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A B S T R A C T

For many industry contexts, the implementation of Artificial Intelligence (AI) has con-
tributed to what has become known as the fourth industrial revolution or “Industry 4.0”
and creates an opportunity to deliver significant benefit to both businesses and their
stakeholders. Robot arms are one of the most common devices utilised in manufactur-
ing and industrial processes, used for a wide variety of automation tasks on, for exam-
ple, a factory floor but the effective use of these devices requires AI to be appropriately
trained. One approach to support AI training of these devices is the use of a “Digi-
tal Twin”. There are, however, a number of challenges that exist within this domain,
in particular, success depends upon the ability to collect data of what are considered
as observations within the environment and the application of one or many trained AI
policies to the task that is to be completed. This project presents a case-study of creat-
ing and training a Robot Arm Digital Twin as an approach for AI training in a virtual
space and applying this simulation learning within physical space. A virtual space, cre-
ated using Unity (a contemporary Game Engine), incorporating a virtual robot arm was
linked to a physical space, being a 3D printed replica of the virtual space and robot
arm. These linked environments were applied to solve a task and provide training for
an AI model. The contribution of this work is to provide guidance on training protocols
for a digital twin together with details of the necessary architecture to support effective
simulation in a virtual space through the use of Tensorflow and hyperparameter tuning.
It provides an approach to addressing the mapping of learning in the virtual domain to
the physical robot twin.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Automation technologies are ever more prevalent as they2

benefit industry via facets such as reduced labour costs, operat-3

ing costs and increased worker safety. In the context of Industry4

4.0 and of factories of the future where digital twins and simu-5

lation technology play key roles, we need to consider more ef-6

ficient methods for designing, simulating and visualising these7
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production systems [1]. Interaction with these mechanisms is 8

important to this agenda, both physically and virtually. Virtual 9

Environments (VEs) need to be dynamic, immersive and suited 10

to the needs of the industry [2]. 11

Research is currently ongoing and focused on manufacturing 12

processes related to “digital twins”, one of the most prevalent 13

technologies in Industry 4.0 [3]. Uhlemann et. al. indicate that 14

the digital twin can share data, in real-time or offline, with the 15

physical production system. Digital twins are used to run sim- 16

ulations and can act as process-monitoring systems that enable 17

users or detection subsystems to identify candidate incidents, 18

calculate performance metrics, provide fault tolerance and re- 19
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dundancy, and ultimately to optimise the physical system [4].1

Currently, companies such as car manufacturers are planning,2

installing and programming robots to complete tasks on the fac-3

tory floor [5]. This is costly and it is not always certain that an4

optimal solution is deployed [6]. Furthermore, if any or mul-5

tiple changes are actioned on the production line, the size of6

this impact on production efficiency is often not factored into7

new layouts. It is possible that more efficient new layouts ex-8

ist. Robot arms, in the context of manufacturing, must not only9

find the most efficient solution to a given task, but also be able10

to adapt in real-time to changing situations.11

Robot arms are typically programmed to complete a given12

task deterministically. For a fully autonomous factory, devices13

such as robot arms, Automated Guided Vehicles (AGV) or even14

delivery ordering systems offer benefits from being integrated15

into one interconnected system and from being controlled by16

AI. These benefits range from increased productivity and out-17

put to improved return on investment for hardware. Compa-18

nies such as Microsoft, Amazon and Google are providing en-19

abling platforms, frameworks and tools for engineers to train20

AI. Game engines such as Unity and Unreal Engine 4 not only21

help engineers better understand and evaluate trained data but22

can also simulate a VE in the training phase, providing greater23

resilience to change in manufacturing processes. This allows24

for training multiple AIs simultaneously and thus increasing25

the stability of training as well as reducing training time. It is26

possible to simulate states that a standard deterministic process27

would not know how to overcome. Through exploring and ob-28

serving many state-action interaction pairs, it is possible via Re-29

inforcement Learning to have resilience to situations that would30

typically fail.31

Training a neural network can be achieved via different tech-32

niques and these techniques have parameters that can be tuned33

to better succeed in the applied domain. In this project, as34

proof of concept, a physical robot arm has been trained in a VE35

whilst simulating real world observation data. Creating a vir-36

tual training environment with the game engine Unity allowed37

for simultaneous training of multiple robot arm instances shar-38

ing their experience as one brain. This is a step towards fully39

autonomous industries; robots can learn and find the most effi-40

cient and fault tolerant way to accomplish the given task.41

This paper presents a simulation and communication archi-42

tecture between virtual agents and physical representations of43

these virtual agents. We train a robot arm virtually to succeed44

in completing a task in interacting with an environment which is45

continually changing. No data stack or labelled input related to46

the industrial robotics research field is gathered. Furthermore,47

this project is seeking to prove that a trained robot can complete48

a given task, even if it is currently in a state which it hasn’t been49

in before. Reinforcement learning rewards determine the best50

action for a highest future reward given a specific state. The51

trained policy experience is shared between agents. Further-52

more, environment observations can be numerical (force, ve-53

locity, location, distance, etc.) and/or visual observations by the54

robot arm. With correct observation inputs, an AI governed by55

a well-generalised training phase, can accomplish the set task56

from any state.57

The contributions of this work are as follows: 58

• A framework for training a digital twin in a contemporary 59

game engine using the reinforcement learning paradigm; 60

• Presentation of the relationships that exist between virtual 61

and physical portions of a digital twin and how these were 62

approached via our case study; 63

• Suggested heuristics for mapping of virtual learning onto 64

physical hardware to complete the digital twin loop. 65

2. Related Work 66

Considerable research has been conducted into generating 67

digital twins for a variety of uses [7, 8, 9, 3]. There exists a com- 68

mon interest in the community in using digital twins to manage, 69

mediate and learn from plausible and semantic simulations in 70

VEs. Comparative to the work that has been conducted in man- 71

ufacturing processes in physical space, less research exists in 72

the nascent field of virtual simulation learning and the mapping 73

of this knowledge to the real world. A variety of techniques 74

exist that have been applied into these areas from the field of 75

AI. This Section aims to summarise the key related work to the 76

project. Typically, machine learning is divided into three ma- 77

jor categories: supervised learning, unsupervised learning and 78

reinforcement learning. 79

Supervised machine learning depends on data pairs of input 80

vector and output value, also known as the supervisory signal. 81

Moreover, the higher in quality and quantity data pairs that are 82

fed into a training module, the better results machine learning 83

can achieve. The main difference between supervised and un- 84

supervised machine learning is that data for training is not la- 85

belled; the output could be unknown before training and any 86

pattern may not be apparent to a human observer. 87

Reinforcement machine learning does not require any data 88

stack of input-output pairs. Instead, AI receives a reward for 89

an action taken in an environmental state. This training process 90

intensely relies on a reward system design and input data, or in 91

other words - observation of the environment. Via the reward 92

system, it is possible to punish an agent too much for an action 93

which leads to a decision to stop exploring the environment, 94

even though new states can yield reward. Equally, not having 95

enough sensory information via observations will inhibit train- 96

ing and too much observation greatly increases training time. 97

Mnih et. al. demonstrated the use of a variant of Q-learning, 98

a model-free algorithm, to learn control policies from raw pixel 99

input via convolutional neural networks (CNNs), to output a 100

value learning. This was used to learn to play seven Atari 2600 101

games, demonstrating better performance than the state-of-the- 102

art techniques in six games and also outperforming a human 103

expert in three of the games [10]. Many algorithms have been 104

demonstrated to show better performance for policy determina- 105

tion in particular scenarios [11, 12, 13]. More lately Cao et. al. 106

demonstrated a technique called Hierarchical Critics that out- 107

performed Proximal Policy Optimisation in a proof-of-concept 108

[14]. This gives credence to consider multiple critics at a variety 109

of levels for reinforcement learning. 110
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A lack of digital connectivity exists between machines in the1

domain of manufacturing. A low-cost system of instrumenta-2

tion, sensors, and cloud technologies were proposed by Barbosa3

et. al. in order to monitor manufacturing processes of a robot4

arm [15]. This study looked at digitising a conventional robot5

arm and was showcased in a drilling process for a selection of6

aircraft materials to demonstrate this interface. Flexible and7

re-configurable assembly lines are considered by Kousi et. al.,8

using virtual worlds in combination with sensor data to dynam-9

ically update the digital twin based on real-time data coming10

from a physical equivalent [16]. This demonstrated the possi-11

bility of assembly adaptation based on a digital twin. Havard et.12

al. demonstrate a functional architecture meshing the synergy13

of digital twins with virtual reality approaches for work space14

assessments to be carried out [1].15

The premise of digital twins and using reinforcement learn-16

ing offers many benefits: such as, reduced time and money17

spent training in physical space, or risk of damage to an ex-18

pensive physical test-bed. This area is quite nascent and stems19

from the field of Industry 4.0. Verner et. al. develop a system20

of a reinforcement learning scenario where a humanoid robot21

learns the protocols necessary to lift a weight of unknown mass22

via exploring state space. To expedite the physical training pro-23

cess, the trials are conducted in virtual space by simulations in24

a digital twin. Parameters found by simulation learning, are25

mapped to the physical robot [7]. Hassel et. al. demonstrate26

a line-following robot being trained in virtual space under the27

paradigm of a digital twin [9]. Liu et. al. also show an ap-28

proach using deep reinforcement learning in the context of a29

digital twin to control human-like arms on a robot, using hu-30

man collected joint data to mitigate spare reward problems with31

deep reinforcement learning [8].32

3. Methodology33

This Section introduces the overarching methodology and34

workflow of the presented framework, this includes the train-35

ing procedures, experimental setup and evaluation methods.36

The methodology of the digital twin robot arm is functionally37

overviewed in Figure 1.38

We utilise the game engine Unity, which allows using a ma-39

chine learning (ML) toolkit to train agent(s) to interact with40

the virtual environment called ml-agents [17]. Multiple agents41

can be trained simultaneously sharing the same trained data at42

high speeds, cutting down training time. This empowers the43

ML community towards simulation learning. It is possible to44

simulate physical observations in virtual space, abstract away45

from real-time learning, and develop reward systems using the46

game engine in a virtual domain. The provided Academy tool47

in Unity ml-agents does not compute or execute neural network48

training, it is only tracking and observing the environment, this49

then sends all data to TensorFlow via an external communica-50

tion system. Unity ml-agents contains three main components:51

Agent(s), Brain, and Academy. The Agent component is used52

to define the agent in the scene, in our case the robot arm. Over-53

riding the Agent allows for collecting observations from the en-54

vironment and subsequently updating the agent based actions55

sent from the attached Brain. The Brain element contains the 56

definition of the observations and action spaces. The Brain el- 57

ement makes the decisions for all associated Agents. We use 58

the external Python API (External Brain) to control action de- 59

cisions for the attached Agents. 60

The combination of using the Unity game engine and 61

Google’s machine learning tool, TensorFlow, allows imple- 62

menting imitation learning, behavioural cloning (BC), gener- 63

ative adversarial imitation learning (GAIL) and/or curriculum 64

learning. All these tools and options enable broader use cases 65

for industries to adjust learning policies for different tasks. 66

Unity ml-agents also supports many simultaneous agents for 67

simulation. 68

3.1. The Physical Robot Arm Twin 69

Arm components were 3D printed with polylactic acid (PLA) 70

filament with a fill-rate of 20%. The robot arm makes use of 71

NEMA23, NEMA17 and NEMA14 stepper motors. Each mo- 72

tor’s power is increased to 24v, and appropriate amps for arm 73

sections from 1.5amp to 3.5amp are set, enabling control of the 74

robot without losing power. Increased power requires continual 75

temperature checks. Overheating can lead to skipping steps, 76

which means the robot can go out of synchronisation with the 77

AI. The stepper motors are controlled via Arduino boards with 78

a custom external micro-step driver. We an RGB-D camera to 79

provide observations of the environment state. The Kinect v2 80

camera has an API for Unity, unfortunately, this camera weighs 81

over 1.5 kilogram, and it has a minimum distance of around 28 82

centimetres from the camera to start detecting the depth of pix- 83

els. This makes the camera not suitable to affix onto the robot’s 84

end affector. Stationary camera placement is not suitable ei- 85

ther, as robot movements could potentially cover the view cre- 86

ating blind spots in the operating domain. The camera was 87

fixed above the principal robot section with a slight angle as 88

per Figure 3. The robot arm main controller runs the Marlin 89

open source software on an Arduino board with a Ramps1.4 90

shield. This hardware and software were originally developed 91

to control a 3D printer and required modifying code to adapt 92

the movements for the robot arm. 93

3.2. Reinforcement Learning 94

In this RL framework, the agent (in this case the robot arm) 95

interacts with the external VE over time steps, t. The set of all 96

states, s and the set of all actions, a, govern the interaction loop 97

in the VE. At every time step t the agent has a current state, st 98

and the agent observes information from the environment, this 99

observation at the time step is denoted Ot. The set of Transi- 100

tions, T ⊆ s × a × s, is the result of taking an action in a state 101

and an agent resulting in a new state. An action is taken by the 102

agent, at and feedback is provided to the agent from the reward 103

function, Rt : S × A → [−1, 1]. Subsequently, the agent moves 104

to a new state, st+1 and the reward (Rt+1) for this given state 105

transition (st, at, st+1), is evaluated. This results in a Markov re- 106

ward process tuple < S , A, P,R, γ > where S is a finite set of 107

states, A is a finite set of actions and γ ∈ [0, 1] is a discount 108

factor to prioritise short-term rewards. 109
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Fig. 1. Methodology Overview: Demonstrating the framework for interaction layers between physical and virtual equivalencies in this application.

Fig. 2. CAD representation of virtual robot arm overlaid with angles to
solve for each arm component for a target position (x,y).

Formally, P is the state transition probability matrix, this pro-1

vides an interface to represent the probabilities of transition for2

an agent a, from all states, s to future states s′:3

Pa
ss′ = P[S t+1 = s′|S t = s, At = a] (1)4

r is the reward function that encodes the expected reward af-5

ter a transition from P:6

ra
s = E[rt+1|S t = s, At = a] (2)7

The evaluated reward for a given time step is specified as the8

sum of all future discounted rewards:9

Rt =

∞∑
k=0

γkrt+k+1 (3)10

The state value function of the reward is the expected reward11

evaluation for a given state, s and exploration policy, π(a|s) =12

P[At = a|S t = s]:13

Vπ(S ) = E[Rt |S t = s, π] (4)14

For a state S and time step t, this value function Vπ tells the 15

agent the expected sum of future rewards for a given policy π. 16

This allows the agent to choose the right action that maximises 17

the sum of rewards. The agent has autonomy of choice in deter- 18

mining the action from the last state visited. The ultimate goal 19

in this process is for the agent to collect maximum reward possi- 20

ble in the minimum number of time steps. In general we need to 21

specify an exploration policy for action selection in simulation 22

space. We need a reward function to determine the feedback an 23

agent will receive for each action. A learning rule allows adap- 24

tation of the policy for action selection to adapt based upon the 25

feedback and reward received. Finally, a discount factor allows 26

value of short term reward over long-term reward, in adherence 27

with accomplishing maximal reward in minimal time steps. 28

3.3. Sensors and Experiment Setup 29

Unity ml-agents toolkit provides an option to detect objects 30

in the training phase using ray casts. For our experimental 31

setup, around the robot arm, we setup six platforms which are 32

spread equally within reaching distance of the arm grabber and 33

end affector. White coloured cubes are used for placing other 34

cubes upon. The red and green cubes are the main target for a 35

robot to find, grab, move and release onto another unoccupied 36

post. This experimental setup is shown in Figure 4. The task 37

the simulation will learn to complete is to be able to pick up a 38

coloured (non-white) cube and place it onto another unoccupied 39

pillar. 40

Each joint of the physical robot arm has limits of what angle 41

it can turn; either it is a design limitation, maximum belt length 42

or cable reaching distance limit. These limits must be captured 43

and implemented to the virtual environment with appropriate 44

treatment of the reward function if the virtual robot arm tries to 45
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Fig. 3. Showing the 3D printed physical 6DOF robot arm, with stepper
motors controlling the joint movement, a gripper to pick objects up and a
Kinect for a sensory system, to be able to perceive the environment.

Fig. 4. Overview of the experimental setup process showing the task at
hand to solve for the robot arm.

take an action resulting in rotating a joint outside its functional1

limits. We do not use inverse kinematics but instead allow ma-2

chine learning to learn control of the axial joint rotations of each3

sub-arm of the robot. For the physical robot the law of cosine4

can be used to compute how many degrees each joint needs to5

rotate for a given target position (X,Y). For the layout shown in6

Figure 2, this derivation is provided:7

θ1 = acos
L2

1 + X2 + Y2 − L2
2

2L1
√

X2 + Y2
+ θt (5)8

θ2 = acos
X2 + Y2 − L12 − L22

2L1L2
(6)9

The physical robot arm has a RGB-D camera attached, but10

this image and pixel distance data is not be fed into the neural11

training network. Many inputs such as these can have a negative12

effect on training time, though it may be possible to still train13

successfully. For agent sensing, we use the ml-agents 3D ray 14

perception sensor. The ray perception setup for the virtual half 15

our this robot arm digital twin can be observed in Figure 5. 16

These ray bundles are used to sense the VE in which the AI is 17

being trained. This technique could be classified as an encoder, 18

where data is simplified, and noise is removed before feeding 19

into the neural network. This is analogous to the approach car 20

companies such as Tesla are using for self-driving car AI. 21

Fig. 5. The ml-agents 3D ray perception sensors attached to the virtual
digital twin robot arm. Side, front and top view.

This sensor tool has an option to set the number of rays and 22

angle for each direction to detect any object matching a list. 23

These ray perception sensors are used as the vector of virtual 24

observations that feed our neural network as inputs. The neu- 25

ral network architecture that governs the vector of observations 26

and ultimately dictates the action to be selected by the agent is 27

shown in Figure 6. 28

We use the Proximal Policy Optimisation strategy to train our 29

policy [13]. A batch size of 128 is chosen with a learning rate 30

of 1.0e-4, linear learning rate schedule and maxSteps is set to 31

1.0e8. Hyperparameters for training this network are shown in 32

Figure 7. 33

3.3.1. Curriculum Learning 34

The training plan is an important step for reinforcement 35

learning in order to train efficiently in complex environments. 36

The AI can use a curriculum plan to reduce the difficulty of 37

initial training in an environment and improve convergence in 38

reinforcement learning problems [18]. In this project new cur- 39

riculum levels fall into two categories; introducing a new task, 40

action and/or new reward; or carrying on with current experi- 41

ences but requires more accuracy or speed to receive the same 42

reward. In this project, ten levels are developed to increase both 43

success rate and speed in training the AI, shown in Table 1. 44

3.3.2. Reward Function 45

For more stable training, balancing reward between negative 46

and positive ones is good practice because if an agent receives 47

multiple rewards, the sum of all rewards are applied for that 48

step. If the task requires to ignore other rewards and add only 49

one value, then a command to set a single reward rather than a 50

sum can be used. For this project the robot arm agent receives 51

multiple positive and negative rewards which are enabled in dif- 52

ferent levels of the curriculum agent training as per Table 2. 53
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Fig. 6. Neural Network architecture for training. Taking in a vector of
observations through 3 dense layers each with swish activation functions
f (x) = x · sigmoid(x). This then separates into 3 dense layers with softmax
activation and a set of action masks with strided slices (3,6,9) which con-
sider the discrete scales of expected value for a given action dictated by the
policy. These condense down to an action to take, given the input vector of
observations.

4. Results1

In order to best relay experiences during the training phase of2

this robot arm, as this is a case study, it is important that every3

step that was tried is extolled in order to better explain the in-4

tuition in this process. Before converging on the approach ulti-5

mately used, and presented more completely in this manuscript,6

several other techniques and methods for training were used.7

These are presented in a stage-based approach here and are also8

visualised in a description of the training process online [19].9

4.1. Initial Training10

Before reaching our final method, to start with training of the11

robot arm, inverse kinematics was applied to the agent. Out-12

put controls were associated with the end-effector of the robot13

arm. This allowed translation of the end-effector in the Carte-14

sian axes. However, the robot was required to take in a move-15

ment from the candidate network output, then determine valid-16

ity on the joint rotations to establish whether this is a viable17

robotArm:

trainer: ppo

batch_size: 128

beta: 1.0e-3

buffer_size: 10240

epsilon: 0.1

hidden_units: 128

lambd: 0.95

learning_rate: 1.0e-4

learning_rate_schedule: linear

max_steps: 1.0e8

memory_size: 64

normalize: false

num_epoch: 3

num_layers: 2

sequence_length: 32

summary_freq: 50000

reward_signals:

extrinsic:

strength: 1.0

gamma: 0.99

curiosity:

strength: 0.01

gamma: 0.99

encoding_size: 256

Fig. 7. Hyper-parameters for the Robot Arm training process

movement. If the movement is viable then it is applied - con- 18

stantly performing this check was causing training speed to be 19

slowed significantly. A large number of sensors were attached 20

to the robot arm end-effector with the intuition that this would 21

best allow it to receive information on the environment states 22

for its observations. This method failed to train in a reason- 23

able time, largely due to the large state space to explore and 24

increased number of observations required. In a second iter- 25

ation, the number of sensors attached to the end-effector was 26

minimised so as to only detect obstacles in the path and with 27

this information generate a Quaternion that observed the ro- 28

tation from the robot base to the target location when it was 29

sensed. It was determined at this stage that solving for inverse 30

kinematic movement validity, coupled with the end-effector be- 31

ing moved in Cartesian space resulted in unrealistic, jerky, robot 32

arm movement and motion. 33

Following this we abstracted away from inverse kinematics 34

and gave joint rotation control directly to the agent to learn. 35

This was done in conjunction with another policy type of Soft- 36

Actor Critic (SAC), which has maximum entropy, and it can 37

learn from any previous experience. Benefiting from many 38

desirable properties of reinforcement learning algorithms such 39

as Sample Efficiency, Non-sensitive hyper-parameters and Off- 40

Policy Learning, SAC was a natural choice as it is possible to 41

benefit from already collected real-world training examples to 42

shape the reward function when prototyping in a new task. The 43

intention here was to use Behavioural Cloning to try to expedite 44

training via feeding examples to the simulation. The curricu- 45

lum levels were not present for this as an attempt was made to 46

teach the arm by implicit example of task completion. However, 47
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Table 1. The ten curriculum levels, used to structure the training process
to guide interim strategies determined to be converging to the ideal trained
agent. Tolerance indicated is the threshold at which a reward will be given
if the task is performed within a certain euclidean distance of being ulti-
mately correct (in m). Within the Level column, a red colour introduces a
new task, action and/or new reward; and a blue colour carries on with cur-
rent experiences but requires more accuracy or speed to receive the same
reward.

Level Curriculum Adaptation

1 collision detection enabled - tolerance: 0.065
2 tolerance: 0.04
3 tolerance: 0.02
4 tolerance: 0
5 close gripper required for reward
6 carry cube to another free post for reward - toler-

ance: 0.4
7 tolerance: 0.2
8 tolerance: 0.1
9 tolerance: 0
10 open gripper to receive reward

training failed to complete via this approach, our understanding1

and intuition of this is that still more examples were required for2

the agent to learn to mimic observed behaviour. We proceeded3

without this ablation and considered the PPO policy presented4

in Section 3 alone.5

4.2. Training Results6

Unity allows for the time scale of the simulation to be ac-7

celerated, which can cause some issues from tunneling effects.8

As a result, hyper-parameters were customised for a slow-pace,9

stable training as illustrated in Figure 7. This took 30 hours and10

over 40 million steps to complete all curriculum levels. A dis-11

section of the curricula levels and cumulative reward is shown12

in Figure 8. This graph illustrates the necessity of the curricula13

in expediting the training process for this robot arm use case.14

Without it, significantly more time would have elapsed before15

the agent had accrued some reward in the training process and16

started to adapt to attempt to maximise that future reward. The17

graph illustrates, for example, when the curriculum increments18

for the first time, cumulative reward deteriorates from around19

55 per step to less than 10. Another significant curriculum step,20

can be seen in Level 5 where the gripper is required to be closed21

for a reward to be given and the agent, for a long period, accrues22

negative reward. Level 6 sees the agent training for that largest23

period of time in steps as once it correctly grips an object from24

Level 5, it now needs to understand to move the picked up ob-25

ject and place it onto another post.26

The PPO policy achieved good results in the task described27

in Section 3 and succeeded in training, the trained agent can28

be seen here [19]. The trained neural network can be evalu-29

ated for a specific state in the virtual part of the digital twin30

and output codes for the physical part of the twin to correctly31

perform actions that solves the task. This demonstrates our con-32

tribution, showing an applied machine learning implementation33

within the field of robotics, using virtual environments to simu-34

late the training phase of a robot’s task set.35

Table 2. Rewards and descriptions per curriculum levels

Reward: Curriculum Description

-1.f/maxStep: all Reward added to incentivise agent
exploration.

-0.05f: all Added to disincentivise the robot to
exceed any joint limits

-0.05f: all Disincentivise actions to open grip-
per when it is open and vice versa

-1.0f: ≥ 1 Ends an episode if the arm collides
with an object

+1.0f: < 5 For the gripper to reach the object
+1.0f: ≥ 5 For grabbing the cube within toler-

ance threshold
-0.1f: ≥ 5 Attempt to grab cube, but end affec-

tor too far
+1.0f: ≥ 6 & ≤ 9 Successfully moved a cube to an-

other free post, within tolerances
-1.0f: ≥ 8 Ends an episode if a cube collides

with a post to encourage lifting the
end affector

+1.0f: 10 Cube grabbed, moved to another lo-
cation and released with no mis-
takes

-1.0f: 10 Ends an episode if the cube is re-
leased at an incorrect location

4.3. Mapping Network Outputs to the Physical Twin 36

The physical robot arm joints have markers to determine 37

their starting position before power up. This position in the 38

robots’ controller is registered as the home location for each 39

joint. From this home position the robot arm must move to 40

the ready position which matches virtual robot arm position. 41

If the physical robot reaches this position, the procedure can 42

be stopped and additional training performed before continu- 43

ing with the twinned task completion. Following this setup 44

stage, the trained task is executed and commands are sent to 45

the robots’ controller. These commands are constructed in a 46

string of g-code format which is built dependant on the robots’ 47

new position. The command send interval to the Arduino de- 48

pends on the virtual and physical robot speeds. We used 0.5s 49

intervals with a maximum rotation speed of 25◦/s. An exam- 50

ple of a g-code: G1 X 10.2 Y 120.54 Z 30 E1 74.51 E2 51

12.03 E3 0.5, where each element controls an axial rotation 52

of the robot, except for E3 which controls the gripper on a con- 53

tinuum [0-1]. The training of the virtual agent and also the 54

trained agent can be seen being mapped onto the physical por- 55

tion of the digital twin via YouTube [19]. 56

5. Discussion 57

The robot arm took over 30 hours to train to complete this 58

task. When considering the possible number of robot arms in- 59

side a factory and the complexity of the task they execute, this 60

can be an inhibiting factor to deployment into real-time scenar- 61

ios. However, net trade off in efficiency over time could offset 62
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Fig. 8. Review of curriculum vs. reward and episode length in training.

this initial time investment. Naturally, more compute power1

would significantly alleviate this concern. This robot arm was2

trained with only one PC, which is not designed for machine3

learning purposes. Furthermore, the Unity communicator is us-4

ing a network port to receive observations, rewards and return5

actions, which leads for an option to use multiple simulation6

deployments to train in the virtual environment and parallelise7

the operations required. This also allows for improved stability8

through fault tolerance.9

5.1. Industry10

The digital twin is a much wider concept than has been ex-11

plored here. This project is a small part, but a step forward12

towards fully autonomous industries. Implementing machine13

learning and accounting for ingestion of new experiences year14

after year will improve production in both time and quality mea-15

surements. The biggest savings are likely to be realised when16

production lines must be setup for the manufacture of new prod-17

ucts. Furthermore, it may be possible to learn from observing18

existing production lines and using this data and the behavioural19

cloning approach – learn, explore, test and prove new variations20

of production lines to achieve more efficient results. The robot21

arm could be trained to detect maintenance issues, or recali-22

brate in real-time after tolerance differences are detected within23

the process. Finally, AI should be implemented into a factory24

if AGV based production lines are in place as this can signifi-25

cantly benefit from an Internet of Things approach.26

5.2. Issues27

The most challenging part in tailoring these virtual environ-28

ments and training processes is that the agent tries to find a29

shortcut or break the virtual environment logic to receive more 30

reward. However, virtual training allows for a user to observe 31

progress and if need be, to make changes to eliminate any logic 32

flaws. Intelligent design for a good reward system is vital when 33

considering the ultimate goals of the task. Punishing reward 34

accumulation too much will stop the agent from taking any 35

risk and exploring new state space, creating artificial plateaus 36

in training convergence. The contrary is also true – giving too 37

much reward for some facet to the agent will focus agent at- 38

tention in and around the reward mechanism. To succeed with 39

training, it is important to adjust hyperparameters for the project 40

needs and give a reasonable amount of time for training. 41

5.3. Improvements 42

In this project, to simplify the machine learning process, and 43

also because of the delay that existed between the Arduino 44

physical twin controller and Unity communication, the action- 45

space type is set to discrete. This action-space type states, for 46

example, to go left or not. It doesn’t state how much to move 47

left by increasing velocity considering current velocity. This 48

leads to small movement jerking, which is smoothing out as the 49

robot’s training continues. For more complex tasks or if the 50

project is requiring more accurate tracking, an infrared tracking 51

system would be an improvement on the current implementa- 52

tion. A VIVE active tracker attached to the objects with a min- 53

imum of two lighthouses within the environment could return 54

not only the precise location of the object but its rotation as 55

well, allowing for more information to be fed into the system, 56

improving performance and potentially reducing the time taken 57

to convergence. 58
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6. Conclusion and Future Work1

This manuscript outlines the creation of a digital twin, with2

physical and virtual equivalencies. We develop an open-source3

3D printed robot arm, analogous to contemporary robot arms4

used in manufacturing. We use Marlin software to control the5

physical portion of this digital twin, this has enough function-6

ality to build a controlling unit and communicate with the vir-7

tual training environment solution. We utilised Unity ml-agents8

to both build the virtual representation of the robot arm dig-9

ital twin but also communicate with TensorFlow for training10

in a simulation learning paradigm. This combination of hard-11

ware and software was used to virtually train a robot arm using12

reinforcement learning to complete a given task. It can also13

complete this task from previously unobserved states in testing.14

The main contribution of this presented case study lies in the15

presented connectivity between the physical and virtual compo-16

nents of a digital twin. The framework for training and heuris-17

tics to tackle virtual-physical connections can generalise quite18

well to map to other applications of digital twins. This is of use19

to practitioners wanting to create test scenarios such as this one20

involving hardware sensors that guide physical actions of au-21

tomatons, informed by training in virtual space. Additionally,22

this is coupled with guidance on training protocols in a stage-23

based approach to model training, where the model is then used24

to evaluate and guide a physical twin where the method of this25

communication, virtual to physical, is presented.26

We will look to implement a higher accuracy tracking system27

for further development, this should allow for more complex28

tasks to be developed for training. Furthermore, more in-depth29

hyper-parameter adjustments and a rigorous ablation study, in-30

cluding concluding the initial insight into SAC, for different use31

cases will be started. Lastly, the next step in this research field32

should be collaborative communication, two robots working to-33

gether as complementary but independent agents to complete34

one task.35
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