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Abstract: Global pandemics, such as the Coronavirus Disease 2019 (COVID-19), have serious harmful
effects on people′s physical health and mental well-being. It is imperative therefore that we seek
to understand community resilience and identify ways to enhance this, especially within our cities
and communities. Therefore, great emphasis is now placed on how cities prepare for and recover
from such disasters, and community resilience has emerged as a key consideration. Drawing upon
research on the theory of resilience, this study seeks to identify the factors that influence community
resilience and to analyze their causation toward helping to manage the risks associated with the
COVID-19 pandemic. Seventeen factors from the five dimensions of social capital, economic capital,
physical environment, demographic characteristics, and institutional factors are used to construct an
index system. This is used to establish the structural level and importance of each factor. Data were
collected using a questionnaire survey involving 12,000 members of key community groups in the city
of Wuhan. An interpretative structural model (ISM) combining the analytic hierarchy process (AHP)
method was then used to obtain the multi-level hierarchical structure composed of direct factors,
indirect factors, and fundamental factors. The results show that the income level, vulnerability of the
population, and the built environment are the main factors that affect the resilience of communities
affected by COVID-19. These findings provide useful guidance toward the effective planning and
design of urban construction and infrastructure. The results are expected to be useful to inform
future decision-making and toward the long term, sustainable management of the risks posed by
COVID-19.

Keywords: community disaster resilience; ISM-AHP model; key factors; COVID-19

1. Introduction

In recent years, earthquakes, floods, droughts, public health epidemics, and other
emergencies have become frequent occurrences [1]. These events can seriously affect the
normal life of community residents and directly or indirectly cause many casualties and
huge economic losses. Public health outbreaks of the Coronavirus Disease 2019 (COVID-19)
around the world in early 2020 have posed a serious threat to the world′s population,
and so far, remain uncontrolled in many regions. According to the COVID-19 situation
dashboard of the World Health Organization (WHO), the virus has spread to 216 countries,
infected more than 28,800,000 people worldwide to date, and has also killed over 900,000 [2].
Simultaneously, it has brought a series of social, economic, and environmental impacts to
countries around the world [3].

In this pandemic, strict restrictions and policies to prevent people meeting in groups
have been adopted in China. Nevertheless, there are still many problems and challenges
in the prevention and control of the COVID-19 epidemic [4]. It is therefore necessary to
develop approaches to systematically learn from the experience and improve our resilience
to future pandemics of this nature. This demands a rigorous and robust process by which
we can evaluate the experience, and our responses and actions, in order that we can develop
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improved prevention and control measures for similar global health incidents in the future.
This is in line with the need to improve the adaptability, absorbability, resistance, and
recovery of communities, which has become a contemporary topic in the field of city
planning, emergency management, and disaster management, or what has broadly been
termed “urban resilience,” or specifically “community disaster resilience” [5,6].

Resilience is a fairly modern concept in the context of disaster management and
recognizes the need to mitigate the damage and duration of disasters to support the
functionality of the emergency management systems [7]. This also acknowledges the
importance of the community as the first location and basic defense line of the disaster
response. Thus, the resilience of communities and their response to disasters has become
an important component of disaster prevention and mitigation.

In 1973, the theory of resilience was first applied to the field of ecology by Holling [8] and
has been enriched by scholars in the disciplines of social-economics [9], social-ecology [10],
engineering [11], geography [12,13], and most recently, urban planning [14,15]. Related
research has included climate change, terrorist attacks, epidemic diseases, resource deple-
tion, and other aspects. Community disaster resilience is one of the mainstream research
subjects of disaster resilience [16] and is defined as a concept that “enhances the ability of a
community to prepare, absorb, recover, and more successfully adapt to actual or potential
adverse events in a timely and efficient manner” [7]. In fact, this definition implies the
need to deal with uncertain risks by applying hard engineering measures, but its prerequi-
sites should first be to fully evaluate and analyze the disaster resilience of the community.
Conceptual frameworks of disaster resilience are abundant, and these are constantly being
innovated and developed.

The Baseline Resilience Indicators for Communities (BRIC) model proposed by Cut-
ter et al. [17] is widely applied and provides a series of secondary indicators to evaluate
community resilience. BRIC is a quantifiable index and has been applied in several dif-
ferent regions, such as Taiwan, Norway, and Australia [17–20]. The model has mainly
been used to identify appropriate strategies for building and enhancing community re-
silience. Based on this model, the differences of disaster resilience between urban and
rural places were concluded [21]. Bruneau [22] established an evaluation framework of
community resilience, which mainly concerned evaluating resilience characterized by
area; Soetanto [23] proposed an assessment method of community resilience, a key step
to reduce disaster risk and better respond to natural hazards, by developing community
resilience assessment tools; Scott [24] proposed the construction of a simulation model of
community disaster resilience through the participation of relevant stakeholders, which
was combined with discrete event simulation and a new visual analysis interface to predict
system changes through simulation modeling, scenario development, and the intervention
of experts and stakeholders.

Compared with other countries, research on community resilience in China has only
recently been undertaken with somewhat limited application of the theories developed in
parts of Europe and the U.S. For example, Ouyang et al. [25] divided resilience into three
stages to evaluate urban resilience. Xu et al. [26] studied the resilience of communities to
urban flooding and put forward a comprehensive elastic index model. Wang et al. [27]
defined the concept of community resilience and proposed a means for its measurement.
Zhang et al. [28] put forward countermeasures and suggestions on the construction of an
Urban Flexible community in China based on the interpretation of the theory of flexible
community. Li et al. [29] studied an evaluation index system of disaster resilience of a
community composite ecosystem. Meng et al. [30] conducted an elastic evaluation of
an existing community in the city of Tianjin based on the data elastic evaluation system
and found that the communities generally have community management problems, such
as low awareness of disaster prevention, incomplete space construction, and inflexible
emergency management; Liao et al. [31] learned from international examples of community
development, from the policy level to the national level. They proposed recommendations
for the development of community resilience in China based on five aspects: building open
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community space systems, coordinating community governance, building both a “smart
community” and a “sponge community,” and improving a community’s self-organization
ability. Li et al. [32] developed an index system based on the Baseline Resilience Indicators
for Communities (BRIC) and the judgment of experts and evaluated this across 288 cities.
Collectively, these research findings have promoted the understanding of community
resilience theory in Chinese academia. However, there remains a lack of theoretical and
practical research on community resilience especially in the context of pandemics such as
COVID-19. Research in the fields of health and disease and environmental epigenetics
has revealed that adverse social and material conditions during early life can increase the
later risk of noncommunicable diseases (NCDs) [33]. These conditions include socioeco-
nomic inequalities and physical conditions associated with infrastructure and construction.
Therefore, social justice is fundamental to promoting health in society. Greater resilience to
health emergencies requires a systemic understanding of these matters in order to support
the ability to “bounce back” from these events.

In the process of constructing an evaluation model of urban community resilience,
the logical relationship between the influencing factors should first be fully considered.
Here, an evaluation model of urban community resilience index based on the interpretative
structural model–analytic hierarchy process (ISM-AHP) method was first established. This
is an interpretative structural model (ISM) that combines the analytic hierarchy process
(AHP) method. The community is divided into three parts: Wuchang, Hankou, and
Hanyang in the city of Wuhan. A typical community group was selected from each of
these three parts of the community, and relevant data were obtained. Based on the actual
characteristics of these three parts of urban communities, a ranking of the factors affecting
community resilience was obtained. This provides for a more scientific understanding
of how these factors affect community resilience in the context of COVID-19. This also
supports the development of useful guidance toward improving the management of
community resilience in the COVID-19 era.

2. Methodology

The interpretative structural model (ISM) allows the internal structure of a system to
be revealed by processing known but messy system–element relationships [34] and was
put forward in 1974 by Warfield [35]. Its basic principle is to decompose the constituent
elements of a complex system into several sub-elements. Drawing on a combination
of theoretical knowledge, practical experience, and statistical analysis, the system ele-
ments are made into a multi-level hierarchical structure diagram. The analytic hierarchy
process (AHP) is an effective method for quantitative analysis that was put forward by
American operational research scientist, Professor Saaty of Pittsburgh University, in the
early 1977s [36,37]. This method emphasizes the mutual influence and restrictions among
various factors.

In this study, firstly, an evaluation index of urban community resilience was developed,
including the direct factors, indirect factors, and deep-seated fundamental factors affecting
community resilience and found by using ISM. Then, based on the multi-level hierarchical
structure obtained by ISM, the AHP structure chart was established. To establish the
importance of the evaluation indexes that affect community resilience, the relative weight
of each evaluation index was obtained by using Yaahp software (Shanxi yuan decision
software technology Co., Ltd, Shanxi, China). The specific principles are shown in Figure 1.
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Figure 1. Factor analysis of urban community resilience based on interpretative structural model–analytic hierarchy process
(ISM-AHP).

2.1. ISM Method

Step 1: Establish adjacency matrix.
The factors found to influence community resilience are denoted as Y1, Y2, . . . Yn, n is

the quantity of the resilience influencing factors, and Y is the set of resilience influencing
factors. The directed graph G can be described as a mathematical formula [38]:

G = {(Y, R)|Y = n, R = m}, (1)

where Y = {Y1, Y2, · · · , Yn} and R =
{(

Yi, Yj
)∣∣Yi, Yj ∈ Y

}
, the directed graph model

describes the interrelationship between the elements of the influencing factors. A directed
graph model was created to construct the adjacency matrix and the reachable matrix.

The factors were compared using the Delphi method to attribute scores to represent
the degree of influence of each factor and to establish the adjacency matrix. The relationship
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between two factors in a directed graph G can be represented by an n× n adjacency matrix
A =

(
aij

)
aij =

{
1,

(
Yi, Yj

)
∈ R

0, other
, (2)

Step 2: Calculate the reachability matrix B.
The reachable matrix B can be obtained by processing adjacency matrix A with Boolean

operation rules.

B ≡ (A + I)n+1 = (A + I)n 6= · · · 6= (A + I)2 6= (A + I), (3)

The reachability matrix reflects the structural relationship between the influencing
factors after continuous influence.

Step 3: Decomposition reachability matrix B.
By decomposing the reachable matrix to construct the structure analysis model, an

hierarchical structure diagram was established.

2.2. Calculate the Relevant Weight (AHP) of all Levels of Influencing Factors

The AHP combines qualitative analysis with quantitative analysis and the determi-
nation of weights is obtained based on the relative importance of the various factors. The
AHP method was then used to calculate the relative weight of each influencing factor. The
specific steps are as follows:

Step 1: Establish the evaluation model of urban community resilience. A rational
network is constructed by quantified correlations.

Step 2: On the basis of the evaluation model, based on Delphi method and Yaahp software,

CR =
CI
RI

< 0.1, (4)

The judgment matrix is constructed to calculate the weight, and the consistency test is
conducted according to 0.1, and then the relative weight of each index of urban community
resilience is determined.

3. Factors Influencing Disaster Community Resilience
3.1. Study Area

Wuhan, the capital city of Hubei province in China, is a mega city in central China and
had a population of 11 million before the COVID-19 outbreak. In December 2019, there was
an outbreak of pneumonia of unknown cause in Wuhan, with an initial epidemiological
link to the local Huanan Seafood Wholesale Market, where there was also the sale of live
animals. On 12 February 2020, the World Health Organization named this new corona virus
COVID-19. As communities are the first to be exposed to disasters, the Chinese government
responded by taking rapid public health measures to protect the wider community. Three
communities in the city of Wuhan, namely the Guandong community in Wuchang, the
Baibuting community in Hankou, and the Wangjiawan community in Hanyang, were
selected as study areas in this research (Figure 2).

In this study, a combination of a questionnaire survey and field observations were used
to collect individual responses from members of the community groups. To determine the
sample size for the questionnaire survey, a simplified formula was applied as follows [39],

n =
t2 p(1− p)N

N∆p2 + t2 p(1− p)
, (5)

where n is the smallest sample size, N is total population in study area, t is probability
degree. According to correlating table, t equals 1.96 in 97% probability degrees. p represents
a rounded number, p = 0.5. 4p is acceptable error,4p = 6%.
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Figure 2. Map of the study area.

3.2. Factors Selection

Firstly, the factors influencing disaster community resilience were selected by using
a fuzzy Delphi method. Through a combination of the results of a review of related
literature [26,40], seventeen factors to COVID-19 were found to influence community
resilience and these were selected on the basis of a common framework [26]. Then the
dimensions and indicators of community resilience to COVID-19 were identified based on
the common framework and fuzzy Delphi method.

The fuzzy Delphi method uses statistical analysis and fuzzy operations to transform
the subjective opinions of experts into objective data. The fuzzy Delphi method was used
to select the factors, and it comprehensively considers the uncertainty and fuzziness of the
expert′s subjective consideration, as required by this research. The judgments of experts on
seventeen factors identified from the literature using a common framework were produced
using semantic variables in an online questionnaire survey. To minimize the differences
caused by their subjective judgments, experts were asked to provide both a possible lowest
and a possible highest value using a score from 0 to 10, rather than just a random number.

Secondly, the fuzzy Delphi method was used to consult experts. The purpose of the
survey is to evaluate the importance, order, and grade of the factors in the system. Each
evaluation factor includes two parts: (1) importance degree: this is to evaluate the level
of importance of this factor to the upper evaluation dimension; (2) acceptable range: this
is the acceptable range to evaluate the importance of this factor to the upper evaluation
dimension, elicited with both maximum and minimum values. The above values are
provided on a scale of between 0 and 10, the larger the value, the higher the importance.

Based on the survey, the most conservative cognitive values, the most optimistic
cognitive values, and single values were selected (refer to Table 1). Then the minimum
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values (CL, OL), geometric values (CM, OM), and maximum values (CU, OU) of the most
conservative cognitive values and most optimistic cognitive values were calculated, respec-
tively. Average values were also calculated for the minimum values, Min, and geometric
values, Mix. M-Z represents the verification value in the gray area. When it is a positive
number, it means that the expert opinion tends to be consistent and the evaluation index
has reached convergence; otherwise, when it is negative, it means that the expert opinion is
inconsistent and the evaluation index has not reached convergence, so the evaluation index
should be put to a second survey. G represents the importance value of expert consensus,
and the higher the value, the higher the degree and importance of expert consensus.

Table 1. Factor selection criteria.

Criterion
Layer

Secondary
Indicator Layer CL CU OL OU Min Mix CM OM

Average
Value M-Z G Selection

X1

Y1 1 8 5 10 3 10 3.87 7.81 6.24 0.94 6.21
√

Y2 2 6 6 10 4 9 4.64 7.99 6.35 3.36 6.32
√

Y3 1 8 5 10 4 10 4.01 7.89 6.51 0.89 6.26
√

CL, OL—minimum values; CM, OM—geometric values; CU, OU—maximum values; Min—average of minimum values; Mix—average of
geometric values; M-Z—verification value in the gray area; G—importance value of expert opinion.

A threshold was set in order to select the more important factors from the common
framework system for community resilience. In order to find a reasonable threshold value,
the geometric mean of the minimum value, maximum value, and single value of all the
evaluation factors to be screened was calculated again. For example, for criterion layer X1
and the secondary indicator layer Y1, Y2, and Y3.

After calculation, the threshold value of this survey was established as 6.2. Then, the
evaluation system was constructed using the selected factors. These were drawn from the
five dimensions of urban community resilience, these being social capital, economic capital,
physical environment, demographic characteristics, and institutional factors, as shown in
Table 2.

3.3. Data Collection

Wuhan is composed of three former individual cities of Wuchang, Hankou, and
Hanyang and a questionnaire survey was used to collect data from the three types of
communities: Guandong community in Wuchang, Baibuting community in Hankou, and
Wangjiawan community in Hanyang. The Guandong community is a relatively new
community located in Wuchang; the Baibuting community is an old community with a
long history in Hankou; and the Wangjiawang community is representative of Hanyang.

The questionnaire used in this study was designed based on the related literature and
included the comprehensive sociodemographic background of the respondents, (such as
gender, age, education, occupation, income) and the primary and secondary indicators of
resilience as extracted from the literature (see Appendix A). Community resilience factors,
for example, social network relationship, health insurance, awareness of risk, level of
income, and community functioning, were also included. For each respondent, the average
factor score was calculated.

The questionnaire adopted a five-point variable scale to gauge the respondents’ views.
Ultimately, 12,130 valid questionnaires, which included 3982, 4130, and 4018 valid question-
naires from the Guandong community, the Baibuting community, and the Wangjiawang
community, respectively, were recovered in this survey. A reliability test was carried out
on the basis of the questionnaire results and the Cronbach’s alpha was 0.80, indicating that
the survey results were of scientific credibility.

Based on a combination of the findings from Table 2, an evaluation model of urban
community disaster resilience to COVID-19 was established as shown in Figure 3.
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Table 2. Multiple influencing factors of urban community resilience to COVID-19.

Criterion Layer Secondary Indicator Layer Three-Level Indicator Layer

Social capital (X1)

Social network relationship (Y1)

The relationship between the residents of the community (Y11)

The relationship between residents and neighborhood
committees (Y12)

Community leader (Y13)

Mutual trust of community members (Y2)

Trust among community members (Y14)

Trust between members and government (Y15)

Trust of members and social organizations (Y16)

Trust between NGOs and the government (Y17)

Community recognition (Y3)

Resident years of community members (Y18)

Unique history and culture (Y19)

Community members′ sense of belonging (Y110)

Economic capital (X2)

Health insurance (Y4) Medical insurance coverage (Y21)

Employment status (Y5)
Employment rate (Y22)

Diversification level of employment field (Y23)

Fixed asset value (Y6)
Owner-occupied housing (Y24)

Property value (Y25)

Level of income (Y7)

Per capital income and household income (Y26)

Diversification level of income sources (Y27)

Income stability (Y28)
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Table 2. Cont.

Criterion Layer Secondary Indicator Layer Three-Level Indicator Layer

Index system of influencing factors of
community resilience

Physical environment (X3)

Natural environment (Y8)

Location (Y31)

The greening of the community (Y32)

Sanitation status (Y33)

Building environment (Y9)

Building density (Y34)

Road condition (Y35)

Community environment (Y36)

Infrastructure system (Y10)
Emergency facilities (Y37)

Fire station around the community (Y38)

Demographic characteristics
(X4)

Education background (Y11)
Population with high-school education (Y41)

Population with professional and technical qualifications (Y42)

Level of the health (Y12) The physical and mental health of community residents (Y43)

Vulnerable population (Y13)

Aging population (Y44)

Disabled population (Y45)

Transient population (Y46)

Awareness of risk (Y14) The risk awareness of community residents (Y47)

Institutional factors (X5)

Government investment and
management (Y15)

Manpower and material and financial support (Y51)

Management mechanism (Y52)

Leadership capability (Y16) Neighborhood committee leadership (Y53)

Community autonomy (Y17)
Social organizations (Y54)

Community public participation (Y55)

NGOs: Non-Governmental Organizations.
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Figure 3. A model of factors found to influence community disaster resilience to COVID-19.

3.4. Key-Factors Analysis

Using the ISM method, the questionnaire data were sorted to obtain the relationship
data between the influencing factors, and the adjacency matrix A was obtained as shown
in Appendix B.

According to the adjacency matrix, the relationship between the factors was obtained,
and the reachability matrix B between indexes was obtained by Boolean operation, as
shown in Appendix C.

The interpretative structure model diagram of the multi-level hierarchical structure is
obtained by dividing the levels. The multi-level hierarchical structure, composed of direct
factors in the surface layer, indirect factors in the middle level, and fundamental factors
in the deep layer, was obtained by an interpretative structure model (ISM), as shown in
Figure 4.

As seen in Figure 4, the hierarchical division diagram clearly shows the elements of
urban community resilience and their interaction. The surface direct factors include mem-
ber trust, health insurance, fixed asset value, construction environment, and infrastructure,
which directly affect the resilience of urban communities. Indirect factors include com-
munity identity, employment, income level, education level, health level, risk awareness,
leadership, and community autonomy. These all indirectly impact community resilience,
and at the same time reflect the constraints on the surface influencing factors. The funda-
mental factors include social network relations, natural environment, vulnerable groups,
and government management and investment, reflecting the root cause and essence of
factors influencing community resilience to COVID-19.

Based on Yaahp software, the judgment matrix was constructed and calculated, and
the consistency was checked. Based on the above analytic hierarchy process, the total
weight of each index of the factors was calculated, as shown in Figure 5.
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Figure 4. Multi-layer hierarchical diagram of influencing factors.

Figure 5. The total weight of factors of urban community resilience.

It can be seen from Figure 5 that among the factors influencing urban community
resilience, the population characteristics are the main factors, with the weight of 0.3130,
followed by economic capital accounting for 0.2189. Across all levels, the main influencing
factors are found to be social network relationship, member trust, income level, construction
environment, infrastructure, vulnerable groups, and risk awareness. The four factors of
vulnerable groups, construction environment, income level, and member trust account for
a large proportion, among which the vulnerable group accounts for the largest weight of
0.1853.

Combined with the hierarchical structure model in Figure 4 and the total comparing
weight analysis of each index in Figure 5, it can be concluded that there are not only a
large number of factors affecting the resilience of urban communities but also a complex
relationship among them.

Figure 6 shows the weighting of the influencing factors on each dimension including
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a comparison across the dimensions. Combined with the hierarchical relationship of each
index factor in the ISM model, we can see the direct factors that affect the resilience of
urban communities. This suggests we should consider a wide range of issues in helping
to develop community disaster resilience in the face of a pandemic. The key to this is to
consider ways to protect the vulnerable members of the community. The built environment
including the design and planning of infrastructure is also of importance in creating a
robust physical environment. In addition, strengthening the trust between community
members is conducive to community unity. Among the indirect factors, the income level
directly reflects the economic level of the community. Generally speaking, income levels
are found to positively affect the economic capital of the community and consequently lead
to improvements in disaster resilience. Community education and publicity will help to
cultivate risk awareness and make the community have normalized self-organization and
self-adaptive ability. Among the fundamental factors, vulnerable groups are often ignored
in disaster prevention and mitigation research. Research shows that sudden disasters
will cause greater harm to vulnerable groups such as women, children, the elderly and
the disabled [41]. Thus, disaster research should advocate community demand-oriented,
targeted management of people of different ages, genders, and health status, so as to
improve the overall resilience of the community in the management of COVID-19.

Figure 6. Cont.
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Figure 6. The weight of influencing factors of each dimension. (a) Social capital dimension; (b) economic capital dimen-
sion; (c) physical environment dimension; (d) demographic characteristics dimension; (e) institutional factors dimension;
(f) comparison of each dimension.

In addition, the social network relationship includes not only the relationship between
the members of the community, but also the relationship with the government and the
outside world, especially in the urban communities. The establishment of good internal
and external contacts and interaction in the community will help the community to obtain
help from the outside quickly and minimize the losses to the community in all aspects.
Therefore, the construction of a flexible urban community requires community planners to
take key and targeted management measures based on the overall understanding of the
composition of the individual factors that influence community resilience as well as their
combined influence on resilience within the community.

4. Conclusions

This study adopted a quantitative approach to investigate the factors found to influ-
ence community resilience to COVID-19 and proposed an integrated model of ISM-AHP.
ISM was used to establish the hierarchical structure of community resilience to COVID-19,
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in order to consider the interactive network relationship among factors found to affect
community resilience. The main influencing factors of community disaster resilience were
determined, namely vulnerable groups, building environment, income level, and trust. The
model can be used to effectively reflect the focus of efforts to improve urban community
resilience. This approach toward community resilience assessment can be applied to group
decision-making methods in the management of COVID-19 and can also be applied to
identify the interdependence and relationships among key factors affecting community
resilience. Some major conclusions can be drawn as follows:

(1) The integrated model of AHP and ISM can be used to analyze the relations among
factors that influence community resilience to COVID-19. A three-level evaluation
network was constructed by ISM. The surface direct factors included member trust,
health insurance, fixed asset value, construction environment, and infrastructure,
which directly affect the resilience of urban communities; indirect factors included
community identity, employment, income level, education level, health level, risk
awareness, leadership, and community autonomy; the fundamental factors included
social network relations, natural environment, vulnerable groups, and government
management and investment, reflecting the root and essence of issues that influence
community resilience in the management of COVID-19.

(2) The weightings of each factor were calculated by using AHP. The demographic
characteristics of the population were found to be the main factors, followed by
economic capital accounting for 0.2189. Social network relationship, trust, income
level, built environment, infrastructure, vulnerable groups, and risk awareness were
the main factors found to influence the resilience of the community to COVID-19.

In this study, the ISM method and AHP method were combined to comprehensively
and systematically consider the mutual influence among the evaluation indexes of urban
community resilience and the importance of each index. This was determined based on the
causality among the influencing factors, which provides a more scientific and reasoned
analysis for the development of community disaster resilience. At the same time, this also
provides useful guidance toward the effective planning and design of urban construction
and infrastructure.

The community is the first to be impacted and also the first basic line of defense
in terms of disaster response. Further, the resilience of the community response plays
an important role in reducing the impact of pandemics such as COVID-19. This study
confirmed that different communities in the same area have different levels of disaster
resilience in the whole process of disaster response. At present, the community still has
a strong dependence on the higher government in, for example implementing COVID-
19 prevention measures, early warning and emergency response. The management of
the COVID-19 pandemic is a highly complex form of system engineering. In the trend
of increasingly diversified and complex disasters, it is difficult to effectively reduce the
negative impact of COVID-19 by relying solely on top–down administrative interventions.
In order to reduce the negative impacts of COVID-19, we must empower the community to
develop the capability and capacity to prevent and resist disasters, including their ability
to recover quickly from such events. That is, by improving the resilience of the community,
the expansion of pandemics such as COVID-19 can be prevented, and the evolution into a
global problem can be avoided. When a large-scale pandemic does break out, the further
refinement of community resilience capability can help the grass-roots decision-makers to
formulate appropriate scientific and rapid response strategies and reduce the impact of
COVID-19.
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Appendix A. Questionnaire

Q1. Age
A. 18–30, B. 31–50, C. 50–60, D. <17 or >60
Q2. Occupation
A. Student, B. Enterprise staff, C. Technician, D. Merchant
Q3. Educational background
A. University, B. Vocational school or senior high school, C. Junior high school, D.

Primary school
Q4. Health condition
A. Good, B. Sub-health, C. Serious patients, D. Suffer from COVID-19
Q5. Income
A. <2500, B. 2500–5000, C. 5000–10,000, D. >10,000
Q6. Please give the significance of each factor.

Table A1. The significance of multiple influencing indicators.

Primary Indicators Secondary Indicators Content
Modification Significance 0–10

Social capital
indicators

Social network relationship � � � � �

Mutual trust of
community members � � � � �

Community recognition � � � � �

Economic capital

Health insurance � � � � �

Employment status � � � � �

Fixed asset value � � � � �

Level of income � � � � �

Physical environment

Natural environment � � � � �

Building environment � � � � �

Infrastructure system � � � � �

Demographic
characteristics

Education background � � � � �

Level of the health � � � � �

Vulnerable population � � � � �

Awareness of risk � � � � �

Institutional factors

Government investment
and management � � � � �

Leadership capability � � � � �

Community autonomy � � � � �
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Appendix B.

Table A2. Adjacency matrix A.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17

Y1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

Y2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Y3 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

Y4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Y5 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0

Y6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Y7 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

Y8 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0

Y9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Y10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Y11 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1

Y12 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

Y13 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1

Y14 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1

Y15 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0

Y16 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0

Y17 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Appendix C.

Table A3. Reachable matrix B.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17

Y1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

Y2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y3 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0

Y4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Y5 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Y6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Y7 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Y8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Y9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Y10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Y11 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Y12 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

Y13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Y14 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Y15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Y16 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1

Y17 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1
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