prepared and active to observe 

changes of the water quality in the WDS. With automatic sampling and measuring at prearranged 

time intervals, ISBM systems can cover as many points as required. The data gathered from the 

ISBM scheme is usually transmitted wirelessly to a control centre and stored for further use. 

Analytical techniques have recently taken a range of directions in water monitoring (Chen and Han 

2018). There are multiple methods for monitoring water quality, including traditional instrumental 

analysis, microfluidic devices, model-based event detection, sensor placement approach, 

spectroscopic approach, and biosensors. The selection of an appropriate detection method depends 

heavily on the end of the planned detection analysis, whether quality or hybrid measurements are 

required. Chemical and biological sensors are in high demand that can be used in water monitoring 

technology and seems feasible for device inclusion and marketing (Karadirek et al. 2016; Thompson 

and Kadiyala 2014). 

In recent years, the development of water quality sensors and the optimal placement of sensors for 

event detection has begun to develop (Zulkifli et al. 2018). A sensor placement approach can enhance 

detection efficiency by increasing sensitivity detection. The deployment of current water quality 

sensors in a WDS enables you to assess temperature, chlorine, pH, turbidity, conductivity and 

dissolved oxygen (Chang et al. 2011). These parameters of water quality are essential for drinking 

water to fulfil the detection limit set by the United States Environmental Protection Agency 

(USEPA) (Rock et al. 2019). However, due to high demand, the installation of numerous sensors 

along the WDS does not seem to be very practical. Most of the water quality parameters are used as 

the leading indices for WDS contamination incidents, which are acquired from inline deployed 

sensors (De Winter et al. 2019). The primary aim of the water quality event detection technique is 

to: 1) define the water quality event in a subset (e.g., location, duration, and risk level), and 2) 

correctly and quickly detect water contamination (Zulkifli et al. 2018). The contribution of this paper 

can be summarised here: 
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 Proposed a method for water quality sensor deployment that satisfied the requirement of 

the real-time monitoring for water quality in WDS by: 

o  Adapting the locations of the deployed sensors based on the number of suspected 

sources helping to reduce water contamination impact.  

o Maximized the coverage of the deployed sensors to detect all water 

contaminations in the study area. 

o Reduce time detection of the water contaminations that helps to reduce the 

contamination impact. 

The paper is organized as follows. Section 2 presents the related literature work, which has been 

done in the literature. Section 3 provides the methodology of the proposed work and more details of 

each part of the proposed approach. The evolutionary algorithm and the optimization objectives used 

to determine the optimal locations of the deployed sensors are explained as well. Section 4 presents 

the case studies applied to our approach for evaluating the effectiveness of the work. Section 5 shows 

the results, and the analysis of the sensor placements approach in both case studies are presented. 

Finally, section 6 concludes the work and recommend future works. 

2. Related Literature 

2.1 Inline Sensor-Based Monitoring (ISBM) 
Wireless Sensor Networks (WSN), which can be utilized as a powerful solution to monitor and deal 

with water quality (Shahra et al. 2019). WSN has been generally executed for a full scope of 

applications, including observing, monitoring, and control (Sheltami et al. 2017). In WDS, many 

water quality sensors were installed to monitor contaminant incidents and to prevent colossal water 

contaminant accidents or to decrease water losses (Sela and Amin 2018). With the advent of 

increasing reliable computation in Microchips, many efficient sensors and other tools for real-time 

monitoring of remote regions are developed. Advances in wireless connectivity, distributed 

computing, and sensor technology now enable water quality data to be collected remotely, process, 

and communicate (Karem et al. 2017). Besides, integrating molecular and living monitoring 

technologies have enhanced ISBM systems with the capacity to react with a broader spectrum of 

contaminants and other parameters (Barabde and Danve 2015). ISBM technologies give many 

benefits over traditional monitoring methods by streamlining the data collection method, minimizing 

human errors and time delays, lowering general data collection costs, and considerably improving 

the amount and quality of temporal and spatial data (Adu-Manu et al. 2017).  In general, inline water 

quality monitoring is described as gathering information at particular locations and at periodic 

intervals to provide data that can be used to define present water quality circumstances, and trends, 

etc. (Banna et al. 2014; Cloete et al. 2016). The primary objective of inline water quality monitoring 

in WDS is to assess critical water quality parameters such as chemical and physical characteristics, 

to detect variations of water parameters, and to recognize risks rapidly. Also, the monitoring system 

provides an analysis of the collected data in real-time and offers appropriate corrective actions 

(Zulkifli et al. 2018). 

 
In recent years, incidents of water contaminants have often occurred and had adverse effects on our 

society.  To ensure safe water is distributed, the water quality must be observed in real-time using a 

new technology that relies on the Internet of Things (IoT). Vinod et al. (2018) proposed water quality 

monitoring (WQM) based on IoT. WQM selects some of water quality parameters such as water 

level, PH, CO2, and temperature across multiple system nodes. The data collected from these sensors 

are sent to the cloud server wirelessly. Within the cloud server, updated data can be retrieved or 

accessed for future analysis from anywhere in the world. Another study using the same technology 

of IoT to monitor the physical and chemical parameters of water quality provided the development 

and expansion of an Internet of Things real-time water quality measurement system and reduced the 

cost. It was used to measure the water's physical and chemical parameters such as conductivity, pH, 

chlorine, and turbidity. The main benefit of the proposed work is that it is easy to install and can be 

installed very close to the target area (Yang et al. 2019). 

Xiaoci Huang et al. (2015) presented a self-configuring WSN solution for the control of lake water 

quality. The methodology is based on the implementation of a semantic framework that allows a 

response to make decisions about configuring WSN services. They also proposed a rule-based 

reasoning system that is used by reasoning methods and context-awareness to support decision-

https://sciprofiles.com/profile/133758
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making. They finally perform usability experiments and performance benchmarks to evaluate the 

approach. In Mompoloki Pule et al. (2016) WSN-based solution has been developed using 

Libelium's Waspmote platform. The sensor node is based on ATMEL's ATmega, which can run for 

a long time without the need for recharging its battery. The results showed that the proposed solution 

was able to sample specific water quality parameters in real-time with the same precision as 

expected. Another study that used WSN to design water quality parameters presented in Menon et 

al. (2012). They have developed and proposed a sensor framework to monitor water pH values and 

use such sensor nodes effectively to build a real-world water quality monitoring system in India. 

The measured value of pH is transmitted wirelessly to the base station using IEEE 802.15.4 

communication standard for further processing and checking the condition of the water quality. The 

proposed framework provides multiple advantages such as low cost of sensor node platform, energy-

efficiency by using low power devices in the design of the hardware. 

Tuna et al. (2013) have created two WSN methods to monitor water quality in drinking water tanks 

using sensors with distinct communication interfaces. In the first solution, they clarified the 

development of an autonomous mini-boat water quality monitoring framework for drinking water 

reservoirs, which is directed by GPS. Then they explored the use of portable IEEE 802.15.4-based 

wireless devices for continuous water quality monitoring. This kind of system removes the need for 

periodic water quality analysis and increases the quality of the water supply through constant 

monitoring. The second approach they have suggested uses a group of portable sensors with solar 

panels for energy harvesting and wireless devices installed on boats based on IEEE 802.15.4. These 

nodes communicate with each other wirelessly to form WSN and send their measurement to the 

central processing device for further analysis. The results of the first experiment show that the 

proposed solution has been successful in terms of direction and water sampling efficiency. The 

results of the second experiment show that the usefulness of this framework relies on multiple factors 

such as transmission capacity, packet size, and transmission rate. 

2.1.1 Deployment of Water Quality Sensors in WDS  
Deploying multiple sensitive sensor stations in a water distribution system is an emerging 

technology for the simultaneous detection of water contaminants. In recent years, multi-parameter 

sensor arrays are less expensive and easy to use for monitoring the quality of water supply systems 

(Zhuiykov 2012). To protect public people from the intentional and accidental penetration of risk 

into a distributed drinking water system, water quality monitoring sensors are deployed in WDS. 

The WDS can be presented as a network where the nodes represent water reservoirs, junction, tanks, 

pumps, and end-users, while the connections between these nodes represent the pipes. 

Contamination can occur at any node in the network and expand along the pipes to the entire system. 

Ideally, we can place sensors on all nodes to detect pollution or contamination. However, it is 

impossible to place sensors on all nodes of the network due to the relatively large structure of WDS 

and the high cost of water quality  sensors (Rathi and Gupta 2014).  

Speaking of the placement of water quality sensors, several design requirements must be taken into 

account, for example, to ensure maximum protection of public health, covering all possible water 

quality events, accessibility, etc. One of those issues is the cost of the deployment. This is because 

the prices of deployment and management are so high that it was impossible to place sensors 

covering the entire area, other than the critical places that have the most significant impact on 

protecting people. In response to growing concerns about water quality control, several studies have 

also analyzed location problems in water sensor networks, using mixed-integer programming 

models (MIP), heuristic methods, and general-purpose metaheuristics (Zeng et al. 2016).  

Zeng et al. (2016) proposed a network of water quality monitoring systems comprising two types of 

systems at different rates. First, they formulate the problem into a programming problem that is 

limited by a mixed-integer quadratic. The problem is then linearized into a linear mixed-integer 

programming equivalent. They also propose a two-stage heuristic polynomial algorithm and test its 

efficiency through comprehensive studies based on simulations. Jiahong Chen et al. (2018) proposed 

Rapid Random Tree Exploration with Linear Reduction (RRLR). The method is based on an 

environmental model, and sensor readings are linearly dependent. It is also proved that the objective 

function of optimization, which uses the error of prior estimation, is submodular and leads to a near-

optimal solution. Simulation results show that, in comparison with benchmark algorithms, RRLR 

requires far fewer sensor nodes to achieve the same or lower estimation error. Ross et al. (2015) 

have presented a comparison and classification of a few water quality sampling methods for 

Canadian Prairies watersheds according to operational and statistical data. To detect and monitor 

video data on significant fields and water parameters including pH, oxygen, temperature, dissolved, 

oxygen, and conductivity, a WSN-based water environment surveillance scheme is introduced in 

(Hall et al. 2007). In which data monitoring nodes send information and video to the database, and 
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Figure 1 Objective functions used by seneor placement optimization 

the base station transmits data to the remote monitoring centre using CDMA (Multiple Code 

Division Access) technologies. Lorena Parra et al. (2018), proposed a low-cost, wireless sensor 

network deployment system. The deployed sensors trace parameters of water quality, tank status, 

dropping feed, and swimming depth and speed of the fish. In addition, the sensor contains a smart 

algorithm to reduce the energy waste when sending the node information to the database. The 

monitor station consists of three nodes in each tank that send the data to a web-based database 

through the local area network and a smart algorithm that identifies irregular values and sends alarms 

when they occur. All sensors are designed, calibrated, and used to ensure their appropriateness. 

Storey et al. (2011) have discussed water quality parameters in the field of on-line monitoring of 

water quality, which presents the results of an international study on the detection of water pollution. 

The results are based on visits to major water utilities, research organizations and technology 

providers in Singapore, the United States, and Europe. 

2.1.2 Optimization Objective Functions for Sensor Deployment 
For the deployment of sensors in WDS, multiple objectives are currently being used. Minimizing 

effects on public health is a widely accepted objective, and many forms of goals have been developed 

on health impacts, such as the number of people exposed to a water contaminant or the number of 

people obtaining a dose above a fixed threshold. Researchers have also developed optimization 

methods for achieving a variety of other goals. For example, the time detection (TD), reducing the 

extent of contamination in the pipeline system (EC), population exposed to contamination (PE), 

volume of contaminated water consumed by the consumer before detection (VCW), and detection 

likelihood (DL), which is a method to calculate the value of one or more parameters for a given 

statistics, making the known probability distribution maximum. In Figure 1, we list the well-known 

and most used optimizations objectives (Rathi and Gupta 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Mathematical Formulation of WDS and Sensor Placement  
2.2.1 System Model of WDS 
WDS, containing thousands of pipes, junctions, and hydraulic valves, may or may not have a loop 

or branch network topology, as shown in Figure 2. WDS is often modeled as a graph G = (N, C), 

where the nodes in N refer to junctions, reservoirs, or other sources, and the connection in C 

represents pipes, valves, and pumps. Drinking water flow depends on pump rate and pressure, which 

may often change. A contaminant event refers to the injection of toxic substances as a result of water 

quality events that can occur at any node at any time with an undetermined dose of toxic chemicals 

or biological materials. The set of various contaminant scenarios is endless due to uncertainty; a 

representative set of situations (such as the contamination occurs at the water source, interconnection 

nodes, isolated nodes) can be selected either by listed or randomly for a quantities assessment of the 

damage. A water flow takes time to pass from one node to another, defined as the flow time. We use 

𝑡𝑠𝑑 to denote the average flow time from 𝑠 to 𝑑. The flow of 𝑠 can pass through several nodes until 

it reaches 𝑑. The average flow time can be obtained by adding the average time on all connections 

passed through. As contaminant flows along the water pipe, 𝑡𝑠𝑑 also has time to spread the 
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contaminant from node 𝑠 to node 𝑑. In particular, we assume 𝑡𝑠𝑠 = 0  ∀ 𝑠∈N, which indicates that 

the contamination should immediately reach the junction at which it is introduced. To ensure 

detection accuracy for quick detection, any contamination injection must be detected by the sensor 

at time 𝑇. For example, if we place the sensor on node S, it can detect any possible contamination 

occur at node 𝑆 ∈ 𝑁 𝑤𝑖𝑡ℎ 𝑡𝑠𝑑 ≤ 𝑇. We determine detectability (𝑑𝑠𝑑) between nodes 𝑠∈N and 𝑑∈N 

as 

𝑑𝑠𝑑 = {
 1,     𝑖𝑓   𝑡𝑠𝑑 ≤ 𝑇
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         𝑠, 𝑑 ∈ N    (1) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
2.2.2 Sensor Placement Formulation  
Typically, the purpose of placing sensors in a WDS system is to detect contamination and thus 

mitigate the effects of contamination events. Here is a generally mixed integer programming (MIP) 

formulation for designing the expected impact sensor placement: 

                       Min ∑ αee∈A  ∑ Ieii∈Le
 Vei                                (2)                                                                     

 

Constrains: 

1. ∑ Vei = 1     ∀e∈ Ai∈Le
   

2.  Vei ≤  Si             ∀e∈ A, i∈ Le   

3. ∑ Ci Si ≤ Bi∈L    

4.  Si ∈ {0,1}            ∀i∈ L   

5. 0 ≤  Vei ≤ 1      ∀e∈ A, i∈  La  

 

This formulation is to minimize the expected effect of a set of contaminants events defined by (A). 

For each event 𝑒 ∈  𝐴, (𝛼𝑒) is the weight of the event (𝑒), which is a probability of contamination 

injection. (𝐼𝑒𝑖) is the health impact of the contamination event (𝑒) at node (𝑖). ( 𝐿𝑒) is the set of 

locations that can be contaminated by an event (𝑒). (𝑉𝑒𝑖 )is a decision variable that indicates whether 

the event (𝑒) detected (seen) by the sensor at the location (𝑖). It defined as a continuous variable 

between [0-1]. (𝑉𝑖) is a binary decision variable, (𝑆𝑖 = 1) indicates that a sensor deployed at node 

(i). (𝐶𝑖) is the cost of deploying a sensor at the location (L). (B) is the budget available for using 

sensors. 

Figure 2 Water distribution system 
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3 Methodology  

3.1 The Proposed Approach 
The proposed method presented in Figure 3. generates a multiple set of water contamination 

scenarios in several locations selected randomly in the WDS. Each contamination scenario spreads 

in the water networks for several hours, and then the proposed approach simulates the various effect 

of each contamination scenario on the water networks. On the other hand, the multiple objectives of 

the sensor placement optimization problem, which aim to find the optimal locations of the deployed 

sensors, have been formulated. The sensor placement optimization solver, which uses the EA, is 

operated to find the optimal sensor placements. In this research, the contaminated water consumed 

volume (VCW) and time detection (TD) are considered as optimization objectives. The novel aspect 

of the work described in this paper is that the number of contamination sources considered can vary.  

Thereby simulating scenarios where contamination occurs at one or two (or multiple – but not 

considered in this study) sources, and optimal sensor placements tailored to each of these scenarios 

are sought. In this context, the proposed approach described in this paper aims at providing the 

optimal sensor locations for efficiently detecting events when different numbers of contamination 

sources are suspected and maximizing the coverage of the deployed sensors to cover the whole 

network. More details of all the components of the proposed work: impact matrix and the optimizer 

solver are described in the next subsections 3.2 and 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Impact Matrix Computation 
In this work, two different objective functions (OF) have been used, which are: contaminant water 

consumed volume before contaminating detection, and timely detection of water contaminant. More 

detail about these objective functions is presented in the next two subs sections. 

3.2.1 The Volume of Contaminant Water (VCW) 

To calculate the amount of contaminated water was identified by any sensor, the following 

equation is used: 

 

𝑉𝑛𝑒 (𝑡) = {
𝑑𝑖  (𝑡)  × △ 𝑡            𝑖𝑓 𝐶𝑛𝑒  (𝑡)  ≥  𝐶𝑚𝑖𝑛

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (3)                                         

 

Figure 3 Methodology of the proposed approach 
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Where 𝑉𝑛𝑒 is the volume of the water at node 𝑛 for event 𝑒, 𝐶𝑚𝑖𝑛 is the threshold hazard 

concentration, 𝐶𝑛𝑒 is the concentration at node n for event 𝑒. 𝑑𝑖  (𝑡)  denotes the water demand at 

node 𝑖 at a time step, △ 𝑡 represents time step interval. Algorithm 1 shows the computation of the 

impact matrix, considering the volume of contaminant water for all event scenarios. 

 
Algorithm 1: Calculating the volume of the contaminant water: Impact Matrix (VCW) 

 

1: Generate Contamination Scenarios (C) 

2: Select one Scenario from C 

3: Simulate Hydraulic and Quality Models 

4: if Contamination Concentration (CC)>>Threshold then  

5: Contaminate water volume (VCW) ← cc × ∆t × demand 

6:  Total_Imp  VCW 

7:  Calculated _Matrix  Total_Imp 

8: else 

9: Go to Step 2

 
 

3.2.2 Time detection (TD) 

The purpose of deploying water quality sensors in WDS is to effectively detect contamination events 

to reduce the risk of exposure to the public. In this work, our formulation models the placement of 

sensors 𝑝 in a set of nodes P⊆  𝑁, 𝑋 𝑃, 𝑋 (𝑗) means the 𝑖th sensor in the layout of the sensor 𝑋. We 

use the expected time detection for all contaminants events 𝐸 as an optimization goal. For 

contaminant event 𝐸 (𝑖), the detection time by sensor 𝑋 (𝑗) is the elapsed time 𝑡𝑥(𝑗)  from the start 

of the contaminant event to the first identified presence of a non-zero concentration of the 

contaminant. For a fixed number of sensors 𝑝, the time of the first detection is described as follows: 

                                             td = minj=1,..,p 〈tx(j)〉                          (4)                                                                                                

The equation above is the objective of minimizing the expected value by calculating all contaminants 

events. 

                                         t = min
1

E
 ∑ td

e
i=1                                (5) 

Where 𝑡 represents the mathematical expectation of the minimum detection time 𝑡𝑑. Since each 

contaminant event 𝑒 includes one injection that can occur at any node in the network, the number of 

all contaminant events is E, if the sensor does not detect water contaminate event, 𝑡𝑑is the simulation 

time. 

3. 3 Optimization Solver (EA) 

The optimization formulas described above can be processed using several solvers for optimizing 

the placement of sensors that were used, including genetic algorithms, integer programming solvers, 

and local search. Other well-known methods, for example, some researchers simulated annealing 

and taboo searches. The choice of optimizer for determining the location of the sensor depends on 

several factors: a runtime available for optimization, available computer memory, the guarantee of 

performance for the final solution. Integer programming (IP) solvers can ensure that the best possible 

location for the sensor is found, that is, a place that minimizes the risk of water contamination. 

However, it is known that IP solvers have difficulty solving large applications; in large tasks, they 

can work for long hours and require a lot of memory. In contrast, heuristic optimizers, such as 

genetic algorithms or local search methods, are typically unable to guarantee that the final solution 

is almost optimal. But in practice, it is known that these methods quickly find practically optimal 

solutions. In this work, an evolutionary algorithm (EA) is used to represent the optimization solver. 

The essential descriptions of EA and how it applied in our case studies are described in algorithms 

(2 and 3). 
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Algorithm 2: The main description of EA 

 

1: Generate [Pop [0]]; Generate the initial Population. 

2:    T0 

3: while (the target performance NOT Obtained) do 

4:  Evaluate Pop (t); Evaluate the fitness of each individual 

5:  Pop’ (T) Select pop (t); select the best-fit individual 

6:  pop” (t) Apply variation operations; Crossover and Mutation on Pop’ (t) 

7:  pop (t+1)  Replace [ pop’ (t), pop” (t)]. 

8:     Tt+1  

9: end while 

 

In algorithm 2, the primary function of the evaluation algorithm is presented. The motivation for 

using this algorithm is that the EA is designed to mimic natural evolution. This algorithm has three 

principles that formed the foundation of development: population of individuals, mutation, and 

fitness. A population can be reproduced or died, and this determines by fitness. The population can 

mutate by amending a bit in its properties to produce a new generation. EA has been applied in the 

two different case-studies (BWSN and Madrid) to select the optimal locations of the sensors. EA 

operates by generating the initial population randomly, where the population represents the potential 

solutions, and then the fitness of each individual is evaluated. The fitness is represented by the 

impact matrix (see section 3.2) that uses two objective functions to assess the performance of the 

algorithm: VCW and TD. In BWSN case-study, we applied only VCW with the fitness function 

where the location with high volume will be selected for the new population while the places with 

low volume will be ignored (died). The details of how VCW is calculated is explained in section 

3.2.1. In Madrid case-study, VCW and TD are applied where the fitness with TD selects the locations 

that have minimum values of time detections and ignore the others. For the mutation, we have added 

Gaussian noise to each offspring in which mutation must not push the children beyond locations 

number (our target solutions). The implementation of EA with two case studies is presented in 

Algorithm 3. 

 

 
Algorithm 3: The implementation of EA in our case-studies 

 

1: Carry out the Hydraulic analysis of network 

2: Consider each node as a candidate location for first sensor placement 

3: Determine the Objective Function (OF) values for all available alternative sensor locations 

4: Select the node combination of a node for sensor placement having target value of OF 

5: if (Target value of OF obtained) and (Number of sensor location gained) then 

6: Go to END! 

7: else 

8: Determine the available sensor by adding one more sensor location to already  

Selected location. 

  9: Go to step 4   

 

4 Case Studies 

The sensor placement method proposed in this paper has been tested and investigated using two 

different case studies. Firstly, the Battle of the Water Sensor Network (BWSN) case-study network, 

where we examined how the water contaminant spread in the system.  We investigated how the 

deployed sensors adapt their locations against numbers and locations of pollutant water sources (i.e., 

single or two contaminant sources at the runtime). Secondly, based on a real case study from Madrid 
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(Spain). We have tested the ability of the deployed sensors using our approach to detect all water 

contaminants. 

4.1 Battle of the Water Sensor Network (BWSN)  
The BWSN shown in Figure 4 includes one reservoir, two pumps, eight valves, one hundred twenty-

six junctions, and one hundred sixty-eight pipes. Each contamination event considered in this study 

has a concentration of 10 mg/L and injection time of two hours (between the start and stop time). 

The source of the contamination event could be single or multiple (i.e., 2 locations).  This case was 

used to test the ability of the proposed algorithm to adapt the positions of deployed sensors based 

on the number of contaminant sources and will present the contamination generation in the network 

as colored maps that include deployed sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Madrid Capital 
This real case study denotes a part of the town (city centre) of Madrid Capital, Spain, as shown in 

Figure 5. It includes one reservoir, two tanks, two pumps, fifty-five valves, four hundred and forty 

pipes, and one thousand junctions. This case study was being used to test the capacity of the deployed 

sensors to detect all water contaminant events that may occur at any location based on two different 

objectives, which are the volume of contaminated water and time detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 BWSN case-study 

Figure 5 Madrid city case-study 
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5 Results and Analysis 

5.1 Results from BWSN Case Study 
The results obtained from the BWSN case study is presented in this section, the following scenario 

is considered. Firstly, contamination started to spread in the network from TANK-131 (see Figure 

6) at time zero of the 50 hours EPANET simulation time. At this point, a single source of 

contamination is suspected, and the optimally placed sensors located injunctions 10, 17, 23, and 32 

(see Figure 7) enables detecting that contamination event. The effectiveness of that sensor placement 

can be inferred by looking at the contamination regions in the WDS after 16 hours of simulations 

shown in Figure 6. This map shows five different colours in which blue represents a region with no 

contamination, while the red represents regions with high diseases. After that, a second source of 

the pollution is suspected (simulated as a contamination event that started to spread in the network 

from (RESERVOIR-129) as shown in Figure 8. Therefore, the sensors should move to the optimal 

locations injunctions 10, 34, 53, and 118 (see Figure 9) to more effectively detect the two-source 

contamination event. Similar to what is shown in Figure 6, Figure 8 demonstrates the effectiveness 

of that sensor placement by showing the contamination regions after 30 hours of simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Contamination spread in the network from single contaminated source 

Figure 7 Optimal locations of sensors with single contaminations source 

TANK-131 

10 
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5.2 Results from Madrid Case Study 
The results from the Madrid case study described above are presented in this section. Start to show 

how the water contamination spread in the network for 24 hours. Figure 10 shows the regions that 

include water contamination labelled by red and the areas without any contamination labelled by 

blue. We have tested our approach in the Madrid case study utilizing different experimental settings 

for timely detection and volume of contaminated consumed water as objective metrics for optimizer 

solver. In the first experiment, we have used ten sensors that have to be deployed in the study area; 

the volume of water consumed has been used as an objective function for optimizer solver. Figure 

11 shows the optimal locations of ten sensors that cover the network. To justify the capacity of these 

sensors to detect contaminates, Figure 12 represents the ten sensors with ten different colors; each 

color represents the coverage of each sensor to detect contaminates. We can notice from Figure 12 

that sensor locations cover most of the study area, which means that it can detect all water 

contaminants. Besides, some regions labeled with black are represented undetected areas of water 

contamination. 

 

Figure 8 Contamination spread in the network from two contaminated sources 

Figure 9 Optimal locations of sensors with two contaminations sources 

TANK-131 

RESERVOIR-129 

10 
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Figure 10 Water contamination spread in the network after 24 hours 

Figure 11 Sensor locations: ten sensors with volume contaminant water 

Figure 12 Sensor event detection: (links and nodes: ten sensors with VCW) 

Area 3 

Area 1 

Area 2 

Sensors locations 
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To investigate how the deployed sensors cover the areas based on the volume of the consumed water, 

firstly, looking to Figure 12 again, the area in the most left-hand side does not cover directly by any 

sensor (labelled by Area 1) this is because this area has a low number of houses which leads to low 

water demand. As the volume of contaminated water is used as an objective function in this 

experiment, these areas with low water demand will get low priority to cover directly by the 

deployed sensors. Secondly, another undetected area can be noticed in Figure 12, either the isolated 

links (links not connected to the network form both sides labelled by Area 2) or the links that have 

connected two points in parallel with other links (marked by Area 3). This is because either the area 

is separated from the whole network, which means that the water flow and demand are low or the 

links are connected in parallel with others, which means that all water flow and demand pass through 

the other loop. 

The results that represented the optimal locations of the ten sensors deployed using different 

constraints are shown in Figure 13. In this experiment, we have used ten sensors and time detection 

as objective functions. To justify the positions of these sensors to the event detection, Figure 14 

shows the ability of these sensors with ten different colours; each colour represents the coverage of 

each sensor for detecting the contamination. We can notice that the sensor locations are changed 

compared to the previous ones shown in Figure 11. This is because detection time is used in this 

experiment as objective functions for the optimizer, so the sensor location does not depend on water 

demand. However, the optimal locations of this sensor aim to detect the contaminant as fast as 

possible. From Figure 14, we can also notice that the whole study area (water network) is covered 

directly by the deployed sensors except the isolated regions (ex. labelled by Area 1) that ignored 

from the leading system and considered as a separate network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Sensor locations: tens sensors with time detections 

Figure 14 Sensor event detection: (links and nodes: ten sensors with TD) 

Area 1 

Sensors locations 
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6 Conclusion 

In this paper, a dynamic approach of water quality sensor placement that uses to detect the water 

contaminations in near real-time is proposed. The proposed method generates a multiple set of water 

contamination scenarios in several locations selected randomly in the WDS. The multiple 

optimization objective functions (volume of contamination water and time of water contamination 

detection) have been formulated and used with EA as optimization functions. Then, the sensor 

placement optimization solver is operated to find the optimal sensor placements. The proposed 

method has been evaluated using different case studies BWSN and Madrid. In the BWSN case-

study, we have tested the ability of our approach to adapt the sensor locations based on the number 

and locations of suspected contamination sources. In Madrid Capita case-study, we have examined 

the strength of the proposed approach to maximize the coverage of detecting water contaminations 

using a low number of water quality sensors. The results show that the proposed method has 

achieved the goals of identifying the water contaminations while fulfilling the requirements of the 

near real-time monitoring using a low-cost sensor deployment.  

 

For future work, we aim to study the impact of human health from water contamination and how the 

proposed approach presented in this work is helping to reduce water contamination impact. The 

health impact can be analyzed, by computing the number of people got effect from the water 

contamination after spreading in water distribution networks for a few hours in term of fatality, 

infected, and disease. 
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