
Evolving Simple and Accurate Symbolic Regression
Models via Asynchronous Parallel Computing

Aliyu Sani Samboa,∗, R. Muhammad Atif Azada, Yevgeniya Kovalchuka, Vivek
Padmanaabhan Indramohanb, Hanifa Shahc

aSchool of Computing & Digital Technology, Birmingham City University, UK
bSchool of Health, Education & Life Sciences, Birmingham City University, UK
cFaculty of Computing, Engineering & the Built Environment, Birmingham City

University, UK

Abstract

In machine learning, reducing the complexity of a model can help to improve its

computational efficiency and avoid overfitting. In genetic programming (GP),

the model complexity reduction is often achieved by reducing the size of evolved

expressions. However, previous studies have demonstrated that the expression

size reduction does not necessarily prevent model overfitting. Therefore, this pa-

per uses the evaluation time — the computational time required to evaluate a

GP model on data — as the estimate of model complexity. The evaluation time

depends not only on the size of evolved expressions but also their composition,

thus acting as a more nuanced measure of model complexity than the expres-

sion size alone. To discourage complexity, this study employs a novel method

called asynchronous parallel GP (APGP) that introduces a race condition in

the evolutionary process of GP; the race offers an evolutionary advantage to the

simple solutions when their accuracy is competitive. To evaluate the proposed

method, it is compared to the standard GP (GP) and GP with bloat control

(GP+BC) methods on six challenging symbolic regression problems. APGP

produced models that are significantly more accurate (on 6/6 problems) than

those produced by both GP and GP+BC. In terms of complexity control, APGP

prevailed over GP but not over GP+BC; however, GP+BC produced simpler

∗Corresponding author
Email address: aliyu.sambo@mail.bcu.ac.uk (Aliyu Sani Sambo)

Preprint submitted to Journal of LATEX Templates February 16, 2021

solutions at the cost of test-set accuracy. Moreover, APGP took a significantly

lower number of evaluations than both GP and GP+BC to meet a target train-

ing fitness in all tests. Our analysis of the proposed APGP also involved: (1)

an ablation study that separated the proposed measure of complexity from the

race condition in APGP and (2) the study of an initialization scheme that en-

courages functional diversity in the initial population that improved the results

for all the GP methods. These results question the overall benefits of bloat

control and endorse the employment of both the evaluation time as an estimate

of model complexity and the proposed APGP method for controlling it.

Keywords: genetic programming, model complexity, parallel

computing, evaluation time

1. Introduction

The key challenges in managing the complexity of machine learning (ML)

models include defining what complexity is and constructing a mechanism to

control it; however, because the motivations behind existing definitions vary

significantly, these definitions fail to transfer across various applications or al-5

gorithms. For example, a common reason for managing the complexity of ML

models is attaining models that are just complex enough to explain the phe-

nomenon generating the given data but not too complex to reflect noise in the

training data. This way, the predictions on unseen data will be accurate [1].

Often in standard regression methods, the complexity is constrained by penalis-10

ing the increase in the magnitudes of the coefficients of a fixed model. However,

in methods such as Genetic Programming [2] the model is not fixed and hence

such a penalty does not make sense. Another reason for controlling complexity

is interpretability because simple models can be more interpretable [3]; inter-

pretability of ML models is now a legal requirement due to frameworks such as15

2

the EU General Data Protection Regulation (GDPR)1. Although very useful,

such research produces post-hoc methods to explain pre-trained models on each

training instance [4]. Therefore, this interpretability does not concern accuracy

on test data. A yet another incentive for managing complexity is computational

constraints. For example, Internet of Things (IoT) devices constrain the evalua-20

tion time of an acceptable model even if this compromises the model’s accuracy

[5]. However, a question arises as to whether constraining evaluation times can

effectively decrease complexity and improve accuracy. In summary, the reasons

for controlling model complexity vary and so does the notion of complexity [6].

This study focuses on the complexity of models produced by Genetic Pro-25

gramming (GP) [7]. In GP, the concern is that models may grow too complex

and render ineffective evolutionary search [8]. Bloat control is thus the most

common way of controlling model complexity in GP, and it limits the sizes of the

evolved expressions. However, previous studies have demonstrated that bloat

control alone does not always overcome the model overfitting problem (that is,30

a good performance on the training/seen data but a poor performance on the

test/unseen data) [9, 10].

To address such ineffective control of model complexity in GP, this paper

presents a novel method called Asynchronous Parallel Genetic Programming

(APGP). Instead of model size, APGP employs the evaluation time — the35

computational time required to evaluate a GP model on data — as a notion of

its complexity. This notion is based on the observation that a model made up

of computationally expensive building blocks or having large structures takes a

long time to be evaluated, and hence is computationally complex. Therefore,

the evaluation time control discourages both the structural as well as functional40

complexity.

The next question is how to control the evaluation times. Instead of sub-

jectively penalising the slow evaluations, APGP takes a simple view: induce a

1The EU General Data Protection Regulation includes a right to explanation in situations,

where ML algorithms are applied to make a decision affecting a person.

3

race among competing models that allows a model to join the breeding popula-

tion as soon as it has finished evaluating. Hence, the faster models can (fitness45

permitting) join the breeding population before their slower counterparts and

gain an evolutionary advantage. This advantage arises because the competing

models compete in terms of not only their accuracy but also their evaluation

times due to the race; this is quite unlike in standard GP where each evaluation

(or a batch of evaluations, as in generational replacement) is allowed to finish50

before the next evaluation (or a batch of evaluations) can start. Note, however,

that selection is solely based on accuracy; therefore, APGP facilitates a dynamic

interplay between accuracy and simplicity. To induce this race, APGP evaluates

multiple models simultaneously across multiple asynchronous threads.

To evaluate the effectiveness of the proposed APGP method, this work first55

compares APGP with standard GP and GP with a very effective bloat control

mechanism (GP+BC). The results indicate that APGP is capable of breeding

models that are simpler than those produced with GP, yet more accurate on

both training and test data than the models produced by the other two methods.

Moreover, APGP takes a lower number of evaluations to match the training60

accuracy of GP compared to GP+BC.

This work then further analyses the proposed APGP in two ways. The

first is an ablation study that analyses containing complexity explicitly with

evaluation time instead of using APGP, which controls complexity implicitly

with a race. To do that we employ four effective bloat-control techniques but65

to control evaluation time instead of expression sizes. The results indicate that

while evaluation time control performs better than size control, the APGP still

produces more accurate models (both training and test) than explicit control

of evaluation time but while allowing greater model complexity. This suggests

that the complexity control in APGP balances the accuracy-simplicity dilemma70

better than its counterparts.

This work also explored an initialisation scheme where the initial popula-

tion comprises of identically sized individuals. This is because when models in a

population are sized identically, the evaluation times are determined primarily

4

by functional complexity; therefore, an evaluation time control can discourage75

functional complexity more than it can in a size-varying population. The re-

sults indicate that this initialisation scheme benefited all the methods, even the

standard bloat control methods that do not employ time control.

The rest of this paper is organised as follows. Section 2 provides some

background on GP and some notions of complexity related to it. Also in Section80

2, the concept of evaluation time is introduced and the challenge of measuring

it reliably is discussed. Section 3 presents the proposed APGP method. The

experimental setup is outlined in Section 4. The results of the experiments are

reported and discussed in Section 5. Sections 6 and 7 provide further analysis of

the proposed method. Finally, section 8 concludes the paper and outlines some85

directions for further work.

2. Background

2.1. Genetic Programming (GP)

GP enables computers to program themselves and build models automat-

ically. It is also known as an evolutionary algorithm (EA) because it loosely90

imitates the Darwinian principle of natural selection to automatically search

the space of possible models without any prior knowledge [2]. The process in-

volves probabilistically choosing better performing individuals (models) from a

given population, and producing offspring via simulated genetic operators of

crossover and mutation. GP has been used to produce solutions to many prac-95

tical problems. A detailed account of practical and innovative results produced

by GP can be found in [11].

A variable tree-styled structure is the traditional and most popular repre-

sentation of GP individuals [12], although other variations are also common

[13, 14, 15, 16, 17, 18]. These representations produce models of different sizes;100

in fact, these sizes may grow without improving accuracy (also known as code

bloat) [19]. To address this issue, a lot of research efforts have been dedicated to

developing methods for measuring and managing the complexity of GP models.

5

The existing notions of complexity in GP and ways of its control are discussed

below in turn.105

2.2. Complexity in Genetic Programming

Some motivations for managing the complexity of computational models

were discussed in Section 1. Here, we consider how some of these motivations are

being addressed in GP. This involves examining the most widely used measures

of complexity and mechanisms employed to control them.110

2.2.1. Structural Complexity

Traditionally, controlling complexity in GP means controlling the size of

evolved structures, which includes limiting the number of nodes, encapsulated

sub-trees and layers making up the evolved expressions, while ignoring the un-

derlying functional or computational complexity.115

The size is a simple and easy-to-calculate measure of complexity [20]. Early

in the development of GP, it was observed that the size of GP models can

grow unnecessarily (a phenomenon termed as bloat), severely constraining the

computational resources [8]. The study of bloat control in GP has produced a

large body of literature that can not be covered extensively here. Instead, we120

provide a quick summary of some of the popular bloat control methods.

Many bloat-control techniques either set an arbitrary size (or depth) limit

for models, or penalise large models [21]. However, such setups also encourage

growing up to these size limits because that guarantees survival of such individu-

als after crossover [22, 23]. Other bloat-control techniques either limit the search125

space or reduce the likelihood of producing large models through customisation

of the evolutionary process [21]. Another approach is to use multi-objective

genetic programming (MOGP) [20] that optimises the twin objectives of fit-

ness and size to obtain Pareto optimal solutions. MOGP is sometimes used in

combination with other measures of complexity.130

Dynamic Operator equalisation (DynOpEQ) [24], a recent and advanced

bloat-control technique, dynamically changes the distribution of size in a pop-

6

ulation to admit more individuals in those size ranges that are producing fitter

models. First, the individuals of the population are segmented into bins accord-

ing to their sizes. When a new generation is produced, the number of individuals135

allowed in each bin is determined by the average fitness score of the correspond-

ing bin in the parent generation; bins with higher average fitness scores are

allowed more individuals. However, an offspring will always be admitted if its

fitness score is higher than the best of the bin it belongs to, even if the bin’s

quota has been exhausted. Further, if an offspring is the new best and its size140

does not fit into any existing bin, then a new bin is created for it. In effect,

DynOpEQ does not guarantee that bloated individuals will not exist in the

population; however, the population is controlled in such a way that growth in

size is somewhat contained unless fitness is improving. DynOpEQ is inefficient

as it discards a large portion of evaluated candidates; an evaluated offspring is145

likely to be discarded if the bin it belongs to is full. To alleviate this problem,

Mutation Operator Equalisation [24] was introduced; it mutates candidates (in

small steps) to fit into the nearest bin with available space. However, the re-

quired changes may be exceedingly destructive to the model’s fitness when the

distance between the individual’s original size and the size it needs to be is too150

large.

Some studies have explored the concept of Kolmogorov complexity [25, 26]

to manage complexity in GP. This concept is adopted from algorithmic infor-

mation theory and relates to specifying an object such as a binary string or

a sequence of numbers. The Kolmogorov complexity of such an object is the155

length of the shortest computer program that can produce the object and noth-

ing more. An abstract coding language (universal Turing machine) is used as a

reference. However, this measure is uncomputable [27, 28] because the output

of every program cannot be computed to definitively determine the shortest.

Hence, the minimum description length (MDL) [29, 30], a computable form of160

the Kolmogorov complexity, has been applied in GP instead [31]. The study

[31] calculated the MDL value of an individual by summing the length of code

required to encode it and the length of code required to encode its classification

7

errors. Thereafter, a scaling technique [32] was used to transform the MDL value

to a windowed MDL value; the windowed MDL value is relative to the maximum165

MDL value of the individuals produced up to that point of the GP run. The

MDL-based fitness function, which was setup to minimise the windowed MDL

value, controlled the growth of the individuals. However, the implementation

only works under two conditions: (1) where performance of individuals improves

with the growth of the trees, and (2) where the fitness of the substructures of170

the trees are well-defined.

Restricting the structural representation of GP solutions is not an effec-

tive way of managing their complexity. In symbolic regression, for example,

the model size does not represent the underlying functional and computational

complexity of the model. For instance, restricting size would mean penalising175

the large yet linear expression 9x+6x+3x+2x+x, which is computationally less

complex than the smaller expression sin(x) [10], which is computationally equiv-

alent to the implementation of its Taylor series expansion
∑∞

n=0(−1)n x2n+1

(2n+1)! .

Moreover, the response surface of sin(x) is more complex than that of the lin-

ear function that is larger in size. Further, two expressions with the same size180

may have different response surfaces; the response of the function sin(9x) has

greater fluctuations than sin(2x). Thus, model complexity in GP is more than

their representation.

2.2.2. Functional Complexity

Approaches based on functional complexity focus on the functionality of185

models rather than their representation. To elicit functional complexity, one

method approximates the evolved expressions with Chebyshev polynomials [33]

such that functionally complex expressions are approximated by polynomials

of a higher degree. The degree of approximating polynomials is termed as the

order of non-linearity of the corresponding GP expressions [34], which should190

be minimised. However, the minimisation procedure requires the evolved ex-

pressions to be twice differentiable, a property that is not always guaranteed.

The study [33] aimed to optimise three objectives: accuracy, the order of non-

8

linearity and expressional complexity (size). A trade-off between accuracy and

the order-of-non-linearity to guide selection led to improved generalisation over195

bloat control. Further, the study introduced a system that alternates between

the optimisation of two sets of objectives during the evolution: (1) the optimi-

sation of accuracy and the order of non-linearity, and (2) the optimisation of

accuracy with size. This 2-D optimization framework showed improvements in

both managing the size of evolved models and their generalisation ability.200

To avoid the constraint of twice-differentiability in [33] Vanneschi et al. [9]

defined a less rigorous measure of functional complexity, whereby the slope of

an expression along each feature dimension is approximated with a simpler but

error-prone measure that approximates second order partial derivatives with

a finite difference method that uses unequal intervals; however, the eventual205

measure of complexity that the work proposes is mathematically questionable

because it simply averages these approximations to partial derivatives across all

the feature dimensions to get an average complexity. To what extent that aver-

age diverges from a Hessian is not discussed. To avoid computational expense,

this measure was only computed for the best individual in each generation.210

Crucially, however, the paper reported that a decrease in this measure did not

necessarily decrease overfitting.

Castelli et al. [35] proposed other complexity measures that relate to curva-

ture. The authors quantified the degree of curvature by examining the output

of the pairs of close training points for a given model. The number of pairs with215

very different outputs were used to reflect the curvature. This formed the basis

of two measures: (1) graph-based complexity to measure functional complex-

ity and (2) graph-based learning ability to quantify the ability to learn difficult

training points. The result of the experiments showed some generalisation gains

over standard GP.220

2.2.3. Complexity Based on Statistical Learning

Methods for managing model complexity based on statistical learning the-

ory, including generalisation error-bound Vapnik–Chervonenkis (VC) theory and

9

Rademacher complexity theory [36] [37], are designed to find a balance between

model complexity and its generalization capability; while models should be com-225

plex enough to find patterns in training data, those that are too complex do

not generalise well. The VC dimension is a general measure of the capacity or

complexity of a learning machine [38] [39]. According to the original definition

proposed for a set of indicator functions, the VC dimension is the maximum

number of vectors that can be separated (shattered) into two classes in all pos-230

sible ways by a set of functions [38]. The VC dimension is used to provide

various estimations of generalisation errors.

Structural risk minimisation (SRM) is a framework that uses the VC di-

mension to assess the generalisation ability of a learning machine [40]. The

assessment involves predicting the distance between the training and test er-235

rors. To do this, SRM defines the upper bound of the generalisation error based

on the empirical risk (training error) and confidence interval. The confidence

interval measures the difference between the empirical risk (training error) and

the expected risk (generalisation error); it depends on (1) the size of the train-

ing set and (2) VC dimension. When the size of the training data is fixed, the240

generalisation bound is indicated by the VC dimension only; therefore, it is also

called the VC generalisation bound or VC bound. SRM is used to produce an

optimal model that finds a balance between minimising the upper bound of the

generalisation error and minimising the training error. SRM was also used to

manage the complexity of evolved models in [41]. While the proposed method245

outperformed standard GP by producing smaller sized models with better gen-

eralisation, the authors acknowledged the expensive computational cost of the

method and lack of exploration of the parameters used in measuring the VC

dimension.

Rademacher complexity extends the VC dimension to handle real-valued250

functions; therefore, it can be applied to both classification and regression prob-

lems. This measure of complexity has a tighter bound on the generalization error

than the VC dimension, and unlike the VC dimension, it depends on the data

distribution. Rademacher complexity was used in [42] to drive the evolutionary

10

process, which led to models with significantly smaller sizes and better gener-255

alization ability compared to those generated by standard GP. However, the

implementation has a lengthy process of tuning the parameter used to increase

the pressure when overfitting occurs. Similar to the VC dimension, this is not

a trivial task to compute.

Azad and Ryan [43] used the variance of the output values of evolving ex-260

pressions to infer their complexity. They combined the variance and the fitness

as twin objectives to optimise. Although variance differs with mathematical

smoothness (a straight line can have a greater variance than a sinusoid), its

combination with fitness meant that expressions within similar functional space

may normally be compared in later generations with greater genetic convergence;265

however, this needs further verification. The method improved generalisation.

Moreover, since the method does not require specialised multi-objective optimi-

sation methods, it is simple to implement and computationally inexpensive.

Ni and Rockett [44] coined a measure of complexity that incorporates Tikhonov

regularization (as a functional complexity indicator) and size (a structural com-270

plexity measure). Tikhonov regularization (also known as ridge regression) is

a simple and common L2 parameter regularization strategy. This work was

motivated by the understanding that addressing functional complexity does not

necessarily address structural complexity and vice versa; also both are impor-

tant in GP. Therefore, they used a two-dimensional vector that consisted of the275

Tikhonov regularizer (an indicator of the smoothness of response of the func-

tion) and the size of the model to represent its complexity; the Pareto optimal

individual is considered the simpler individual. The two-dimensional vector was

then used as an objective in conjunction with accuracy in a traditional multi-

objective optimisation approach. This method led to generalisation gains over280

GP with size control. It also attained higher accuracy over GP with Tikhonov

regularization.

In summary, the popular techniques based on structural complexity tend

to reduce the model sizes but not overfitting; likewise, the techniques based

on functional complexity show some generalisation gains but often need to be285

11

married up with structural complexity and require parameter tuning overhead;

also, these techniques are often tailored to specific tasks such as regression

whereas automatic programming in GP extends beyond that. In contrast, the

present study aims to induce non-complex models naturally regardless of the

application domain by using the model evaluation time as a measure of its290

complexity.

The use of the evaluation time as an indicator of complexity is relatively new

in GP such as in the proof of concept of this work [45]. At around the time of

publication of [45] another study [46] also used evaluation times to control bloat,

where the correlation between the size and the evaluation time was employed to295

manage bloat in a variety of problems. Although that second study corroborates

our proposal that the evaluation time can be used to control model complexity,

this work goes beyond bloat control to assess how evaluation time reflects both

size and functional complexity, and proposes a new method, called APGP, for

managing model complexity by enabling a race condition among evolved models.300

2.3. Time is Not Size

Since Section 2.2.1 explains that model size does not necessarily represent

functional complexity, this section empirically demonstrates how, instead, eval-

uation time can discriminate between different functional complexities. This

demonstration is important because it verifies whether considerable time differ-305

ences exist between different functional complexities of identically sized expres-

sions so that a GP system can exploit these differences to promote functional

simplicity. After all, evaluation time is also a function of model size, and if func-

tional differences of identically sized expressions do not show up in evaluation

times, then measuring time is just another way of measuring expression sizes.310

Clearly, this is undesirable.

To this end, four different function sets were used to generate symbolic re-

gression models of different complexities. Functional complexity of these sets

decreases in the following order: {cos, sin}, {cos, sin,+,−}, {×,÷,+,−} and

{+,−}. Then, differently sized expressions (10, 20, 30, ..., 300) were generated315

12

for each function set, and 30 random expressions were generated for each size.

All models (expressions) were then evaluated 50 times, each with the same set

of data. The four plots in Figure 1 represent the average evaluation times of

the individuals according to their size and complexity.

Two trends are clearly visible in Figure 1: (1) for a given size, the higher the320

functional complexity the greater are the evaluation times; and (2) evaluation

times are strongly correlated with the expression sizes, as expected. Hence, the

evaluation time indeed discriminates between different functional complexities.

However, if a simple function is represented inefficiently by an excessively large

expression, it evaluates slowly. Therefore, evaluation time control impacts con-325

ditionally: it curbs functional complexity when individual sizes are similar and

allows greater sizes for functionally simpler models upto a certain tolerance (or

range); however, in the presence of very different sizes (such as during early

generations) it curbs growth in size (controls bloat). To estimate the tolerance

for greater sizes of simpler models, compare different curves at identical values330

along y-axis of Figure 1: for example, at evaluation time = 300 ms, ADD-SUB

models can be more than twice as large as COS-SIN models.

The above findings also reveal the limiting behaviour of evaluation time

control in GP. In a functionally diverse but size-converged population – where

bloat control is impotent – evaluation times discriminate between functional335

complexities, whereas in a functionally converged but size-diverse population,

evaluation times discriminate between sizes.

2.4. Measuring Evaluation Time Reliably

Consistency in the measurement of the evaluation times is critical to esti-

mate the complexity of models reliably. However, evaluation times vary across340

multiple executions, and if this variability is high, the reliability of the complex-

ity estimate is low. However, this variability can not be completely eliminated

because it results from CPU scheduling decisions that are beyond our control.

Still, we managed to significantly minimise this variation across evaluations.

In particular, we found that certain CPU management options can help345

13

Figure 1: Relationship between the evaluation time, size and composition of models. Individ-

uals made up of COS and SIN operators have higher average evaluation times than same-sized

individuals from other function sets. Furthermore, the size correlates with the evaluation time.

minimise the evaluation time variation. These options include: stopping all

background services; locking the CPU speed to prevent the operating system

power management from interfering; executing the experiments on dedicated

processors; and assigning the experimental tasks a high priority. Figure 2 il-

lustrates the impact of these options. In the figure, each box-plot represents350

multiple evaluation times for an individual of a given size. Figure 2a shows that

when no CPU management options were applied the variation in the evaluation

times was high. In contrast, Figure 2b shows that when the CPU management

options were applied the variation clearly decreased. Thus, we were able to

use a single evaluation to measure the evaluation time in the later reported355

experiments.

The time measurements were made using a CPU-time-based function that

employs CPU performance counters [47]. This function is available in Python

3.3 and above. The function offers high resolution (in nanoseconds) across

platforms, while the returned values are in fractional seconds.360

The techniques used to improve time readings may not work in all situations.

14

(a) (b)

Figure 2: Measuring evaluation time reliably: applying CPU management options leads to

more consistent measurements.

For example, stabilising time measurements becomes more challenging when the

models being evaluated are exceptionally large, like those used in [48], where

trees with millions of nodes were evolved. In this case, CPU memory caching

comes into play. This is when the processor, while executing a task, has to365

access CPU memory caches (L1, L2 and L3) having different speeds. Moving

from one type of cache to another may introduce delays and inconsistencies in

the time measurements. In any case, the achieved improved stability enabled

us to explore the proposed concepts and systems.

2.5. Parallel Genetic Programming370

Because we leverage parallel computing for our proposed system, we first

review its use in existing GP literature and contrast it with our objectives.

Although the use of parallel computing is not new in GP [49, 50, 51], it

is typically to improve the run times [52] of GP, as opposed to reducing the

complexity of individual models, which is the target of this study. As GP runs375

can take a long time to complete, parallelising these runs reduces the overall

run time. Most commonly, generational replacement schemes parallelise the

15

evaluation of offspring populations. However, the generational replacement re-

quires the entire offspring population to be ready before its members can start

breeding, which means that all evaluation threads join at a single point of syn-380

chronisation before the evolution proceeds further. Hence, this parallelisation

confers no advantage to simpler individuals and is inefficient in terms of resource

utilisation: while a complex individual is taking an excessive amount of time

to be evaluated on one CPU, the remaining CPUs stay idle after other, less

complex, individuals have been evaluated.385

Some EAs have employed asynchronous parallel computing in non-GP se-

tups to alleviate this problem of idle time. For example, an evaluation time

bias favouring smaller evaluation times can be observed in [50, 53]; however,

these studies are concerned with real parameter optimisation using fixed-length

chromosomes and do not study the impact of asynchronous parallelism on the390

functional complexity of variable length structures in GP.

EAs also use parallel computing in the so called island model [54, 55], where

the evolved populations are divided into multiple distinct islands, and the sub-

population in each island can be evolved in a separate parallel thread. Regardless

of parallelisation, the island model offers advantages such as greater diversity395

in the overall population because each island remains oblivious to other islands

except at discrete intervals when selected individuals are sent to other islands.

Parallelisation in this model just speeds up the run times.

3. Asynchronous Parallel Genetic Programming (APGP)

The APGP method evaluates GP individuals asynchronously to allow simple400

individuals that are evaluated faster an opportunity to get into the breeding

population prior to their more complex (and still evaluating) counterparts. This

mechanism is also natural; after all, natural populations do not simply halt

breeding while one of their members is being tested against the environment.

Yet, this is precisely what happens in traditional GP: while an individual of any405

complexity is being evaluated, the evolution stops regardless of how long that

16

evaluation takes. Thus traditional GP confers no advantage to fast evaluations

(and hence potentially low complexity). However, APGP aims to leverage the

advantage of fast evaluations to breed simple yet accurate models.

APGP is based on Steady State GP [56], a replacement scheme in which410

the offspring immediately competes for a place in the parent population after

being evaluated. In APGP steady state replacement allows multiple breeding

operations and fitness evaluations to be executed in parallel and asynchronously.

For example, a maximum of 50 of such breed operations (followed immediately

by the corresponding fitness evaluation; note our setup produces one offspring415

per breed operation) can be allowed to run at the same time; as soon as one

operation finishes, another one starts. However, these operations may finish at

different times due to the varying times taken to evaluate different models. This

difference is due only to the different make up of models because all models are

evaluated on exactly the same dataset. Thus, a race condition develops such that420

less complex individuals taking less time to be evaluated can apply for a place

into the population before their slower counterparts; applying for a place means

checking if the new model is fitter than the “winner”2 of an inverse tournament,

and if so replacing that winner with the new model. Hence, the fast evaluating

individuals may reproduce earlier than the more complex individuals taking425

longer to be evaluated.

Algorithm 1 lists the pseudo code of the APGP algorithm. The algorithm

begins by initialising the number of allowed concurrent evaluations, population

size and total number of offspring (total number of fitness evaluations in the

run). This is followed by creating the initial population and evaluating it. The430

parallel breeding then begins by initiating multiple breed operations up to the

allowed limit. These breed operations evaluate offspring in independent threads.

As soon as an offspring completes evaluating, it replaces the winner of an inverse

tournament in the current population if it is fitter than the winner, and the

2The winner of an inverse tournament is the worst member of the tournament; we use an

inverse tournament of size 5.

17

corresponding thread is released to allow another breed operation to commence.435

As these parallel operations work over the same population, a temporary lock

is set on the position of the individual being replaced to avoid clashes.

As discussed above, the decision on whether an offspring finds a place in

the population is made based on its accuracy only. As such, speed becomes an

advantage only when it is accompanied by high accuracy. Where complex candi-440

dates are more accurate, they will eventually get in, get selected and propagate.

Thus, complex models are not excluded, and the simplicity of good models is

constrained by the possibilities within the specific problem.

4. Experiments

The performance of APGP was evaluated against standard GP and GP with445

an effective bloat control mechanism (GP+BC) on a suite of symbolic regression

problems. Identical parameters were adopted across the three methods except:

the race condition, which was present only in APGP; and the bloat control

mechanism, which was present only in GP+BC.

4.1. Test Problems450

We considered the recommendations provided in [57] when choosing the test

problems. Five multi-dimensional problems and one bi-dimensional problem

were used. The datasets for Problems 1–5 are described in [58]; Problem 6 is

a bi-variate version of the function used in [59]. The datasets are summarised

in Table 1. As the results reported in Section 5 show, all but Dow are hard for455

GP (the accuracy scores are less than 41%). Hence, these problems require GP

to run long and thus present a good test bed for evaluating complexity control

because complexity in GP grows with the increase in the duration of runs.

4.2. Configuration and Parameters

The basic parameters for all the methods are summarised in Table 2. Other460

key experimental decisions included the following.

18

Algorithm 1: Asynchronous Parallel Genetic Programming (APGP)

Algorithm

/* Initialise */

N ← set total number of offspring to produce;

threadpool ← set number of concurrent operations allowed;

popsize ← set population size;

/* Generate and evaluate initial population */

population ← generate initial population of size popsize;

Evaluate(population);

/* Generate and evaluate offspring in parallel */

count = 0;

while count < N do

if threadpool > 0 then

Thread(threadpool ← threadpool − 1 &&

offspring ← Breed and evaluate());

count ← count + 1;

if offspring evaluated then

replace ← To Replace(population);

if fitness(offspring) > fitness(population[replace]) then

Lock population[replace] memory position;

population[replace] ← offspring;

Release locked position;

else

Discard offspring;

Release thread: threadpool ← threadpool + 1;

else
Wait

end

19

ID Label Test Problem No. of

variables

No. of

instances

1 Airfoil Airfoil Self-Noise 5 1503

2 Boston Boston Housing 13 506

3 Concrete Concrete Strength 8 1030

4 Dow Dow Chemical 57 1066

5 Energy Energy Efficiency 8 768

6 Y2X6 y2x6 − 2.13y4x4 +

y6x2

2 250 (x=min:-0.3, step:

0.012; y = x + 0.03)

Table 1: Overview of the Test Problems

• Bloat Control for GP+BC : Double tournament [60] was employed to con-

trol bloat. This is a method that has been very successful on a variety of

benchmark problems [60][61], and the results of our experiments reported in

Section 5 also show that this method indeed limits sizes aggressively. The best465

problem-independent settings for this method were used as recommended in

[60]: in the first round, run n probabilistic tournaments, each with a tourna-

ment of size 2, to select a set of n individuals; then, in the second round, select

the fittest out of the n individuals. The tournaments in the first round choose

the smallest individual with a probability of 0.7. We also considered using470

Operator Equalisation (OpEq), a more recent bloat control method [62] [63];

however, unlike APGP, which uses steady-state replacement, OpEq requires

generational replacement.

• Degree of Concurrency: The size of the thread pool (number of parallel

threads available) can vary in APGP. We tested pool sizes 5, 25, 50, 75475

and 100. While size 50 produced the best or competitive results generally,

some problem-specific improvement may be possible with other thread sizes.

Future work can further investigate this.

• System Configuration: The experiments were run on Windows 10 (64-bit)

20

with 32GB RAM, and Intel Core i7-6700 CPU @ 3.40GHz (quad-core).480

• Additional Configuration and Parameters: The other key experimental de-

cisions were the following. First, the individuals with divide-by-zero errors

were assigned the worst fitness; as discussed in [64], the protected operators

commonly used in GP lead to poor generalisation. Second, the datasets were

randomly split into training and test sets using the 80:20 ratio. Finally, the485

fitness was calculated as 1
1+ 1

n Σn
i=1

(yi−ŷi)2
such that yi and ŷi represent ideal

and model’s outputs respectively; the fitness value stays between 0 and 1,

where a higher value is better.

Parameter Setting

Number of runs 50

Population size 500

Run terminates After 35,000 evaluations (≡ 70 generations)

Random tree/

subtree generation

Ramped half-and-half

(depth min = 1,max = 4)

Tree depth limit 17

Operators &

probabilities

One point crossover = 0.9

Point mutation = 0.1

Function set +,−, ∗, /, sin, cos, neg

Ephemeral random

constants (ERC)

|ERC| = 100 (min = 0.05, step: 0.05)

Terminal set {Input variables} U ERC

Selection tournament size = 3

Replacement steady state, inverse tournament size = 5

Table 2: Summary of Parameters Used in the Tested Methods

21

5. Experimental Results

To evaluate the performance of the proposed APGP method, we compared490

the accuracy (fitness) scores of its evolved models over the training and test sets

against those of models evolved by standard GP and GP+BC. In addition, we

noted the average number of evaluations it took APGP and GP+BC to reach

the average training accuracy of GP (target accuracy); this shows the efficiency

of the other methods relative to GP.495

5.1. Accuracy of the Tested Methods

Figure 3: Results of Mann-Whitney U tests on the final populations (APGP vs GP; APGP

vs GP+BC). The results show that APGP produced significantly more accurate models (in

terms of their training and test fitness) on all datasets compared to both GP and GP+BC.

While APGP produced significantly simpler models than GP in five out of six test, GP+BC

produced significantly simpler models than APGP at the price of accuracy.

22

As fitness in our experiments was set up as a maximisation function (where

higher fitness scores are better), we use the term fitness and accuracy inter-

changeably. Figure 3 shows the colour-coded results of the Mann-Whitney U

statistical test on the final populations (of models) that were output by APGP,500

standard GP and GP+BC for all test problems. The results include the eval-

uation time, size, training and test fitness of the models. The p-values shown

in Figure 3 correspond to the statistical difference between APGP and GP, as

well as APGP and GP+BC. The rows coloured in green represent the cases

when APGP is significantly better (i.e. outputs less complex models or achieves505

higher accuracy) than either GP or GP+BC, red when it is significantly worse,

and yellow when it is not significantly different.

The dominating green colour in columns 3 and 4 of Figure 3 indicate that

APGP significantly outperforms GP in the vast majority of the tests. In par-

ticular, the final population output by APGP is simpler than that output by510

GP for all the problems except Dow; this is indicated by significantly smaller

mean evaluation times and sizes. Furthermore, the training and test accuracy

scores (fitness) of APGP are significantly better than those of GP for all the

problems except for the training fitness of Energy, where the improvement is not

significant. Finally, the APGP test fitness values, which is the major concern515

when evaluating models, are significantly better than those of GP for all the

problems. This indicates that the models output by APGP tend to generalise

better on unseen data compared to the models output by GP. It can be noticed

that the reported p-values are very small, which indicates that the differences

between the results of the two methods are very significant.520

While APGP produced more complex individuals than GP for Dow, it

demonstrated better training and test fitness values. The relative increase in

complexity (size and evaluation time) in this one instance comes with an asso-

ciated gain in fitness; therefore, it is not necessarily bloat – bloat is growth in

size without an associated gain in accuracy.525

When comparing APGP with GP+BC, as captured in columns 5 and 6 of

Figure 3, GP+BC produced significantly smaller models for all the problems

23

since it aggressively and solely targets the model size. However, these simpler

models achieved significantly lower training and test accuracy values. In other

words, simplicity in GP+BC came at the expense of accuracy.530

While APGP outperformed GP and GP+BC on average, we were also in-

terested in identifying the method that produced the better individuals; GP

applications are often interested in the best solutions and not averages. We

used the test fitness scores as a criteria for identifying the best of each method.

A comparison is summarised in Table 3; the values show how APGP differs from535

the other compared methods in percentages. It can be noticed from the table

that APGP produced individuals with the overall best test accuracy (fitness)

values for all the six problems. As noted before, the best models that were

output by APGP were also smaller than those output by GP but sometimes

larger than GP+BC.540

5.2. Cost of Producing Accurate Models

Using the average training accuracy of GP as a benchmark, we compared

the average evaluations taken by each method to match that training accuracy.

Where a particular run did not achieve that target, it was assigned the maxi-

mum number of budgeted evaluations. As summarised in Table 4, APGP used545

10% to 40% fewer evaluations than GP, and 15% to 84% fewer than GP+BC.

Thus, APGP is the fastest to train, whereas GP+BC despite producing smaller

individuals is the slowest; note, as in Figure 3, both GP and GP+BC are also

consistently less accurate than APGP on both training and test sets.

5.3. Constitution of the Populations550

The proposed APGP is based on the idea that simple models that are com-

petitive will be allowed to thrive and that complex models that are accurate will

not be excluded. In this section we examine the makeup of the final populations

in terms of the accuracy and simplicity of the individual models.

Scatter-plots that plot test fitness against model-size in the final populations555

are presented in Figure 4. Each method has a separate plot for each problem.

24

Test ID Test Fitness Gain Eval. Time Increase Size Increase

Relative Performance of APGP Compared to GP

Airfoil +24.99% -43.26% -47.17%

Boston +6.64% +12.31% -0.896%

Concrete +22.43% -36.99% -44.96%

Dow +2.04% -78.13% -85.71%

Energy +3.13% -22.92% -18.38%

Y2X6 +0.11% +42.57% -11.11%

Relative Performance of APGP Compared to GP+BC

Airfoil +19.93% +18.00% +15.0%

Boston +43.24% +95.17% +452.5%

Concrete +11.56% +72.70% +100.0%

Dow +2.43% -78.56% -65.82%

Energy +69.10% -34.51% +40.91%

Y2X6 +1.71% +49.45% +695.0%

Table 3: Comparison of the best individuals that were output by the three considered meth-

ods. Positive/negative numbers correspond to the increase/decrease in the corresponding

metric values of APGP relative to GP or GP+BC. APGP produced more accurate models

than GP and GP+BC for all the problems, however, sometimes, at the expense of longer

evaluation times and/or larger model sizes.

Columns 1, 2 and 3 are plots for APGP, GP and GP+BC respectively. The

plots also have clusters indicated (by ovals) that were identified using K-means

algorithm [65].

The GP+BC plots (column 3) show more convergence towards the origin560

than the other methods. In other words, the aggressive restriction of size by

GP+BC also restricts test fitness accuracy. On the other hand, GP allows size

to grow with gains in accuracy. Whereas, APGP produced the highest test

fitness scores while gently managing complexity.

These trends are similar to those observed in the population in Section 5.1,565

where it was established that the difference in the populations is statistically

25

No. of Evaluations To Reach Target Accuracy

Test ID GP

Mean

GP+BC

Mean

APGP

Mean

Difference

APGP /GP

Difference

APGP /GP+BC

Airfoil 29407 33041 23941 18.59 % 38.01 %

Boston 20761 27792 17762 14.44 % 56.47 %

Concrete 31668 33595 20422 35.51 % 64.50 %

Dow 17861 19762 10719 39.99 % 84.36 %

Energy 28852 34842 25658 11.07 % 35.79%%

Y2X6 33077 33895 29546 10.68 % 14.72 %

Table 4: APGP used significantly fewer evaluations than both GP and GP+BC to reach the

same target accuracy.

significant.

These observations suggest that the best test fitness values are not associated

with either extreme of size restriction. They also suggest that APGP normally

offers the best trade-off in terms of accuracy and simplicity.570

As all the methods show variation within the populations and an appropriate

size is problem specific, finding ideal solutions is more a matter of investigation

than persistently controlling size. APGP aims to control complexity in an or-

ganic approach, where simple solutions can thrive when their training accuracy

is better than their more complex counterparts.575

From the above results the merit of the ideas behind the APGP system are

apparent. However, a questions arises: if we use time-control methods that

explicitly minimise evaluation time instead of sizes, can we reproduce the previ-

ous results without using the race condition that APGP uses to induce a more

implicit time control? The next section explores this question.580

6. Explicit Time Control

The proposed APGP controls complexity by implicitly controlling evaluation

time. Therefore, it offers novelty in two fronts: (1) the idea that evaluation time

26

Figure 4: Scatter-plot Test-fitness by Size of final populations of APGP, GP and GP+BC.

The preferred individuals are in the top left corners of the charts (individuals with high test

fitness accuracy and small sizes). The clusters discovered by K-means clustering are indicated.

27

can serve as a measure of complexity and (2) the race condition that APGP

employs to control this indicator of complexity. Here we decouple the two to585

examine how explicit control of evaluation time compares with APGP. This will

also enable us to explore the behaviour of evaluation time.

As in [66] that introduced explicit time control, we use four well-known

techniques for bloat-control to now instead control evaluation time; hence, the

techniques effect an explicit time-control. However, unlike in [66] that compared590

time-control with only standard GP methods, here we compare the explicit time-

control against a relatively implicit time-control in APGP.

6.1. Techniques for Explicit Time Control

The bloat-control techniques that were adapted to control evaluation time

are as follows:595

1. Death by Size (DS) [60] increases the probability of replacing the larger indi-

viduals from the present population. To replace an individual, DS randomly

selects two individuals and replaces the larger with a given probability (typ-

ically 0.7; we use the same).

2. Double Tournament (DT) [60, 61] encourages the reproduction of small off-600

spring by increasing the probability of choosing smaller individuals as par-

ents. This is achieved with two rounds of tournaments. In the first round, it

runs n probabilistic tournaments each with a tournament of size 2 to select a

set of n individuals. Each of these tournaments selects the smaller individual

with a probability of 0.7. Then, in the second round, DT selects the fittest605

out of the n individuals.

3. Operator Equalisation (OpEq) [62, 63] allows the sizes of individuals to grow

only when fitness is improving. It controls the distribution of size in the

population by employing two core functions. The first determines the target

distribution (by size) of individuals in the next generation; the second en-610

sures that the next generation matches the target distribution. To define the

target distribution, OpEq puts the current individuals into bins according to

28

their sizes and calculates the average fitness score of each bin. This average

score is then used to calculate the number of individuals to be allowed in a

corresponding bin in the next generation (target distribution). Thus, from615

one generation to the next the target distribution changes to favour the sizes

that produce fitter individuals. In our experiments we used Dynamic OpEq,

which is the variant that produces higher accuracy [63]. To adapt OpEq to

control evaluation time, we had to estimate the time equivalent of the bin

width at the beginning of the run; we used bin width = 5 in our experiments.620

4. The Tarpeian (TP) [19] discourages growth in size by penalising larger indi-

viduals in the population and making them noncompetitive. This is effected

by calculating the average size of the population at every generation and

then assigning the worst fitness to a fraction W of the individuals that have

above-average size (recommended W = 0.3; we use the same).625

Similar to APGP, Death by Size and Double Tournament use Steady-state

replacement strategy. However, although Operator Equalisation and Tarpeian

use the generational replacement strategy that differs from the steady state in

APGP, we still report their results as benchmarks due to their popularity as

bloat control methods.630

6.2. Results of Comparing APGP with Explicit Time Control

APGP produced more accurate models (both training and test fitness) on

all tests against all time-control methods. Figure 5 details the results of the

tests for significance of difference in the final populations. The improvement

in accuracy by APGP was significant. Also, similar to the result of comparing635

APGP with bloat control in Section 5, the control of complexity by APGP was

not as aggressive as the explicit time-control methods. The explicit time-control

techniques produced significantly simpler models but lost out on accuracy.

Although [66] reported that the explicit control of evaluation time instead

of size outperforms the standard GP methods with and without bloat control,640

these results show that APGP is still more accurate. Thus, the asynchronous

29

Figure 5: APGP vs explicit time-control methods. Detailed here are the results of the test

for significance of difference in the final populations of APGP against those of the explicit

time control methods. The results show that APGP produced significantly more accurate

(training and test fitness) models on all tests against and against all time-control methods.

The time-control methods produced simpler models at the cost of accuracy.

parallel breeding in APGP manages complexity in such a way that allows greater

accuracy and while keeping complexity less than that in standard GP. In the

next section, we explore how evaluation time can be manoeuvred to enhance

APGP.645

30

7. APGP for Functionally Diverse Populations

In Section 2.3 we demonstrated that the evaluation time can reflect both the

size and functional complexity of models. This finding suggests that when the

individuals are identically sized but functionally diverse, then differences in eval-

uation times will largely reflect the differences in functional or computational650

complexity of the functions that make up the models. Therefore, restricting

evaluation time in this environment will restrict the complexity of the functions

that make up the individuals. This in turn may lead to simpler functional be-

haviour of the models and better generalisation. Therefore, in [66] we proposed

a Fixed-Length Initialisation (FLI) scheme that can be used to start the evo-655

lution with a size converged and functionally diverse population. The results

demonstrated that using FLI significantly improves the test fitness on a variety

of GP techniques both with bloat-control and time-control. Also, the results

indicated that time-control with FLI produces simpler functions.

However, FLI was not tested with APGP in [66]; therefore, we test the660

impact of FLI on APGP in this paper.

7.1. Fixed Length Initialisation Scheme (FLI)

We use FLI to produce an initial population of unique individuals each hav-

ing the same length (or size) of 10 nodes. Given the functions set size of 7 a

length of 10 can easily produce populations of a few hundred unique individuals.665

Later in section 7.4, we explored the impact of varying the lengths.

To encourage functional diversity, two individuals that only differ by numeric

constants are considered the same.

7.2. Impact of Fixed Length Initialisation on APGP

APGP with FLI (APGP-FLI) produced significantly more accurate models670

(on both training and test data) than plain APGP on five out of the six test

problems; see Figure 6. In terms of sizes the results were mixed (though APGP-

FLI is better 4 out 6 times); however, in terms of evaluation times, APGP-FLI

was significantly better than APGP on 5 out of six problems.

31

Figure 6: Impact of FLI on APGP. Statistical tests showed that apply FLI to APGP improved

the mean accuracy values (both training and test) of the population in 5 out of 6 problems.

Also there was a reduction in size and evaluation times in 4 out of 6 and 5 out of 6 respectively.

7.3. APGP with Fixed Length Initialisation vs. Time Control with Fixed Length675

Initialisation

Next, we compare APGP-FLI against the time-control methods with FLI.

For this, we re-ran time-control methods with FLI and tested for a significance in

difference in the final populations against APGP-FLI; the results of the Mann-U

Whitney tests are captured in Figure 7.680

The results show that APGP-FLI produced significantly more accurate indi-

viduals than all the compared time-control techniques with FLI. This is both in

32

terms of training and test fitness accuracy. Out of the twenty-four comparisons

of accuracy with APGP-FLI, only once another method outperformed APGP-

FLI. Also, the accuracy difference was not significant in one out of twenty-four685

tests.

As with earlier comparisons with time-control methods, mostly APGP-FLI

produced more complex individuals; however, again this complexity also brings

higher accuracy on the test data.

Figure 7: Results of Mann-WhitneyU test for significance in the differences between the

final populations of APGP with FLI and explicit time-control with FLI. APGP produced

more accurate solutions (both training and test) in all cases. Explicit time-control produced

simpler (smaller sizes and evaluation times) models than APGP in xx out of 24 tests.

33

7.4. Varying the Lengths in the Fixed Length Initialisation690

In all the previous FLI experiments all the individuals in the initial gener-

ation were made up of ten nodes. Here we explore the impact of varying the

initial size on APGP. Therefore, we re-ran the APGP-FLI with ten different

sizes from five to fifty (FLI-5 to FLI-50, in steps of 5). Figure 8 details the re-

sults. For each problem, box-plots of the average test fitness values and average695

lengths of the final populations are shown; the X-axis show the different FLI

sizes.

The lengths of individuals in the final populations are not affected signif-

icantly despite varying FLI lengths. However, there is some activity in test-

fitness: with the exception of Boston, the results show that starting with indi-700

viduals of size five (5 nodes each) appears disadvantageous. The lengths that

produced the best results are problem specific. However, it is reassuring to

note that relatively lower lengths in FLI-10, FLI-15 and FLI-20 are at least

competitive with the greater lengths.

7.5. Summary of APGP in a Functionally Diverse Population705

The results in this section show that FLI significantly improved APGP.

Similarly, our related work [66] showed that FLI improved the performance

of time-control methods. However, APGP retained its leading position in the

environment that FLI creates.

The analysis of time in Section 2.3 indicated that in a functionally diverse710

and size converged environment, controlling time will distinguish complexity

based more on composition than on size; FLI creates such an environment at

the beginning of the evolution but does not control the remaining generations.

Future work will study if encouraging such an environment in the remaining

evolution will further intensify the effect of time-control.715

8. Conclusions and Future Work

This paper exemplifies redefining complexity in GP with the evaluation time.

The evaluation time is both a function of the size, as well as functional and

34

Figure 8: Impact of changing the sizes of individuals for FLI. Despite varying FLI lengths,

the lengths of individuals in the final populations has remained fairly stable. However, some

changes were observed with test-fitness accuracy.

computational effort of a model. Although we only applied the measure here to

regression problems, it is also applicable to other domains.720

A criticism of the proposed evaluation time measure is the variability in its

repeated measurements. To address this issue, the paper demonstrated a way to

minimise this variability, so that the evaluation time could be measured reliably.

Leveraging evaluation times, this paper further presented a novel method,

called Asynchronous Parallel GP (APGP), which uses asynchronous parallel725

computing to induce a race between concurrent executions of multiple models

to discourage complexity. According to this race condition, models are allowed

to join a steady-state population as soon as they are evaluated rather than wait-

35

ing for other models to be evaluated. This condition provides an evolutionary

advantage to simpler models, that are also competitive in terms of accuracy.730

APGP thus challenges the conventional, but ultimately unnatural, way of eval-

uating individuals one after the other or in a lock-step.

Unlike aggressive bloat control techniques that penalise sizes at the expense

of achieving lower accuracy and hence increasing training times, APGP produces

models that are simpler than those from standard GP and are more accurate735

than those from GP both with or without complexity control; complexity was

controlled with standard bloat control methods or their time variants that we

defined as time-control methods. Against standard GP, APGP improved test

fitness accuracy on 6/6 test; the solutions were also significantly simpler in 5/6

tests, both in terms of size and evaluation times. Against GP with bloat control740

(GP+BC), APGP improved test fitness accuracy on 6/6 test; but the solutions

were not simpler than BC (in 3/6 for evaluation times and 6/6 for size).

Thus, instead of aggressively going after complexity control, the APGP de-

creases complexity but not to the extent that it starts hurting accuracy on test

data.745

The APGP trained faster than GP and GP+BC on all 6 problems; it reached

the average training scores of GP with 11% to 40% fewer evaluations than GP

and 15% to 84% fewer evaluations than GB+BC.

When APGP was compared against the explicit control of evaluation time

using four well-known and effective bloat control techniques, APGP produced750

significantly more accurate solutions on all tests (24/24). The explicit control

controlled complexity more aggressively; they produced significantly simpler

models in all test but 1/24 for size and 3/24 for evaluation times. Again, this

shows the merit of APGP’s approach of not directly targeting and penalising the

complexity of models but rather encouraging simplicity in competitive models.755

Motivated by the idea that the evaluation time can distinguish functional

complexity in a functionally diverse and size-converged environment, we tested

APGP with a new and effective initialisation scheme called the Fixed Length Ini-

tialisation (FLI). The FLI improved APGP even further: The test set accuracy

36

increased significantly in 5/6 tests; and the complexity decreased significantly760

in 8/12 tests (3/6 for size and 5/6 for evaluation times).

We also tested the sensitivity of the FLI to different initial lengths and

we found that the performance of APGP remains largely robust against the

variation. However, usefully, the relatively smaller lengths of 10, 15, and 20

produced at least as good performance as the greater lengths. While FLI allows765

functional complexity to be detected in the earliest generations, future work can

explore similar possibilities throughout the evolution.

In summary, the results of the experiments presented in this paper demon-

strated that APGP has the potential for generating simple and accurate models

fast. While this study focused on regression problems only, in principle, the eval-770

uation time can represent complexity in other domains as well. In the future, we

plan to test the proposed method on classification problem with discrete fitness

values and non-machine-learning problems such as automatic programming and

design.

References775

[1] G. Paris, D. Robilliard, C. Fonlupt, Exploring overfitting in genetic pro-

gramming, in: P. Liardet, P. Collet, C. Fonlupt, E. Lutton, M. Schoenauer

(Eds.), Evolution Artificielle, 6th International Conference, Vol. 2936 of

Lecture Notes in Computer Science, Springer, Marseilles, France, 2003, pp.

267–277, revised Selected Papers. doi:10.1007/b96080.780

[2] J. R. Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

URL http://mitpress.mit.edu/books/genetic-programming

[3] Z. C. Lipton, The mythos of model interpretability, Commun. ACM 61 (10)

(2018) 36–43. doi:10.1145/3233231.785

URL http://doi.acm.org/10.1145/3233231

37

http://dx.doi.org/10.1007/b96080
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://doi.acm.org/10.1145/3233231
http://dx.doi.org/10.1145/3233231
http://doi.acm.org/10.1145/3233231

[4] J. Hatwell, M. M. Gaber, R. M. A. Azad, CHIRPS: Explaining ran-

dom forest classification, Artificial Intelligence Review (2020) 1–42doi:

10.1007/s10462-020-09833-6.

URL https://doi.org/10.1007/s10462-020-09833-6790

[5] A. Kumar, S. Goyal, M. Varma, Resource-efficient machine learning in 2

KB RAM for the internet of things, in: D. Precup, Y. W. Teh (Eds.),

Proceedings of the 34th International Conference on Machine Learning,

Vol. 70 of Proceedings of Machine Learning Research, PMLR, International

Convention Centre, Sydney, Australia, 2017, pp. 1935–1944.795

[6] M. Couture, Complexity and chaos-state-of-the-art; formulations and mea-

sures of complexity, Tech. rep., DEFENCE RESEARCH AND DEVELOP-

MENT CANADA VALCARTIER (QUEBEC) (2007).

[7] J. R. Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.800

URL http://mitpress.mit.edu/books/genetic-programming

[8] T. Soule, J. A. Foster, J. Dickinson, Code growth in genetic programming,

in: J. R. Koza, D. E. Goldberg, D. B. Fogel, R. L. Riolo (Eds.), Genetic

Programming 1996: Proceedings of the First Annual Conference, MIT

Press, Stanford University, CA, USA, 1996, pp. 215–223.805

URL http://cognet.mit.edu/sites/default/files/books/

9780262315876/pdfs/9780262315876_chap26.pdf

[9] L. Vanneschi, M. Castelli, S. Silva, Measuring bloat, overfitting and func-

tional complexity in genetic programming, in: J. B. et al (Ed.), GECCO

’10: Proceedings of the 12th annual conference on Genetic and evolu-810

tionary computation, ACM, Portland, Oregon, USA, 2010, pp. 877–884.

doi:10.1145/1830483.1830643.

[10] R. M. A. Azad, C. Ryan, A simple approach to lifetime learning in genetic

programming based symbolic regression, Evolutionary Computation 22 (2)

38

https://doi.org/10.1007/s10462-020-09833-6
https://doi.org/10.1007/s10462-020-09833-6
https://doi.org/10.1007/s10462-020-09833-6
http://dx.doi.org/10.1007/s10462-020-09833-6
http://dx.doi.org/10.1007/s10462-020-09833-6
http://dx.doi.org/10.1007/s10462-020-09833-6
https://doi.org/10.1007/s10462-020-09833-6
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://dx.doi.org/10.1145/1830483.1830643
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111

(2014) 287–317. doi:10.1162/EVCO_a_00111.815

URL http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_

00111

[11] J. R. Koza, Human-competitive machine invention by means of genetic

programming, Artificial Intelligence for Engineering Design, Analysis and

Manufacturing 22 (3) (2008) 185–193. doi:10.1017/S0890060408000127.820

[12] N. X. Hoai, R. I. B. McKay, D. Essam, Representation and structural

difficulty in genetic programming, IEEE Transactions on Evolutionary

Computation 10 (2) (2006) 157–166. doi:10.1109/TEVC.2006.871252.

URL http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/

Structdiff.pdf825

[13] C. Ryan, M. O’Neill, J. J. Collins (Eds.), Handbook of Grammatical Evo-

lution, Springer, 2018. doi:10.1007/978-3-319-78717-6.

[14] R. M. A. Azad, A position independent representation for evolutionary

automatic programming algorithms - the chorus system, Ph.D. thesis, Uni-

versity of Limerick, Ireland (Dec. 2003).830

URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_

thesis.ps.gz

[15] G. Chennupati, R. M. A. Azad, C. Ryan, Performance optimization of

multi-core grammatical evolution generated parallel recursive programs, in:

S. S. et al (Ed.), GECCO ’15: Proceedings of the 2015 Annual Conference835

on Genetic and Evolutionary Computation, ACM, Madrid, Spain, 2015,

pp. 1007–1014. doi:10.1145/2739480.2754746.

URL http://doi.acm.org/10.1145/2739480.2754746

[16] L. Spector, A. Robinson, Genetic programming and autoconstructive evo-

lution with the push programming language, Genetic Programming and840

Evolvable Machines 3 (1) (2002) 7–40. doi:10.1023/A:1014538503543.

URL http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

39

http://dx.doi.org/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://dx.doi.org/10.1017/S0890060408000127
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://dx.doi.org/10.1109/TEVC.2006.871252
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://dx.doi.org/10.1007/978-3-319-78717-6
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://doi.acm.org/10.1145/2739480.2754746
http://doi.acm.org/10.1145/2739480.2754746
http://doi.acm.org/10.1145/2739480.2754746
http://dx.doi.org/10.1145/2739480.2754746
http://doi.acm.org/10.1145/2739480.2754746
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://dx.doi.org/10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf

[17] T. Hu, J. Payne, W. Banzhaf, J. Moore, Evolutionary dynamics on mul-

tiple scales: a quantitative analysis of the interplay between genotype,

phenotype, and fitness in linear genetic programming, Genetic Program-845

ming and Evolvable Machines 13 (3) (2012) 305–337, special issue on se-

lected papers from the 2011 European conference on genetic programming.

doi:10.1007/s10710-012-9159-4.

[18] J. A. Walker, J. F. Miller, The automatic acquisition, evolution and reuse

of modules in cartesian genetic programming, IEEE Transactions on Evo-850

lutionary Computation 12 (4) (2008) 397–417. doi:10.1109/TEVC.2007.

903549.

URL http://results.ref.ac.uk/Submissions/Output/3354578

[19] R. Poli, A simple but theoretically-motivated method to control bloat in

genetic programming, in: C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli,855

E. Costa (Eds.), Genetic Programming, Proceedings of EuroGP’2003, Vol.

2610 of LNCS, Springer-Verlag, Essex, 2003, pp. 204–217. doi:10.1007/

3-540-36599-0_19.

[20] A. Ekart, S. Z. Nemeth, Selection based on the pareto nondomination cri-

terion for controlling code growth in genetic programming, Genetic Pro-860

gramming and Evolvable Machines 2 (1) (2001) 61–73. doi:10.1023/A:

1010070616149.

[21] S. Luke, L. Panait, A comparison of bloat control methods for ge-

netic programming, Evolutionary Computation 14 (3) (2006) 309–344.

doi:10.1162/evco.2006.14.3.309.865

URL http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.

2006.14.3.309.pdf

[22] S. Dignum, R. Poli, Crossover, sampling, bloat and the harmful effects of

size limits, in: European Conference on Genetic Programming, Springer,

2008, pp. 158–169.870

40

http://dx.doi.org/10.1007/s10710-012-9159-4
http://results.ref.ac.uk/Submissions/Output/3354578
http://results.ref.ac.uk/Submissions/Output/3354578
http://results.ref.ac.uk/Submissions/Output/3354578
http://dx.doi.org/10.1109/TEVC.2007.903549
http://dx.doi.org/10.1109/TEVC.2007.903549
http://dx.doi.org/10.1109/TEVC.2007.903549
http://results.ref.ac.uk/Submissions/Output/3354578
http://dx.doi.org/10.1007/3-540-36599-0_19
http://dx.doi.org/10.1007/3-540-36599-0_19
http://dx.doi.org/10.1007/3-540-36599-0_19
http://dx.doi.org/10.1023/A:1010070616149
http://dx.doi.org/10.1023/A:1010070616149
http://dx.doi.org/10.1023/A:1010070616149
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf
http://cognet.mit.edu/system/cogfiles/journalpdfs/evco.2006.14.3.309.pdf

[23] N. F. McPhee, A. Jarvis, E. F. Crane, On the strength of size limits in

linear genetic programming, in: K. Deb (Ed.), Genetic and Evolutionary

Computation – GECCO 2004, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2004, pp. 593–604.

[24] S. Silva, S. Dignum, L. Vanneschi, Operator equalisation for bloat free875

genetic programming and a survey of bloat control methods, Genetic Pro-

gramming and Evolvable Machines 13 (2) (2012) 197–238. doi:10.1007/

s10710-011-9150-5.

[25] A. N. Kolmogorov, Three approaches to the quantitative definition ofinfor-

mation’, Problems of information transmission 1 (1) (1965) 1–7.880

[26] T. Cover, J. Thomas, Joint entropy and conditional entropy, Elements of

Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA

(2006) 16.

[27] P. Vitányi, How incomputable is kolmogorov complexity?, Entropy 22 (4)

(2020) 408.885

[28] A. K. Zvonkin, L. A. Levin, The complexity of finite objects and the de-

velopment of the concepts of information and randomness by means of the

theory of algorithms, Russian Mathematical Surveys 25 (6) (1970) 83.

[29] J. Rissanen, Modeling by shortest data description, Automatica 14 (5)

(1978) 465–471.890

[30] V. Nannen, A short introduction to model selection, kolmogorov complexity

and minimum description length (mdl), arXiv preprint arXiv:1005.2364.

[31] H. Iba, H. de Garis, T. Sato, Genetic programming using a minimum

description length principle, in: K. E. Kinnear, Jr. (Ed.), Advances in

Genetic Programming, MIT Press, Cambridge, MA, USA, 1994, Ch. 12,895

pp. 265–284.

URL http://cognet.mit.edu/sites/default/files/books/

9780262277181/pdfs/9780262277181_chap12.pdf

41

http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/s10710-011-9150-5
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap12.pdf

[32] N. N. Schraudolph, J. J. Grefenstette, A user’s guide to gaucsd 1.4, Com-

puter Science & Engineering Department, University of California, San900

Diego–1991.

[33] E. J. Vladislavleva, G. F. Smits, D. den Hertog, Order of nonlinearity as a

complexity measure for models generated by symbolic regression via pareto

genetic programming, IEEE Transactions on Evolutionary Computation

13 (2) (2009) 333–349. doi:10.1109/TEVC.2008.926486.905

[34] T. Rivlin, The Chebyshev Polynomials, A Wiley-Interscience publication,

Wiley, 1974.

[35] M. Castelli, L. Manzoni, S. Silva, L. Vanneschi, A quantitative study of

learning and generalization in genetic programming, in: S. Silva, J. A.

Foster, M. Nicolau, M. Giacobini, P. Machado (Eds.), Proceedings of the910

14th European Conference on Genetic Programming, EuroGP 2011, Vol.

6621 of LNCS, Springer Verlag, Turin, Italy, 2011, pp. 25–36. doi:10.

1007/978-3-642-20407-4_3.

[36] S. R. Kulkarni, G. Harman, Statistical learning theory: a tutorial, Wiley

Interdisciplinary Reviews: Computational Statistics 3 (6) (2011) 543–556.915

[37] V. N. Vapnik, Statistical learning theory, Adaptive and learning systems

for signal processing, communications, and control, Wiley, New York, NY,

1998, OCLC: 845016043.

[38] V. Vapnik, The Nature of Statistical Learning Theory, Information Science

and Statistics, Springer New York, 2013.920

[39] V. Vapnik, Statistical learning theory. 1998, Vol. 3, Wiley, New York, 1998.

[40] Q. Chen, M. Zhang, B. Xue, Structural risk minimisation-driven genetic

programming for enhancing generalisation in symbolic regression, IEEE

Transactions on Evolutionary Computation 23 (4) (2019) 703–717. doi:

10.1109/TEVC.2018.2881392.925

42

http://dx.doi.org/10.1109/TEVC.2008.926486
http://dx.doi.org/10.1007/978-3-642-20407-4_3
http://dx.doi.org/10.1007/978-3-642-20407-4_3
http://dx.doi.org/10.1007/978-3-642-20407-4_3
http://dx.doi.org/10.1109/TEVC.2018.2881392
http://dx.doi.org/10.1109/TEVC.2018.2881392
http://dx.doi.org/10.1109/TEVC.2018.2881392

[41] Q. Chen, M. Zhang, B. Cue, Improving generalisation of genetic pro-

gramming for symbolic regression with structural risk minimisation, in:

T. Friedrich (Ed.), GECCO ’16: Proceedings of the 2016 Annual Confer-

ence on Genetic and Evolutionary Computation, ACM, Denver, USA, 2016,

pp. 709–716. doi:10.1145/2908812.2908842.930

[42] C. Raymond, Q. Chen, B. Xue, M. Zhang, Genetic programming with

rademacher complexity for symbolic regression, in: C. A. C. Coello (Ed.),

2019 IEEE Congress on Evolutionary Computation, CEC 2019, IEEE

Computational Intelligence Society, IEEE Press, Wellington, New Zealand,

2019, pp. 2657–2664. doi:10.1109/CEC.2019.8790341.935

[43] R. M. A. Azad, C. Ryan, Variance based selection to improve test set per-

formance in genetic programming, in: N. Krasnogor, P. L. Lanzi, A. En-

gelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas, M. Ritchie,

M. Preuss, C. Gagne, Y. S. Ong, G. Raidl, M. Gallager, J. Lozano,

C. Coello-Coello, D. L. Silva, N. Hansen, S. Meyer-Nieberg, J. Smith,940

G. Eiben, E. Bernado-Mansilla, W. Browne, L. Spector, T. Yu, J. Clune,

G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P. Watson, M. Sip-

per, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, A. Auger (Eds.),

GECCO ’11: Proceedings of the 13th annual conference on Genetic and

evolutionary computation, ACM, Dublin, Ireland, 2011, pp. 1315–1322.945

doi:doi:10.1145/2001576.2001754.

[44] J. Ni, P. Rockett, Tikhonov regularization as a complexity measure in mul-

tiobjective genetic programming, IEEE Transactions on Evolutionary Com-

putation 19 (2) (2014) 157–166.

[45] A. S. Sambo, R. M. A. Azad, Y. Kovalchuk, V. P. Indramohan, H. Shah,950

Leveraging asynchronous parallel computing to produce simple genetic

programming computational models, in: Proceedings of the 35th An-

nual ACM Symposium on Applied Computing, SAC ’20, Association for

Computing Machinery, New York, NY, USA, 2020, p. 521–528. doi:

43

http://dx.doi.org/10.1145/2908812.2908842
http://dx.doi.org/10.1109/CEC.2019.8790341
http://dx.doi.org/doi:10.1145/2001576.2001754
https://doi.org/10.1145/3341105.3373921
https://doi.org/10.1145/3341105.3373921
https://doi.org/10.1145/3341105.3373921
http://dx.doi.org/10.1145/3341105.3373921
http://dx.doi.org/10.1145/3341105.3373921
http://dx.doi.org/10.1145/3341105.3373921

10.1145/3341105.3373921.955

URL https://doi.org/10.1145/3341105.3373921

[46] F. F. de Vega, G. Olague, D. Lanza, W. Banzhaf, E. Goodman,

J. Menendez-Clavijo, A. Martinez, et al., Time and individual duration

in genetic programming, IEEE Access 8 (2020) 38692–38713.

[47] C. Simpson, J. Jewett, S. Turnbull, V. Stinner, Pep 418: Add monotonic960

time, performance counter, and process time functions, Website.

URL https://www.python.org/dev/peps/pep-0418/

[48] W. B. Langdon, Genetic improvement of genetic programming, in: 2020

IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8. doi:

10.1109/CEC48606.2020.9185771.965

[49] J. R. Koza, D. Andre, Parallel genetic programming on a network

of transputers, Technical Report CS-TR-95-1542, Stanford University,

Department of Computer Science (Jan. 1995).

URL http://www.genetic-programming.com/jkpdf/

tr1542parallelsuversion.pdf970

[50] E. O. Scott, K. A. De Jong, Evaluation-time bias in asynchronous evolution-

ary algorithms, in: T. Tusar, B. Naujoks (Eds.), GECCO’15 Student Work-

shop, ACM, Madrid, Spain, 2015, pp. 1209–1212. doi:10.1145/2739482.

2768482.

[51] J. Kim, J. Kim, S. Yoo, GPGPGPU: Evaluation of parallelisation of genetic975

programming using gpgpu, in: T. Menzies, J. Petke (Eds.), Proceedings of

the 9th International Symposium on Search Based Software Engineering,

SSBSE 2017, Vol. 10452 of LNCS, Springer, Paderborn, Germany, 2017,

pp. 137–142. doi:10.1007/978-3-319-66299-2_11.

[52] M. Oussaidène, B. Chopard, O. V. Pictet, M. Tomassini, Parallel genetic980

programming and its application to trading model induction, Parallel Com-

puting 23 (8) (1997) 1183–1198. doi:10.1016/S0167-8191(97)00045-8.

44

http://dx.doi.org/10.1145/3341105.3373921
http://dx.doi.org/10.1145/3341105.3373921
https://doi.org/10.1145/3341105.3373921
https://www.python.org/dev/peps/pep-0418/
https://www.python.org/dev/peps/pep-0418/
https://www.python.org/dev/peps/pep-0418/
https://www.python.org/dev/peps/pep-0418/
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://dx.doi.org/10.1109/CEC48606.2020.9185771
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://www.genetic-programming.com/jkpdf/tr1542parallelsuversion.pdf
http://dx.doi.org/10.1145/2739482.2768482
http://dx.doi.org/10.1145/2739482.2768482
http://dx.doi.org/10.1145/2739482.2768482
http://dx.doi.org/10.1007/978-3-319-66299-2_11
http://dx.doi.org/10.1016/S0167-8191(97)00045-8

[53] E. O. Scott, K. A. De Jong, Evaluation-time bias in quasi-generational

and steady-state asynchronous evolutionary algorithms, in: T. F. et al

(Ed.), GECCO ’16: Proceedings of the 2016 on Genetic and Evolutionary985

Computation Conference, ACM, Denver, USA, 2016, pp. 845–852. doi:

10.1145/2908812.2908934.

[54] E. Cantú-Paz, A survey of parallel genetic algorithms, Calculateurs paral-

leles, reseaux et systems repartis 10 (2) (1998) 141–171.

[55] D. Power, C. Ryan, R. M. A. Azad, Promoting diversity using migration990

strategies in distributed genetic algorithms, in: 2005 IEEE Congress on

Evolutionary Computation, Vol. 2, IEEE Press, Edinburgh, Scotland, UK,

2005, pp. 1831–1838 Vol. 2. doi:10.1109/CEC.2005.1554910.

[56] G. Syswerda, A study of reproduction in generational and steady-state

genetic algorithms, in: Foundations of genetic algorithms, Vol. 1, Elsevier,995

Amsterdam, 1991, pp. 94–101.

[57] D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. W. Gold-

man, G. Kronberger, W. Jaskowski, U.-M. O’Reilly, S. Luke, Better

GP benchmarks: community survey results and proposals, Genetic Pro-

gramming and Evolvable Machines 14 (1) (2013) 3–29. doi:10.1007/1000

s10710-012-9177-2.

[58] D. Dua, E. Karra Taniskidou, UCI machine learning repository (2017).

URL http://archive.ics.uci.edu/ml

[59] S. Gustafson, E. K. Burke, N. Krasnogor, On improving genetic program-

ming for symbolic regression, in: D. C. et al (Ed.), Proceedings of the1005

2005 IEEE Congress on Evolutionary Computation, Vol. 1, IEEE Press,

Edinburgh, Scotland, UK, 2005, pp. 912–919.

[60] S. Luke, L. Panait, A comparison of bloat control methods for genetic

programming, Evolutionary Computation 14 (3) (2006) 309–344. doi:

10.1162/evco.2006.14.3.309.1010

45

http://dx.doi.org/10.1145/2908812.2908934
http://dx.doi.org/10.1145/2908812.2908934
http://dx.doi.org/10.1145/2908812.2908934
http://dx.doi.org/10.1109/CEC.2005.1554910
http://dx.doi.org/10.1007/s10710-012-9177-2
http://dx.doi.org/10.1007/s10710-012-9177-2
http://dx.doi.org/10.1007/s10710-012-9177-2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.1162/evco.2006.14.3.309

[61] S. Luke, L. Panait, Fighting bloat with nonparametric parsimony pres-

sure, in: J. J. Merelo-Guervos, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-

Villacanas, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature

- PPSN VII, no. 2439 in Lecture Notes in Computer Science, LNCS,

Springer-Verlag, Granada, Spain, 2002, pp. 411–421. doi:10.1007/1015

3-540-45712-7_40.

[62] S. Dignum, R. Poli, Operator equalisation and bloat free GP, in: M. O.

et al (Ed.), Proceedings of the 11th European Conference on Genetic Pro-

gramming, EuroGP 2008, Vol. 4971 of Lecture Notes in Computer Science,

Springer, Naples, 2008, pp. 110–121. doi:10.1007/978-3-540-78671-9_1020

10.

[63] S. Silva, S. Dignum, L. Vanneschi, Operator equalisation for bloat free

genetic programming and a survey of bloat control methods, Genetic Pro-

gramming and Evolvable Machines 13 (2) (2012) 197–238. doi:10.1007/

s10710-011-9150-5.1025

[64] M. Keijzer, Improving symbolic regression with interval arithmetic and

linear scaling, in: European Conference on Genetic Programming, EuroGP,

Springer, Essex, UK, 2003, pp. 70–82.

[65] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silver-

man, A. Y. Wu, An efficient k-means clustering algorithm: analysis and1030

implementation, IEEE Transactions on Pattern Analysis and Machine In-

telligence 24 (7) (2002) 881–892.

[66] A. S. Sambo, R. M. A. Azad, Y. Kovalchuk, V. P. Indramohan, H. Shah,

Time control or size control? reducing complexity and improving accu-

racy of genetic programming models, in: European Conference on Ge-1035

netic Programming (Part of EvoStar), Springer, 2020, pp. 195–210. doi:

10.1007/978-3-030-44094-7_13.

46

http://dx.doi.org/10.1007/3-540-45712-7_40
http://dx.doi.org/10.1007/3-540-45712-7_40
http://dx.doi.org/10.1007/3-540-45712-7_40
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1007/978-3-540-78671-9_10
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/978-3-030-44094-7_13
http://dx.doi.org/10.1007/978-3-030-44094-7_13
http://dx.doi.org/10.1007/978-3-030-44094-7_13

	Introduction
	Background
	Genetic Programming (GP)
	Complexity in Genetic Programming
	Structural Complexity
	Functional Complexity
	Complexity Based on Statistical Learning

	Time is Not Size
	Measuring Evaluation Time Reliably
	Parallel Genetic Programming

	Asynchronous Parallel Genetic Programming (APGP)
	Experiments
	Test Problems
	Configuration and Parameters

	Experimental Results
	Accuracy of the Tested Methods
	Cost of Producing Accurate Models
	Constitution of the Populations

	Explicit Time Control
	Techniques for Explicit Time Control
	Results of Comparing APGP with Explicit Time Control

	APGP for Functionally Diverse Populations
	Fixed Length Initialisation Scheme (FLI)
	Impact of Fixed Length Initialisation on APGP
	APGP with Fixed Length Initialisation vs. Time Control with Fixed Length Initialisation
	Varying the Lengths in the Fixed Length Initialisation
	Summary of APGP in a Functionally Diverse Population

	Conclusions and Future Work

