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ABSTRACT Process mining is often used by organisations to audit their business processes and improve
their services and customer relations. Indeed, process execution (or event) logs constantly generated
through various information systems can be employed to derive valuable insights about business operations.
Compared to traditional process mining techniques such as Petri nets and the Business Process Model and
Notation (BPMN), deep learning methods such as Recurrent Neural Networks, and Long Short-Term Mem-
ory (LSTM) in particular, have proven to achieve a better performance in terms of accuracy and generalising
ability when predicting next events in business processes. However, unlike the traditional network-based
process mining techniques that can be used to visually present the entire discovered process, the existing
deep learning-based methods for process mining lack a mechanism explaining how the predictions of next
events are made. This study proposes a new approach to process mining by combining the benefits of the
earlier, visually explainable graph-based methods and later, more accurate but unexplainable deep learning
methods. According to the proposed approach, an LSTM model is employed first to find probabilities for
each known event to appear in the process next. These probabilities are then used to generate a visually
interpretable process model graph that represents the decision-making process of the LSTM model. The
level of detail in this graph can be adjusted using a probability threshold, allowing to address a range of
process mining tasks such as business process discovery and conformance checking. The advantages of
the proposed approach over existing LSTM-based process mining methods in terms of both accuracy and
explainability are demonstrated using real-world event logs.

INDEX TERMS Directly-follows graph, explainable AI, long short term memory, process mining, recurrent
neural network.

I. INTRODUCTION
Many modern businesses realise that keeping up with the
current growing and competing markets entails developing
and utilising novel ways of managing business processes [1].
While event data captured by various information systems
can be employed for performing accounting, auditing and
business analytics, the challenge is not only about deriving
useful insights from a large amount of collected data, but also
having the ability to oversee and improve workflows. Process
mining is an approach that allows addressing this latter chal-
lenge. In particular, it is used to automatically extract process
models from event logs so as to analyse how processes are
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being implemented in reality, thereby providing the avenue
for their monitoring and improvement.

Process mining exposes how processes are actually being
executed as opposed to how they ought to be executed. A pro-
cess miningmodel is distinct from amanually drafted process
model [2] due to its ability to provide an accurate accounting
of what is happening in reality. It brings about transparency,
delivers timely factual evidence and insights from transaction
records.

The most widely studied type of process mining is process
discovery. Process discovery relies on data collected from
an information system over a period of time, or real-time
data output by running processes, widely known as an event
log. From an event log, process discovery methods can auto-
matically construct a process model appropriately displaying
the observed behaviour as it is captured in the log without
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any inferred information. These models enable businesses
to make performance evaluations, check compliance, spot
anomalies and suggest improvements. Real-life applications
of process discovery methods are reported, for example,
in studies by Van Der Aalst et al. [3], Veit et al. [4],
Rojas et al. [5] and Ostovar [6], where the discovered process
models helped management teams in (1) spotting abnormal
behaviours, process drifts and manipulations that negatively
impacted the business performance, (2) investigating the root
causes of the problems and (3) planning for certain organisa-
tional benchmarks.

Several approaches to process discovery have been
proposed in the literature, including probabilistic-based
approaches, frequency-based heuristics, genetic-based
heuristics, theory of regions and hybrid methods [7]. The
applicability and effectiveness of these approaches depend
on the event log features and structure of processes. When
applied to real-life event logs, the majority of existing process
discoverymethods demonstrate such limitations as producing
broad and spaghetti-like models or models with poor fitness
and precision (i.e. these methods are unable to discover
process models that would express observed behaviour in the
best possible way). It has proven difficult to attain a com-
promise between the four process discovery quality metrics,
fitness, precision, generalisation and complexity [7].

More recently, deep learning (DL) approaches have gained
popularity in the process mining field. In particular, several
Recurrent Neural Network (RNN) architectures such as Long
Short-Term Memory (LSTM) have been applied to predict
next events in business processes, time of occurrence and
completion of events, and resources that trigger the events.
Owing to its ability to retain information over a long period of
time, LSTM can learn long-term dependencies in a sequence,
preventing prior information from being lost [8]. This enables
an LSTMmodel to consider all process instances into account
when making a prediction. Compared to the earlier process
mining techniques, LSTM-based methods have shown better
performance in terms of accuracy and generalising ability.

Noise, duplicate tasks, undetected or missing tasks that
can often be found in real-life event logs are challeng-
ing issues for process mining algorithms to address. Thus,
algorithm performance is highly dependent on the event
log quality and associated processes [9]. Because of that,
process mining methods applied to unstructured logs tend
to discover process models that are often purposely unsound
representations of the actual processes, thus compromising
on the quality criteria. While process models are visually
explainable, their implausibility makes them less reliable
for making prediction [10]. As a result, there are debates
in the process mining community on which methods to use.
Recent studies such as [10] and [11] consider the DL’s ability
to generalise and yield high accuracy more imperative than
generating visually explainable process models represented
using graphical notation such as Petri-nets, Business Process
Model andNotation (BPMN) language, Event-driven Process
Chains or UML activity diagrams [12]. Unlike these studies,

we argue that both accuracy and explainability are crucial in
the process mining field. In models generated by DL-based
methods, process structures are implicitly reflected, while
no visually explainable process graphs are produced, which
limits the value of such models.

To address this issue, the present study proposes a
graph-based approach to explaining the decision-making pro-
cess of an LSTMmodel when generating a sequence of events
representing a business process. According to this approach,
an LSTMmodel is trained on an event log first. This model is
then employed to find probabilities for each event present in
the log to appear in the business process next. Finally, these
probabilities are used to generate a visually explainable pro-
cess model graph representing the decision-making process
of the LSTM model. A probability threshold is introduced as
a parameter to manage the graph complexity and thus enable
faster and directed business processes analysis, including
discovering most common event sequences and unusual or
suspicious behaviours.

In summary, the contribution of this study is two-fold. First,
we propose two LSTM models that achieve higher accuracy
when predicting next events in business processes than exist-
ing LSTM models. The better performance of the proposed
models can be attributed to a different way of pre-processing
event logs to generate inputs for the models and the model
network architectures that employ an embedding and a dense
layer, in addition to an LSTM layer (unidirectional and
bidirectional for the first and second model, respectively).
Second, we propose a way of generating graphs representing
each model’s decision-making process. These graphs can be
used for exploring the LSTM model performance and identi-
fying cases that are difficult for the model to deal with so that
measures could be taken to improve the model performance
in such cases. Furthermore, the graphs can be used for various
process mining purposes such as business process discovery
and conformance checking as an alternative to the exist-
ing graph-based methods that learn process models directly
from data rather than through a machine learning model.
The advantage of the proposed approach, in this case, is the
ability of the generated graph to explain the decision process
of the accurate LSTM to a degree of generality set by the
user through a probability threshold. While we demonstrate
the predictive performance of the proposed LSTM models
through experiments employing real-life logs, the capabil-
ity of the resulting graphs to explain the LSTM models is
demonstrated visually. Another advantage of the proposed
approach is its model independence; any other machine learn-
ing model (or deep learning architecture) can be used instead
of LSTM.

The rest of the paper is structured as follows. Section 2
presents background and related work on process mining
and methods for business process discovery and prediction.
Section 3 details the proposed approach. Section 4 describes
the experimental setup, while Section 5 presents and dis-
cusses the experimental results. Finally, Section 6 concludes
the paper and outlines future work.
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II. BACKGROUND AND RELATED WORK
A. PROCESS MINING
Process mining is concerned with the automatic extraction
of process models from event logs so as to analyse how
processes are being implemented in reality [13]. It is also
used to ensure conformance with business rules and reg-
ulations and identify improvement opportunities [5]. The
main purpose of process mining is to derive knowledge and
insights from transaction records. Process mining can facili-
tate business processes analysis from the following perspec-
tives: control-flow (i.e. discovering sequences of activities
in a process), organisation (i.e. discovering the interplay and
collaborations among the participants of a business process)
and performance (e.g. identifying the maximum or average
time it takes to perform an activity). The information gained
from process mining can be used to analyse and gauge
the performance of an organisation, detect obstacles, predict
run times, spot anomalies such as control flow deviations,
discover roles and relationships, and improve the usage of
resources [14].

Event logs are the basis of all process mining tech-
niques [6]. They contain cases (also called process instances),
which are traces or sequences of events. An example of a typi-
cal event log is shown in Table 1, where each row corresponds
to an event, while each column corresponds to an attribute
of the listed events. Events belonging to the same process
instance are grouped using the same Case ID. Time-stamp
refers to the date and time of task completion, Activity refers
to the performed task and Resource refers to the participant
who performed the task. An event log may contain other
optional columns such as transaction type and cost.

TABLE 1. Example of an event log.

Process discovery, conformance checking and process
model enhancement are the commonly performed process
mining tasks. Process discovery is concerned with building
a process model from an event log automatically aiming at
representing the actual business process as close as possible.
Conformance checking is used to verify the compliance of the
business process participants by comparing a discovered pro-
cess model with the actual logs and vice-versa. Finally, model
enhancement is concerned with adding value to or extending
the originally discovered process model using information
about the actual process recorded in an event log [15].

Business process mining has been highlighted as a poten-
tial way of managing organisational challenges. For example,

Van Der Aalst et al. [3] used an event log from the work flow
management system of a department in charge of construc-
tion and maintenance of water and road infrastructure in the
Netherlands to analyse the performance of the business from
the process (i.e. how), organisational (i.e. who) and case (i.e.
what) perspectives. The authors discovered the main flow in
the invoice handling, which led to the identification of excep-
tional loops that had a great impact on the process perfor-
mance. The outcome of that analysis helped the management
team to plan and aim for certain organisational benchmarks.
It also made it possible for them to spot abnormal behaviours.

Veit et al. [4] applied a conformance checker to detected
manipulations in purchase prices and identified the potential
root cause of the violation demonstrating how peopleworking
in the process collaborated with each other to manipulate the
prices. According to a survey by Rojas et al. [5], process min-
ing is gaining increased interest and acceptance in healthcare
to discover process models, check conformance and analyse
social networks.

Another applicability of process mining techniques is
detecting business process drifts. Business processes are sub-
ject to unplanned changes and disruptions that can adversely
affect the performance of the processes. Examples of such
changes include changes in regulations, resource capacity,
technological capabilities and seasonal factors [6].

B. DEEP LEARNING FOR SEQUENCE PREDICTION
Deep learning (DL) has allowed to achieve ground-breaking
results in various tasks, including image recognition, speech
recognition, anomaly detection, disease diagnosis and natural
language processing. DL is powered by neural networks com-
posed of several interconnected layers of neurons performing
nonlinear transformation of data to enable the network to
learn patterns observed in the data.

Being one of the most popular DL architectures, Recurrent
neural network (RNN) is acknowledged for its ability to
learn and generalise over sequences of inputs rather than
individual patterns [16]. RNN’s can analyse patterns across
time, they are able to understand short and long term depen-
dencies or temporal differences. RNN contains recurrent or
repeated connections with hidden states that are distributed
across time, allowing the network to keep past information
effectively. In RNN, the output at the current time step is
the input to the next time step. As a result, at each point
of the sequence, an RNN model takes into consideration
not just the current input, but also what it remembers about
the previous points, thus learning temporal dependence and
contextual information in input data. This memory quality
allows the network to learn long-term dependencies in a
sequence, preventing prior information from being lost [17].
This implies the RNN model’s ability to consider the context
whenmaking a prediction, e.g. when predicting the next word
in a sentence, classifying sentiments and estimating tempera-
ture measurements. At the same time, the length of contextual
information that can be captured by a typical RNN model is
limited, which can negatively affect themodel’s performance.
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FIGURE 1. The long short-term memory (LSTM) cell.

This is due to the problem of vanishing or exploding gradients
during the RNN model training using back propagation [8].

1) LONG SHORT-TERM MEMORY
A variation of the RNN architecture called long short-term
memory (LSTM) has been proposed to overcome the prob-
lem of vanishing or exploding gradients. The control-flow
of LSTM is the same as that of RNN; the main distinction
is in operations within LSTM cells. The cell, also called a
memory block, is the memory of the network that retains
information over random time intervals (Fig. 1). Information
is updated to or removed from a cell through three gate units.
In particular, theForget gate decideswhat information to keep
or discards, the Input gate decides what relevant information
to update the cell state with and the Output gate determines
the output. In each LSTM cell, the sigmoid (σ ) activation
function is employed to decide which information to keep
or disregard, while the hyperbolic tangent, tanh, function is
employed to assist in regulating the network. The sigmoid
function outputs numbers between 0 and 1, indicating how
much of each component should be let through. A value of 0
means ‘nothing should be let through’, while a value of 1
means ‘let everything through’.

The LSTM cell operations can be described using the
following formulae:

ft = σ (Wf .[ht−1, xt ]+ bf )

it = σ (Wi.[ht−1, xt ]+ bi)

C̃t = tanh (Wc.[ht−1, xt ]+ bc)

Ct = ft ∗ Ct − 1+ it ∗ C̃t
ot = σ (Wo.[ht−1, xt ]+ bo)

ht = ot ∗ tanh (Ct ).

Using information from the previous hidden state ht−1
and current input xt , ft calculates the forget gate output,

it calculates the input gate output, C̃t calculates the eligible
candidate, Ct calculates the new cell state, ot calculates the
output gate output and ht calculates the new hidden state.
W and b represent the weight and bias parameters learned
during training, respectively.

2) BIDIRECTIONAL LONG SHORT-TERM MEMORY
Bidirectional LSTM (BLSTM) [18] splits the state neurons
of the regular LSTM into two, the forward state (responsible
for positive time direction) and backward state (responsible
for negative time direction), both of which are connected to
a common output layer. This architecture makes it possible
to train a model using all past and future information of a
specific time frame. Figure 2 shows a basic BLSTM structure,
with the LSTM net at the bottom indicating the forward state,
and the LSTM net at the top indicating the backward state.
Without the backward state, it becomes a regular unidirec-
tional LSTM.
Depending on the problem domain, the BLSTM structure

can give better results than other network structures. For
example, a BLSTMmodel was reported to achieve a remark-
able performance in speech processing tasks, where content
is crucial [19].

3) DEEP LEARNING IN PROCESS MINING
Several recent studies employed RNN- and LSTM-based
models for monitoring and predicting business processes.
Motivated by the application of RNN to predicting the next
word in a sentence, Evermann et al. [10] proposed several
RNN models to predict future process events from an event
log. The authors considered the event log as text, traces as
sentences and events in a trace as words in a sentence. The
models built in this study were able to predict the most
probable remaining sequence of events in an ongoing case.
The limitation of the models was their inability to handle
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FIGURE 2. Basic unfolded bidirectional LSTM (BLSTM) Structure.

numerical variables, which made generating sequences of
timestamped events impossible.

Tax et al. [20] used LSTM to build accurate models that
could achievemulti-task learning, namely, predicting the next
event of a running case and its timestamp. The models were
able to predict the continuation of a case up to comple-
tion and remaining cycle time of running cases. However,
the models did not perform well when making long-term
predictions and when used on event logs with many repeated
events. To overcome these limitations, Camargo et al. [21]
proposed an LSTM architecture with embedded dimen-
sions to predict traces of events, time-stamps and the role
associated with each event. The phases in their approach
included scaling and extracting n-grams of fixed sizes for
each event log trace to create input and target sequences for
training the predictive model, and a post-processing phase,
where predicted next events were randomly selected from the
likely ones to generate a greater number of different traces.
Francescomarino et al. [22] also employed the LSTM archi-
tecture proposed by Tax et al. [20] and improved its perfor-
mance by accounting for a-priori knowledge using A-PRIORI
algorithm on the traces of the test set and dealing with cycles
using the NOCYCLE algorithm to overcome issues encoun-
tered when dealing with traces containing a high number of
cycles. Tello-Leal et al. [12] presented an LSTM network
applied to event logs from the Internet of Things (IoT) domain
within the context of industry 4.0. While the network could
successfully predict the next activity in a business process, its
performance in predicting continuous traces was not always
good.

The most recent study in sequence modelling [23] pre-
sented an RNN-based modulated model for multi-task pre-
diction of event sequences and event attributes. The model
(called MM-Pred) includes an LSTM encoder-decoder and
a modulator capable of learning inter-dependencies among

TABLE 2. Summary of RNN- and LSTM-based models for monitoring and
predicting business processes.

event attributes. The MM-Pred model was compared to
two other models: S-Pred for predicting next events based
on event sequences alone (using the same LSTM encoder-
decoder architecture but without the modulator) and M-Pred
for predicting next events and their attributes together
(employing the modulator).

C. PROCESS DISCOVERY VERSUS PROCESS PREDICTION
METHODS
Process discovery methods are often used to improve the
comprehensibility of control-flow relations between tasks
as observed in event logs. Discovered process models can
help to understand how a process should be performed or
is performed in reality. But most importantly, they provide
a foundation for further analysis. Transition diagrams such
as Petri-nets, BPMN diagrams, causal nets, state machines
and directed acyclic graphs are often used to represent the
outcomes of process discovery methods [7] (Fig. 3). Using
process modelling notations for the visualisation of business
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FIGURE 3. Graph-based representation of a process model.

process models ensures that domain experts, who may not
have technical knowledge to comprehend how different pro-
cess mining methods work, could understand the generated
graphs and decide whether the model’s structure reflects or
contradicts the experts’ domain knowledge.

Often presented as an alternative to process discovery
methods [11], DL-based sequence modelling techniques such
as LSTM have gained momentum in the process mining
field. Sequence prediction is concernedwith predicting future
events based on past events and can be applied to both
ongoing and completed cases of an event log. Next event
predictions produced by DL models have been demonstrated
to be more accurate than those made through process mod-
els discovered using event logs [10], [11], [21]. However,
the decision-making process of how these predictions are
made remains unclear when using DL models. This is unlike
process discovery methods, the outputs of which can be rep-
resented as visually explainable process model graphs clearly
demonstrating the sequence of events and instances of events
executed in parallel.

This study addresses the problem of the lack of a mech-
anism capable to explain the decision-making process of
DL models when predicting the next events by offering
an approach to generating graphs representing DL outputs.
Similar to graphs representing process models discovered
through event logs directly, the graphs generated using the
proposed approach can be used to perform various process
mining tasks.

III. PROPOSED APPROACH TO PROCESS MINING
The proposed approach to process mining consists of two
stages: building an accurate LSTM model for predicting
business process event sequences based on event logs
and generating a directly follows graph (DFG) explaining
the decision-making process of the LSTM model when

predicting business process event sequences. Figure 4 sum-
marises the steps of the two stages of the proposed approach.

A. DATA PREPARATION
The proposed approach takes as input an event log defined as
follows.
Definition 1 (Event Log):An event logL is a set of traces T

holding a set of events E recorded as the result of each exe-
cution of a process instance. Each trace t contains a sequence
of events t = e1, e2, . . . , en, where ei ∈ E and 1 ≤ i ≤ n.
Each event can have a set of attributesP providing additional
details of the event, e.g. timestamp or resource executing the
specified activity.

1) EVENT LOG PRE-PROCESSING
The concept of Natural Language Processing (NLP) was
employed to parse event logs and train the proposed LSTM
model. The model was trained to establish the most likely
activity to come next in a given event sequence over time.
This problem also resembles a time-series problem due to
the existence of sequence dependence among input variables.
In NLP, when predicting the next word to come in a sen-
tence, the context of the whole sentence is considered to
avoid ambiguity [24]. The same concept was used to frame
the input sequences for the LSTM model from event logs.
Similar to free text, event logs are also prone to ambiguity
due to the varied length of sequences and the existence of
repeated activities. To improve the model’s training process,
the context was broadened by phrasing the problem in such
a way that multiple previous time-steps were considered
when predicting the next time-step. In particular, event logs
were pre-processed according to the following protocol and
definitions.

The NULL label is used to mark the beginning of each case
(or process instance). It becomes the first input activity x0
at the current time t0, and the target activity y0 becomes the
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FIGURE 4. Flowchart summarising the proposed approach to process mining.

activity at time t1 (this is the first activity occurring in each
case of the event log). The next input activity sequence x1
becomes the activity at the prior times {t0, t1}, and the tar-
get y1 becomes the next activity at time t2. The next input
activity sequence x2 becomes the activity at the prior times
{t0, t1, t2}, and the target y2 becomes the next activity at
time t3; and so on. The inputs X build-up for each next
input sequence as prior activities are joined with the current
activity. The targets Y are always the activities at the next
time-step tn+1 until the last input sequence contains all the
activities at prior time-steps, including the current activity,
at which point, the END label is added to mark the end of a
case. This procedure is repeated until all cases in the event
log are pre-processed.
Definition 2 (Predicting the Next Activity): Given a trace

of activities t = a1, a2, . . . , at , the output of the predictive
model is the next activity {at+1}.
Definition 3 (Predicting Complete Traces): Given the pre-

fix of a trace t = a1, a2, . . . , at and END value to mark the
end of each case, the output of the predictive model is the
sequence of activities {at+1, at+2, . . . ,END/at }.

2) ENCODING AND PADDING
The input sequences are encoded using the Tokenizer class
from the Keras library. The tokenizer maps each activity
in an event log to a unique integer creating a sequence
of integers. Next, the prepared sequences are padded using
the pad sequences() function from Keras. The function first
finds the longest sequence and then uses the length to pad
other sequences, so as to have a uniform length. The targets
were dummy-encoded using the pd.get_dummies() function
from the Pandas library. The function converts categorical
variables into dummy variables by placing a value of one
when a categorical event occurs and zero when it does not

occur. For instance, if A = [a, b, c], the respective tokens
are A → [1, 2, 3], where a = 1, b = 2 and c = 3. Each
activity ai ∈ A is encoded as a vector (Ai) of length |A| + 3
such that the first |A| features are all set to zero, except the
one occurring at the index of the current activity ai, which
is set to one. Table 3 shows an example of prepared input
sequences, where [1, 2, 3, 4, 5, 6] are the resulting tokens or
integers of the tokenized activities [NULL, a1, a2, a3, a4, a5],
and the target column contains the encoded dummies (i.e. the
converted categorical labels) [a1, a2, a3, a4, a5,END], where
every activity is set to zero except the target activity, which is
set to one. Whenever the target is END encoded as [1000000]
in the target column, the next process instance is visited. This
procedure is repeated for all process instances in the event
log.

TABLE 3. Example of prepared data for training the proposed LSTM
models.

B. PROPOSED MODELS FOR PREDICTING NEXT EVENTS
OF BUSINESS PROCESSES
1) MODEL ARCHITECTURES
In addition to the unique way of pre-processing event logs as
described above, another distinctive feature of the proposed
models compared to other LSTM models for process mining
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FIGURE 5. Deep learning network architectures of the two proposed LSTM models: (a) Model 1 - unidirectional LSTM; (b) Model 2 -
bidirectional LSTM.

presented in the literature is their architectures. In particular,
an additional embedding layer is employed as an interface
between the input and LSTM layers of the network. The
embedding layer takes three arguments: the vocabulary size
(i.e. set of unique activities in a log), embedding vector space
size, and length of input sequences. These parameters are
dependent on event log characteristics. The output of the
embedding layer serves as input to the LSTM layer. A single
LSTM layer is followed by an additional fully connected
dense layer as the output layer. The output layer uses the
softmax activation function to ensure the output takes the
form of probability distributions. While some of the existing
LSTM models for process mining add a dense layer on top
of the LSTM layer, they either do not use embedding at all
or implement it differently (e.g., see [20] and [21]). Further-
more, the existing LSTMmodels for process mining employs
two LSTM layers, whereas the proposed models have only
one LSTM layer. The first model (Model 1) employs a unidi-
rectional LSTM, while the second model (Model 2) employs
a BLSTM. The latter trains two LSTMs instead of one on
the input sequence: the first – on the input sequence as it is
and the second – on a reversed version of the input sequence.
This gives additional context to the network, which can result
in faster and improved learning.

Figures 5a and 5b illustrates the network architectures of
the proposed DL models, where the output of each layer is
the input to the next layer. In both architectures, the first Input
Layer contains an activity sequence as constructed during the
log event pre-processing procedure (see the previous section
for details). The size of (ActNum) is determined by the
number of unique activities in the event log. The Embedding
Layer encodes the input sequence into a sequence of dense

vectors of dimension (DimSize). While the dimension size
can be tuned for better performance of the model, the choice
should be guided by the number of unique activities in the log.
The LSTM Layer in Figure 5a and BLSTM Layer in Figure 5b
are characterised by the number of neurons (NeuronNum).
Here, the vector sequence is transformed into a single vector
of size (NeuronNum), containing information about the entire
sequence. There is no set criteria on how many hidden neu-
rons an LSTM layer should have, it is problem-dependant.
For the problem considered here, the number of neurons is
chosen considering the size of the event log and the number
of unique activities in the log. A Dropout probability can be
added to prevent overfitting and improve learning. TheDense
Layer, which is the last layer, outputs the probability for
each unique activity in a log to appear next in the sequence,
including the extra END activity added to mark the end of
the process. Hence, the output takes the form of a vector of
size TargetNum (i.e. the number of expected targets), which
is (ActNum + 1).

2) TRAINING THE LSTM MODELS
Providing the multi-class classification problem (i.e. pre-
dicting an activity from a list of activities), the categorical
cross-entropy loss function was used during the training
process of each model. The Adam optimisation algorithm
(which is an implementation of the gradient descent algo-
rithm) was used to track the loss and accuracy at the end of
each epoch. The goal of the training process was to minimise
the log loss by adjusting the trainable parameters (i.e. weights
of the network).

Each model was fitted using training data and a variable
number of training epochs and batch sizes. Each epoch
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trained the model on the entire training event log while
maintaining the weights and biases learned from the previous
epochs. At the end of each epoch, test data were run through
the model and the average accuracy across all possible next
event cases in the test set was returned.

3) PREDICTING EVENT SEQUENCES OF BUSINESS
PROCESSES
After the training phase, the LSTM models are ready to be
used to predict the next activity and eventually the complete
trace. Algorithm 1 lists the pseudo-code of the prediction
algorithm. The algorithm takes the prefix Tp and trained
LSTM model µ as inputs and returns the complete trace T .
First, Tp is encoded using the tokenizer. Then, the tokenized
prefix is padded to the left with zeros to form a sequence
of the same length and fed into the embedding layer. The
resulting vector-matrix from the embedding layer is fed into
themodelµ, which then generates the probability distribution
over different possible activities that can occur in the next
position of the trace. The activity with the highest probability
is returned as the next activity β. A new trace is obtained
by concatenating the current prefix with the new predicted
activity. The procedure is repeated until the model predicts
the end activity denoted as END and until it does the same
for all traces in the event log.

Algorithm 1: Next Activity Prediction
Input: Prefix: Tp, LSTM model: µ
Output: Complete trace: T
h← 0
T ← Tp
while (β <> END) and (h < Log_End) do

Tp← tokenize(Tp)
Tp← pad(Tp)
Tp← embed(Tp)
P← Predict(µ, Tp)
if β ← highest_probability then

T ← Tp · β
/* concatenate the current

prefix with the new next
activity */
h← h+ 1
return T

end
end

C. GRAPHS EXPLAINING THE PREDICTION PROCESS OF
THE LSTM MODELS
A DFG is used in this study to explain the decision-making
process of each LSTMmodel when predicting the next events
of a business process. The DFG is generated according to
Algorithm 2 based on the probabilities output at each iter-
ation of Algorithm 1. Each arc (a directed edge) of the
DFG is annotated with a prediction probability based on the
following definitions.

Algorithm 2: Generating a Process Graph Based on
LSTM Predictions
Input: Predicted Activities:

{{a1,1, a1,2, . . . a1,x} . . . {an,1, . . . an,x}},
Threshold: φ

Output: Process graph: G
Create START node
Create END node
η0← ∅

/* list of all start events */
N ← ∅

/* set of established nodes */
for a ∈ A do

η0〈i〉 ← ai,1
E : START → η0〈i〉

/* Create a transition */
counter ← 0;
event_list ← ∅

/* event_list ⊆ a */
o← η0〈i〉
if β ← highest_probability and β /∈ N then

N ← (N , β)
end
if P ≤ φ then

E : o→ β

E : Append(P)
/* add probability to the edge

*/
o← β

E : o→ END
return G

end
end

Definition 4 (Directly-Follows Probability): Given a
sequence of activities {a1, a2, . . . , an ∈ E}, the directly-
follows probability between a1 and a2 is the LSTM model’s
next activity probability assignment for a2.
Definition 5 (Directly-Follows Graph): Given a directly

follows probability matrix, its DFG is a directed graph G =
(i, o,N ,E), where i is the start event, o is the end event, N is
a non-empty set of nodes and E ⊆ (x, y)|x, y ∈ N is the set
of edges.

A process is a directed graph if there exists a graph node
for each activity of the process (N = A). The graph edges
represent the possible transitions between the activities. For
any two parallel activities a, b ∈ A, there will be directed arcs
(a, b) and (b, a) between them.
The START and END nodes are introduced to produce

sound process graphs. This is necessary to prevent deadlocks
or lack of synchronisation [25]. The prediction probability
matrix is generated first and then used to build a graph from a
set of traces. The matrix describes the activities that succeed
other activities in the set of traces. The rows in the matrix
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represent the trace prefixes, while the columns represent the
activity that directly follows. The numbers in the matrix cells
represent the next activity prediction probabilities.

Generating the probability matrix entails feeding the first
activity a1 of each trace to the LSTM model and getting the
predictions of each possible activity being the next one in the
sequence. The activity with the highest probability is selected
as the most likely next event a2. Next, the combination of the
first activity and predicted next activity {a1, a2} are fed into
the LSTM model to predict the next activity a3; and so on.
For each trace, this continues until the LSTM model predicts
the next activity to be END, which automatically marks the
end of each process instance.

The process graph is generated by traversing each row in
the matrix, picking the column with the highest probability
as the most likely next activity, and creating a transition
between preceding and succeeding activity (through drawing
an edge E between the nodes N ). This is repeated until all
rows in the matrix are visited. Algorithm 2 highlights the
procedure. To begin with, a set of all start activities (η0)
(i.e. activities that appears first in each trace), a set (N ) of
all established nodes(to avoid having duplicate activities in
the graph), and a set of edges (E) are initialised. From the
START node, a transition is created to the start activity of
the first trace. The start activity is used to determine the next
and subsequent activities, creating a transition between each
preceding and succeeding activity β (i.e. from the matrix,
the activity with the highest probability in each row ). This is
repeated for each case until the end of the matrix is reached.
The activity that appears as the last activity o in each trace is
joined to the END node. Parallel transitions are observed if
two or more activities have the same prediction probabilities,
which indicates that the process may be branching (i.e. two
or more activities may follow the previous activity in the
process).

To make the graph more informative, the transition prob-
abilities P are appended to its edges. Furthermore, a prob-
ability threshold φ is introduced as a parameter to allow
tuning the complexity of the graph. While the main purpose
of the graph is to explain the decision-making process of the
LSTM model when predicting the next events in a business
process, it can also be used to perform various process mining
tasks. For example, by setting a high probability threshold,
one can visualise the most common way of the business
process execution. In contrast, by setting the threshold to a
low value, one can capture less common instances on the
business process execution, potentially indicating cases on
non-conformance.

Another benefit of the proposed approach is its ability to
generate traces for building a single process graph for each
case by simply specifying the case id. This can be of great
benefit when the interest is in investigating particular cases.

IV. EXPERIMENTS
Algorithms 1 and 2 were implemented as a set of Python
scripts using Python 3.6. The LSTM models were built using

the Keras [26] and Tensorflow [27] libraries. The process
graphs were generated using the Graphviz library [28], while
trace graphs for each process instance were generated using
the NetworkX library [29]. The experiments were carried out
using the Google Colab free Tesla K80 GPU.

A. EVALUATION
To evaluate the predictive performance of the proposed
LSTM models, they were applied to the following
five real-life logs: Helpdesk [30], BPIC 2012 [31],
BPIC 2013I [32], BPIC 2013C [32] and Road traffic fine
management process [33]. The details of these logs are
provided in the next section and Table 4. The accuracy of
the next event predictions of the proposed two models was
compared to that of three other LSTM models proposed by
Tax et al. [20], Camargo et al. [21] and Lin et al. [23]. From
the five real-life logs listed above, these studies employed
only the Helpdesk and BPIC 2012 logs.

Tax et al. [20] used one-hot encoding to encode events as
inputs to an LSTMmodel that had two layers and 100 neurons
in each layer. Camargo et al. [21] extracted n-grams of fixed
sizes for each event log trace, which they used as inputs to
their LSTM model consisting of two stacked LSTM layers
and a dense output layer. Also, Camargo et al. [21] used
pre-trained embedded dimensions in all their experiments.
Lin et al. [23] used a two-layer LSTM-based encoder-decoder
architecture with 32 neurons per layer for each encoder and
decoder cell. Random embedding was established for each
event. Only the S-Pred model proposed by Lin et al. [23] was
considered in this study as it is concerned with predicting
next events based on event sequences alone (i.e. without
considering additional information such as event attributes).

Being the most popular, the Helpdesk log was employed
to generate process graphs to visually demonstrate the capa-
bility of the approach presented in this article to explain
the LSTM decision-making process when predicting event
sequences of business processes. To the best of our knowl-
edge, we are the first to propose such an approach.

B. REAL-LIFE EVENT LOGS
The proposed approach was evaluated on the following five
real-life event logs. The original log files were presented
in the xes format but for the purpose of this study, were
converted to csv files using the ProM tool. The sizes of these
event logs vary, Table 4 shows the statistics. #Traces, #Events
and #Activities stand for the total count of traces, events and
activities in each log respectively.

Helpdesk [30] - This event log contains records of real-life
events from a ticketing management process of the help desk
of an Italian software company.

BPIC 2012 [31] - This event log represents a loan
application process of a German financial institution. It con-
tains three intertwined sub-processes. The first alphabet of
each task name identifies from which sub-process this task
originated from.
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TABLE 4. Event log description.

BPIC 2013I andBPIC 2013C [32] -These are the real-life
event logs of the Volvo IT incident and problem management
system called VINST. The first includes Incident cases per-
taining to the incident management process, while the second
includes Closed cases pertaining to closed problems in the
problem management process, both of which are used in the
experiment.

Road Traffic Fine Management Process [33] - This is a
real-life event log of an information system managing road
traffic fines.

C. EXPERIMENTAL SETUP
The following experimental protocol was adopted to closely
follow the experiments conducted by Tax et al. [20],
Camargo et al. [21] and Lin et al. [23] for a fair comparison
with their models:

1) Similar to Tax et al. [20] and Camargo et al. [21],
each event log was divided into two sets: a training set
composed of 70%of traces used as input for training the
LSTMmodels and a test set composed of the remaining
30% used to evaluate the predictions and assess the
models’ ability to generalise (Lin et al. [23] also used
70% of traces for training but only 20% of traces to test
their models’ accuracy in predicting next events). The
splitting was performed using the algorithm proposed
by [10], which is consistent with the method used by
Tax et al. [20].

2) For the embedding layer, the vocabulary size was set to
the number of unique activities in the log. The number
of embedding dimensions was guided by the vocabu-
lary size, hence it varied across the event logs.

3) The networks had one hidden LSTM layer with a
dropout probability of 0.2. The dropout technique was
used to avoid over-fitting and improve learning by tem-
porarily removing a cell from the network in a random
manner.

4) The number of training epochs was set to 50 for all logs.

The parameters of the proposed models, namely, the num-
ber of embedding dimensions and LSTM neurons were
tuned for each event log separately for better performance.
In particular, 32 embedding dimensions were used for the
BPIC13 log and 50 dimensions were used for the three
other logs; 100 neurons were used in the LSTM layer for
all logs. For a fair comparison with the other three LSTM
models proposed by Tax et al. [20], Camargo et al. [21] and
Lin et al. [23], eachmodel’s performancewas evaluated based

on the average accuracy score achieved across all possible
next event cases in the test set.

V. RESULTS AND DISCUSSION
A. MODEL PREDICTIVE PERFORMANCE
Table 5 summarises the performance of the proposed LSTM
models on the considered event logs based on the accuracy
of predicting the next activity over the test set. The results
are compared to those achieved by the other three models
proposed by Tax et al. [20], Camargo et al. [21] and
Lin et al. [23]. For the comparison, only the Helpdesk and
BPIC2012 event logs were used since they are the only logs
out of the five considered here, for which results are reported
in the other three studies.

TABLE 5. Prediction results over the test sets.

It can be noticed from Table 5 that the proposed Model 1
and Model 2 outperform the other three models on the
Helpdesk event log, achieving accuracy scores of 91.2% and
90.7% compared to 71.2%, 78.9% and 80.8% achieved by
Tax’s et al. [20], Camargo’s et al. [21] and Lin’s et al. [23]
models, respectively. On the BPIC2012 event log, the pro-
posed Model 1 and Model 2 achieve 85.4% and 85.3%,
respectively, compared to 76.0%, 78.6% and 81.4% achieved
by Tax’s et al. [20], Camargo’s et al. [21] and Lin’s et al. [23]
models, respectively.

The better performance of the proposed models can be
explained by the difference in the event log pre-processing
approach and models’ architecture. In particular,
Tax et al. [20] encoded activities in event logs using one-hot
encoding. This type of encoding might be suitable for logs
with a small number of activities but it becomes inefficient
for logs with a large number of activities. Furthermore, while
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FIGURE 6. Graph demonstrating the decision-making process of the unidirectional LSTM model (Model 1) when generating likely event
sequences representing a business process based on the training set of the Helpdesk log with the probability threshold set to 0. The nodes of
the graph represent activities, while the edges represent transitions between the activities. The numbers on the edges represent the
probabilities of the transitions as predicted by the LSTM model.

Camargo et al. [21] employed theword embedding technique,
they trained an independent network to coordinate the embed-
ded dimension, which they used throughout their experiments
as non-trainable parameters (which is different from our
approach of employing an embedding layer as part of one
network architecture). They probably did this to shorten the
training time while improving the quality of the predictive
model, but it is clear that this approach cannot guarantee a
compatible prediction accuracy. Finally, the proposed models
employ only one LSTM layer, as opposed to two LSTM
layers used by Tax et al. [20], Camargo et al. [21] and
Lin et al. [23]. We believe that this simplification contributes
to the better performance of our models in the case of the
Helpdesk log, which has a simple sequence flow.

Another observation that can be made from Tables 4 and 5
is that the proposed models perform well on the larger
RTFMP log (Model 1: 81.4%; Model 2: 81.5%) but not so
good on the smaller BPIC2013I and BPIC2013C logs (Model
1: 69.4% and 64.0%; Model 2: 69.8% and 64.4%). The latter
result can be explained by the relatively small number of
traces (e.g. compared to the BPIC 2012 log) and the relatively
large number of events (e.g. BPIC2013C compared to the
Helpdesk log) included in the BPIC2013 logs (i.e. the logs
included many repetitive traces). This means that the models
are expected to pick up the sequences of activities that can
happen in reality among a large number of possible combi-
nations of these activities when provided only with a small
number of examples of these combinations that happened in
reality. Model 2 performs slightly better than Model 1 on the
BPIC2013I, BPIC2013C, and RTFMP logs in terms of both

the training and test accuracy. It can thus be deduced that the
forward and backward learning inModel 2 is beneficial in the
cases of large logs and complex logs with repetitive activities.
At the same time, it took longer to trainModel 2 thanModel 1.
Hence, there is a trade-off between the accuracy and training
time of the models. Since Model 2 improves accuracy only
slightly compared to Model 1, the latter is preferred as being
both simple and accurate.

B. GRAPHICAL REPRESENTATION OF MODEL
PREDICTIONS
In addition to presenting better performing LSTMmodels for
process mining, another contribution of this study is propos-
ing an idea of generating graphs of different complexity to
visually explain the decision-making process of an LSTM
model when predicting the next events in business processes.
These graphs can be used for exploring the LSTMmodel per-
formance and identifying cases that are difficult for the model
to deal with so that measures could be taken to improve the
model performance in such cases. Furthermore, the graphs
can be used to perform various process mining tasks such
as model discovery, conformance checking, and investigating
cases of non-compliance.

Figures 6, 7, 8 and 9 illustrate the graphs generated using
the outputs of Model 1 for the Helpdesk log. In particular,
Fig. 6 shows the graph generated based on the predictions of
Model 1 over the training set, while Fig. 7 shows the same
for the test set. The probability threshold was set to 0 for
both graphs so that all transitions present in the log could be
represented in the graphs. The numbers on the edges indicate
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FIGURE 7. Graph demonstrating the decision-making process of the unidirectional LSTM model (Model 1) when generating likely event
sequences representing a business process based on the test set of the Helpdesk log with the probability threshold set to 0. The features of
the graph are the same as in Fig. 6.

FIGURE 8. Graph demonstrating the decision-making process of the unidirectional LSTM model (Model 1) when generating likely event
sequences representing a business process based on the test set of the Helpdesk log with the probability threshold set to 0.8. The
features of the graph are the same as in Fig. 6.

the probability scores of the respective activities to be next in
the process as predicted by the LSTM model.

When comparing the two graphs, one can notice their con-
sistency, which indicates a good ability of both the model to
generalise and graph built over the training set to interpret the
model’s behaviour. To formally verify the similarity between

the training and test graphs, they were converted into adja-
cency matrices first, and then the similarity score between the
matrices was calculated by taking the sum of the differences
between the values in corresponding cells of the two matrices
and dividing it by the number of non-zero values in the test
matrix. Since we are interested in evaluating the interpreting
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TABLE 6. Case 1: Training matrix created from the graph generated using
the train set of the Helpdesk log. The rows and columns represent
activities. The values on the intersections of columns and rows represent
the transitions between the corresponding activities, with 1 indicating the
presence of the transition and 0 indicating its absence.

TABLE 7. Case 1: Test matrix created from the graph generated using the
test set of the Helpdesk log. The rows and columns represent activities.
The values on the intersections of columns and rows represent the
transitions between the corresponding activities, with 1 indicating the
presence of the transition and 0 indicating its absence.

ability of the training graph, The training matrix was reduced
to the test matrix size, and the transitions that were captured
during the training process but did not appear during testing
were excluded from the calculation. A score of 0 obtained
this way would mean the two graphs are identical, wheres
a score of 1 would mean they are completely different. Two
cases were considered for the calculation. In Case 1, binary
matrices were constructed, where the value of 1 in a cell
corresponded to the fact that the transition between the corre-
sponding two activities existed, and the value of 0 represented

FIGURE 9. Single trace process graph generated based on the decisions
of the unidirectional LSTM model (Model 1) for the test set of the
Helpdesk log. The features of the graph are the same as in Fig. 6.

the fact that there was no transition between the two activities.
In Case 2, the matrices were constructed in the same way as
inCase 1, except that instead of the value 1, the probability of
the transition as predicted by the LSTMmodel was recorded.

Tables 6 and 7 represent the adjacency matrices built for
the binary-based Case 1 using the process graphs illustrated
in Figs. 6 and 7, respectively. Tables 8 and 9 represent the
same for the probability-basedCase 2. After dividing the sum
of the difference between the training and the test matrices
by the number of non-zero values in the test matrix (41),
scores of 0.19512 and 0.18292 were obtained for Case 1 and
Case 2, respectively. Providing that the scores are close to
zero, we can conclude that the two graphs are similar, which
indicates a good ability of both the model to generalise and
training graph to interpret the model’s behaviour.

Figure 8 shows a less complex version of the graph pre-
sented in Fig. 6, whichwas achieved by setting the probability
threshold to 0.8. This means that all predicted transitions with
a probability less than the set threshold are pruned and not
included in the graph, which results in a simpler visualisation.
The probability threshold can be adjusted to any value as
required by a task at hand, for example, to understand the
LSTM model performance or perform process mining tasks.
Finally, Figure 9 shows the graph of a single trace from the

TABLE 8. Case 2: Training matrix created from the graph generated using the train set of the Helpdesk log. The rows and columns represent activities. The
values on the intersections of columns and rows represent the probabilities of the transitions between the corresponding activities.
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TABLE 9. Case 2: Test matrix created from the graph generated using the test set of the Helpdesk log. The rows and columns represent activities. The
values on the intersections of columns and rows represent the probabilities of the transitions between the corresponding activities.

Helpdesk log. This type of graph can be useful for investi-
gating specific instances of the LSTM model predictions or
business process execution.

VI. CONCLUSION AND FUTURE WORK
This article presented a new approach to process mining by
combining the benefits of widely used graph-based methods
for process discovery and deep learning methods for predict-
ing event sequences. The proposed approach consists of two
stages: building an accurate LSTMmodel for predicting busi-
ness process event sequences based on event logs and gener-
ating a directly follows graph explaining the decision-making
process of the LSTMmodel when predicting business process
event sequences. Two model architectures were proposed,
one using a unidirectional LSTM and another using a bidirec-
tional LSTM, both of whichwere demonstrated to outperform
the state-of-the-art LSTM models for process mining based
on two real-life event logs. Further three real-life logs were
employed to demonstrate the advantages and limitations
of the proposed LSTM models. The bidirectional LSTM
model achieved slightly better results than the unidirectional
LSTM on more complex or larger logs but at the cost of
training time. The capability of generated graphs to explain
the LSTM models was demonstrated visually. An approach
to determine the similarity between the graphs was proposed
to further validate the generalising ability of the model,
which gave a satisfactory result. In particular, the graphs
can be used to understand the LSTM models’ performance
and perform a range of process mining tasks such as process
discovery, conformance checking, and investigating cases of
non-compliance.

One of the advantages of the proposed approach is its
model-agnostic nature. This means that the graph-generation
part is independent of the predictive modelling part. As such,
any model can be used in place of LSTM. To exploit this
advantage, as part of our future work, we plan to experi-
ment with other deep learning architectures such as encoder-
decoder networks. Furthermore, we plan to investigate the
possibility of using the proposed approach as a process
discovery method. To achieve this, we will evaluate the
generated graphs using the metrics widely used in the process
mining community for evaluating discovered process models,

including model fitness, precision, generalising ability, and
complexity.
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