Plasmid-based gap-repair recombineered transgenes reveal a central role for introns in mutually exclusive alternative splicing in Down Syndrome Cell Adhesion Molecule exon 4

Haussmann, Irmgard U. and Ustaoglu, P and Braeuer, U and Dix, T and Soller, M (2019) Plasmid-based gap-repair recombineered transgenes reveal a central role for introns in mutually exclusive alternative splicing in Down Syndrome Cell Adhesion Molecule exon 4. Nucleic Acid Research, 47 (3). pp. 1389-1403. ISSN 0305-1048

[img] Text
PMC6379703/index.html - Published Version

Download (205kB)

Abstract

Alternative splicing is a key feature of human genes, yet studying its regulation is often complicated by large introns. The Down Syndrome Cell Adhesion Molecule (Dscam) gene from Drosophila is one of the most complex genes generating vast molecular diversity by mutually exclusive alternative splicing. To resolve how alternative splicing in Dscam is regulated, we first developed plasmid-based UAS reporter genes for the Dscam variable exon 4 cluster and show that its alternative splicing is recapitulated by GAL4-mediated expression in neurons. We then developed gap-repair recombineering to very efficiently manipulate these large reporter plasmids in Escherichia coli using restriction enzymes or sgRNA/Cas9 DNA scission to capitalize on the many benefits of plasmids in phiC31 integrase-mediated transgenesis. Using these novel tools, we show that inclusion of Dscam exon 4 variables differs little in development and individual flies, and is robustly determined by sequences harbored in variable exons. We further show that introns drive selection of both proximal and distal variable exons. Since exon 4 cluster introns lack conserved sequences that could mediate robust long-range base-pairing to bring exons into proximity for splicing, our data argue for a central role of introns in mutually exclusive alternative splicing of Dscam exon 4 cluster.

Item Type: Article
Identification Number: https://doi.org/10.1093/nar/gky1254
Dates:
DateEvent
3 December 2018Accepted
18 December 2018Published Online
20 February 2019Published
Subjects: CAH03 - biological and sport sciences > CAH03-01 - biosciences > CAH03-01-08 - molecular biology, biophysics and biochemistry
Divisions: Faculty of Health, Education and Life Sciences > School of Health Sciences
Depositing User: Irmgard Haussmann
Date Deposited: 02 Jul 2019 11:01
Last Modified: 12 Jan 2022 11:37
URI: https://www.open-access.bcu.ac.uk/id/eprint/7679

Actions (login required)

View Item View Item

Research

In this section...