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CONSTRUCTION OUTPUT MODELLING: A SYSTEMATIC REVIEW 

ABSTRACT 

Purpose: Construction economics scholars have emphasised the importance of construction 

output forecasting and have called for increased investment in infrastructure projects, due to the 

positive relationship between construction output and economic growth. However, construction 

output tends to fluctuate over time. Excessive changes in the volume of construction output have 

a negative impact upon the construction sector, such as liquidation of construction companies 

and job losses. Information gleaned from extant literature suggests that fluctuation in 

construction output is a global problem. Evidence indicates that modelling of construction output 

provides information for understanding the factors responsible for these changes.  

Methodology: An interpretivist epistemological lens is adopted to conduct a systematic review 

of published studies on modelling of construction output. A thematic analysis is then presented 

and the trends and gaps in current knowledge are highlighted.  

Findings: It is observed that interest rate is the most common determinant of construction 

output. Also revealed is that, very little is known about the underlying factors stimulating growth 

in the volume of investment in maintenance construction works. Further work is required to 

investigate the efficacy of using non-linear techniques for construction output modelling.  

Originality: This study provides a contemporary mapping of existing knowledge relating to 

construction output and provides insights into gaps in current understanding that can be explored 

by future researchers.  

 

Keywords: Construction output, forecasting, modelling, systematic review, text mining. 

 

INTRODUCTION 

The construction industry produces a nation’s infrastructure to in order to support 

economic growth. For several decades, research has demonstrated that the construction industry 

is also one of the main drivers of economic growth (Turin, 1978; Dang and Low, 2011; Chiang 

et al., 2015). Because ofto this causal relationship between construction sector activities and 

economic growth, academics and practitioners have called for increased investment in 

construction projects (Anaman and Osei‐Amponsah, 2007; Kofoworola and Gheewala, 2008). H 

- however, such investment has not always resulted in economic prosperity and. Tthere are two 
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main reasons for this observation. First, there may be athe lack of local capacity to meet the 

increased demand for new construction projects (cf. Bhalla and Edmonds, 1983; Lewis, 1984). 

Second, an unplanned increase in investment creates a fluctuation in construction output, which 

has a negative impact upon the construction sector (Ofori et al., 1996).  

Construction output is one metric used forin measuring the volume of construction 

investment. The fluctuation of construction output is a topical area of interest within the field of 

construction economics and several models have been developed to identify the factors which 

affect its volume. This interest stems from the impact of construction output on employment, 

property prices and construction costs (Jin and Zeng, 2004; Zheng et al., 2012; Saks, 2008; Soo 

and Oo, 2014). Due to the negative impact that fluctuations in construction output have on the 

economy, Ng et al. (2009) suggest that econometric models should be developed to predict future 

changes in construction output volume. If a model is capable of accurately predicting the volume 

of construction output, then the critical determinants can be manipulated to produce the desired 

output. For instance, the impact of intervention strategies could be evaluated in a controlled 

laboratory (i.e. the model) before implementation. The outcome of model-based studies would 

provide evidence-based knowledge for minimising the impact of changes iin construction output 

volume. Although an accurate forecast of an event is essential, it is difficult to achieve this in the 

real world (Makridakis et al., 2009). The occurrence of a natural disaster would result in drastic 

changes in the volume of investment in construction works. The huge uncertainty associated with 

economic and business activities can also affect the accuracy of model forecasts.   

 Construction output modelling research is targeted at either 'explanation' (see Anaman 

and Osei‐Amponsah, 2007) or 'forecasting' (see Jiang and Liu, 2014). Typically, models are 

developed for construction output forecasting are based on empirical evidence of the existing 

relationship between construction activities and the economy (see Riggleman, 1933; Lewis, 

1960). Based on the foregoing, socio-economic variables (such as population and interest rates) 

are used as predictors of construction output. Thus, researchers strive to identify the ‘best’ set of 

socio-economic variables to explain or predict movements in the volume of construction output.  

 

Research rationale 

The empirical knowledge-base required to drive an academic discipline is generated 

through research. According to Runeson (2011), the process of knowledge creation passes 
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through three distinct phases: description, explanation and prediction. At the description phase, 

studies are designed to describe an event in construction practice. Riggleman (1933) describes 

the fluctuations in the volume of construction output from 1875 to 1932. Subsequently, many 

studies have examined the relationship between the variations in the volume of construction 

output and the economy (Turin, 1978; Bon and Minami, 1986). Findings emanating from the 

description phase inform the choice of variables included in explanatory and prediction models 

developed in the second and third phases of knowledge creation. Professor Ranko Bon (1992) 

conducted several studies aimed at understanding the relationship between construction activities 

and the economy (i.e. explanatory phase). The outcome of these studies informed the hypothesis 

which states that at an advanced stage of development, the volume of new construction work 

would reduce and the amount of maintenance construction would be expected to increasegrow 

due to the needs of ageing infrastructure (ibid). Consolidation of the results from explanatory 

research leads to the emergence of theories, which then provide a sound base for the 

development of forecasting models. 

Modelling-oriented studies are either used to explain the relationship between two 

theoretical constructs (e.g. the link between the construction industry and the economy) or for 

forecasting (see Shmueli and Koppius, 2011). For example, Chiang et al. (2015) report on the 

development of a model for evaluating the relationship between ‘construction output’ and the 

‘economy’, and find that a bi-causal relationship exists between the two constructs. In contrast, 

Sing et al. (2015) use the vector auto-regression (VAR) model for forecasting the volume of 

private sector investment in construction works. Explanatory modelling is primarily concerned 

with the building and testing of theories (Runeson, 2011). In contrast, forecasting-oriented 

research is focused on using established theories to solve practical problems (Shmueli and 

Koppius, 2011). In cases where forecast models generate unreliable results, the theory upon 

which the model was built must needs to be discarded or modified. 

Despite the significant effectce that construction output has upon an economy (see 

Anaman and Osei‐Amponsah, 2007; Dang and Low, 2011), studies that focus upon developing 

models to predict its changes are few. Evidence from literature shows that fluctuations in the 

volume of construction output areis a recurring problem in several countries, including: 

Singapore (Goh, 1996), Hong Kong (Sing et al., 2015) and the United Kingdom (Tanratanawong 

and Scott, 2000). As identified in previous studies, the negative consequences of fluctuating 
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construction output volume include: inefficiency in the production process (Ofori et al., 1996); 

bankruptcy; and retrenchment within the construction industry during periods of low production 

(Jiang et al., 2013; Ng et al., 2008). Therefore, construction output forecast models provide an 

understanding of its predictors. This evidence-based information is required for developing 

strategies to mitigate the impact of construction output fluctuation.  

 Although Dang and Low (2011) report upon a review of studies exploring the 

relationship between construction output and the economy, hitherto, no comprehensive review 

on construction output forecasting has been published. This current study therefore builds upon 

the earlier review (ibid) byut undertakesing a systematic review of published studies on 

construction output modelling and forecasting. Note, those explanatory modelling studies within 

the scope of the research conducted by Dang and Low (2011) are excluded. Specifically, the 

review provides answers to the following questions: (i) when and where were the construction 

output modelling studies published?; (ii) where are construction output modelling studies 

published?; (iii) what are the methods are employedused for construction output modelling?; 

(iiiv) what has beenis  the focus of previous studies on construction output modelling research?; 

(iv) which variables are the determinants of construction output?; (vi) what is the relative 

performance of models used for construction output forecasting? and (vii) what are the key 

findings exposed by the reviewis the focus of previous studies on construction output modelling? 

This study contributes to existing knowledge in the field of construction management by: (i) 

mapping the existing construction output modelling intellectual territory; and (ii) speculating 

upon the research opportunities for future researchquestions that can be explored in the future 

based on the observed gaps in contemporary knowledge. The consolidation and organisation of 

the literature on construction output modelling will provide valuable insights to various 

stakeholders (such as policymakers and researchers). 

 

CONSTRUCTION OUTPUT 

 Construction output is the monetary value of all construction works executed in a country 

atover a defined period (usually quarterly). There are variances in the process of collecting and 

presenting the data on construction output and its determinants from country to country. For 

instance, the Census and Statistics Department of Hong Kong views construction output as the 

“total gross value of construction works performed by main contractors” at a defined time 
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(Census and Statistics Department, 2015). Similarities exist between this definition and that of 

the UK Office of National Statistics (ONS) of the UK (see Office for National Statistics, 2015), 

but it is important to note that the ONS deducts value-added tax from the value of construction 

works. Despite these differences, construction output is a valid measure for quantifying the 

volume of activities in the construction market at a defined time. 

 Several metrics are used to quantify the volume of construction output, for example: 

gross output (Fan et al., 2010); the gross floor area of development commenced (Goh, 1999); and 

value of construction approvals (Jiang and Liu, 2014). Despite these variances, Ofori (1990) 

affirms that gross output is an accurate reflection of the volume of activities in the construction 

industry, because it is the monetary value of developments which clients are willing and able to 

pay for (i.e. effective demand). Furthermore, Akintoye and Sommerville (1995) find that a 

lagged relationship exists between ‘demand’ and ‘‘effective demand’ for construction works, 

which suggests that demand for construction works eventually translates to ‘effective demand’ 

(i.e. construction output) at a later date. While a variety of metrics exist for measuring the 

volume of construction output, it is evident that gross output is an objective measure of the 

volume of activities within the construction sector. 

 

Disaggregation of construction output 

The need to unmask the factors responsible for changes in the volume of investment in 

construction works has led to its disaggregation. Although some authors report upon models for 

construction output at an aggregate level (cf. Jiang and Liu, 2011), others disaggregate 

construction output into its constituent parts, for instance, based upon the market sectors of 

manufacturing (Nicholson and Tebbutt, 1979), commercial (Akintoye and Skitmore, 1994) and 

residential (Goh, 1996). Disaggregation of construction output is targeted at identifying the 

factors’ changes within the factors that affect in the volume of activities in the various segments 

of the construction market. 

 

Construction output modelling: an overview 

Modelling of construction output provides answers to the following questions: (i) what 

are the underlying factors responsible for fluctuation in the volume of construction output?; (ii) 

can existing theories found in literature be used to explain the movements in the volume of 
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construction output?; and (iii) can the changes in the volume of construction output be predicted 

based on existing theories? As stated by Shmueli and Koppius (2011), forecasting is useful for 

evaluating the practical relevance of theories found in the literature, thus studies focused on 

modelling contribute to the creation of knowledge.  

The first published study on construction output modelling was carried out by Duffy 

(1975) with further investigations undertaken in subsequent years (cf. Goh, 1996; Jiang and Liu, 

2014). Building on the work carried out by Duffy (1975), researchers use several techniques for 

construction output modelling. As stated in the research rationale section, model research is 

either used for ‘explanation’ or ‘prediction’ and the processes of developing explanatory and 

predictiveon models are distinct. Shmueli and Koppius (2011) assert that data partitioning is one 

of the main differences between explanatory and prediction models. For explanatory models, the 

model is estimated using the whole dataset. In contrast, studies focused on forecasting partition 

the collected data is partitioned into two groups in studies focused on forecasting (one group is 

used for estimating the model, and the other group is used for validating the model).  

Another distinction between the techniques used for modelling of construction output is 

the type of relationship presumed between the variables. In the earlier research studiesy years, it 

was assumed that a linear relationship existss  between construction output and its determinants, 

an. This  assumption is responsible for the use of regression in previous research on construction 

output modelling (Duffy, 1975). However, the lagged relationship between variables was often 

overlooked (Goh, 1996). The earlier methods are therefore called ‘static’ models, whereas in 

contrast, models that capture contemporaneous and lagged relationships between variables are 

termed ‘dynamic’ models. For a detailed explanation on the distinction between static and 

dynamic models refer to Flood and Issa (2009). The need to address the gap in knowledge has 

led to the application of several techniques for construction output.  

 

RESEARCH METHODOLOGY 

This research employeds an interpretivist epistemological lens to undertake the literature 

review. Interpretivism is an established philosophical stance employed within construction 

management literature and has been successfully employed to, for example,: review post 

occupancy evaluation (Roberts et al., 2019); and automateing construction manufacturing 

procedures using BIM digital objects (BDOs) (Al-Saeed et al., 2020). Several types of literature 
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review (e.g. critical review, integrative, systematic, etc.) have been previously published. 

However, the findings drawn from certain types of review studies are difficult to replicate and 

may be questionable due to the lack of detailed information aboutregarding the research 

approach (e.g. sampling approach and inclusion criteria). As a proven method, a  systematic 

literature review, as a proven method,  was adopted in this study to integrate the existing 

knowledge and a gainfor a deeper understanding of the research problem (Tranfield et al., 2003; 

Golizadeh et al., 2020). Although a generally accepted guideline for reporting systematic reviews 

does not exist, Booth (2006) recommends providing information using the "‘STARLITE’" 

mnemonic (i.e. sampling strategy, type of study, approaches, range of years, limits, inclusion and 

exclusions, terms used, electronic sources).  

Many researchers have utilised the systematic review approach in the field of 

construction management, for example it has been used to highlight the current state of 

knowledge on drivers of green building (Darko et al., 2017), practice-based learning (Kokkonen 

and Alin, 2015) and public-private partnership (Ke et al., 2009). Empirical evidence has shown 

that the systematic review approach integrates existing knowledge about a research problem into 

a meaningful whole. In the current study, it was used to gain insights into the extant literature on 

construction output modelling. The systematic review was carried out in two phases, viz: phase 1 

being the database search and screening (search results were screened using the selection and 

inclusion criteria); and phase 2 being the content analysis of the selected papers. 

 

Scope of the Research Outputs Covered in this Study 

 The sample for this study is comprised of manuscripts published in academic journals 

only. The reasons for limiting the search to academic journal articles awere that: (i) the outcome 

of studies reported in conference papers were updated and published as journal articles at a later 

date; and (ii) the outcome of unpublished works were published as journal papers, for instance, 

the outcome of an Australian PhD study on construction demand forecasting (Jiang, 2013) was 

published in two journal papers (Jiang and Liu, 2011; Jiang and Liu, 2014).   

 

Identification of Search Keywords for Database Search  

As suggested in Tranfield et al. (2003), a scoping study was carried out to identify 

suitable search keywords. The initial search was undertaken using the ARCOM (Association of 
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Researchers in Construction Management) database. Two terms, i.e. “‘construction output’” and 

‘“construction demand’,” were utilised for this initial search. These terms were used to satisfy 

the objective of the current study and because they are used interchangeably within the literature. 

The need to identify relevant phrases for the extensive database search was the main reason for 

this initial exploration. A total of 19 (18 journal and 1 conference) articles were uncovered from 

the ARCOM database search. 

Ananiadou et al. (2009) suggest the use of term extraction, which is a text mining 

technique, to identify relevant keywords for a systematic literature review. In this study, the 

TerMine software (Frantzi et al. 2000) was used for term extraction. The title, keywords and 

abstract of the 19 articles, from the ARCOM search wereas used to create a corpus for term 

extraction. At the end of the term extraction process, ‘“construction output’”, ‘“construction 

demand’”, ‘“model’” and ‘“forecasting’” were identified as suitable keywords for the extensive 

database search.  

 

Search Process  

The systematic process used to search for relevant articles was carried out in three phases 

(see Figure 1). In phase one, a search was carried out using the SCOPUS and Web of Science 

[WOS] databases. Several lines of evidence indicate that SCOPUS is a comprehensive database 

of journals when compared to WOS, CSA Illumina, Microsoft Academic and Google Scholar 

(Norris and Oppenheim, 2007; Siguenza-Guzman et al., 2015; Hug and Brändle, 2017). As 

suggested in Baykoucheva (2010), the extensive literature search was carried out on both the 

SCOPUS and WOS database, . The use of these two databases ensuringed that the search 

covered a comprehensive range of publication outlets.  

InAt phase two, an additional search was carried out on the database of key journals. 

Previous systematic literature reviews have shown that the use of a combination of indexed and 

journal database searches ensures that relevant articles are captured (Ke et al., 2009; Kokkonen 

and Alin, 2015). Due to the multidisciplinary nature of construction output research, an 

additional search was conducted on journals related to the covering the following academic 

disciplines: (i) construction management; and (ii) real estate. 

InAt phase three, textual data (titles, abstracts and keywords) relating to papers 

identifiedfound in the second phasestage were entered in the TerMine software. The data was 
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analysed to check iffor any new keywords will be identified and these. The new keywords were 

used for an additional search on the SCOPUS and WOS databases. This robust search strategy 

ensureds that all the relevant articles were identified at the end of the search process.  

Phase One The Search – (phase one) 

The combination of keywords used for the database search weare: (i) ‘“construction 

output’” AND ‘“forecast*’”; (ii) ‘“construction output’” AND ‘“model*’;” (iii) ‘“construction 

demand’” AND ‘“forecast*’”; and (iv) ‘“construction demand’” AND ‘“model*’.” A total of 155 

journal articles were identifiedfound at the end of the database search (111 articles from 

SCOPUS and 44 articles from WOS). An initial screening of search results was undertaken to 

remove duplicates and irrelevant papers (i.e. papers not within the scope of the review). It was 

observed that there were numerous duplicates in the search results which wasand this is due to 

the overlap in the journals indexed in both databases. At the end of the database search and initial 

screening, 23 relevant journal papers were identified.  

 

The Search – (pPhase Ttwo Search) 

 Construction output research is predominantly published in construction management and 

real estate journals. In the field of construction management, an additional search was conducted 

on the databases of the following journals: Construction Management and Economics; Journal of 

Construction Engineering and Management; Journal of Management in Engineering; 

Engineering, Construction and Architectural Management; Habitat International; Construction 

Economics and Building; International Journal of Construction Management; Building and 

Environment; and Building Research and Information. In the field of real estate, a supplementary 

search was conducted on the databases of the following journals: Real Estate Economics; 

Journal of Real Estate Finance and Economics; Journal of Real Estate Research; Journal of 

Property Finance; Journal of Property Valuation and Investment and Journal of Property 

Research.  

 The choice of these journals was informed by the following: (i) the ranking of the journal 

in the selected field (for details of ranking of construction management and real estate journals, 

refer to: Wing, 1997; Newell et al., 2002; and Hardin III et al., 2006);, and (ii) the number of 

relevant papers found in the journal at the end of the SCOPUS and WOS search. At the end of 

the second search (journal database search), 14 relevant articles were identified. 

Formatted: Font: Italic
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PThe Search – (phase Tthree Search) 

 The titles, abstracts, and keywords of the 14 articles identified, from t in the second 

phasestage of the search, were used to create a corpus. This corpus was analysed in the TerMine 

software and additional keywords were identified for the third phase of the stage of search 

process, namely:. From the corpus,  ‘“housing investment’”, ‘“construction activity’”, ‘“building 

supply’”, ‘“construction supply’” and ‘“property market’” were identified. These keywords were 

used to carry out an additional search on the SCOPUS and WOS databases. The search process 

was repeated several times (the stage was done in three phases) to ensure that a comprehensive 

list of relevant journal papers was identified. 13 journal papers were found during phase three. 

 

Screening and Collation of the Search Results 

 At the completion of the search process, a total of 50 articles were identified (i.e. 

23+14+13 = 50 journal articles). An initial screening was used to remove irrelevant articles from 

the search results. Out of the 155 articles found in the phase one, 133 journal papers were 

excluded from the search results for the following reasons: (i) duplication [articles were found 

twice or more in the search results]; (ii) inappropriate focus of article subject matter [e.g. 

construction cost forecasting); and (iii) replication, where studies were covered in the scope of a 

previous review on relationships between construction output and economic growth (Dang and 

Low, 2011). In addition, screening was completed at the end of the second and third phase of the 

search. The filtering (screening) phase of articles entailed a brief review of the journal paper(s) 

titles and abstracts found in the search results.  

 Subsequently, the full-text of the 50 articles was assessed for eligibility for inclusion into 

the study sample. Two unrelated articles were excluded from the outcome of the comprehensive 

search process. The secondary data (48 journal articles) was collected using the methods 

previously described and subjected to further analysis. In terms of time, there were no published 

articles on construction output modelling and forecasting before 1975 and the search reported in 

this paper was undertaken in 2019. Thus, the scope of the search covered the time period 

between 1975 and 2019; albeit, no papers published in 2019 meet the inclusion criteria (see 
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Table 1). This search criteria ensured that a comprehensive list of relevant journal papers wasere 

identified during the search process.  

 Table 1 presents an overview of previous studies selected for this review. In this study, 

qualitative content analysis was used to dissect the selected journal papers. As suggested in 

Decrop (1999) and Edwards and Holt (2010), the use of methodological triangulation improves 

the reliability of findings derived from qualitative research. Subsequently, a data driven approach 

was used to analyse the title and abstract of each publication. Text mining was used for the 

analysis and visualisation of the text (i.e. the corpus created using the title, abstract and 

keywords). The findings emerging from the use of both methods was triangulated.  

 

‘Insert Table 1 here' 

'Insert Figure 1 here' 

 

RESULTS  

 Detailed information relating to journal papers selected for this study areis presented in 

Table 1, thatwhich reveals that a large number of studies have have focused on modelling of 

residential construction output and that most. Also, studies found in literature have largely 

focused on countries in the developed world (e.g. UK, US, Australia and Singapore). 

 The results of this study are remaining six constituent parts of this section were structured 

to address the research questions stated in the research rationale subsection, viz: (i). to provide an 

insights into the number of papers published annuallyin each year for construction output 

modelling, together with the journal outlets used for construction output modelling; (ii) to 

present the modelling techniques used in previous research; (iii) to illustrate the research themes 

addressed in previous studies; (iv) to identify the determinants (i.e. predictors used to explain or 

predict movement in the volume of construction output) of construction output; (v) to determine 

the relative performance of construction output forecast models; and (vi) to summarise the 

study’s key findings. 

 

Construction Output Modelling Research: Annual Publication Trend and Journal outlet 

The content of this subsection addresses the first and second research question stated in 

the opening section of this paper. A comprehensive literature search of literature revealed that 
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there were 48 articles that focused on construction output modelling.  were published in various 

journals. These manuscripts were published in various journals, 24 in total, journals, as presented 

in Table 2. In terms of numbers of published papers, the top-four outlets for disseminating 

construction output modelling studies were: Construction Management and Economics;, The 

Journal of Real Estate Finance and Economics;, Journal of Property Research and 

Engineering,; and Construction and Architectural Management represent the top-four outlets for 

disseminating construction output modelling studies. 

The need to understand factors (i.e. determinants) responsible for fluctuations in the 

volume of construction output necessitated the study. Despite the importance of construction 

output modelling, little attention has been paid to this area of research (see Figure 2) (see Figure 

2). It is visible that there has been an inconsistent trend in the number of construction output 

modelling studies published between 1975 and 2019. Scant research in this area could be 

attributed to the non-availability of data in some countries, as observed in previous research 

(K'Akumu, 2007; Yitmen et al., 2012). Unavailability of data on construction output and its 

determinants makes it impossible to estimate construction output models. As shown in Figure 2, 

there is an inconsistent trend in the number of construction output modelling studies that were 

published between 1975 and 2019. 

 

'Insert Table 2 here' 

'Insert Figure 2 here' 

 

Modelling Techniques 

The third research question sought to identify the methods used for modelling of 

construction output. Several modelling techniques are used to explain and/or predict the changes 

in the volume of construction output. These techniques used for modelling of construction output 

cancan be classified based on: (i) the number of variables included in the model [multivariate 

and univariate], (ii) consideration of the temporal characteristics of data [time series and non-

time series] and (iii) academic discipline [statistical and artificial intelligence]. In some cases, it 

is difficult to ascribe a modelling technique to one particular category; this. This pitfall can be 

attributed to the overlap in the label assigned to each modelling approach. For example, the Box-

Jenkins model is a statistical, univariate (i.e. captures the relationship between the current and 
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previous values of construction output) and time-series based approach. In contrast, a vector 

error correction model is a multivariate technique that captures the relationship between 

construction output and its determinants. In addition, a vector error correction model is a 

statistical and time-series based approach. 

 

'Insert Table 3 here' 

 

A classification summary of tTable 4 shows that thehe descriptive statistics that relateing 

to modelling techniques used in previous research and the purpose of the study are displayed in 

Table 4. As stated previously, 48 construction output modelling studies were published in 

various journals. OfIn these studies, 13 models were estimated to explain the relationship 

between construction output and other input variables, whilst . Also, 35 models were used to 

generate forecasts of construction output. In some studies, models are estimated for explanation 

and forecasting purposes. For example, Fan et al. (2011) estimated a model that explains 40% of 

the variations in the volume of construction output. Subsequently, the estimated model was used 

to generate forecasts of construction output. In terms of the number of variables included in the 

developed model, multivariate models weare the predominant technique used for modelling of 

construction output, with 50 instances of utilisation as compared to 19 for univariate models. 

Jiang and Liu (2011) developed two multivariate models, VEC and VEC-D, for forecasting of 

Australia’s construction output. The popularity of multivariate models may be due to the need to 

identify underlying reasons for the changes in the volume of construction output. The output of 

multivariate models helps to identify the determinants (predictors) of construction output. 

Based on time consideration, 31 non-time series and 38 time series techniques were used 

for construction output modelling. Between 1975 and 1983, it was observed that no 

consideration was given to a temporal relationship among variables during the process of 

developing construction output models (Duffy, 1975; Nicholson and Tebbutt, 1979; Thomas and 

Stekler, 1979; Thomas and Stekler, 1983). In recent years (2012-2019), there has been a shift 

towards the use of time series techniques in construction output modelling research. Statistical 

techniques (vis-à-vis artificial intelligence techniques) werehave been found to be the 

predominant method used in construction modelling research. The prevalence of this approach 

can be linked to its ability to explain the strength of the relationship between construction output 
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and its determinants. For instance, Chiang et al. (2015) found that a bi-causal relationship exists 

between gGross dDomestic pProduct and construction output. 

 

'Insert Table 4 here' 

 

Construction Output Modelling: Research Themes and Topics 

Various topics have been investigated in construction output modelling research. As 

stated in Ofori (1990), the determinants of construction output tend to vary across the different 

segments of the construction market. The need to understand the determinants of construction 

output in each market segment has led to a disaggregation of construction output into its 

constituent parts. Authors, such as Hillebrandt (1985) and Ofori (1990), have thematically 

classified construction output into (for example) housing, industrial, commercial and 

maintenance. For thisIn th studyis paper, construction output wasis classified based on the 

content of the published studies selected for the review.  

Figure 32 shows that construction output can be disaggregated into the and 

classificationsed into various main and subgroups, namely:: industry/regional (total, regional); 

project financier (private, public); and market sector (residential, commercial, manufacturing, 

maintenance, others, structures and facilities). Some previouspast research endeavours focused 

on the modelling of two or more types of construction output. For example, Akintoye and 

Skitmore (1994) developed forecast models for residential, commercial and industrial 

construction output. This disaggregation is vital for gaining insights into the determinants of each 

segment. 

 

'Insert Figure 23 here' 

 

Determinants of construction output 

 Table 4 reveals that multivariate techniques are frequently used for construction output 

modelling. Multivariate models provide insights into the underlying determinants responsible for 

changes in the volume of construction output and Table 4 reveals their frequent use for 

construction output modelling. The identification of ‘best’ determinants is essential for the 

application of multivariate techniques to construction output modelling. Historically, several 



15 
 

multivariate techniques have been used for construction output modelling and as aso consequencetly,. 

a large number of determinants (i.e. input variables) of construction output have been identified 

(see Table 5)..  

Table 5 summarises the determinants (i.e. input variables) used for construction output 

modelling in previous studies. Since construction output tends to fluctuate over time, there is a 

need to understand the underlying reasons for these cycles. Mitigating the adverse effect of 

fluctuating construction output is impossible without identifying the determinants that cause 

changes in its volume. A whole range of determinants (e.g. interest rate and unemployment rate) 

could influence the volume of construction output as shown in Table 5. However, a closer 

examination of these previous studies indicates that the determinants of construction output vary 

when different classes of construction output are compared. As suggested in Jiang and Liu 

(2015), the determinants of construction output were therefore allocatedgrouped into five groups, 

namely: price; income and production; demography and labour force; customer’s’ expectations; 

and other factors. Based on the classification of construction output presented in( Figure 2), the 

determinants werecontent of t alsohis subsection is   presented according to the under three 

classications ofheadings, namely: ‘pro“project financier”’, “‘market sector’” and 

“‘industry/regional’.” A summary table of the 48 modelling studies mapped against the 

classifications is presented in Table 6. 

 

'Insert Table 5 here' 

 

Project financier  

 Based on the criteria of ‘project financier’ classification, construction output can be disaggregated 

into ‘public’ and ‘private’ (Figure 3). Two of the studies that employed multivariate models werehave been 

developed for ‘private’ construction output (Ng et al., 2011; Sing et al., 2015). In terms of 

frequency, the state of the economy, which is a proxy of GDP/GNP/NI, iwas the most common 

determinant of private construction output (Table 5). In contrast, little is known about the 

determinants of ‘public’ construction output because no multivariate model(s) have been 

estimated for it. However, it must be noted that there were univariate models were estimated for public 

construction output (Publict+1) forecasting in Lam and Oshodi (2016a). These univariate models 

used information contained in its current (Publict) and past values (Publict-1). 
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Market Sector  

 In terms of market sector, construction output can be disaggregated into the following 

components: residential, commercial, manufacturingindustry, maintenance, structures and 

facilities and ‘others’ (Figure 3). From Tables 1 and 6, it can be seen that 30 studies reported the 

development of models for ‘residential’ construction output (e.g. Akintoye and Skitmore, 1994; 

Goh, 1996). In contrast, the modelling of “‘structure and facilities”’ and ‘maintenance’ 

construction output received the least attention in published studies. In terms of frequency, 

interest rate (12 studies), construction price index (nine studies) and population (nine studies) 

were the most common determinants of residential construction output. 

 In relative terms, the number of multivariate models were developed for ‘commercial’ 

(nine studies) and ‘manufacturing’ construction output (ten studies) are similar. The most 

common determinants of ‘commercial’ construction output are "interest rate", "property value", 

"state of the economy" and "retail sales". In contrast, "state of the economy", "interest rate", 

"unemployment rate”, "property value", "total production", "national savings" and 

"manufacturing output" are the prevalent determinants of manufacturing construction output. 

This finding suggests that the determinants of construction output in different segments of the 

market are unique.  

Industry/regional  

 The data presented in Table 6 shows that 11 models were used for modelling of 

construction output at the ‘industry’ (overall) level, whilst i. In contrast, only one study was 

carried out on modelling of construction output at ‘regional’ level (Jiang and Liu, 2014). 

"Interest rate", "unemployment rate" and "state of the economy" are the most cited determinants of 

overall construction output. Usually, large volumes of financial resources are expended during 

the process of procuring construction projects. Hence, clients and project sponsors may need to 

source loans from banks and other financial institution for the execution of their projects. As a 

result, changes in interest rates and the state of the economy (GDP) are positively related to 

construction output. This assertion iwas validated in Fan et al. (2011) whose work revealesd that 

GDP and interest rates play a role in determining the volume of construction output.  

 

'Insert Table 6 here' 
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The relative performance of construction output forecast models  

As explained by Shmueli and Koppius (2011), the processes for of validating explanatory 

and prediction models are distinct. For explanatory models, strength of fitness is the primary 

metric used to evaluate the developed model, whereas the accuracy of the out-of-sample forecast 

is the measure for validating predictive models. For instance, Jiang and Liu (2011) collected data 

covering the period from 1996Q3 to 2010Q2. The data series covering 1996Q3 to 2009Q2 was 

used for model estimation and subsequently, the developed model was used to generate the out-

of-sample forecast for the last four data points from 2009Q3 to 2010Q2. In the out-of-sample 

period, the forecast values were compared with the actual values of construction output. 

 Error variance (i.e. the difference between the actual and forecasted value of 

construction investment) is used to quantify the uncertainty of anthe estimated model. In the field 

of construction economics, forecast errors are computed using percentage error (PE), mean 

squared error (MSE), mean percentage error (MPE), mean absolute percentage error (MAPE), 

Theil's inequality coefficient (U), root mean squared error (RMSE) and index sum (IS). 

 

'Insert Table 7 here' 

 

Summary of results  

Seven interesting findings emanated from this research. First, a total of 48 studies were 

published between 1975 and 2019, although it should be . It is imperative to noted that no study 

was published on this topic in 2019 itself. Second, previous construction modelling studies have 

predominantly focused on countries located in the Northern hemisphere, for example . Previous 

construction output modelling studies (Table 1) have focused on tthe UK (Duffy, 1975; 

Tanratanawong and Scott, 2000), USA (Thomas and Stekler, 1979; Fullerton et al., 2001), 

Australia (Jiang and Liu, 2011), Singapore (Goh, 1996) and Hong Kong (Fan et al., 2011) among 

others. Third, from the data in Table 4, multivariate and statistical techniques were identified 

asare the dominant tools used in construction modelling research. 

Fourth, interest rate, state of the economy (GDP/GNP/NI), unemployment rate, 

population, construction price index, national savings and rent were found to be popular 

determinants of construction output (Table 5). The use of a subjective variable, such as the 

occurrence of global financial crisis, washas been limited to two studies (Jiang and Liu, 2011; 
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Jiang et al., 2013). Fifth, little is known about the determinants of certain classes of construction 

output. This finding is due to the development of a limited number of models for those classes of 

construction output. For example, Tanratanawong and Scott (2000) is the only study to apply 

multivariate techniques to maintenance construction output (cf. Table 53). Thus, little is known 

about the determinants of maintenance and public construction output. Sixth, it is apparent from 

Table 7 that statistical models provide reliable forecasts of construction output. However, a 

comparison shows that the artificial intelligence models outperform statistical models in terms of 

predictive performance.  

 Finally, a data driven approach, i.e. text mining, was used to verify the findings 

emanating from the review of the selected journal papers. The title, abstract and keywords of the 

selected papers were used to construct a corpus. Due to the absence of abstracts, two publications 

(i.e., Duffy, 1975; Nicholson and Tebbutt, 1975) were not added to the corpus. The corpus was 

analysed using the R programming software (R Core Team, 2015) to generate the most frequent 

terms found within itin the corpus. In terms of frequency of occurrence, the top 20 words are 

presented in Figure 4. The five most frequent words in the corpus are model, construction, 

forecast, construction output and housing. There are similarities between the findings obtained 

from the content analysis and data-driven text analysis. For example, the data presented in Table 

4 shows that most construction output modelling studies focused on forecasting. This 

convergence indicates that the study is credible and robust. 

 

'Insert Figure 4 here' 

 

DISCUSSION OF FINDINGS 

Models are used to unmask the underlying factors responsible for fluctuations in the volume of 

construction output. This study has undertaken a systematic review of the published studies on 

construction output modelling and aA summary of the main findings has beenwere presented. 

The following discussion highlights further several key results that were raised by the r in the 

previous subsection. In this section, the results of this study. raise several key issues which are 

discussed in  subsequent paragraphs. 

One interesting finding is that socio-economic variables [such as GDP, interest rate and 

unemployment rate, among others] are the predominant determinants of construction output. 
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This study supports the evidence presented in previous research (Turin, 1978; Anaman and Osei‐

Amponsah, 2007), which showed that construction output and economic growth are positively 

related. As stated earlier, finding the right balance between construction output and the capacity 

of the construction sector is quintessentially important for developing strategies to mitigate the 

impact caused by changes in volume. For example, a contracting firm could decide to seek 

overseas opportunities based on an envisaged drop in the volume of construction output.  

It was found that few studies focused on construction output modelling. There are several 

possible explanations for this result. The unavailability of data could be one limiting factor.of the 

reasons limiting the interest in construction output modelling. Studies have shown that the 

quantity and quality of construction statistics is inadequate in certain countries (K'Akumu, 2007). 

To address this, there is a need to identify alternative metrics for quantifying the volume of 

construction activities. For instance, Gruneberg and Folwell (2013) demonstrate that the 

construction component of gross fixed capital formation (GFCF) could be used as a substitute for 

construction output. Based on the information available from World Bank, data on GFCF is 

relatively available in most countries (World Bank, 2019). The adoption of GFCF would make it 

easier to develop models for construction output in several countries.  

Terms associated with forecasting are popular in construction modelling publications (see 

Figure 3). This finding suggests that construction output modelling is at the third stage of 

knowledge creation. In most of the previous published studies, authors fail to explicitly state the 

theory which informed the choice of variables in model developmentused to develop models. 

Runeson and de Valence (2015) assert that the main weakness of most studies in the field of 

construction economics stems from the failure to utilise existing theories. However, it must be 

mentioned here that most of the variables included in construction modelling studies are 

informed by findings from previous research. Comparison between the findings of construction 

modelling studies is useful for validity and refuting of existing theories.  

Statistical techniques are the most commonly used tool employedapproach for 

construction output modelling, – quite possibly because of the imperative need to understand the 

relationship between co connstruction output and its determinants. However,Some issues were 

observed in some previous construction output modelling studies which used statistical 

techniques. First, non-stationary variables were included in some of the statistical models. T; this 

may be partly responsible for the high value of R-square reported in thesesome previous studies, 
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f. For example, the R-square value of one of the models estimated in Tang et al. (1990) is 0.96. The 

observed relationship could be attributed to spurious regressions (Brooks, 2014). Second, some 

statistical models provide little or no information about the relationship between construction 

output and its determinants. Despite being atheoretical, univariate models are proven to be useful 

for modelling and forecasting construction output (Goh and Teo, 2000; Fan et al., 2010). Hence, 

researchers need to find the right balance between theory and model fit when estimating 

construction output models. This claim stems from the fact that some atheoretical models are 

useful in practice.  

Lastly, it was revealed that the non-linear techniques (such as ANN and SVM) tend to 

generate a more reliable forecast of construction output when compared with linear models. This 

result is consistent with those reported in earlier studies (Weron, 2014). Flexibility and lack of 

explanatory information are two main weaknesses of non-linear models. The effect of each 

determinant on construction output is unknown; this is the main reason for naming this class of 

techniques as ‘black box’ models. In practice, the management of fluctuation in the volume of 

construction output is not entirely dependent on the accuracy of forecast models. However, the 

theory, policy and practice implications of this research are potentially far reaching. From a 

theoretical perspective, the range of models reviewed illustrates academia’s inimitable attempts 

to further refine, fine-tune and improve the accuracy of models produced. This partly 

acknowledges the fact that forecasting models are often limited to short term forecasts (typically 

three to five years) and subject to perturbations in macro-economic conditions. From a political 

perspective, models can be used as a simulation laboratory (so called economic levers) for 

evaluating the impact of competing policies on the predicted variable (Ogunlana et al., 2003). 

From a supply chain perspective, For example, government may, for example, relax immigration 

laws to attract foreign workers due to a projected increase in the volume of construction 

activities. Alternatively, government interventions to lower taxation or inflation rates can trigger 

business growth and home purchasing which in turn stimulates: the aggregates sector to produce 

more raw materials; the manufacturing sector to build more construction products; and Also, 

construction equipment manufacturers to build more machinery to cater for booming demand. Of 

course the converse is true, but the construction and civil engineering sector is inextricably 

linked to national wealth which underscores the importance of accurate prediction models. In 

practice, an accurate forecast is essential to industry who must fine-tune investments in key 
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resources so as to expand operations when markets are buoyant (and capitalise on market 

growth), and contract operations when in a recession, to preserve the business in readiness to 

capitalise upon future expansion. could use information provided by construction output 

forecasts to develop strategies for product sales. These practical implications of forecasting 

market elasticity indicates that the reliability of construction output forecasting is vital for various 

stakeholders and athe national economy.  

 

Paths for future research 

TIn the previous section, the published studies on construction output modelling were 

hitherto consolidated. This compression of information provides details on the trends and gaps in 

the current knowledge within this area. Based on the gaps identified, the directions for future 

construction output modelling studies are speculated. The four main topics which emerged, in 

the preceding sections, either explicitly or implicitly, are :as follows: 

1) Selection of ‘best’ input variables (determinants) for the estimation of construction output 

models has become increasing important (cf. Jud and Winkler, 2003). Although the 

current study indicates that a large set of macroeconomic variables (e.g. interest rates and 

population) affects the volume of construction output, there is a need to identify the best 

‘set’ of determinants. This information would ease the process of calibrating construction 

output models and this is vital for identifying the optimal set of variables. 

2) The determinants of construction output were found to vary from sector to sector (see 

Table 3). Ofori (1990) asserts that the determinants of construction output in the different 

segments of the construction market are unique, whilst Bon (1992) contends that the 

dynamic nature of the construction sector is also influential. This suggests that the 

determinants of construction output vary at different stages of development, and across 

countries, which demonstrates the need to understand the underlying causes of 

fluctuations in construction output volume in various segments of the construction 

maarket. Although multivariate models have been estimated for construction output in the 

different segments of the construction market, little is known about the changes in certain 

market sectors (Table 3). For example, there have been limited studies on modelling of 

public, private and maintenance construction output. These areas should be explored in 

future studies. 
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3) Hithertoenceforth, the inclusion of dummy variables in models used for forecasting construction 

output has been limited to four previous research studies (viz: Thomas and Stekler, 1979; 

Thomas and Stekler, 1983; Jiang et al., 2013; Jiang and Liu, 2011). The addition of a 

dummy variable, representing the global financial crisis, improved the reliability of 

construction output forecasts in a previous research (Jiang and Liu, 2011). Alaka et al. 

(2016) suggest that the inclusion of subjective data into models would result in reliable 

predictions and in this case, would improve the understanding of the effects of these 

factors on construction output. For instance, the government of Hong Kong introduced 

the mandatory building inspection scheme (MBIS) and mandatory window inspection 

scheme (MWIS) in 2012 (Tan et al., 2012). The policy is targeted at stimulating growth 

in the volume of maintenance works. The effect of this policy (including other similar 

interventions) on the volume of maintenance construction output needs to be investigated. 

However, the inclusion of these non-traditional determinants of construction output into 

models must be adequately justified.  

4) The application of contemporary techniques to construction output modelling research 

needs to be explored. For example, interrupted time series models couldan be used to 

evaluate the impact of policies (e.g. MWIS and MBIS (ibid)) on changes in the volume of 

construction output. Research in the field of artificial intelligence has shown that the 

potential of using text mining for prediction (Nassirtoussi et al., 2014). However, the use 

of these techniques has not been explored in construction output modelling research. In 

future investigations, it might be possible to use text mining to predict public construction 

output.  

5) Evaluation of the quality of the construction output model is important. The purpose of 

the study is the main criteria for deciding on the approach used to evaluate the developed 

model. Shmueli and Koppius (2011) proffer that the coefficient of determination and 

errors (variances between actual and forecast values) are the metrics for evaluating 

explanatory and forecast models, respectively. MAPE and U coefficient are popular 

metrics used for evaluating construction output forecastsing models (Fan et al., 2011; 

Jiang and Liu, 2014). However, the limitations of these measures have resulted in the 

development of new metrics for evaluating forecast accuracies (Hyndman and Koehler, 
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2006), such as the mean absolute scaled error. The use of these new metrics could 

improve the process of validating construction output models. 

 

CONCLUSION 

Modelling offers a useful approach for unveiling the determinants that account for the 

changes in the volume of construction output. The main goals of this current study wereas to 

systematically review the literature on construction output modelling andbut also raise the 

importance of accurate modelling, s not only for industry practitioners but also the wider national 

economy. The study has found that macro-economic variables are significant predictors of the 

volume of construction output but finer nuances between the way that data is reported in various 

countries means that a singular ‘one-shoe-fits-all’ global model is unlikely to be achieved. 

Residential construction output modelling has been the main focus of numerous previous 

research studies, while significantly less attention has been paid to modelling of maintenance and 

public construction output.  Also, the inadequacies of certain techniques used for construction 

output modelling were highlighted. In this regard, construction output modellers can benefit from 

the advances that are being made in the field of statistics and computer science.  

The findings of this study have theoretical and practical implications. In several countries 

across the globe, governments are implementing strategies to stimulate construction activities. 

The impact of these interventions (such as MBIS in Hong Kong and Help to Bbuy scheme in the 

UK) are currently unknown. Thise outcome of this study provides a comprehensive list of 

determinants that can be used infor futurethe construction output model  development of 

construction output models for evaluating the impact of these intervention programs, and also. 

The outcome of this study provides insight into the trends and gaps in the current knowledge on 

construction output modelling. This information could serve as justification for future studies 

within this area. Reduced volatility in the volume of construction output is important due to its 

causal relationship with employment, equipment sales and economic development (Chiang et al., 

2015; Holt and Edwards, 2012). An understanding of the determinants of construction output 

could help stakeholders anticipate changes in its volume and develop appropriate strategies for 

responding to such events.  

Several limitations to the current study must be acknowledged. First, the study’s sample 

was limited to papers published in academic journals. Second, the search was limited to 
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academic papers published in English. Thus, relevant papers published in other languages (such 

as Chinese and Spanish) were excluded from the study. Notwithstanding these limitations, the 

objectives of the present study were achieved. Five research gaps were identified, namely: (i) the 

need for an objective approach for identifying the ‘best’ variables for modelling of construction 

output; (ii) a lack of studies that focused on maintenance and public construction output 

modelling; (iii) lack of consideration for inclusion of subjective factors in construction output 

models; (iv) the need for a greater use of contemporary techniques in construction output 

modelling; and (v) the need to use robust metrics for evaluating the predictive accuracy of 

construction output models. Further studies must be conducted to address these identified gaps.  
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Figure 2: Number of relevant articles published per year 
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Figure 3 - An overview of cConstruction oOuutput cClassification 
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Figure 4 - Term analysis of construction output modelling publications 
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Table 1 - An overview of cConstruction oOutput mModelling sStudies  

No. Author(s) Country Output variable(s) Publication outlet 

1 Duffy (1975) United Kingdom (UK) Residential  Applied Economics 

2 Nicholson and Tebbutt (1979) UK Manufacturing  Journal of Industrial Economics 

3 Thomas and Stekler (1979) United States (USA) Residential Economics Letters 

4 Thomas and Stekler (1983) USA Residential Regional Science and Urban Economics 

5 Sklarz et al. (1987) USA Residential Real Estate Economics 

6 Tang et al. (1990) Thailand Residential, manufacturing and others  Construction Management and Economics 

7 Chang and Linneman (1990) Japan, Korea, Taiwan 

and USA 

Residential  Growth and Change 

8 Akintoye and Skitmore (1994) UK Residential, commercial and manufacturing Construction Management and Economics 

9 Giussani and Tsolacos (1994) UK Manufacturing Journal of Property Research 

10 Benjamin et al. (1995) USA Commercial  The Journal of Real Estate Finance and 

Economics 

11 Tsolacos (1995) UK Manufacturing Journal of Property Research 

12 Goh (1996) Singapore Residential Construction Management and Economics 

13 Ball and Grilli (1997) UK Commercial Journal of Property Research 

14 Goh (1998) Singapore Residential Engineering, Construction and 

Architectural Management 

15 Notman et al. (1998) UK Overall Construction Management and Economics 

16 Tsolacos (1998) UK Commercial Journal of Property Research 

17 Fergus (1999) USA Residential The Journal of Real Estate Finance and 

Economics 

18 Goh (1999) Singapore Residential, commercial and manufacturing Construction Management and Economics 

19 Somerville (1999) USA Residential The Journal of Real Estate Finance and 

Economics 

20 Goh (2000) Singapore Residential Construction Management and Economics 

21 Goh and Teo (2000) Singapore Residential Construction Management and Economics 

22 Tanratanawong and Scott 

(2000) 

UK Residential, maintenance and others Journal of Financial Management of 

Property and Construction 

23 Thompson and Tsolacos (2000) UK Industrial Journal of Real Estate Research 

24 Fullerton et al. (2001) USA Residential International Journal of Forecasting 

25 Ball and Tsolacos (2002) UK Commercial and manufacturing Journal of Property Research 

26 Jud and Winkler (2003) USA Residential The Journal of Real Estate Finance and 

Economics 

27 Berg and Berger (2006) Sweden Residential The Journal of Real Estate Finance and 
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Economics 

28 Ng et al. (2008b) Hong Kong Residential Building and Environment 

29 Fan et al. (2010) Hong Kong Residential, commercial, manufacturing and overall Construction Management and Economics 

30 Fan et al. (2011) Hong Kong Overall Habitat International 

31 Jiang and Liu (2011) Australia Overall Construction Management and Economics 

32 Ng et al. (2011) Hong Kong Private Construction Management and Economics 

33 Goh (2012) Singapore Residential, commercial and manufacturing  International Journal of Construction 

Education and Research 

34 Karamujic (2012) Australia Residential Construction Economics and Building 

35 Kagochi and Kiambigi (2012) Kenya Residential African Development Review 

36 Zheng et al. (2012) Hong Kong  Residential and commercial Construction Management and Economics 

37 Jiang et al. (2013) Australia Residential, Non-residential and overall Construction Economics and Building 

38 Jiang and Liu (2014) Australia Regional Construction Management and Economics 

39 Chiang et al. (2015) Hong Kong Building, structures and facilities, and overall Habitat International 

40 Jiang and Liu (2015) Australia Overall International Journal of Strategic Property 

Management 

41 Sing et al. (2015) Hong Kong Private Journal of Construction Engineering and 

Management 

42 Tan et al. (2015) Hong Kong Residential, structures and facilities, maintenance, 

and overall 

International Journal of Construction 

Management  

43 Alagidede (2016) Global  Overall Applied Economics Letters 

44 Lam and Oshodi (2016a) Hong Kong Others, private, public and overall Engineering, Construction and 

Architectural Management 

45 Lam and Oshodi (2016b) Hong Kong Residential, maintenance and overall Journal of Management in Engineering 

46 Elíasson (2017) Iceland Residential Housing Studies 

47 Ma at al. (2017) Australia Residential International Journal of Strategic Property 

Management 

48 Ma at al. (2018) Australia Residential Engineering, Construction and 

Architectural Management 
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Table 2 - Number of relevant manuscripts published in each journal 

 

 

 

 

 

 

 

 

 

 

Journal Number Percentage 

Construction Management and Economics 12 25.00 

The Journal of Real Estate Finance and Economics 5 10.42 

Journal of Property Research 5 10.42 

Engineering, Construction and Architectural Management 3 6.25 

International Journal of Strategic Property Management 2 4.17 

Habitat International 2 4.17 

Construction Economics and Building 2 4.17 

Regional Science and Urban Economics 1 2.08 

Real Estate Economics 1 2.08 

Journal of Real Estate Research 1 2.08 

Journal of Management in Engineering 1 2.08 

Journal of Industrial Economics 1 2.08 

Journal of Financial Management of Property and Construction 1 2.08 

Journal of Construction Engineering and Management 1 2.08 

International Journal of Forecasting 1 2.08 

International Journal of Construction Management  1 2.08 

International Journal of Construction Education and Research 1 2.08 

Housing Studies 1 2.08 

Growth and Change 1 2.08 

Economics Letters 1 2.08 

Building and Environment 1 2.08 

Applied Economics Letters 1 2.08 

Applied Economics 1 2.08 

African Development Review 1 2.08 
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Table 3 - Summary of mModelling tTechniques uUsed in pPrevious rResearch 
No. Study Modelling technique Focus                       Classification of technique 

Variables Time Discipline 

1 Duffy (1975) Regression Forecasting  Multivariate Non-time series Statistical 

2 Nicholson and Tebbutt (1979) Regression Forecasting Multivariate Non-time series Statistical 

3 Thomas and Stekler (1979) LSDV Explanation Multivariate Non-time series Statistical 

4 Thomas and Stekler (1983) LSDV Forecasting  Multivariate Non-time series Statistical 

5 Sklarz et al. (1987) Box-Jenkins 

Autoregressive 

Forecasting Univariate 

Univariate 

Time series 

Non-time series 

Statistical 

Statistical 

6 Tang et al. (1990) Regression Forecasting Multivariate Non-time series Statistical 

7 Chang and Linneman (1990) Box-Jenkins 

Trend 

Forecasting Univariate 

Univariate 

Time series 

Non-time series 

Statistical 

Statistical 

8 Akintoye and Skitmore (1994) Regression Forecasting Multivariate Non-time series Statistical 

9 Giussani and Tsolacos (1994) Almon lag polynomial Explanation Multivariate Time series Statistical 

10 Benjamin et al. (1995) Regression Explanation Multivariate Non-time series Statistical 

11 Tsolacos (1995) Regression Forecasting Multivariate Time series Statistical 

12 Goh (1996) Regression 

NN 

Forecasting Multivariate 

Multivariate 

Non-time series 

Non-time series 

Statistical 

Artificial intelligence 

13 Ball and Grilli (1997) VAR Explanation Multivariate Time series Statistical 

14 Goh (1998) Box-Jenkins 

Regression 

NN 

Forecasting Univariate 

Multivariate 

Multivariate 

Time series 

Non-time series 

Non-time series 

Statistical 

Statistical 

Artificial intelligence 

15 Notman et al. (1998) Box-Jenkins Forecasting Univariate Time series Statistical 

16 Tsolacos (1998) Regression Forecasting Multivariate Time series Statistical 

17 Fergus (1999) Regression Explanation Multivariate Non-time series Statistical 

18 Goh (1999) Regression 

Log-Regression 

ANLR 

Forecasting Multivariate 

Multivariate 

Multivariate 

Non-time series 

Non-time series 

Non-time series 

Statistical 

Statistical 

Statistical 

19 Somerville (1999) Regression Explanation Multivariate Non-time series Statistical 

20 Goh (2000) NN 

GA-NN 

Forecasting Multivariate 

Multivariate 

Non-time series 

Non-time series 

Artificial intelligence 

Artificial intelligence 

21 Goh and Teo (2000) Box-Jenkins Forecasting Univariate Time series Statistical 

22 Tanratanawong and Scott (2000) NN Forecasting Multivariate Non-time series Artificial intelligence 

23 Thompson and Tsolacos (2000) Regression Explanation Multivariate Non-time series Statistical 

24 Fullerton et al. (2001) Box-Jenkins 

Random walk 

Forecasting Univariate 

Univariate 

Time series 

Non-time series 

Statistical 

Statistical 

25 Ball and Tsolacos (2002) Box-Jenkins 

Regression 

Forecasting Univariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

26 Jud and Winkler (2003) Regression Explanation Multivariate Time series Statistical 

27 Berg and Berger (2006) ECM Explanation Multivariate Time series Statistical 
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28 Ng et al. (2008b) Regression 

GA-Regression 

Forecasting Multivariate 

Multivariate 

Non-time series 

Non-time series 

Statistical 

Artificial intelligence 

29 Fan et al. (2010) Box-Jenkins 

Regression 

Forecasting Univariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

30 Fan et al. (2011) Regression 

VEC 

Forecasting Multivariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

31 Jiang and Liu (2011) VEC 

VEC-D 

Forecasting Multivariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

32 Ng et al. (2011) Regression 

VEC 

Forecasting Multivariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

33 Goh (2012) Log-Regression Forecasting Multivariate Non-time series Statistical 

34 Karamujic (2012) Structural Forecasting Univariate Time series Statistical 

35 Kagochi and Kiambigi (2012) ARDL Explanation Multivariate Time series Statistical 

36 Zheng et al. (2012) ARDL 

ECM 

Forecasting Multivariate 

Multivariate 

Time series 

Time series 

Statistical 

Statistical 

37 Jiang and Liu (2013) VEC Explanation Multivariate Time series Statistical 

38 Jiang and Liu (2014) Regression 

P-OLS 

P-VEC 

Forecasting Multivariate 

Multivariate 

Multivariate 

Time series 

Time series 

Time series 

Statistical 

Statistical 

Statistical 

39 Chiang et al. (2015) Regression Explanation Multivariate Time series Statistical 

40 Jiang and Liu (2015) VEC Explanation Multivariate Time series Statistical 

41 Sing et al. (2015) VAR Forecasting Multivariate Time series Statistical 

42 Tan et al. (2015) Grey box Forecasting Univariate Non-time series Statistical 

43 Alagidede (2016) Structural Forecasting Univariate Time series Statistical 

44 Lam and Oshodi (2016a) Box-Jenkins 

NN 

Forecasting Univariate 

Univariate 

Time series 

Non-time series 

Statistical 

Artificial intelligence 

45 Lam and Oshodi (2016b) Box-Jenkins 

NN 

SVM 

Forecasting Univariate 

Univariate 

Univariate 

Time series 

Non-time series 

Non-time series 

Statistical 

Artificial intelligence 

Artificial intelligence 

46 Elíasson (2017) Regression Forecasting Multivariate Non-time series Statistical 

47 Ma et al. (2017) P-VEC Forecasting Multivariate Time series Statistical 

48 Ma et al. (2018) P-VEC Forecasting Multivariate Time series Statistical 

 

 
Note: ANLR = autoregressive nonlinear regression; ARDL = autoregressive distributed lag; ECM = error correction model; GA = genetic 

algorithm; LSDV = least squares dummy variables; NN = neural network; P-OLS = panel ordinary least square; P-VEC = panel vector error 

correction; SVM = support vector machine; VAR = vector autoregression; VEC = vector error correction; and VEC-D = vector error correction 

with dummy. 
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Table 4 - Descriptive statistics: Classification of modelling techniques 

Criteria Classification Number 

Focus Explanation 13 

 

Forecasting  35 

   Variables Univariate 19 

 

Multivariate 50 

   Time Non-time series 31 

 

Time series 38 

   Discipline Statistical 60 

 

Artificial intelligence 9 
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Table 5 - Determinants of cConstruction oOutput 
S/N Determinant(s) Residential Commercial Manufacturing Maintenance  S&F* Others Private Overall 

 Price         

1 Real price index/relative price index [6, 22]    [22]     

2 Construction price index/building tender 

price index 

[8, 14, 18, 19, 20, 33, 

37, 47, 48]  

[13] [23]   [37]  [31, 37, 38, 

40] 

3 Property price index [12, 26, 27, 28, 47]       [41]   

4 Consumer price index [12, 28]         

5 Commercial land price  [18, 33]        

6 Rents/property value/property price  [26, 27, 36, 48] [13, 16, 36] [9, 11, 23]     [40] 

7 Industrial share prices index   [11]       

8 Export/import price index   [18, 33]     [40] 

          

 Income and production         

9 State of the economy (GDP/GNP/NI) [6, 8, 12] [8, 13, 25] [8, 11, 18, 25, 

33] 

 [39] [37, 39] [32, 41] [30, 38, 39, 

40] 

10 Disposable income/national income [3, 4, 22, 37]    [22]  [22]  [37, 40] 

11 Weekly earnings        [40] 

12 Total production/industrial production 

index 

  [6, 9, 33] [22]    [40] 

13 Productivity  [18, 33]  [18, 33]       

14 Manufacturing profitability  [8] [8, 11]      

15 National savings/ corporate savings [14, 18, 20, 33]  [18, 33] [6, 18, 33]      [31] 

16 GDP per capita/ GDP (A) at factor cost [7, 12, 22]    [22]     

17 Gross fixed capital formation  [12, 14, 18, 20, 22, 

33]  

    [22]   

18 Manufacturing output   [2, 11, 18] [22]  [22]   

19 Government revenue      [6]   

20 Capital expenditure intention   [33]      

21 Trade balance   [33]      

22 Value of export/ imports [37]  [18, 33]   [22, 37]  [31, 37, 40] 

          

 Demography and labour force         

23 Population [3, 4, 6, 7, 14, 18, 20, 

33, 37] 

 [18, 33]    [37]  [31, 37, 38] 

24 Labour cost  [12]  [18, 33]      [40] 

25 Rate of new immigration [3, 4]        

          

 Consumer’s expectations          

26 Interest rate [3, 4, 6, 7, 8, 12, 14, [8, 10, 25] [11, 18, 25, 33]    [27] [41]  [30, 31, 37, 

Formatted Table
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18, 20, 28, 33, 37] 38, 40] 

27 Unemployment rate [12, 14, 18, 20, 28, 

33, 37] 

[8]  [11, 18, 33]    [37] [32]  [31, 37, 38, 

40] 

28 Consumer expenditure [22]  [16]    [22]   

29 Final consumption expenditure [22]   [22]     

30 Retail sales  [10, 18, 33]        

31 Inflation rate [7]        

32 Household expenditure [37]     [37]  [31, 37, 40]  

33 Exchange rate   [18, 33]      

34 Leading indicators/bank loans   [18]     [40] 

          

 Other factors         

35 Vacancy rate/ Vacancy rate (industrial)   [9, 11]    [41]  

36 Capital value indices  [25]  [25]       

37 Number of planning approvals  [18, 33]        

38 Depreciation   [11]       

39 Government expenditure [28]       [40] 

40 Total investment/investment intensity [28, 46]  [18, 33]     [32]  

41 Money supply [12]  [33]      

42 Money supply (savings and others) [12]        

43 Volume of pension fund withdrawals  [12]        

44 Additions in housing stock/ housing 

stock 

[3, 4, 14, 18, 20, 33, 

46] 

       

45 Private housing starts/ Private sector: 

Housing completion 

[1, 22]   [22]  [22]   

46 Output index: construction      [22]   

47 Government final consumption [22]         

48 Gross value added at basic prices [22]         

49 Household final consumption [22]         

50 Tax rate  [10]       

51 Precipitation [17]        

52 Temperature [17]        

53 Remittance [35]        

Note: S&F = Structures and facilities; Overall = Overall and regional; [ ] = the numbers in the brackets refers to the numbers associated with each 

study (see Table 1) 
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Table 6 – Summary of classification of construction output modelling studies  
No. Classification 

R
es

id
en

ti
a

l 

C
o

m
m

er
c
ia

l 
 

M
a

n
u

fa
ct

u
ri

n
g

  

M
a

in
te

n
a

n
ce

 

O
th

er
s 

S
&

F
 

P
ri

v
a

te
 

P
u

b
li

c
 

R
eg

io
n

a
l 

O
v

er
a

ll
 

1 x          

2   x        

3 x          

4 x          

5 x          

6 x  x  x      

7 x          

8 x x x        

9   x        

10  x         

11   x        

12 x          

13  x         

14 x          

15          x 

16  x         

17 x          

18 x x x        

19 x          

20 x          

21 x          

22 x   xX x      

23   x        

24 x          

25  x x        

26 x          

27 x          

28 x          

29 x x x       x 

30          x 

31          x 

32       x    

33 x x x        

34 x          

35 x          

36 x x         

37 x    x     x 

38         x  

39     x x    x 
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40          x 

41       x    

42 x   xX  x    x 

43          x 

44     x  x x  x 

45 x   xX      x 

46 x          

47 x          

48 x          

Total 30 9 10 3 5 2 3 1 1 11 

Note: the numbers in the first column refers to those studies presented in Table 1 
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Table 7 - Comparison of fForecast aAccuracy 

Study Forecasting 

techniques 

Error 

metric(s) 

Most accurate 

technique 

Sklarz et al. (1987) Box-Jenkins 

Auto-regressive  

MSE 

MAPE 

Auto-regressive 

Chang and Linneman (1990) Box-Jenkins 

Trend 

MAPE Box-Jenkins 

 

Goh (1996) Regression 

NN 

PE 

MPE 

MAPE 

NN 

Goh (1998) Box-Jenkins 

Regression 

NN 

PE 

MPE 

MAPE 

NN 

Goh (1999) Regression 

Log-Regression  

ANLR 

PE 

MPE 

MAPE 

Log-Regression 

Goh (2000) NN 

GA-NN 

PE 

MPE 

MAPE 

GA-NN 

Fullerton et al. (2001) Box-Jenkins 

Random walk 

Structural 

Modified U 

coefficient  

Structural 

Ball and Tsolacos (2002) Box-Jenkins 

Regression 

MAPE 

RMSE 

Box-Jenkins 

 

Ng et al. (2008b) Regression 

GA-Regression 

IS GA-Regression 

Fan et al. (2010) Box-Jenkins 

Regression 

MAPE Box-Jenkins 

Fan et al. (2011) Regression 

VEC 

MAPE 

U 

VEC 

Jiang and Liu (2011) VEC 

VEC-D 

MAPE 

U 

VEC-D 

Ng et al. (2011) Regression 

VEC 

MAPE 

U 

VEC 

Jiang and Liu (2014) Regression 

P-OLS 

P-VEC 

MAPE 

U 

P-VEC 

Lam and Oshodi (2016a) Box-Jenkins 

NN 

MAPE 

U 

NN 

Lam and Oshodi (2016b) Box-Jenkins 

NN 

SVM 

MAPE 

U 

SVM 

Note: ANLR = autoregressive nonlinear regression; GA = genetic algorithm; NN = neural network; VEC 

= vector error correction; VEC-D = vector error correction with dummy; P-OLS = panel ordinary least 

square; P-VEC = panel vector error correction; SVM = support vector machine; MSE = mean squared 

error; MPE = mean percentage error; MAPE = mean absolute percentage error; U = Theil's inequality 

coefficient; IS = index sum 


