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Abstract: While various measures of mitigation and adaptation to climate change have been taken 

in recent years, many have gradually reached a consensus that building community resilience is of 

great significance when responding to climate change, especially urban flooding. There has been a 

dearth of research on community resilience to urban floods, especially among transient 

communities, and therefore there is a need to conduct further empirical studies to improve our 

understanding, and to identify appropriate interventions. Thus, this work combines two existing 

resilience assessment frameworks to address these issues in three different types of transient 

community, namely an urban village, commercial housing, and apartments, all located in Wuhan, 

China. An analytic hierarchy process–back propagation neural network (AHP-BP) model was 

developed to estimate the community resilience within these three transient communities. The 

effects of changes in the prioritization of key resilience indicators under different environmental, 

economic, and social factors was analyzed across the three communities. The results demonstrate 

that the ranking of the indicators reflects the connection between disaster resilience and the 

evaluation units of diverse transient communities. These aspects show the differences in the 

disaster resilience of different types of transient communities. The proposed method can help 

decision makers in identifying the areas that are lagging behind, and those that need to be 

prioritized when allocating limited and/or stretched resources. 
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1. Introduction 

In recent years, the frequency and magnitude of climate damage related events, such as 

rainstorms, floods, and typhoons have increased in China, threatening the sustainable development 

of cities, and hindering economic and social development [1–3]. As the present trends of population 

growth and urbanization continue, it can be expected that more people will be exposed and that 

assets will be more concentrated in risk-prone areas. The collapse of transportation systems, and 

fatalities due to urban floods have occurred in resource-poor communities, primarily due to their 

greater vulnerability and poor disaster risk management systems. Transient population is a specific 

demographic phenomenon in China, and its definition is often based on household registration, and 

interpreted with time and space as elements. Therefore, in this study, we define the transient 

population as those who have left their registered district and county to live and work for more than 

one month in other districts and counties. The transient population community is socially and 

politically complex and characterized as being vulnerable to sudden disturbances and community 

conflicts, as well as to extreme weather events like rainstorms and floods [4]. The aftermath of recent 
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urban floods has highlighted the need for a community to be prepared for, and be able to recover 

rapidly from, a sudden potentially disastrous event. This means that there is an ever-increasing need 

for special attention to be paid to the adaptation of this transient population to urban systems. 

These adversities, caused by rapid urbanization and natural hazards, have promoted the need 

for further research into sustainable development and resilience [5]. The concepts of adaptation and 

resilience have become prominent in the urban risk reduction process [6,7]. The concept was first 

applied to the study of natural ecosystems by Holling [8], as “the persistence of relationships within 

a system and the ability of these systems to absorb, change and learn the variables, and still persist”. 

Resilience is a supplement to and sublimation of the concept of sustainable development [9], and 

concerns the welfare of human society in all spheres. In the field of social-ecological systems, 

planning, adaptation, and transformation actions are considered critical factors in the formation of 

resilient systems. Thus, the key to improving the resilience of social-ecological systems is to seek 

various approaches to maintain resilience, adapt or transform systems to reduce disaster risk, adapt 

to climate changes, and introduce new strategies to develop more sustainably and efficiently [10]. 

From this perspective resilience is generally considered the capacity to tolerate, absorb, cope with, 

and adjust to changing social or environmental conditions, while retaining key elements of 

structure, function, and identity [11,12]. 

Though there is no consensus today on a precise definition of resilience [13,14], and divergent 

views on its scope [15–17] and measurement, the scientific community agrees that resilience includes 

four aspects: prevention, preparation, response, and recovery. Resilience has also been applied to 

various fields, including physics, engineering, economics, psychology, sociology, anthropology, 

public health, geography, and disaster management [18,19]; and at different units of analysis, 

namely, individual, household, community, and regional levels [20]. The concept of resilience is 

useful in seeking to understand communities and the risks to which they are exposed in a holistic 

manner. In response to concerns about the consequences of the increased frequency and severity of 

disaster events, the notions of community resilience and resilient planning have gained increasing 

attention and interest over recent years in the fields of disaster and emergency management. 

International academic and policy circles have also acknowledged the necessity of strengthening 

communities’ resilience [21–27]. The resilience paradigm has been adopted by many major 

international development organizations since the Hyogo Framework for Action (HFA) in 2005. 

Remarkable among these was the Rockefeller Foundation’s Building Climate Change Resilience 

Initiative in 2007, which aimed to enhance vulnerable communities’ resilience to the effects of 

climate change. This paper discusses an initiative to assess community resilience in the specific 

context of the urban transient population. 

As the concept of resilience has continued to be applied in several research fields, there has also 

been increased attention on the importance of developing methods and frameworks for its 

measurement [28]. Measuring community resilience to external pressures is a complex systematic 

problem that requires the examination of various components and their relationships within the 

community. Several scholars have constructed frameworks and indicator systems to measure 

community resilience from different perspectives, including the community disaster resilience 

framework (CDRF), the benchmark measurement indicator of community resilience (BRIC), the 

climate disaster resilience index (CDRI), and the community resilience framework to disaster 

(CRDSA), and so on [29]. Bruneau et al. [19] stated that community resilience exhibited four 

characteristics: robustness, redundancy, resourcefulness, and rapidity. Subsequently, they proposed 

the four dimensions of community resilience: technology, organization, society, and economy. 

Cutter, et al. [30] provided a place-based disaster resilience of place model (DROP), within coupled 

human-environment systems, that assessed disaster resilience at the local or community level, and 

which has been applied in many community resilience studies [31]. Furthermore, In 2010, Cutter et 

al. proposed the BRIC model based on the DROP, which provided a series of secondary indicators to 

evaluate community resilience [32,33]. The BRIC model has more extensive coverage of community 

resilience dimensions than others [34], and it is one of the most widely applied frameworks within 

the existing literature for quantifying community disaster resilience through index creation [35,36]. 
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The operationalized version of the BRIC model was the first attempt to pass from a theoretical 

framework to an operationalized practice [23]. When it comes to vulnerability or resilience 

assessment, geographic information systems (GIS) have become powerful tools for identifying 

vulnerable communities and locations, at different scales [37–39]. There are also many studies that 

have conceived different GIS methods to predict, evaluate, and analyze the vulnerability and 

resilience of social environmental systems [40–44]. GIS can help governments, environmental 

agencies, and insurance companies to improve prevention, early warning mechanisms, and 

mitigation efforts using predictive analytics. 

The resilience, adaptation, and transformation assessment and learning framework (RATALF) 

was developed in 2015 by the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) in partnership with the Scientific and Technical Advisory Panel of the Global 

Environmental Facility (STAP/GEF) [45]. The framework leads users through a process of system 

description, assessing the system, and adaptive governance and management. The RATALF offered 

a structured approach to understanding and assessing resilience, and adaptive learning, so as to 

inform initiatives to build resilience of those social-ecological systems that contribute to agreed 

sustainability goals. The evaluation process of the RATALF evaluation system is resilient and 

repeatable [46], that is, the RATALF is not a conclusive resilience evaluation system, but a process to 

discuss resilience evaluation. Moreover, in the practical application of theory, some countries and 

research institutions have issued a series of complete evaluation systems and work manuals 

[45,47,48]. 

Although the term resilience has become a new paradigm of disaster management in places 

including Europe, Australia, and the US, the approach in China is still in the preliminary stage [49], 

and mainly focuses on the analysis of the concept of community resilience, the development of 

theoretical frameworks, and evaluation of index systems of resilience [50]. Despite the great 

achievements that have been attained in urban disaster reduction, the current models do not 

incorporate the concept of resilient communities into practical actions. As such, progress towards 

the measurement and implementation of strategies to achieve community resilience has been slow, 

and the absence of a systematic framework or understanding of the concept, even at the most basic 

level [20] has hampered progress. 

The continuous growth of the transient population in China will accelerate the process of 

urbanization, and at the same time, increase the vulnerability of the population and assets exposed 

to disasters. The assessment of community resilience of the transient population, and identification 

of priorities for resilience indicators, would provide a useful scientific basis for urban disaster risk 

mitigation. The weight distribution of indicators is a critical segment in the process of 

decision-making and evaluation [51]. In this paper, the analytic hierarchy process (AHP) [52,53] 

method and the artificial neural network (ANN) [54–57] are combined to enhance the accuracy of 

assessing community resilience, whilst also giving consideration to the characteristics of different 

properties and reducing subjectivity. Therefore, this study represents one of the first attempts to 

develop an index-based measurement, based on the resilience adaptation transformation assessment 

(RATA) theory, and use of a hybrid AHP-BP method for the comparative assessment of flood 

resilience for the transient population in Wuhan. Operationalizing the community resilience of this 

transient population is particularly important for Chinese cities in light of the fact that these 

community groups are vulnerable to floods because of the community’s antecedent conditions 

(inherent vulnerability), and defects of the community management system. 

2. Description of the Study Area 

This study focuses on communities within the transient population distribution area in Wuhan, 

Hubei Province, China, which lies at the junction of the Yangtze River and the Han River (Figure 1). 

The features of its geographical location and climate makes Wuhan a serious flood hazard area. 

According to historical records, severe floods occurred in 1931, 1954, 1998, and 1999. In addition, 

from 30 June 2016 to 6 July 2016, the accumulative rainfall in Wuhan reached 582.3 mm. Up to 30 July 

2016, flooding affected 13,274,200 people in the surrounding cities and counties. The flooding also 



Water 2020, 12, 2784 4 of 22 

caused about 30,000 houses to collapse, 1,317,300 hectares of crop damage, and the direct economic 

losses reached 3.168 billion Yuan. As a large and vulnerable group, the transient population 

community has become a frequent area of urban disasters, because of its disordered living space, 

high population density, and the lack of unified and effective management [4]. Three communities, 

namely, Hongxia community, Wannian community, and Hugong community, were selected as 

study areas in this work, in terms of the transient population community category (Figure 1). 

  
(A) (B) 

 
(C) 

Figure 1. Map of the study area (A): Hongxia community; (B): Wannian community; (C): Hugong 

community. 

Hongxia community is a new type of community established after the comprehensive 

transformation of the “village in the city” in Wuhan, and the renovation and improvement of 

housing and related supporting facilities. However, due to its remote location, economic 

development and infrastructure facilities still lag behind in this urban district. 

The Wannian community is a commercial and residential community that is located in the old 

town of Jianghan District, where the infrastructure is relatively sound but buildings are poor quality, 

with a disorderly architectural layout and poor sanitation conditions. Due to the superior 

geographical location and the surrounding commercial development, most migrants in Wannian 

choose to rent in the old community in the city center, for the convenience of work and education. 

Hugong community residents almost completely rely on employers to allocate housing. 

Although the building layout in this community is orderly, the road system is poor, with deficient 

infrastructure facilities, and the number of surrounding businesses is relatively small. Owing to 

work needs and low rents, many transient population choose to live in apartments. 

According to relevant statistics from the Wuhan Municipal Bureau of Statistics and the 

Information Center of the Planning Institute [58], from the perspective of socio-demographic 

attributes, 78% of the transient population have a per capita monthly income of less than 3500 yuan, 

which is lower than the average monthly salary of the national population. From the perspective of 
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social spatial distribution, the density of the transient population in Wuhan is distributed in a circle 

pattern, of high outside and low inside. The communities with higher density are mostly 

distributed in the old city, and the per capita living area is mostly 20–35 square meters. Generally 

speaking, due to the impact of low incomes, housing prices, and other factors, the transient 

population usually rents in areas with convenient transportation, convenient living, and low rents, 

which are mostly villages and old towns [59]. Therefore, these communities live in mostly poor 

environmental conditions, with restricted internal space, inadequate public services, and facilities. 

Living in such a harsh environment, with insufficient public services and facilities, the transient 

population are more vulnerable than other community groups in terms of economic, social, and 

physical wellbeing. 

3. Methodology 

Figure 2 shows the approach used for establishing the AHP–BP model framework. The 

methodology consists of four components: (1) selecting relevant indicators; (2) establishing indicator 

hierarchy model, and applying AHP method to determine the initial weights of each indicator; (3) 

calculating the linear weight values between the actual data collected in the questionnaire survey 

and the initial weight value, which were taken as the expected output of the BP neural network to 

establish the AHP–BP combination model, in order to estimate the three transient population 

communities’ resilience; and finally (4) distinguishing the difference of the three communities’ 

resilience reasonably and effectively, according to the optimized indicator weights of the AHP–BP 

model. 

 

Figure 2. Analytic hierarchy process–back propagation (AHP-BP) model of building process 

diagram. 

3.1. Data Collection 

Based on the research theme of the disaster resilience of the transient population and urban 

communities, a questionnaire survey was designed to cover four aspects: community space 

construction, economic development, community management system, and community social 

capital. Questionnaires were used to collect data from the transient population in the three types of 

community: urban village (Hongxia), commercial housing (Hugong), and apartment (Wannian). The 

questionnaire adopted a five-point variable Likert scale to gauge the respondents views. Ultimately, 
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265 valid questionnaires, which included 85, 92, and 88 valid questionnaires in the Hongxia, 

Hugong, and Wannian communities were effectively recovered, respectively. A reliability test was 

carried out on the basis of the questionnaire results. Cronbach’s alpha was 0.88, indicating that the 

survey results have scientific credibility. 

3.2. Indicator Selection 

The indicators were selected on the basis of the RATA framework [45], and the concrete 

indicators were filtered based on the BRIC framework [32]. The RATA procedure, which is a 

step-by-step iterative method for assessment, refers to the core of the RATA framework (Figure 3). It 

is conducted at focal (sub-national) scale, ideally with multi-stakeholder engagement [20]. The 

application of RATA was in order to fully consider the disaster resilience of the community, 

including material and spatial factors, social composition, social management, and community 

capital, so as to pay more attention to the disaster prevention ability of the community. Cutter et al. 

proposed constructing a resilience evaluation index system from six aspects including economic 

resilience, social resilience, environmental resilience, community resilience, infrastructure resilience, 

and organizational resilience. This model focuses on the ability of the social system, ecological 

environment, and buildings to cope with disaster impacts. In general, the BRIC framework considers 

the concept of community resilience as pre-event inherent resilience (robustness) and post-event 

adaptive (transformation) resilience [33], and includes the extensive coverage of community 

resilience dimensions compared with the other dimensions. The application of RATA was to ensure 

full consideration of the disaster resilience of the community, including material and spatial factors, 

social composition, and social management; and includes the extensive coverage of community 

resilience dimensions compared with the other dimensions. 

Although standards for assuring the variables are widespread within the existing indicator 

literature, no unified indicators or frameworks for quantifying community resilience are available to 

date. The framework proposed in this study is based on the theory of RATA, and the selected 

supplementary indicators that are contained in BRIC. Guided by the theory of RATA, the first step 

was to describe the system and identify exogenous disturbances and endogenous variations that 

may cause changes in the urban community system. Exogenous interference mainly refers to the 

identification of various disasters that communities are prone to, and endogenous variation comes 

from the factors influencing the vulnerability and resilience of communities. According to the degree 

to which the transient population community can meet the actual living needs of urban residents in 

terms of population characteristics and residential forms, it can be divided into urban villages, 

commercial housing, and apartments. Furthermore, the inherent differences between China and the 

west, as well as the relevant characteristics of the transient population community, were considered. 

A total of 16 indicators were selected after integrating the characteristics of the transient community 

and indicators mentioned in the existing literature. Table 1 presents the selected indicators and their 

corresponding dimensions. 
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Figure 3. The resilience, adaptation and transformation assessment and learning framework. Source: 

0’ConneH, et al. 2015 [45]. 

Table 1. List of hierarchical structure, and indicator descriptions. 

The Target 

Layer 

The Criterion 

Layer (Bi) 

Symbols 

(Cij) 
The Indicator Layer Description 

The transient 

population 

community 

resilience to 

disaster 

(A) 

Community 

space 

construction 

(B1) 

C11 Construction quality 
Disaster prevention level, quality of building 

facilities 

C12 
Disaster evacuation 

capability 

The width of the evacuation road meets the 

demand 

C13 Emergency shelters 
Whether there is a temporary shelter, and its 

space reasonably 

C14 
Disaster prevention 

marking system 

The completeness of the disaster prevention 

identification system 

C15 Lifeline system Whether the infrastructure is comprehensive 

Economic 

development 

(B2) 

C21 Disaster insurance 

Household property comprehensive 

insurance, personal accident insurance, etc. 

bought by residents to prevent losses caused 

by natural disasters 

C22 
Employment 

situation 

Employment status of transient population, 

economic income 

C23 Commercial scale 
The number and scale of businesses in the 

community reflect the community economy 

C24 
Material reserve 

system 

The provision of materials prepared by the 

community committee in response to the 

disaster 

Community 

management 

system 

(B3) 

C31 

Community 

committee 

management 

Number, quality, and standard of 

responsibility of community managers 

C32 

Community 

communication 

network 

Construction of community communication 

network (Interchange and share information 

within community) 

C33 Emergency Relevant emergency management 

Element A 
System

description

Element B
Assessing

The system

Element C
Adaptive

Governance
 and 

management

Resilience Adaptation 
Transformation

Assessment(RATA) Procedure

E
lem

en
t D

: M
u

lti-stak
eh

o
ld

er en
g

ag
em

en
t

Indicators for key 
variables

 Derived from:

 Existing Convention

          Reporting, etc.

 Resilience literature

Summary Action Indicators

 Summarize outcomes of 

    the RATA Procedure

 Provide broad guidance

        on actions

Coverage
Summarizes:
 Number of regions or proportions
    of area conducting RATA Procedure
 Aggregated at national or 
     international scales

Quality
 Quality of assessment 
     (e.g. adequate system definition, 
     strength of evidence)
 Stakeholder involvement (robust, 
     transparent, legitimate, salient)

Meta-indicators
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management regulations, publicity and related drills 

C34 

Disaster prevention 

publicity and 

education 

The community’s propaganda of disasters, 

including mobile phone text messages, 

community banners, bulletin boards, leaflets 

and other disaster-related reminders, drills, 

etc. 

Community 

capital 

(B4) 

C41 Disaster awareness Level of knowledge and concern about flood 

C42 
Social network 

relationship 

The form and frequency of getting along 

between neighbors 

C43 
Community  

attachment 

Transient population group’s sense of 

belonging to a community or place 

3.3. Indicators’ Hierarchy Model and Initial Weight Determination 

3.3.1. Establishing the Hierarchy Model 

Figure 4 shows the indicator hierarchy model. The first layer corresponds to the target layer 

(A), which represents the community resilience of the transient population. The second layer refers 

to the criterion layer (Bi), which represents the selected dimensions, namely, community space 

construction, economic development, communities’ management system, and community capital. 

The third layer represents the scheme layer (Cij), which consists of 16 indicators (Table 1). 

 

Figure 4. The model of community resilience hierarchy of transient population. 

3.3.2. Applying AHP Method to Calculate the Initial Weights 

A questionnaire on the importance of urban community disaster resilience, and the evaluation 

index of the transient population was developed and distributed to experts. A pairwise comparison 

of the factors at each layer was performed by using a one to nine scale method. Then, the findings 

were recorded in Yaahp, which could directly verify the consistency of the results. Lastly, the 

eigenvalue, the weights (wj) of the indicators’ scheme layer, and the weights (w0) of the criterion 

layer of dimensions could be outputted. 

3.4. Construction of the AHP–BP Combination Model and Resilience Estimation 

The AHP method is widely used in evaluating and determining weights, but subjective factors 

affect the accuracy of evaluation. Nevertheless, the ANN method can effectively weaken artificial 

factors and systematically identify the unknown relationship among various indicators, using a 

trained neural network for positive knowledge reasoning to determine the weight of the indicators 

[55]. Superior to traditional logical reasoning calculation, ANN has a simple structure, a steady 

operation state, a strong nonlinear mapping ability, and a high computational accuracy [54,56,60]. A 

AHP–BP combination model was constructed to realize the initial determination and optimization of 

indicator weights, and to reduce the influence of subjective randomness and uncertainty of the AHP 
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method (Figure 2). The specific steps of establishing the AHP-BP model in this study are presented 

as follows: 

3.4.1. Sample Collection and Processing 

n training samples were determined by collecting the actual data of the three types of transient 

community resilience indicators as the input vector, and each training sample has m indicators: 

X=�xij�
n×m

      i=1…n; j=1…m, (1) 

Furthermore, combined with the expert weights obtained by the AHP method, the linear 

weight value was calculated as the output vector: Y. The calculation method is presented as follows:  

Yj=uijwj, (2) 

where uij is the score of the ith sample and the jth indicator, wj is the weight of each indicator, and Y 

= (Y�, Y�, . . . , Y�). 

After normalization, X and Y are denoted by X’ and Y’, respectively; and the network training 

samples were obtained. 

3.4.2. Determining the Network Parameters 

A BP neural network realizes a mapping function from input to output, and mathematical 

theory has proved that this network can realize any complex nonlinear mapping function, thereby 

making it particularly suitable for solving complex problems with internal mechanisms. In this 

study, a three-layer BP network, with one hidden layer, was selected to evaluate the resilience of 

the transient population community. The BP network contained 16 nodes in the input layer and 1 

node in the output layer. The number of nodes in the hidden layer was determined on the basis of 

the hidden layer design empirical formula. 

p=√m+l+c, (3) 

where m is the number of input layer nodes, l is the number of output layer nodes, p is the number 

of hidden layer nodes, and c is a constant between 1 and 10. 

In this study, the transfer function of hidden layer neurons adopted the Sigmoid function. The 

learning and training functions adopted “trainbfg,” which refers to a variable gradient algorithm 

that is suitable for small networks. For the BP neural network (Figure 5), let d be the number of 

iterations, and in the Newton algorithm, the weights and thresholds of each layer were modified 

according to the following formula: 

xd+1=xd-Ad
-1g

d
, (4) 

where x� is the connection weight vector or threshold vector between layers in the dth iteration; 

g� =
���

���
 is the gradient vector of each weight or threshold of the output error of the neural network 

in the dth iteration; and the negative sign represents the opposite direction of the gradient, that is, 

the fastest descending direction of the gradient. E� is the total error performance function of the 

neural network output in the dth iteration, which is designed as mean square error (MSE). A� is the 

Hessian matrix (second derivative) of the error performance function under the current weight and 

threshold. 

The other training parameters selected included: the learning rate “lr” was selected as 0.01, the 

“mo + mentum” was selected as 0.90, the “max_epoch” was set as 1000, and the “err_goal” was set 

as ε = 10−5. 
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Figure 5. The construction of the BP model. 

3.4.3. Network Training and Estimation of the Three Communities’ Resilience 

The sample data of the three selected communities were trained by using the toolbox of the 

MATLAB software(version 2017b, MathWorks, Beijing, China). The MSE E between the actual 

evaluation value Y * and the ideal evaluation value Y of each sample tends to minimum, which is 

regarded as the optimal algorithm criterion of a neural network. When the training results reached 

the requirements of network accuracy (E), the comparison line graph of the expected value and the 

actual value, and their relative error variation graph was outputted. Then, the connection weight 

matrix (wki) was outputted from the input layer to the hidden layer, and the connection weight 

matrix (wjk) from the hidden layer to the output layer. Next, the correlation significance coefficient 

(rij), relevant index (Rij), and absolute influence coefficient (Sij) were calculated. The specific formula 

is expressed as follows: 

E=
1

2n
∑ �Y-Y*�

2
n
i=1 , (5) 

  x=wjk, (6) 

 rij= � wki

p

k=1

(1-e-x) (1+e-x)�  (7) 

y=rij (8) 

Rij=|(1-e-y) (1+e-y)⁄ | (9) 

   Sij= Rij � Rij

m

i=1

�  (10) 

where i is the input unit of the neural network, i =1, 2, 3...m; j is the output unit of the neural 

network, j =1; k is the hidden unit of the neural network, k =1, 2, 3...p; wki is the weight coefficient 

between neuron i in the input layer and neuron k in the hidden layer; wjk is the weight coefficient 

between neuron j in the output layer and neuron k in the hidden layer; and Sij is the target weight. 
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The mean of linear values between the actual data collected in the questionnaire survey and 

the optimized weight by the network is the resilience value of the community. Ultimately, the 

actual situation of the different communities can be reflected by analyzing and comparing the 

output weights and the resilience values of the three communities. 

4. Results and Analysis 

4.1. Calculation of Initial Weights of Indicators at All Layers 

The initial indicator weights were calculated by Yaahp, based on the AHP method (Figure 6). 

Yaahp is an analytic hierarchy process auxiliary software that provides assistance in model 

construction, calculation, and analysis in the decision-making process, using an analytic hierarchy 

process. The weight of community space construction dimension was 0.4586, which is nearly half of 

the sum of all dimensions. The calculation results show that the weight deviation of the calculated 

indicators was large, which lacks objectivity and reliability. Therefore, the weight value obtained by 

the experts must be optimized to improve the poor effectiveness and practicability of the index 

weight value caused by the strong subjective arbitrariness of expert weight scoring. 

 

Figure 6. Initial weights of the transient population community resilience to disaster. 

4.2. Calculation of Initial Weights of Indicators at All Layers 

4.2.1. Expected Output Vector of the AHP–BP Neural Network 

According to the questionnaire survey results and the confirmed initial weight value, the 

output vector that corresponds to each input was calculated by using Equations (2) and (3). The 

partial expected output vector results of the urban village community are shown in Table 2. 

Table 2. Partial samples and results of the urban village community. 
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43 
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1 3 3 3 4 3 5 5 3 3 3 5 3 3 5 3 3 3.4302 
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4 5 3 5 4 2 5 3 1 3 4 3 3 4 2 2 4 3.3584 

5 3 3 3 2 3 3 3 3 2 3 3 4 3 2 2 3 2.6941 

6 3 3 3 4 2 5 3 1 3 3 1 1 2 1 4 3 2.3915 

7 2 1 1 2 1 1 1 1 1 1 3 1 2 2 3 2 1.5930 
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9 3 3 3 3 2 3 3 3 2 3 3 2 2 2 3 2 2.6409 

10 5 5 3 5 4 5 5 3 3 4 3 4 4 3 3 3 3.9559 

11 4 3 5 4 4 3 3 3 4 3 3 3 3 2 2 2 3.2980 

12 3 3 3 2 2 3 3 3 2 2 3 2 2 1 3 3 2.5180 

13 4 3 3 4 3 1 1 3 2 3 3 3 2 2 3 3 2.9576 

14 3 1 3 2 1 1 1 1 1 3 3 1 1 1 4 3 1.9351 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

85 2 1 1 1 2 1 1 1 1 2 1 2 1 1 2 2 1.4598 

4.2.2. Expected Output Vector of the AHP–BP Neural Network 

The network was trained using the constructed training samples. The BP learning algorithm 

uses the least square method and gradient search techniques to minimize the MSE between the 

actual and the expected output values of the network [55]. This study conducted network training 

according to samples from the three communities. 

Through continuous training analysis, the number of hidden layer nodes in the network 

structure of the Hongxia community was determined as seven. After 87 iterations of adjustment, 

the accuracy reached 9.41 × 10−6, which was less than the target accuracy of 10−5. The network output 

results and error calculation are shown in Table A1, which shows that the actual network output of 

the training samples has a certain deviation from the expert evaluation values. In addition, the 

maximum relative error of the test was 0.0509, which was within the acceptable range in the 

resilience evaluation. Therefore, the network output weight value was effective and reliable. 

Similarly, the number of hidden layer nodes in the two other community network structures was 

eight and seven, the training errors reached 9.99 × 10−6 and 9.68 × 10−6, and the maximum relative 

errors of the test were 0.0186 and 0.0233. The Appendix Tables A1–A3 present the specific data, and 

Figures A1–A6 show that the neural network training results were rational. Therefore, the BP 

neural network could approximate the complex nonlinear resilience evaluation process by simply 

compounding the neuron functions. Combined with the BP neural network model of the AHP, the 

community resilience evaluation method was improved, and its analysis and results have broad 

application prospects. 

4.2.3. Weight Analysis of the Three Communities’ Indicators 

After training the network, the weights (wki) were outputted between the input and hidden 

layers and the weights (wjk). Finally, the optimized weights (Sij) of the three communities’ 

indicators were obtained by using Equations (6)–(10). Table 3 shows that the weights of some 

indicators changed greatly after BP network optimization. Actually, the weight value aims to make a 

reasonable and effective distinction of the difference in disaster resilience among various transient 

population communities, rather than the standard of importance and effect [47]. A factor may play 

an important role in evaluating the disaster resilience of a certain community, but it may not play an 

equally important role in distinguishing the quality distinction of different communities’ disaster 

resilience. Therefore, the three communities had diverse rankings of weights, and the value assigned 

to each of the indicators was also diverse. 

Specifically, the weight of building quality (C11) ranked first among the three community 

resilience indicators, but the proportion of building quality resilience of the Wannian community 

was higher than those of the two other communities, indicating that the quality of building facilities 

in old communities was worse than those in the other communities. Therefore, old urban 

communities must strengthen building quality (i.e., “hard” power) to improve their disaster 

resilience. The communities of Hongxia and Hugong are more geographically remote and 

economically backward than Wannian. Thus, they have fewer resources to supply. Their weights 

were 0.0574 and 0.0472, that is, they should focus on material reserves (C24) to enhance the resilience 

of their communities. The emergency management (C43) weights of the three communities 

correspond to 0.0941, 0.1291, and 0.1057, which accounts for a large proportion in the community 

management system. Therefore, strengthening emergency management for these transient 

communities can effectively promote the improvement of their resilience. Furthermore, the survey 
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showed that residents within the transient population community generally lack disaster awareness 

and have limited communication with one another. The Table 3 also shows that emergency 

management (C43) ranks relatively high. 

Table 3. Comparison of weights of each model indicator. 

Index 
Expert 

weights 
Rank 

Hongxia 

Community 
Rank 

Wannian 

Community 
Rank 

Hugong 

Community 
Rank 

C11 0.1831 1 0.1103 1 0.1556 1 0.1496 1 

C12 0.0971 3 0.1081 2 0.0979 4 0.1187 2 

C13 0.0783 5 0.0931 4 0.0751 7 0.0766 6 

C14 0.0314 11 0.0407 12 0.0102 16 0.0297 13 

C15 0.0688 6 0.0898 5 0.0869 5 0.0595 8 

C21 0.0271 15 0.0205 16 0.0332 11 0.0381 11 

C22 0.0211 16 0.0277 14 0.0229 14 0.0224 14 

C23 0.0659 7 0.0485 10 0.0756 6 0.0835 5 

C24 0.0295 12 0.0574 9 0.0377 10 0.0472 9 

C31 0.0272 14 0.0583 8 0.0305 13 0.0211 15 

C32 0.0588 8 0.0709 7 0.0588 8 0.0731 7 

C33 0.1017 2 0.0941 3 0.1291 2 0.1057 3 

C34 0.0386 10 0.0412 11 0.0402 9 0.0357 12 

C41 0.0924 4 0.0764 6 0.1028 3 0.0840 4 

C42 0.0509 9 0.0373 13 0.0317 12 0.0461 10 

C43 0.0281 13 0.0255 15 0.0118 15 0.0080 16 

In general, the proportion of community space construction was more than 40%, indicating that 

the spatial construction of the transient population communities is insufficient. Most transient 

communities are located in older parts of the city with poor building quality, narrow roads, and 

inferior system connectivity, thereby causing great difficulties in emergency management. 

Moreover, the transient community has a large population density, which is not conducive to the 

timely evacuation of residents. The economic development percentage was approximately 15%. 

Although its proportion is not high, it is an important basis for coping with disasters. In addition, 

most of the transient population have a low income, and reside in old urban areas, which have a 

relatively weak economy. The community management system, which accounts for approximately 

24.5%, is also an important dimension in evaluating community resilience. Compared with the 

communities where permanent residents live, the community management system of the transient 

population is relatively loose and informal; hence, more efforts are needed to be taken to improve 

their community management systems. In addition to strengthening the “hard” power of 

communities, “soft” power should also be given greater attention. “Soft” power refers to community 

or social capital that accounts for approximately 20%, thereby implying an emotional connection to 

one’s neighborhood or city, somewhat apart from connections to the specific people who live there. 

However, the residents of the transient population community have less dealings, and their sense of 

community belonging is weak due to the frequent change in living place. The government should 

give more care and power to the transient population, and communities must develop economic 

resources, reduce risk and resource inequities, and attend to their areas with the greatest social 

vulnerability [61,62]. 

4.2.4. Analysis of the Resilience of the Three Communities 

After the above optimization weights were calculated, the resilience indexes of the three 

communities could be obtained by linear weighting of the values and the collected data. Finally, the 

total averaged score was calculated, with 2.91 in the urban village, 2.83 in the commercial housing in 

the old city, and 2.77 in the apartments, respectively. Figure 7 shows that Hongxia community had 

the best resilience in the community space construction (B1) dimension, since it is a new community, 

where the community space construction is relatively comprehensive. However, this area was not 

resilient to the economic development (B2) dimension due to its remote location. Wannian 

community is located in the center of the city, so it has quite comprehensive community 
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management systems, and abundant resources, which allow a quick response in the event of 

disasters. These three communities, in which the sense of belonging of the transient population is 

still weak, suffer poor resilience in terms of the community capital (B4). The priority of community 

resilience is shown: Hongxia community has the highest level, followed by Wannian community, 

and the Hugong community is relatively weak at coping with serious disasters. 

 

Figure 7. The resilience of three population communities in each dimension. 

5. Conclusions 

A new framework for comprehensively quantifying different types of transient community 

resilience to urban flooding has been established. This adopts the use of the RATA and BRIC 

frameworks by considering the characteristics of the transient population community; differences in 

the resilience indicators across three communities were distinguished by comparing the weighted 

values of the three transient population communities [32,45,63]. The resilience of the three 

communities in different dimensions were also compared and analyzed. 

In this work, a weight determination model, combining AHP and a BP neural network, was 

established, aiming at the limitation of existing weight determination methods by investigating 

ANN. The analysis shows that the artificial factors of the AHP method are effectively reduced by 

combining subjective and objective weight determination methods. Moreover, the weight calculated 

by the AHP–BP neural network and its ranking reflects the connection between disaster resilience 

and evaluation units of different transient population communities, and its value lays the 

foundation for the re-calculation of community resilience values. Some major conclusions can be 

drawn as follows: 

 A new framework based on the RATA framework has been developed. Indicators for the 

characteristics of the transient population were selected according to the BRIC model and used 

to quantify the community resilience of the transient population. On the strength of a large 

amount of literature and relevant theories, 16 indicators were confirmed and divided into four 

dimensions: community space construction (B1), economic development (B2), community 

management system (B3), and community capital (B4). 

 A three-level evaluation network was constructed by using AHP. After the judgment matrix 

was assigned by experts, Yaahp software was used to calculate the weight directly. Thus, the 

initial weight was obtained as the basis for calculating the output samples of the BP neural 

network. 

Each indicator is quantified, and the weights of each community were calculated by using the 

neural network training results. The weights obtained by the AHP–BP neural network model were 

more effective and practical than those obtained by the expert method. Moreover, the resilience of 

three transient population communities, namely, urban village, commercial housing, and apartment, 
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were evaluated. On the basis of the results of the three communities, the weights and ranking of 

various indicators in different transient population communities were also diverse. This 

demonstrates the need to consider the needs of different communities when developing appropriate 

interventions to effectively improve community resilience. According to domestic research on the 

transient population, most cities have similar settlement features and management systems. Thus, 

these procedures can be incorporated into a new thinking that can promote the evaluation of 

transient community resilience through the use of multiple indicators, and can generally be applied 

to other cities with similar economic development and urban management systems. However, the 

main factors influencing resilience of transient population will change according to the economic 

development, risk exposure, and vulnerability, as well as other objective factors in the management 

of the population. Therefore, for future works, we will focus on the application of this assessment 

approach. It is necessary to apply GIS to help dynamically grasp the changes in the transient 

population communities in various regions, so as to help governments, environmental agencies, 

and insurance companies to improve prevention, early warning mechanisms, and mitigation efforts 

using predictive analytics. 
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Appendix A 

Table A1. Network output results of Hongxia community. 

 Actual Value Expected Value Relative Error  
Actual 

Value 
Expected Value Relative Error 

1 3.4214 3.4302 0.0026 45 2.2020 2.2057 0.0017 

2 3.2429 3.2451 0.0007 46 2.9380 2.9391 0.0004 

3 3.8847 3.9445 0.0154 47 3.6868 3.6840 0.0008 

4 3.3722 3.3584 0.0041 48 3.8246 3.9868 0.0424 

5 2.6801 2.6941 0.0052 49 2.5801 2.5581 0.0085 

6 2.3887 2.3915 0.0012 50 2.6227 2.6250 0.0009 

7 1.5867 1.5930 0.0040 51 3.6390 3.6459 0.0019 

8 2.1869 2.2166 0.0136 52 1.9420 1.9861 0.0227 

9 2.6636 2.6409 0.0085 53 2.8374 2.8362 0.0004 

10 3.9586 3.9559 0.0007 54 1.7727 1.7447 0.0158 

11 3.2918 3.2980 0.0019 55 3.5769 3.5824 0.0015 

12 2.5148 2.5180 0.0013 56 2.9398 2.9606 0.0071 

13 2.9569 2.9576 0.0002 57 3.8062 3.8020 0.0011 

14 1.9309 1.9351 0.0022 58 2.2792 2.2385 0.0179 

15 2.4716 2.4667 0.0020 59 2.9588 2.9662 0.0025 

16 3.0864 3.0877 0.0004 60 3.5683 3.5658 0.0007 

17 3.0345 3.0300 0.0015 61 2.2631 2.2530 0.0045 

18 3.1826 3.1599 0.0071 62 2.9783 2.9732 0.0017 

19 3.2114 3.2117 0.0001 63 2.1596 2.1571 0.0011 

20 3.1929 3.1884 0.0014 64 2.6753 2.6615 0.0052 

21 3.0095 3.0281 0.0062 65 2.3528 2.3571 0.0018 

22 3.5865 3.5516 0.0097 66 3.4753 3.4687 0.0019 

23 3.7269 3.7298 0.0008 67 2.7685 2.7808 0.0044 

24 3.1534 3.1419 0.0036 68 3.0236 3.0170 0.0022 

25 3.0238 3.0213 0.0008 69 3.4598 3.4522 0.0022 

26 2.8717 2.8710 0.0003 70 3.2862 3.2884 0.0007 

27 2.6781 2.6705 0.0029 71 3.7371 3.8158 0.0211 

28 3.7230 3.7275 0.0012 72 3.1358 3.2437 0.0344 

29 3.0345 3.0300 0.0015 73 2.2744 2.2689 0.0024 
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30 3.2635 3.2416 0.0067 74 1.8827 1.8833 0.0003 

31 2.8606 2.8708 0.0036 75 2.7024 2.7044 0.0007 

32 3.6866 3.6762 0.0028 76 3.3696 3.5116 0.0421 

33 2.9404 2.9298 0.0036 77 3.6349 3.8198 0.0509 

34 3.9055 3.9087 0.0008 78 2.1482 2.1448 0.0016 

35 2.7209 2.7214 0.0002 79 3.2961 3.3057 0.0029 

36 3.2986 3.3217 0.0070 80 3.5409 3.5282 0.0036 

37 1.7651 1.7594 0.0032 81 2.5552 2.5562 0.0004 

38 2.9404 2.9298 0.0036 82 2.7177 2.7102 0.0028 

39 2.7193 2.7131 0.0023 83 3.2244 3.2149 0.0030 

40 2.1626 2.1567 0.0027 84 2.5181 2.4695 0.0193 

41 3.2136 3.2123 0.0004 85 1.4663 1.4598 0.0044 

42 3.5499 3.5463 0.0010     

43 2.1052 2.1146 0.0045     

44 2.7420 2.7393 0.0010     

 

Table A2. Network output results of Wannina community. 

 
Actual 

Value 

Expected 

Value 

Relative 

Error 
 

Actual 

Value 

Expected 

Value 

Relative 

Error 

1 3.4541 3.4758 0.0063 47 3.3854 3.3827 0.0008 

2 3.3614 3.3682 0.0020 48 3.6857 3.7541 0.0186 

3 3.4234 3.4238 0.0001 49 2.5147 2.5191 0.0017 

4 2.8415 2.8391 0.0009 50 2.5333 2.5312 0.0008 

5 2.1198 2.1180 0.0008 51 3.0234 3.0197 0.0012 

6 2.8598 2.8352 0.0086 52 2.2789 2.2802 0.0006 

7 1.9119 1.8989 0.0068 53 2.8149 2.8153 0.0002 

8 2.1983 2.2063 0.0036 54 2.2938 2.2928 0.0004 

9 2.9145 2.9118 0.0009 55 3.0886 3.0896 0.0003 

10 3.3972 3.3993 0.0006 56 2.8706 2.8585 0.0042 

11 2.8554 2.8446 0.0038 57 3.1983 3.1919 0.0020 

12 2.1632 2.1705 0.0034 58 2.4848 2.4920 0.0029 

13 2.8317 2.8262 0.0019 59 2.9653 2.9593 0.0020 

14 2.3345 2.3382 0.0016 60 3.5601 3.5658 0.0016 

15 2.5351 2.5399 0.0019 61 2.6126 2.6301 0.0067 

16 3.2169 3.2130 0.0012 62 2.6958 2.6930 0.0010 

17 3.0402 3.0393 0.0003 63 2.4165 2.4193 0.0011 

18 2.9466 2.9385 0.0027 64 2.8039 2.8112 0.0026 

19 2.5968 2.6090 0.0047 65 2.5088 2.5091 0.0001 

20 2.8389 2.8345 0.0015 66 3.3308 3.3308 0.0000 

21 2.7337 2.7322 0.0006 67 2.5944 2.5977 0.0013 

22 3.2974 3.3000 0.0008 68 3.0211 3.0075 0.0045 

23 3.4465 3.4516 0.0015 69 3.1082 3.1001 0.0026 

24 3.1411 3.1429 0.0006 70 3.1932 3.1905 0.0009 

25 2.5904 2.5893 0.0004 71 3.3821 3.3932 0.0033 

26 2.5782 2.5846 0.0025 72 3.1263 3.0997 0.0085 

27 2.4908 2.4923 0.0006 73 2.4448 2.4528 0.0033 

28 3.1711 3.1645 0.0021 74 2.1216 2.1037 0.0084 

29 3.0093 3.0079 0.0005 75 3.0233 3.0096 0.0045 

30 3.0882 3.0862 0.0006 76 3.2820 3.2625 0.0059 

31 2.4454 2.4687 0.0095 77 3.1666 3.1573 0.0029 

32 3.2538 3.2475 0.0019 78 2.2502 2.2522 0.0009 

33 2.4649 2.4647 0.0001 79 3.0056 2.9851 0.0068 

34 3.4236 3.4187 0.0014 80 3.0832 3.0643 0.0061 

35 2.5732 2.5681 0.0020 81 2.3240 2.3303 0.0027 

36 2.8946 2.8858 0.0030 82 2.3130 2.3120 0.0004 

37 2.3181 2.2870 0.0134 83 3.1464 3.1494 0.0010 

38 2.4665 2.4733 0.0028 84 2.5440 2.5464 0.0009 

39 2.6593 2.6569 0.0009 85 2.0437 2.0068 0.0181 

40 2.3299 2.3329 0.0013 86 3.1631 3.1607 0.0008 

41 2.5993 2.5968 0.0010 87 3.4990 3.4979 0.0003 

42 3.4283 3.4338 0.0016 88 2.3916 2.3915 0.0000 

43 2.6221 2.6313 0.0035 89 3.0015 3.0029 0.0005 

44 2.4927 2.4979 0.0021 90 2.2114 2.2048 0.0030 
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45 2.2727 2.2745 0.0008 91 3.1162 3.0791 0.0119 

46 2.7947 2.7879 0.0024 92 2.3766 2.3826 0.0025 

Table A3. Network output results of Hugong community. 

ž 
Actual 

Value 

Expected 

Value 
Relative Error  

Actual 

Value 

Expected 

Value 

Relative 

Error 

1 3.2530 3.2516 0.0004 45 2.4351 2.4379 0.0012 

2 3.2138 3.2173 0.0011 46 2.6833 2.6835 0.0001 

3 3.2778 3.2656 0.0037 47 3.2936 3.2952 0.0005 

4 2.9064 2.9271 0.0071 48 3.4071 3.4222 0.0044 

5 2.4358 2.4364 0.0002 49 2.5726 2.5852 0.0049 

6 2.6098 2.6155 0.0022 50 2.4793 2.4730 0.0025 

7 2.1079 2.1053 0.0012 51 2.8488 2.8435 0.0019 

8 2.0064 2.0029 0.0017 52 2.2839 2.2838 0.0001 

9 2.8102 2.8043 0.0021 53 2.7573 2.7653 0.0029 

10 3.3394 3.3471 0.0023 54 2.4094 2.4066 0.0012 

11 2.6960 2.7070 0.0041 55 2.8411 2.8778 0.0129 

12 2.1600 2.1619 0.0009 56 2.8392 2.8382 0.0003 

13 2.9032 2.9019 0.0004 57 3.1739 3.1722 0.0005 

14 2.3165 2.3579 0.0179 58 2.2950 2.2968 0.0008 

15 2.5893 2.5827 0.0025 59 2.9769 2.9752 0.0006 

16 2.7030 2.7061 0.0011 60 3.4849 3.4970 0.0035 

17 3.0035 3.0007 0.0009 61 2.2205 2.2169 0.0016 

18 2.6707 2.6740 0.0012 62 2.6272 2.6263 0.0004 

19 2.5695 2.5639 0.0022 63 2.4595 2.4585 0.0004 

20 2.5913 2.5940 0.0010 64 2.7986 2.8009 0.0008 

21 2.7725 2.7734 0.0003 65 2.6279 2.6207 0.0028 

22 3.3780 3.3736 0.0013 66 3.2708 3.2704 0.0001 

23 3.1550 3.1486 0.0020 67 2.5379 2.5289 0.0035 

24 3.0771 3.0741 0.0010 68 2.8748 2.8757 0.0003 

25 2.7935 2.7904 0.0011 69 3.2447 3.2360 0.0027 

26 2.5302 2.5158 0.0057 70 3.2571 3.2552 0.0006 

27 2.5602 2.5595 0.0003 71 3.0283 3.0330 0.0015 

28 3.0204 3.0269 0.0022 72 2.7204 2.7246 0.0016 

29 2.8139 2.8097 0.0015 73 2.5634 2.5737 0.0040 

30 2.9959 2.9845 0.0038 74 2.2561 2.2518 0.0019 

31 2.3407 2.3405 0.0001 75 2.8765 2.8778 0.0004 

32 3.4145 3.4345 0.0058 76 3.0691 3.0673 0.0006 

33 2.8866 2.8842 0.0008 77 2.9009 2.9080 0.0025 

34 3.4261 3.4311 0.0015 78 2.3074 2.3067 0.0003 

35 2.5748 2.5681 0.0026 79 2.6606 2.6771 0.0062 

36 2.7824 2.7841 0.0006 80 3.0008 3.0015 0.0002 

37 2.3592 2.3570 0.0009 81 2.5779 2.5799 0.0008 

38 2.3509 2.3542 0.0014 82 2.4635 2.4290 0.0140 

39 2.7688 2.7718 0.0011 83 3.0933 3.0866 0.0022 

40 2.3956 2.3973 0.0007 84 2.4614 2.4655 0.0017 

41 2.6346 2.6367 0.0008 85 2.0013 2.0068 0.0027 

42 3.4012 3.3922 0.0026 86 3.2451 3.2436 0.0005 

43 2.3932 2.4489 0.0233 87 3.2476 3.2095 0.0117 

44 2.7406 2.7354 0.0019 88 2.6318 2.6366 0.0018 
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Figure A1. Comparison of output value with expected value in Hongxia community. 

 

Figure A2. Relative error variation of Hongxia community. 

 

Figure A3. Comparison of output value with expected value of Wannian community. 
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Figure A4. Relative error variation of Wannian community. 

 

Figure A5. Comparison of output value with expected value of Hugong community. 

 

Figure A6. Relative error variation of Hugong community. 
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