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Abstract: This paper introduces a new and expressive algorithm for inducing descriptive rule-sets
from streaming data in real-time in order to describe frequent patterns explicitly encoded in the
stream. Data Stream Mining (DSM) is concerned with the automatic analysis of data streams in real-
time. Rapid flows of data challenge the state-of-the art processing and communication infrastructure,
hence the motivation for research and innovation into real-time algorithms that analyse data streams
on-the-fly and can automatically adapt to concept drifts. To date, DSM techniques have largely
focused on predictive data mining applications that aim to forecast the value of a particular target
feature of unseen data instances, answering questions such as whether a credit card transaction is
fraudulent or not. A real-time, expressive and descriptive Data Mining technique for streaming
data has not been previously established as part of the DSM toolkit. This has motivated the work
reported in this paper, which has resulted in developing and validating a Generalised Rule Induction
(GRI) tool, thus producing expressive rules as explanations that can be easily understood by human
analysts. The expressiveness of decision models in data streams serves the objectives of transparency,
underpinning the vision of ‘explainable AI’ and yet is an area of research that has attracted less
attention despite being of high practical importance. The algorithm introduced and described in
this paper is termed Fast Generalised Rule Induction (FGRI). FGRI is able to induce descriptive
rules incrementally for raw data from both categorical and numerical features. FGRI is able to adapt
rule-sets to changes of the pattern encoded in the data stream (concept drift) on the fly as new data
arrives and can thus be applied continuously in real-time. The paper also provides a theoretical,
qualitative and empirical evaluation of FGRI.

Keywords: data stream mining; generalised rule induction; concept drift

1. Introduction

The advances in computing infrastructure and the emergence of applications that
process a continuous flow of data records have led to the data stream phenomenon. Appli-
cations exist in science such as neuroscience, meteorology, and medicine as well as industry
such as in aviation, finance, telecommunications and the chemical process industry. An im-
portant challenge in data mining is the learning process of large quantities of data through
descriptive techniques. Contrary to predictive techniques, descriptive techniques aim to
capture the relationships between features in order to explain the correlated relationships
between any sub-sets of features to express interesting insights and patterns, rather than
forecasting the value of a particular feature of unseen data instances.

A common approach to descriptive learning in data mining is frequent itemsets min-
ing, which expresses many-many relationships between the items from a given number of
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itemsets. Association Rules learning is one of the techniques based on the concept of ‘Fre-
quent Itemsets Mining’ to discover interesting relationships between items within itemsets.
Association rules are in the general form of ‘IF antecedent THEN output’. For example, ‘IF
a AND b THEN c’ where the presence of a and b are confirmed then the presence of c is
highly likely with a minimum probability that is defined by the user in terms of support
and confidence values of the rule. Further information about frequent itemsets mining as
well as some important algorithms in this area are reviewed and discussed in the work of
Christian Borgelt [1].

However, association rules only consist of binary values for each feature/item and this
limits the flexibility and amount of information that a rule can represent [2,3]. An example
of such an association rule in the context of market basket analysis could be IF {wine,
cheese} THEN {bread, butter} indicating to an analyst if a customer buys wine and cheese the
customer is also likely to by bread and butter. Here only the fact of presence or absence of
an item/feature can be encoded but not an arbitrary value, which may be more informative
of the feature/item.

Many real-life problems require more than the representation of a binary element
to generate an output (where the output may also not be a binary value). For example,
a temperature feature may be represented in the form of categorical values such as low,
medium, high, or by a numerical value such as 20, 25.5, 30, etc. The antecedent of an
association rule is a conjunction of a logical expression in the form of a feature-value’
pair and the specific form of this ‘feature-value’ pair depends on whether the feature is
categorical or numerical. A rule representing such a more generalised and expressive
relationship could be for example:

IF (prs = high)&(60C<temp ≤ 150C) THEN (pipe = closed)&(1 l
min <flow≤5 l

min )

Assuming this rule is activated by a chemical process in a plant, it may express to the
operator of the plant that the product flow is likely to be very low (between 1 and 5 litres
per minute) and a pipe may be closed, because there is a high pressure and the temperature
is between 60 and 15 degree Celsius. Based on this, the operator may investigate if the high
pressure and temperature is caused by a blocked product release/overflow pipe. Please
note that these are not predictive rules but rules that describe a frequent pattern in a data
stream, i.e., the state of such a chemical plant/process.

The work on FGRI presented in this paper is motivated by the lack of algorithms
available that can induce such expressive generalised rule-sets from data streams and also
update the rule-set on the fly in real-time, when a concept drift is encountered. The Motiva-
tion for developing FGRI is the compelling need to unlock information of actionable value
in a number of potential applications for which currently no data stream mining algorithms
can be applied directly, some of which are outlined below. For example, techniques to pre-
dict network alarms and bottlenecks are employed in the UK national telecommunication
network, however, the utilised methods often do not enable the tracing of the causality of
such alarms [4]. A descriptive rule-set consisting of rules such as the above could enable
applications to identify causality of alarms in telecommunication networks. However, such
rule-sets would have to automatically adapt to concept drift due to unforeseen changes in
the network structure, topology and external factors such as weather and demand. A fur-
ther application could be to detect and quantify upcoming topics on Social Media such
as on Twitter. Some work exists here using adaptive association rule mining techniques
to induce and adapt rule-sets. Measuring the importance of upcoming rules and fading
rules is used here to assess how recent/important a topic is and how it is developing. How-
ever, an adaptive rule-set with the ability to reflect numerical relationships such as those
induced and maintained by FGRI, would enable more fine-grained tracing and detection
of topics. In general the description of the states of systems is a possible type of application
such as the aforementioned example with the states of a chemical plant. Here, large scale
continuous chemical reaction facilities contain various sensors each representing a data
feature. The sensor data is collected by a Process Control System [5]. A generalised rule-set
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would help the operator to identify important situations/states in the plant. However,
such rule-sets would suffer from concept drift, i.e., due to changing outside temperatures,
re-calibration of sensors, etc. The FGRI would be able to maintain an accurate and usable
rule-set regardless of changes in the system.

This paper introduces and evaluates the first real-time method for concept drift
adaptive generalised rule induction algorithm to represent frequent patterns, which is
referred to as Fast Generalised Rule Induction (FGRI). The contributions of the paper are:

1 An algorithm (FGRI) that can incrementally induce a set of generalised rules from a
data stream in real-time, responsive to new data instances as these become available.
The rules are explainable, expressive and can be applied on data streams with both,
numerical and categorical features;

2 A method in FGRI that is able to adapt the induced rule-set to concept drifts, i.e., changes
of the pattern encoded in the data stream that occur in real-time. The method does
not require a complete retraining of the rule-set but focuses on parts of the rule-set
that are affected. It does this by removing rules that have become obsolete and adding
rules for newly emerged concepts;

3 A thorough evaluation of FGRI. This comprises: (i) an empirical evaluation on various
data streams to examine the ability of FGRI to learn concepts in real-time and to adapt
to concept drifts; (ii) a qualitative evaluation using real data to demonstrate the FGRI
capability to produce explainable rule-sets; (iii) a theoretical complexity analysis to
examine the FGRI scalability to larger and faster data streams.

Most rule learning algorithms for data streams to date aim at discovering compre-
hensible predictive models and this paper refers to these techniques as predictive rules
learning, whereby a model consists of a set of rules induced from labelled training data
and the model is used to predict the class label for unseen data examples. In contrast,
the methodology proposed here, aims at finding expressive and thus understandable
patterns described by individual rules; the methodology is referred to as descriptive rule
learning and is designed for unlabelled data, as is the case for association rules. However,
contrary to association rules the method can express a wider range of feature values (not
just binary). In this context, if there is a special target feature, that the user always wishes
to see in the output part of the rules, then this is referred to as classification. Whereas
on the other hand the induced rules from FGRI are formulated in a more general context
where the output part of the rule can be an arbitrary conjunction of ‘feature-value’ pairs.
An important heuristic used in FGRI is that only most frequent feature-value pairs in
categorical features are considered when inducing the rules. Such a heuristic not only
speeds up the rule induction process, but also makes the descriptive rules an accurate
representation of the current state of the system that rules are depicting.

The paper is organised as follows: Section 2 positions the proposed methodology in
the context of related works and Section 3 describes the algorithm developed to induce
modular generalised rules from training instances. Section 4 describes FGRI, the proposed
algorithm to induce generalised adaptive rule-sets from streaming data directly and Section
5 provides an empirical and qualitative evaluation of FGRI. Finally, concluding remarks
are set out in Section 6.

2. Related State-of-the-Art

Charu Aggarwal [6] defines a data stream as a ‘sequence of data examples/instances’
which is produced at either a high rate, high volume or both. Some notable aspects can be
used to distinguish conventionally stored data from data streams:

– Data instances which arrive in real-time in any arbitrary sequence are to be processed
in the order of their arrival; there is often no control over the order in which data
instances arriving have to be seen, either within a data stream or across data streams.
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– Unbounded, the data instances are constantly arriving, and the exact quantity of the
data instances is not known, also it is not known whether the stream would fit in the
designated buffer or available hard drive space over time.

– The concept in the data may change over time (concept drift).

Real-life applications involving streaming data can be seen in several domains includ-
ing financial applications, computer networks, sensors monitoring and web applications.
For example:

– Popular on-line social networking sites such as Facebook, Twitter, and LinkedIn, offer
their content tailored for each individual user. In order to do so, these services need to
analyse huge amounts of data generated by the users in real-time to keep the content
up to date [7].

– Sensor Monitoring is a good example of applications in data stream mining [8]. More
and more sensors are used in our personal daily lives and in industry. These sen-
sors behave differently from traditional data sources because the data is periodically
collected and discarded immediately, thus, the sensors do not keep a record of histori-
cal information. These unique challenges render traditional mining techniques and
approaches inappropriate for mining real-time sensor data.

Given the above characteristics, conventional data mining approaches are not suitable
for learning from data streams, because they were not designed to work directly on a rapid
and continuous flow of individual data instances, as they are not inherently adaptive to
changes temporally. There are notable algorithms in the literature that specifically deal with
the unique challenges in building data mining models from streaming data in real-time.
These models need to be adaptive to take concept drift into consideration, and thus need
to be able to change when there are changes of the pattern encoded in the data stream.
Various approaches exist to modify existing data mining algorithms for their application
on data streams.

2.1. Windowing Techniques

A well-known technique for adapting data mining algorithms to analysing data
streams is windowing [9,10]. The idea of a windowing approach is to use an excerpt
of typically the most recent and relevant data of the data instances from the stream for
building and validating a data stream mining model. This excerpt is called a window. They
can be broadly categorised in Landmark Windowing, Damped Windowing and Sliding
Windows [11]. Figure 1 illustrates the three windowing categories.

Figure 1. Overview of Windowing approaches to induce data mining models from streamining data.
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The landmark window collects data instances at set epochal points, at which a new
landmark is set, i.e., hourly, weekly, etc. When a new window is set, then the previous
window including its data instances are deleted. Landmark windowing has been used in
various real-time Data Stream Cluster Analysis algorithms such as CluStream, HPStream
and StreamingKM++, etc. [12]. Siddique Ibrahim et al. [13] used this type of window to
predict heart diseases.

The damped window associates a weight of recency to each data instance. Once the
instance arrives the highest possible weight is assigned and thereafter decreased according
to an ageing function. This model has been used in utility pattern mining, for example,
Hyoju Nam et al. [14] proposed the DHUPL algorithm which mines high utility patterns
using a list structure in which the difference in importance of data instances due to their
arrival time is stored. Unil Yun et al. [15], developed an algorithm based on a high average
utility pattern mining combined with damped windowing. Another example of the use of
this technique is a network intrusion detection system [16] based on Data Stream Cluster
Analysis and damped windowing.

The sliding can be of fixed or variable size w from a point in time t. As time passes the
window slides and newly arriving data instances are included and older instances may be
discarded. In its simplest form the sliding window is of fixed size and follows a first-in-first-
out principle. A notable variable size sliding windowing technique is the ADaptive sliding
WINdow method (ADWIN) [17]. ADWIN changes the window size based on observed
changes. A Hoeffing bound based technique was proposed in [18] for mining classification
rules, where the window size can adapt dynamically in order to provide sufficient data to
capture the pattern being modelled and adapted. More recent techniques are, for example,
the semi-supervised hybrid windowing ensembles [19] which are tailored for building
ensemble classifiers from data streams. Unil Yun et al. [20] proposed an efficient and robust
erasable pattern mining technique based on a sliding window approach in combination
with a list structure. In [21], the authors developed a computationally efficient high utility
pattern mining algorithm based on a sliding window approach.

Often windowing techniques are considered together with concept drift detection
techniques in order to limit adaptation to cases where there is a change in the pattern
encoded in the data.

2.2. Concept Drift Detection Techniques

Some common techniques here are the Drift Detection Method (DDM) [22] and the
Early Drift Detection Method (EDDM) [23]. Both methods are based on error statistics and
thresholding; whereas DDM performs well in detecting sudden concept drifts, it does not
perform well in detecting gradual drifts for which, conversely, EDDM performs well. Some
more recent developments are for example a framework which performs well on detecting
a whole range of different types of drift for supervised algorithms [24], and a concept drift
detection technique for unsupervised data mining based on Statistical Learning Theory
(SLT) [25].

However, using windowing techniques in combination with concept drift detectors
and batch data mining algorithms is a rather indirect and inflexible way to facilitate accurate
model adaptation from data streams, as the models have to be retrained either periodically
or when there is a concept drift. Therefore, data stream mining algorithms have been
developed. These typically build adaptive models directly from streaming data without the
need to retrain complete models. They can be broadly categorised into Predictive Adaptive
DSM Algorithms and Descriptive Adaptive DSM Algorithms.

2.3. Predictive Adaptive DSM Algorithms

A notable family of predictive DSM algorithms are those based on the Hoeffding
bound, known as Very Fast Machine Learning (VFML) techniques [26], with its first
member being the Hoeffding tree, which is able to learn incrementally in real-time [27].
There have been various successors, such as the Concept Drift Very Fast Decision Tree
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(CVFDT), which is able to adapt the tree structure according to a concept drift and forget
old concepts [28]. There are also highly expressive rule-based members of this family,
i.e., Very Fast Decision Rules (VFDR) [29] or a more recent development termed Hoeffing
Rules [18]. There are further recent expressive classifiers, i.e., Cano and Krawczyk [30]
developed a rule-based algorithm using genetic programming that can adapt to concept
drift, predictive fuzzy association rules [31] for real-time data; or rule-based granular
systems for time series prediction [32].

Whereas the aforementioned methods generate expressive models, there are also
less expressive techniques for predictive DSM. For example, ensemble-based approaches
have been proposed to improve accuracy, enable fast recovery from concept drift and
model switching. A representative here is the Evolutionary Adaptation to Concept Drifts
(EACD) method [33], which uses evolutionary and genetic algorithms to adapt the ensem-
ble to concept drift. Another DSM ensemble classifier is the Scale-free Network Classifier
(SFNClassifier) [34], which represents the ensemble members as a single network. The Het-
erogeneous Dynamic Weighted Majority (HDWM) algorithm [35] proposes an ensemble
approach that can intelligently switch between different types of base models. However,
as non-expressive methods are less relevant for the work in this paper, they are not further
discussed at this point.

2.4. Descriptive Adaptive DSM Algorithms

A large group of descriptive DSM algorithms are real-time cluster analysis methods.
Although they are non-expressive by nature, they are mentioned here as they constitute
an important type of descriptive Data Mining technique. An early representative here is
CluStream [36] based on the notion of Micro-Clusters, which builds adaptive statistical
summaries online while an offline component induces the actual spherical clusters for ana-
lytical purposes on demand. Various successors have been developed over the years, such
as DenStream that can induce clusters of arbitrary shape on-demand [37]; or ClusTree [38]
which supports agglomerative hierarchical cluster building. More recent developments
here are evoStream [39] which uses evolutionary optimisation in idle times to refine clus-
ters; SyncTree [40], which builds a hierarchical cluster structure and enables examining
of cluster evolution; or the Evolving Micro-Clusters (EMC) method which is capable of
determining new emerging concepts in the data stream [41]. However, there are very few
expressive descriptive techniques capable to learning frequent patterns in real-time. Most
are based on association rule mining and none of them are pure generalised rule induction
techniques capable of handling tabular, numerical and categorical data features at the same
time. For example, the Transaction-based Rule Change Mining (TRCM) technique [42],
enables the detection of emerging, trending and disappearing rules, however, these rules
are only applicable to tabular data. Tzung-Pei Hong et al. [43] developed an algorithm
that generates association rules about concept drift patterns, but is limited to numerical
data. Another rule-based algorithm, is again limited to tabular data but is able to adapt to
concept drift [44].

2.5. Neural Networks for Data Stream Mining

The high accuracy of deep learning artificial neural networks has led to an increased
research effort on applications using neural networks. In the area of Data Stream Mining,
Spike Neural Networks (SNNs) are in use due to their ability to learn incrementally and
continuously adapt responsive to new data. Furthermore, SNNs capable to learn time
dependent relationships between features in the data stream. A recent example for SNNs
in Data Stream Mining is [45]. The interested reader is referred to a survey about SNNs by
Schliebs and Kasabov [46].

However, artificial neural networks are generally black-box models and the purpose
of the research presented in this paper is to develop an explainable descriptive technique
with rules containing expressive rule terms. As pointed out by the authors of [47], there
has been an increase in research towards explainable ML, where some light is shed on
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black-box models, such as neural networks, through the extraction of a ‘post hoc’ model,
for example such as in [48,49]. Rudin [47] points out further, that this is problematic,
as explanations produced buy such ‘post hoc’ models are often not reliable and can even be
misleading. They recommend using algorithms that are explainable and interpretable by
nature, and thus are faithful to the model that they induce. Hence, artificial neural network
techniques are not considered further for the work on FGRI presented in this paper.

2.6. Discussion

As can be seen in Sections 2.3 and 2.4, earlier work on DSM aimed to address some
of the aforementioned issues, i.e., there are expressive model generation techniques for
predictive DSM. However, for descriptive expressive DSM to extract frequent patterns,
such interpretable model and end-user friendly perspectives have been greatly neglected
and are limited to very special cases such as transactional data. Features with different
types of data cannot be handled at the same time. Hence, the users often do not trust DSM
algorithms [50], which is a long-term unresolved issue.

Descriptive rules representing frequent patterns provide the users with more action-
able information to make decisions, and thus enhance the trust in learning from streaming
data sources. Rule-based data mining models are considered to be the most expressive
models [18]. This paper introduces a novel technique to enable expressive exploration
of streaming data in real-time in order to provide the end-user with an interpretable
knowledge representation from streaming data in the form of descriptive rules.

Thus, the paper develops and evaluates a novel algorithm to induce a rule-set of de-
scriptive generalised rules incrementally from raw data instances in real-time. The induced
rules are not for special cases, but general and can be induced from raw data (comprising
both categorical and numerical features) directly. Thereby the algorithm incrementally
adapts the model (rule-set) over time to changes encoded in the data stream (concept drift),
without the need to completely discard and re-induce the entire rule-set. To the best of the
authors’ knowledge, this algorithm is the first of its kind to maintain and adapt generalised
rules for streaming environments.

3. Generalised Rule Induction

This section describes the algorithm developed to induce modular generalised rules
from training instances to express frequent patterns. The induced rules adhere to the
following format:

IF BODY THEN HEAD

Figure 2 depicts the three processes of the proposed algorithm, which are (1) generating
all possible HEADS, (2) for each HEAD generating all possible BODYs and (3) ranking
of rules.

Figure 2. Main processes of generalised rule induction.

Both HEAD and BODY are represented as a conjunction of feature-value pairs αi,j
where α is a specific feature value, j is the feature index and i is the value index where
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there are n possible feature values. A feature can have either a finite (categorical) or an
infinite (numerical) set of values. This paper refers to αi,j also as ‘rule term’. Rule terms of a
finite (categorical) feature are expressed in the form of αj = v where v ∈ {α1,j, ..., αn,j}. Rule
terms of an infinite (numerical) feature are expressed in the form of vl < αj ≤ vh, where
vl , vu ∈ {α1,j, ..., αn,j}. Section 3.2 describes how such rule terms are induced for numerical
features. Loosely speaking, the algorithm aims to maximise the conditional probability of a
particular HEAD and chooses rule terms accordingly.

3.1. Inducing Generalised Rules Using Separate and Conquer Strategy

A rule is made up of a maximum of n rule terms where n is the number of features
in the data. In order to avoid contradicting rules, each feature can only appear once in
the form of a rule term in a rule, no matter whether the feature was used in the HEAD or
BODY of the rule. Furthermore, for a rule to be valid and meaningful it must have at least
one rule term in the BODY and one in the HEAD part of the rule.

One possible way to find all possible conjunctions of rule terms is a brute-force
exhaustive search [51], which can produce all possible conjunctions of terms up to a
defined length l, this method does not use any heuristics for narrowing down the search
space. This makes algorithms using this method very inefficient, and thus this approach
is usually only discussed for academic purposes and theoretical studies. In this paper,
covering or ‘Separate-and-Conquer’ search strategy is used to induce new rule terms for
both BODY and HEAD. The concept of covering algorithms was first utilised in the 1960s
by Michalski [52] for the AQ family of algorithms. However, the name ‘Separate-and-
Conquer’ was not used until the 1990s by Pagallo and Haussler [53] when they attempted
to formalise a theory to characterise this search strategy.

– Separate part—Induce a rule that covers a part of the training data instances and
remove the covered data instances from the training set.

– Conquer part—Recursively learn another rule that covers some of the remaining data
instances until no more data instances remain.

3.2. Inducing Rule Terms for Numerical Features Using Gaussian Distribution

For a given HEAD the algorithm presented here provides a Gaussian distribution for
each numerical feature as illustrated in Figure 3.

Figure 3. Gaussian distribution of a classification from a continuous feature.

The generation of the rule HEADs is explained in Section 3.3. Assuming we have
a set of HEADs [h1, h2, ..., hi], the most relevant value of a feature for a particular HEAD
can be computed based on the Gaussian distribution of the feature values associated with
this HEAD. The Gaussian distribution is calculated for a numerical feature αj with mean µ

and variance σ2 from all feature values associated with HEAD, hi. The conditional density
probability can be calculated by:

Pdensity(αj = v|hi) = p(αj = v|µ, σ2) =
1√

2πσ2
exp(−

((αj = v)− µ)2

2σ2 ) (1)
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Next the posterior class probability p(hi|αj = v), or equivalently log(p(hi|αj = v)) is
calculated to determine the probability of a HEAD for a valid value of continuous feature αj.

log(p(hi|αj = v)) = log(p(αj = v|hi)) + log(p(hi))− log(p(αj = v)) (2)

Then the probability of regions Ωi for these feature values, such that if v ∈ Ωi then
v belongs to a hi, is calculated. This does not necessarily capture the full details of the
complex distribution of a numerical feature. However, it is computationally efficient in
terms of processing time and memory consumption as the Gaussian distribution only
needs to be calculated once. Subsequently the distribution only requires updates when
instances are deleted from the training data due to the separate-and-conquer approach
illustrated in Section 3.1. These updates are performed simply by re-calculating µ and σ2

of the distribution. According the central limit theorem [54,55], if a sample is large enough
then it tends to be normally distributed regardless of the underlying distribution of the
data. Thus, the algorithm assumes normally distributed numerical features as this work
is concerned with the development of a rule induction algorithm for infinite streams of
data. For more information and proofs about the Gaussian Probability Density function,
the interested reader is referred to the work of Maria Isabel Ribeiro [56].

3.3. Inducing the HEAD of a Generalised Rule

In the current implementation, the HEAD only comprises rule terms induced from
categorical features, where k is the number of all candidate rule terms and n is the number
of features. In order to enable the user to inject domain knowledge, the maximum length
of the HEAD can be set by the user. In addition, the implementation enables the user to
specify which group of features is to be considered for the HEAD. By doing so, the user has
the opportunity to use subjective measures of interestingness specific to their domain to
influence the HEADs of the rules. In this case n would be the size of the group of features
selected for generating HEADs. The number of possible rule term conjunctions for the
HEAD is:

(n + k− 1)!
k!(n− 1)!

(3)

In order to avoid ambiguous rule terms each feature can only be used once in a rule.
Generating every possible permutation of rule terms can uncover most patterns

encoded in the data, but it is also computationally very inefficient. Thus, for each feature,
only one value is considered for the HEAD. In the current implementation, the candidate
rule term of a feature with the highest frequency feature value is chosen. Alternatively,
a feature value with the lowest frequency could be chosen; however, this is likely to result
in many smaller rules (as lower frequency feature values cover less data instances). It is
believed that many small rules are less convenient for the human analyst to interpret.
The generation of all possible conjunctions of a HEAD (with the limitation described above)
is described in Algorithm 1.
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Algorithm 1: Generate all possible HEAD conjunctions.

D: original training data instances;
Tset: all possible terms (feature-value) from all features;
Hset: a collection of all possible conjunctions for HEAD;
Hmax: number of maximum terms for conjunction;
hi: a Head, represented by a conjunction of terms;
Tused: a collection of terms used for induced HEADs;
Let Tused = ∅;
Let hi = {};
while Number of terms in hi ≤ Hmax do

foreach feature αj ∈ D and αj 6∈ Tused do
foreach value αi,j of αj do

if αi,j ∈ Tused then
break;

end
if αj is categorical then

foreach value αi,j of αj do
Calculate P(αj = v) in D;

end
else if αj is numerical then

Calculate mean µ and variance σ2 from all values for αj in D;
foreach value αi,j of αj do

Calculate Pdensity(αi,j) based on the created Gaussian distribution in line 20;
end
Select the αi,j of αj with the highest Pdensity(αi,j);
Form a term in form of vl < αj ≤ vh as described in Section 3.2; Calculate P(vl < αj ≤ vh) in D;

end
end

end
Select the term tαj for which P(αj = v) or P(vl < αj ≤ vh) is the maximum;
Add the selected term tαj to hi ;
Add the selected term tαj to Tused;
Remove all data instances not covered by the selected term tαj from D

end

3.4. Inducing Rule BODYs for a HEAD

Algorithm 2 illustrates how all possible conditional parts (BODYs) for a particular
HEAD are searched by using the separate-and-conquer strategy described in Section 3.1.
The strategy maximises the conditional probability with which the BODY covers the HEAD
of a rule. The algorithm aims to induce complete rules, which may potentially lead to a
low coverage of data instances. Intuitively one may say that this can lead to overfitting
of a rule/rule-set. In the case of predictive rules a low coverage may very well lead
to overfitting. However, this may be different for descriptive rules, as illustrated in the
example below:

– Rule 1: IF sensor1 = 10 AND sensor2 = 15 THEN status = working AND temperature =
normal (covers 100%)

– Rule 2: IF sensor1 = 0 AND sensor2 = 15 THEN status = halted AND temperature =
high (covers 98%)

– Rule 3: IF sensor1 = 0 AND sensor2 = 15 THEN status = working AND temperature =
high (covers 2%)
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Algorithm 2: Induce complete rules for each HEAD
D: original training data instances;
Hset: The collection of all possible HEAD were generated in Algorithm 1;
Rset: A collection of all complete rules;
Aall : A list of all features in the dataset;
Aused: A list of used features;
foreach hi in Hset do

Let r = {};
Let Aused = ∅ ;

Add all feature in hi to Aused = ∅ ;
while D still contains data instances and Aused 6= Aall do

while Not all data instances in D cover hi and Aused < Aall do
foreach feature αj ∈ D and αj 6∈ hi do

foreach value αi,j of αj do
if αj is categorical then

foreach value αi,j of αj do
Calculate P(hi|αj = v) in D;

end
else if αj is numerical then

For all data instances covered by hi, Calculate mean µ and variance σ2 from all values for αj ;
foreach value αi,j of αj do

Calculate Pdensity(αj = v);
end
Select the αj = v of αj with the highest Pdensity(αj = v);
Form a term in form of vl < αj ≤ vh as described in Section 3.2;
Calculate P(hi|vl < αj ≤ vh) in D;

end
end

end
end

end
end

From Rule 1 it is clear that if the reading from the sensor is as stated, then everything
should be satisfactory. However, if sensor1 = 0 then there is a high probability that the
system was halted, and the temperature was high as it is in Rule 2. However, Rule 3 also
contains the rule term sensor1 = 0 yet everything is satisfactory, Rule 3 represents about
2 percent of the training data, in this fictitious example. In a predictive task such a rule
would normally be discarded. However, Rule 2 may represent the normal behaviour of the
system while Rule 3 represents an unusual outlier situation, i.e., such as the sensor itself
is faulty. In a descriptive context, Rule 3 should be retained for further investigation by
the analyst.

Overfitting is a fundamental problem for all learning algorithms [51]. In other words,
overfitting means that learnt rules fit the training data very well which may result in
inaccurate descriptions in unseen data instances. Typically, this problem occurs when the
search space is too large. The reasons for overfitting are very diverse and can range from a
constructed model that does not represent relevant domain characteristics to incomplete
search spaces. One common problem is that real-world data usually contains noise such as
erroneous or missing data instances.

A complete rule is not necessarily wrong, as it could also be an indicator of an unusual
and thus interesting pattern in the data. Therefore, descriptive rule-sets retain all rules but
rank them according to various metrics such as coverage, accuracy, interestingness, etc.

3.5. Pruning of Rules

In the proposed algorithm, a pre-pruning method was used to avoid overfitting during
rule construction. It was decided to use rule length restriction as a pre-pruning method
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because of its simplicity and effectiveness as can be seen in our experimental evaluation
in Section 5. However, if a more sophisticated pruning method for fine-tuning is desired,
online or pre-pruning methods would be appropriate as the FGRI rule-set is not static,
but constantly evolves over time. For example, an online pruning method that could
be adapted to FGRI is the J-Pruning method [57]. J-Pruning measures the theoretical
information content of a rule as it is being induced and stops inducing rule terms at the
maximum theoretical information content of the rule. J-Pruning is not limited to a particular
class label feature, and thus applicable to generalised rules. However, the development of
a new rule pruning method is outside the scope of this research.

4. FGRI: Fast Generalised Rule Induction from Streaming Data

This section highlights the development of the proposed Fast Generalised Rules
Induction algorithm conceptually. It is believed that this is the first kind of algorithm that
is specifically designed to generate generalised rules from streaming data in real-time.

4.1. Real-Time Generalised Rules Induction from Streaming Data

The algorithm is based on a sliding window approach. A summary of windowing
approaches including the sliding window approach is given in Section 2.1. A landmark
window approach is not applicable to FGRI, as it is dependent on the application domain,
and the objective of FGRI is to develop a generic algorithm that can be used in various
contexts. A damped window approach is also not desirable, as it does not discard old data
instances completely which will have negative computational implications on potentially
infinite data streams. Sliding window approaches have been used successfully in various
algorithms for streaming data including rule based predictive techniques, such as in [18,29].

Broadly speaking, when a sliding approach is used, the data instances in a window
can be utilised for various tasks [58,59]:

– To detect change/concept drift detection by using a statistic test to compare the
underlying model between two different sub-windows.

– To obtain updated statistics from recent data instances.
– To rebuild or revise the learnt model after data has changed.

In addition, by using the sliding window approach, algorithms are not affected by stale
data and an efficient amount of memory can be appropriately estimated [60]. However,
the sliding window approach is not perfect and one of its main drawbacks is that the user
will need to find a suitable window size before the learning process commences. This
window size is then typically used throughout the entire learning process. The process of
selecting a sliding window size is often made arbitrarily by the user or by trying different
parameter settings and choosing the one that yields the best results from the evaluation
metric used. A more robust and automatic method to choose a suitable sliding window
size is desirable. This paper develops a sliding window approach embedded within FGRI
which dynamically optimises the window size in real-time.

4.2. Inducing Generalised Rules from a Dynamically Sized Sliding Window

The complete algorithm to induce generalised decision rules from streaming data is
proposed here with the combination of the algorithm as described in Section 3, a sliding
window approach and a facility to adapt the window to an optimal size automatically
and dynamically. For a better understanding of this Section, the sliding window approach
is illustrated in Figure 4 and the FGRI pseudocode is available in Algorithm 3.
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Algorithm 3: Fast Generalised Rules Induction from streaming data

S← Stream of data instances;
R← Learnt rule-set;
Wunseen ← Buffer of unseen data instance;
n : pre-defined window size;

0 while S has more data instance do
0 i→ new instance from S ;
0 if r ∈ R covers i then
0 Validate the rule r and remove if necessary;

else
0 Add i to Wunseen;
00 if Wunseen = n then
0 Learn a set of generalised rules, R′, in batch mode as in Algorithm 2 from Wunseen;
0 Add R′ to R;
0 Empty Wunseen;

end
end

end

For this, the proposed algorithm makes use of the Hoeffding Inequality [27,29,61–63].
One can find the root of Hoeffding Inequality from the statistical literature of the 1960s.
The properties of Hoeffding Inequality were utilised in streaming algorithms from the
literature [26,29].

The proposed algorithm uses Hoeffding Inequality to estimate whether it is plausible
to extend a particular decision rule or stopping the induction process for that rule. From the
purely statistical perspective, ‘Hoeffding Inequality’ provides a statistical measurement of
the confidence in the sample mean on n independent data instances x1, x2..., xn where Etrue
is the true mean and Eest is the estimation of the true mean from an independent sample,
then the difference in probability between Etrue and Eest is bounded by:

P[|Etrue − Eest| > ε] < 2e−2nε2/R2
(4)

where R is the possible range of the difference between Etrue and Eest. From the bounds of
the Hoeffding Inequality, it is assumed that with the confidence of 1− δ, the estimation of
the mean falls/lies within ε of the true mean. In other words:

P[|Etrue − Eest| > ε] < δ (5)

Figure 4. Sliding windows approach to induce rules from streaming data.
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From Equations (4) and (5) and solving for ε, a bound on how close the estimated
mean is to the true mean after n observations, with a confidence of at least 1− δ, is defined
as follows:

ε =

√
R2 ln(1/δ)

2n
(6)

For clarification, here is an example in a very simple scenario to show the property
of the above Equation (6). A proof of the Hoeffding Bound or Hoeffding Inequality can
be found [61] and its interpretation for use in data stream mining [27] and decision rule
induction [18].

Problem: There is a vector of letters ‘A’ and ‘B’ and the probability of ‘A’ is exactly 0.30.
In other words, if the vector size is 10,000 then there are 3000 times of ‘A’ and 7000 times
of ‘B’.

Hypothesis: The concept of Equation (6) can be applied in this scenario to calculate
the probability of ‘A’ from the given vector. Although, the real probability of ‘A’ is 0.3, let
us assume that this value is not known, and it is necessary to calculate/estimate this value
from a sample of values from the vector.

Defining Parameters: In this example, R = 1.0 because the probability of ‘A’ can only
be between 0.0 and 1.0, therefore, the range, R, should be 1.0. δ and n are 0.05 and 200
respectively. However, n and δ are configurable and different values can be used.

Description: Based on the selected parameters, where n = 200, R = 1.0 and δ = 0.05 ε
can then be calculated. Contextually, one can interpret that the estimated probability of
‘A’ from any 200 values sample from the initial vector of 10,000 should be smaller than
with the certainty of 0.95. In other words, estimate the probability of ‘A’ from a sample of
200 random values from the original vector and repeat this process 100 times, then, at least
95 times the difference between the estimated probability of ‘A’ from the sample and the
actual probability should be constrained by ε.

A bound based on ‘Hoeffding Inequality’ is used as a statistical metric to confirm
whether a selected rule term from a given subset of data examples is also likely to be true if
the rule term comes from an infinite set of data examples. In other words, for a given error,
an extracted rule term from a much smaller and thus more manageable subset would be
identical to that extracted from a much larger set of data examples.

An example of the use ‘Hoeffding Inequality’ can be described as in the following process:
1. Irrespective of whether we start inducing a rule term for either BODY or HEAD

part we always start with all the training data instances from the window.
2. A heuristic is calculated for all possible rule terms at each iteration. Depending on

whether a rule is induced for the BODY or the HEAD part then the coverage or conditional
probability would be the corresponding heuristic.

3. As shown in Figure 5, the subset of data instances is reduced after each iteration,
or after a new rule term is added to the rule being induced.

Figure 5. Iterations to specialise an inducing rule.

4. In a traditional ‘separate-and-conquer’ approach as in inducing a rule from static
data, the process in Step 3 is repeated until the rule being induced covers 100% of data
instances of the subset. However, this is where the Hoeffding Bound is effectively used
in the algorithm. The algorithm will stop inducing/adding new rule terms as soon as the
condition of ‘Hoeffding bound’ is not satisfied.
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5. For the iteration as shown in Figure 5, a heuristic value, G(αi,j), is calculated for all
possible rule terms. Let [G(αi,j)]k and [G(αi,j)]k−1 be the best and second-best feature-value
pair respectively of all calculated heuristic values then δG is as follows:

δG = [G(αi,j)]k − [G(αi,j)]k−1 (7)

6. After any given iteration, if δG < ε as in Equation (6) then the induction process of
the rule is stopped.

4.3. Removing Obsolete Rules

Unless specified differently, all learnt rules are kept throughout the learning phase,
but one can limit the number of rules at any given time by filtering out the rules with the
lowest statistical metrics. For descriptive applications, multiple modular rules are useful
when deeper examination of the emergent rule-set is deemed warranted. However, for a
predictive application, then rules with a high misclassification rate ought to be removed.
For each rule produced, there are statistical metrics that are maintained and updated after
a new instance is seen:

For each rule produced, the following constitute the set of statistical metrics that are
maintained and updated after each new rule instance is learnt.

– True Positive Rate;
– False Positive Rate;
– Precision;
– Recall;
– F1-Score.

F1-Score is used as a default metric to rank descriptive rules, so that the top ‘k’ most
meaningful rules can easily be extracted from the induced rule-set.

5. Evaluation

Experimental evaluations are presented in this section, and case studies for the al-
gorithms realised in Sections 3 and 4. The evaluation method employed uses a common
evaluating technique for streaming data called Prequential Testing [29,64,65]. The algo-
rithms were implemented in Java as an extension for WEKA and MOA [58]. The details
and downloadable source code can be found on the project website (https://moa.cms.
waikato.ac.nz/).

To date no other algorithms have been developed that are directly comparable to the
algorithm presented by this study for the representation of generalised rules and to support
adaptation to concept drifts in real-time. However, a thorough analysis and experiments are
performed aiming to showcase the scalability, efficiency and effectiveness of the proposed
algorithm both quantitatively and qualitatively.

5.1. Datasets

Both, artificial (stream generators in MOA) and real datasets are used in the experiments:
The Random Tree Generator [27] is based on a randomly generated decision tree

and the number of features and classes can be specified by the user. New instances are
generated by assigning uniformly distributed random values to features and the class label
is determined using the tree. Because of the underlying tree-structure, decision-tree-based
classifiers should perform better on this stream. Two versions of this data stream have been
generated, one with five categorical and five continuous features, and three classifications
called RT Generator 5-5-3, and the other also with 3 classifications but no categorical
and only four continuous features called RT Generator 0-4-3. Both versions comprised
500,000 instances. The remaining settings were left at their default values, which are a
tree random seed of 1, instance random seed option of 1, five possible values for each
categorical feature, a maximum tree depth of 5; minimum tree level for leaf nodes of 3,
and the fraction of leaves per level from the first leaf Level onward is 0.15.

https://moa.cms.waikato.ac.nz/
https://moa.cms.waikato.ac.nz/
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The SEA Generator [65] generates an artificial data stream with two classes and three
continuous features, whereas one feature is irrelevant for distinguishing between the two
classes. This data generator has been used in empirical studies [29,66,67]. The default
generator settings were used for this evaluation, which are concept function 1, a random
instance seed of 1, enabling unbalanced classes and a noise level of 10%. 500,000 instances
were generated.

The STAGGER Generator [68], describes a simple block world with three features that
represent shapes, colour and size and concept drift is achieved through substitutions. It is
commonly used as benchmark dataset [27,69–71].

Airlines, actually the Airlines Flight dataset, was created based on the regression
dataset by Elena Ikonomovska, which was extracted from Data Expo 2009, consisting of
about 500,000 flight records, the task being to use the information of scheduled departures
to predict whether a given flight will be delayed. The dataset comprises three continuous
and four categorical features. The dataset was also used in one of Elena Ikonomovska’s
studies on data streams [72]. This real dataset was downloaded from the MOA website
(http://moa.cms.waikato.ac.nz/datasets/) and used without any modifications.

Nursery [73], more expressively, the Nursery Admissions dataset, is extracted from a
hierarchical decision model, which was designed to rank applications for nursery schools
in Ljubljana, Slovenia over several years in 1980s. A set of 12,960 data instances was used
from the Nursery Admissions dataset to extract rules. This has been used previously for
empirical evaluation of Data Stream Mining algorithms [74].

5.2. Complexity Analysis of FGRI

In order to assess the applicability of FGRI on fast data streams, a time complexity
analysis is provided.

It should be noted that the FGRI algorithm is a new type of analysis technique for data
streams, and thus has no comparator techniques to date. FGRI produces descriptive rules
from raw data instances incrementally and automatically updates the resulting descriptive
rule-set in real-time, in responsive to emerging concept drifts in real data. As there are
no algorithms of this kind for the real-time analysis of Data Streams yet, this complexity
analysis is seen as a baseline against which future algorithms of this kind can be compared.

There are three components of FGRI that process data instances from the stream,
and thus need to be analysed: (1) The validation of rules, (2) generation of rule HEADs,
and (3) the induction of the rule body for each rule HEAD. In this analysis, the number of
data instances is denoted N and the number of features M, which is constant.

With respect to component (1), this is in its worst case, a linear operation with respect
to N, as each data instance and feature is at most used once to test a rule-set and only on
the current rule-set active during the window the data instance was received. Hence the
complexity of this component can described as O(N ·M). However, the user may limit
the HEAD features manually or according to some subjective measure of interestingness,
in which case the complexity with respect to the constant M would slow down the linear
growth of the time complexity in N.

With respect to component (2), for categorical features ‘HEAD’ rule terms can be
derived directly from the possible categorical values, whereas for numerical rule terms
various calculations have to be performed, these are the calculation of µ, σ2 and Pdensity
(see Algorithm 2). Each received numerical instance would have to be used to update these
statistics. Categorical features offer a limited finite number of possible ‘HEAD’ rule terms,
which are simply the possible feature values. These are quite limited and do not have to be
updated. Thus, the worst case is with respect to numerical features and is linear O(N ·M),
as each data instance will be used to update the statistics for each feature.

With respect to component (3), the complexity of FGRI is based on updating µ, σ2 and
Pdensity for each feature. In an ideal case, there would be one feature that perfectly separates
all the different rule HEADs, or simply all data instances would belong to the same rule
HEAD. An average case is difficult to estimate, as the number of iterations of FGRI is
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dependent on the number of rules and rule terms induced, which in turn are dependent
on the concept encoded in the data. However, it is possible to estimate the worst case.
Furthermore, each feature will occur at most once (term) per rule, thus if it is contained in
the HEAD already it will not be used for the Body part of the rule. In the worst case there
will be one feature per HEAD and thus M− 1 features will be used in total. Furthermore,
in the worst case N − 1 instances are encoded in a separate rule. The −1 is because if there
is only one instance left, it cannot be used to divide the data further, which is needed for the
rule induction process. The complexity (number calculations per instance) of inducing the
rth rule is 3M(N − r). The factor (N − r) is the number of training instances not covered
by the rules induced so far, as mentioned above, in the worst case, each rule covers only
one training instance. These uncovered instances are used for the induction of the next
rule. For example, the number of calculations for a term of the first rule (r = 1), where the
training data is still of size N, would be 3M(N − 1). The total number of calculations for
the whole rule in this case (r− 1) would be 3M(N− 1) as there are M rule terms and three
properties to calculate (µ, σ2 and Pdensity). This, summed up for the whole number of rules,
leads to:

N−1

∑
r=1

3M(N − r) = 3M · N · (N − 1)
2

this is equivalent to a complexity of O(N2 ·M). Please note that this estimate for the worst
case is very pessimistic and unlikely to happen. In reality larger datasets often contain
many fewer rules than there are data instances and in the case of FGRI, rules are limited to
the k best rules. Hence, quadratic complexity is indeed highly unlikely for the average case.

5.3. The Expressiveness of Generalised Induced Rules

For a predictive learning task such as classification, the accuracy of the learnt model is
normally referred to as correctly predicting the outcome for unseen data instances and a
specific feature is only used in the ‘HEAD’ part. For example, in a classification task, more
than one rule can cover a data instance and all the matched rules may not predict the same
outcome, but the model still needs to settle on one outcome for the data instance and this is
used as part of the evaluation process. Typically, a model will label an unseen data instance
as one of the following scenarios:

– True Positive (P̂)—Both HEAD and BODY cover the data instance.
– Abstained (A)—Neither HEAD nor BODY of a rule cover the data instance.
– False Positive (N̂)—BODY covers the data instance but the HEAD does not cover the

data instance.
– False Negative (P̄)—BODY does not cover the data instance but the HEAD covers the

data instance correctly.

Most evaluation metrics such as accuracy, sensitivity, specificity, precision, true posi-
tive rate, false positive rate, etc. are calculated based on true positive, true negative, false
positive and false negative count. After a new data instance is evaluated the respective
counts of true positive, true negative, false positive or false negative will be incremented
by one and P̂ + A + N̂ + P̄ = ‘total number of evaluated data instances’.

However, the performance of the algorithm is highly uncertain if these measurements
are calculated for descriptive model evaluation as described above. The issues of concern
here arise from: (i) whether or not an induced rule can correctly represent an unseen
data instance and (ii) whether each rule contributes to the true positive, abstentions, false
positive or false negative statistics rather than updating these measurements for each
unseen data instance. Therefore, in the context of descriptive rule learning it is believed
that, rather than considering the performance statistics derived from those on (i) and (ii)
above, it is more appropriate to consider the absolute numbers of covered data instances
by the induced rules [51,75].

Each rule should be interpreted and evaluated individually and the number of rules
in the library is limited by default to 200. The number of relationships a person can
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meaningfully handle has been put between 150 to 250 [76]. Thus, a number of rules within
this range, in this case 200, have been chosen. However, the rule limit can be set by the
analyst to a different number. For all the experiments in this paper the default rule limit
of 200 was used. Overly large rule-sets would also be time-consuming for the analyst to
interpret. The rule limit does not interfere with the induction process nor the order of the
rules. Therefore, the first 200 rules will always be the same even if a larger rule-set size
were to be chosen. The algorithm learns and validates rules in real-time. In other words,
invalid and out-of-date rules are removed and new rules which reflect current underlying
concepts are added.

Figure 6 examines the evaluation metrics P̂ and N̂ on two real datasets Airlines Flight
dataset and Nursery Admissions dataset. Here Figure 6a,c plot P̂ versus N̂ and the stream
progresses steadily and proportionately from left to right along the horizontal axis and
from bottom to top along the vertical axis respectively. For orientation a baseline has
been included in the form of a dashed line. This is to indicate where a ratio of 1 would
lie in the diagram. It is evident that the relationships are leaning more towards P̂ than
N̂ indicating that the rules generated have learned the concept encoded in the data and
are not random. Figure 6b,d plot the same P̂ and N̂, but this time separately along the
horizontal axis as the stream progresses. It can be seen that over time P̂ increases at a
much higher rate than N̂ does, which shows that FGRI continues to adapt and improve
the rule-set. This demonstrates that the learnt rules are statistically sound but whether the
learnt rules are actually interesting in terms of domain information is subjective depending
on many factors such as level of domain knowledge of theinterpreter, prior knowledge on
the topic, etc.

(a) Airlines Flight dataset true positive and
false positive ratio

(b) Airlines Flight dataset true positive and
false positive value

(c) Nursery Admissions dataset true positive
and false positive ratio

(d) Nursery Admissions dataset true positive
and false positive value

Figure 6. Relationships between P̂ and N̂ on the real datasets as the data streams in and FGRI adapts.

The induced rule-sets are further examined from the perspective of their degree
of interestingness. Both synthetic and real-life datasets are used in our experimental
evaluations. How a data instance is generated by RandomTree and SEA synthetic data
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stream generators is understood as described. However, for a real-life dataset such as
Airlines Flight dataset, the underlying patterns are unknown. A user can inspect induced
rules directly from the Rules Library produced by the algorithm and can be confident
that the rules correctly reflect the underlying pattern encoded in the data stream at any
given time.

Some of the top rules in the 10,000 data instance snapshot are manually interpreted
from the Airlines Flight dataset [72] to see if the rules can reveal any useful information.
In a real-time streaming environment, there is often no control over the order of the flow of
data instances and their speed. Therefore, if induced rules are interpreted at a 10,000 data
instances snapshot then we can only expect the induced rules to describe patterns or
concepts up to 10,000th data instance correctly. Data beyond this point should not be taken
into account as future data has not been seen by the rule induction algorithm yet.

Airlines Flight dataset:
– Rule 1: IF Delay = 0 THEN DayOfWeek = 3.
– Rule 2: IF Airline = WN THEN Delay = 1.
– Rule 3: IF Airline = WN THEN DayOfWeek = 3.
– Rule 4: IF 118.0 < Length ≤ 141.0 THEN DayOfWeek = 3.
– Rule 5: IF AirportTo = LAS THEN Airline = WN.

As shown above, the extracted rules are mostly self-explanatory. These rules were
directly induced from the data and each rule was stored independently. However, these
rules were confirmed with the first 10,000 data instances from the Airlines Flight dataset to
see how the rules reflected the training data.

Airlines Flight dataset:
– Rule 1: After first 10,000 data instance, 58.9 out of 10,000 flights records are not

delayed which is correctly suggested by this rule.
– Rule 2: After first 10,000 data instances, 1139 records out of 1816, or 62, seen records

for ‘WN’ airline are delayed.
– Rule 3: The Airlines Flight dataset is sorted by ‘DayOfWeek’, so data for each day of

the week is appended to each other. The first 10,000 records contain just records for
all flights with ‘DayOfWeek = 3’.

– Rule 4: Most of the flights have duration between 118 to 141 min. The first 10,000 records.
– Rule 5: The majority of flights with destination as LAS are operated by WN airline.

The first 10,000 records confirmed this.

The information from the inferred rules can be seen to be in line with the type of
information extracted from the Data Expo competition (2009) where participants worked on
a larger and more comprehensive Airlines Flight dataset. Unlike a classification task which
only focuses on a specific feature, as shown above, the proposed algorithm can potentially
reveal various forms of correlated information between features from training data in
real-time as well as validating the rules to reflect the truth of the underlying concepts over
time or at all/any times.

Another experiment was carried out, this time on the Nursery Admissions dataset [73],
to show the effectiveness and robustness of the resulting rules in revealing expressive and
actionable information from raw data. The data were extracted from a hierarchical decision
model, which was designed to rank the applications for children to join the nursery schools
in Ljubljana, Slovenia over several years in the 1980s. The data was used to understand
the reasons behind the rejection decisions, which would have to be based on objective
facts, as the rejected applications required objective decision making. The data contained
the key features, which were used to make a final decision on each application. This
consisted of three subcategories: i) the occupation of the parents and the match to the
nursery admission priorities, ii) family structure and financial standing, and, iii) social and
health profile/status picture of the family [77].

Nursery Admissions dataset:
– Rule 1: IF class = not_recom THEN health = not_recom.
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– Rule 2: IF parents = professional THEN has_nurs = very_crit.
– Rule 3: IF health = priority THEN class = spec_prior.
– Rule 4: IF form = complete THEN has_nurs = very_crit.
– Rule 5: IF finance = convenient THEN parents = great_profession.

The above rules were discovered by the algorithm based on the 12,960 data examples
from the Nursery Admissions dataset. The extracted rules were just as descriptive and
self-explanatory as the rules extracted from the Airlines Flight dataset. The extra rules can
be interpreted as follows:

Nursery Admissions dataset:
– Rule 1: In a significant number of cases when the applications were not recommended

then the main reason (THEN part) was because the health of the child was not
recommended.

– Rule 2: If the parent(s) had a professional job then the need for a nursery place is very
high.

– Rule 3: As a corollary of Rule 1, it was revealed that many accepted applications for a
nursery place had an assigned priority value because of the health condition of the
child.

– Rule 4: In most completed/submitted applications, the child had a very critical need
for a place.

– Rule 5: When the financial standing of a family was comfortable then the parents’
occupation was likely to be a highly demanding professional position.

The algorithm learned the above rules directly from the training data example without
any prior knowledge of the underlying concepts of the dataset.

5.4. Real-Time Learning and Adaptation to Concept Drift

Concept Drift is likely and often unpredictable in non-stationary environments.
The concept of the underlying data may change unpredictably at any time. Therefore,
a streaming algorithm needs to be robust and have the ability to detect concept drift
rapidly and effectively without expectation of any input from the user. This section aims
to showcase the ability of FGRI to detect as well as adapt to new concepts in real-time
autonomously. Figure 7a–c show evidence of the capability of FGRI to detect concept drift
on the synthetic data streams. The reason why synthetic data stream generators have been
used extensively is that they enable the induction of a concept drift deliberately and thus
differently compared with real data streams, and the ground truth is known for evaluation.
In each data stream observed there are two concept drifts, Concept 1 exists from 0 to the
50,000th data instance, Concept 2 from the 50,001st instance-to-instance 100,000 and then
Concept 1 re-occurs. Thus, in each case two concept drifts occur. To indicate if a concept
was picked up the True Positive rate over the last 500 instances at any time is calculated
and plotted in the figures. The True Positive rate ranges from 0 to 1 and indicates the
correctness/validity of the learned rules, 0 indicating the model does not fit the pattern
and 1 indicating a perfect fit. Here, the reason for the inclusion of a reoccurring concept
is that the model induced may have a different quality of fit for different concepts, even
when not presented with a concept drift. Thus, ideally, the algorithm should respond to a
recurring concept by reverting to its previous quality fit for that concept.
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(a) True ratio per 500 data instances for data from Random Tree gener-
ator.

(b) True ratio per 500 data instances for data from SEA generator.

(c) True ratio per 500 data instances for data from STAGGER generator.

Figure 7. True ratio per 500 data instances from artificial streams.

In Figure 7, the true positive rate is always above 0, indicating that the rule-set always
contains at least some correct and valid rules. Regarding the Random Tree concept drifts
(see Figure 7a) it can be seen that the true positive rate is stable at first and then increases
after the first concept drift to concept 2, indicating that the algorithm adapts the model
and can find an even better fit for concept 1. After the second concept drift, concept 1
re-appears and the algorithm adapts very quickly to the original level of the true positive
rate, this fast recovery could be explained by the algorithm retaining some valid rules from
concept 1 aiding in recovery of the true positive rate.

In Figure 7b, the model is applied on the SEA data stream. Here the algorithm learns
more slowly, concept 1 improves over time, after the first Concept Drift it deteriorates a little,
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this is because the rule-set does not fit concept 2 well anymore. Generally, the algorithm
does not adapt as responsively to concept 2 as very well; it does tend to adapt which is
indicated by the true positive rate levelling off. However, then after the re-appearance
of concept 1, the algorithm adapts more quickly and even improves upon the first fit to
concept 1. This can be explained by the algorithm retaining some of the relevant rules for
concept 1 after the first drift, so it can draw on a base rule-set to improve faster.

With regard to the STAGGER data stream (see Figure 7c) it can be seen that the drift
has only a small effect on the true positive rate, indicating the algorithm is able to adapt
and absorb some of the effects of the concept drift. It also recovers quickly after the 2nd
concept drift, again indicating a portion of the previously valid rules were kept during
concept 2 aiding in a quick recovery and even improvement after the 2nd concept drift.

6. Conclusions

This paper has presented the FGRI algorithm for inducing and maintaining an ex-
pressive and descriptive rule-set from data streams. The algorithm is able to automatically
and incrementally induce a rule-set from streaming raw data (comprising categorical and
numerical measurements). FGRI can adapt incrementally its rule-set to changes of the
pattern encoded in the stream, and thus is applicable in real-time. Algorithms that induce
this type of rule-set (generalised rules) only exist for static batch environments, but not
for dynamically changing environments where the pattern encoded into the data stream
may change (concept drift), and the rule-set needs to be adapted on the fly. Such dynamic
and automatically adapting rule-sets can be used to (i) monitor the state of systems; (ii)
explain changes to the analyst in real-time; (iii) provide actionable information to the
human analyst. There are many possible fields of application, such as in the chemical
process industry, telecommunications, social media tracking, etc. Currently, there are no
comparable methods to FGRI that are applicable on data streams. This paper has pro-
vided FGRI evaluation at three levels: (1) theoretically, (2) qualitatively and (3) empirically.
With respect to (1), a theoretical complexity analysis has been carried out. Unfortunately
it is not possible to determine an accurate average case, as the complexity is dependent
on the pattern encoded in the stream, and in turn the rule-set induced. All components
with the exception of the induction of new rule bodies were linear. It was not possible to
determine an average complexity for the induction of rule bodies, but only for an unlikely
worst case resulting in a quadratic time complexity.However, it was further discussed
that the average case is more likely to be linear, as it is limited by the number of rules
induced which set the cut-off point in FGRI. With respect to (2), FGRI was evaluated in
terms of its expressiveness to real data streams. The experiments captured the true positive
and false positive ratios and absolute true positive and false positive values over time.
The results showed that the rules induced were expressive, not random, and improved
their expressiveness over time. In addition, regarding expressiveness, the rule-sets induced
using the real datasets have been evaluated qualitatively and appear to reflect the concepts
encoded in the stream correctly. FGRI was applied to two well-known datasets, treated
as a stream, to qualitatively evaluate if the rules induced were plausible and matched the
known relationships in the data. The rules induced reflected the knowledge available about
the data, and thus it was concluded that FGRI enables the induction of meaningful and
expressive rule-sets. With respect to (3), it was evaluated if FGRI can adapt its rule-set in
real time to concept drift. For this, several data streams with known concept drifts were
used, and the true positive rate over the rule-set over time was measured. In all cases FGRI
successfully adapted to concept drift and successfully recovered.

Overall, the FGRI method constitutes a new kind of tool (data mining algorithm) in the
Data Stream Mining toolbox and is as such complete. However, there are some limitations
for which potential improvements as extensions to FGRI could be conducted in future
research, As such, the induced rule-set is currently limited to 200 rules as this has been
found to be consistent with the human cognitive-load-limit in terms of the number of rules
a human can meaningfully handle for judgement and decision making in given context [76].
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Yet a larger number of rules may be desired to capture more facets of the current concept in
the data stream. For this, a possible research extension could be a layered dashboard that
presents a contextualised and consolidated view of the rule-set. Furthermore, currently
rules are limited to a maximum number of rule terms in order to avoid overfitting. Here
a dynamic online-pruning method tailored for FGRI could be devised to improve rule
quality further. Specific pointers and ideas in this direction are provided in Section 3.5.
Although FGRI can handle both numeric and categorical data streams, it has been designed
to be applied on tabular (symbolic) data streams and as such is not suitable for image
data streams at sub-symbolic level. Extensions of FGRI towards image data streams are
outside the scope of this project as these would require the prior establishment of the
relevant human perceptual units of analysis and cognitive interpretation of sub-symbolic
to symbolic structural labelling of semantic constituents of each image data frame.
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