Automated planning of concrete joint layouts with 4D-BIM

Sheikhkhoshkar, Moslem and Rahimian, Farzad Pour and Kaveh, Mohammad Hossein and Reza Hosseini, Mohammad and Edwards, D.J. (2019) Automated planning of concrete joint layouts with 4D-BIM. Automation in Construction, 107. ISSN 0926-5805

[img]
Preview
Text
Automated planning of concrete_joinlayouts.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB)

Abstract

Concrete pouring represents a major critical path activity that is often affected by design limitations, structural considerations and on-site operational constraints. As such, meticulous planning is required to ensure that both the aesthetic and structural integrity of joints between cast in-situ components is achieved. Failure to adequately plan concrete pouring could lead to structural defects, construction rework or structural instability, all having major financial implications. Given the inherent complexity of large-scale construction projects, the ‘manual planning’ of concrete pouring is a challenging task and prone to human errors. Against this backdrop, this study developed 4D Building Information Management (BIM) approach to facilitate automated concrete joint positioning solution (as a proof of concept) for design professionals and contractors. The study first developed structural model in Revit, then extracted spatial information regarding all construction joints and linked them to dynamic Microsoft (MS) Excel and Matlab spreadsheets using integration facilitated by Dynamo software. Midspan points of each beam as well as floor perimeter information were gathered via codes developed in MS Excel macros. Based on the Excel outputs, Matlab programming was used to determine best concreating starting points and directions, and daily allowed concrete volume, considering limitations due to cold joints. These information were then pushed back to Revit via Dynamo in order to develop daily concrete scheduling. The developed automated programme framework offers a cost-effective and accurate methodology to address the limitations and inefficiencies of traditional methods of designing construction joints and planning pours. This framework extends the body of knowledge by introducing innovative solutions to integrate structural design considerations, constructional procedures and operational aspects for mitigating human error, and providing a novel, yet technically sound, basis for further application of BIM in structural engineering.

Item Type: Article
Identification Number: https://doi.org/10.1016/j.autcon.2019.102943
Date: 10 September 2019
Uncontrolled Keywords: Digital engineering, Structural engineers, Integrated concrete design, Concrete scheduling, 4D BIM, Optimisation
Subjects: K200 Building
Divisions: Faculty of Computing, Engineering and the Built Environment > School of Engineering and the Built Environment
Depositing User: David Edwards
Date Deposited: 22 Sep 2020 14:37
Last Modified: 10 Sep 2021 03:00
URI: http://www.open-access.bcu.ac.uk/id/eprint/9922

Actions (login required)

View Item View Item

Research

In this section...